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We propose a spectroscopic probe of the breaking and localization of Cooper pairs in an atomic
Fermi superfluid interacting with a Rydberg impurity. This is achieved by monitoring the for-
mation of diatomic and triatomic ultralong-range molecular species in the superfluid across the
Bardeen–Cooper–Schrieffer (BCS)-Bose Einstein condensation (BEC) crossover. The triatomic Ry-
dberg molecule in the BEC regime heralds the trapping of a tightly-bound Cooper pair, reminiscent
of pion capture in nuclear matter, while the breaking of a Cooper pair on the BCS side by a diatomic
Rydberg molecule is evocative of binary-star tidal disruption by a black hole. Spectroscopy of the
Fermi superfluid and Rydberg molecules allows for an estimation of the Cooper-pair size while the
Rydberg molecule binding energies discern many-body pairing effects.

Rydberg atom-based systems have emerged as leading
platforms for demonstrating many-body correlations [1],
quantum simulations [2–4], quantum error corrections [5],
and quantum optics [6]. When the excited electron scat-
ters from a nearby ground-state atom, under certain con-
ditions, ultralong-range molecular bonds can form [7–9].
Such long-range Rydberg molecules have been realized
[10–16]. Interesting aspects of many-body physics, such
as the formation of Bose and Fermi polarons, quantum
statistics of gases exhibiting bunching and anti-bunching,
with Rydberg molecules have also been reported [17–21].
These studies exploit the large energy separations be-
tween the vibrational energies and the underlying prim-
itive excitations in a quantum gas.

In a different context, two-component fermions with
attractive interactions form Cooper pairs and exhibit the
Bardeen-Cooper-Schrieffer (BCS) - Bose-Einstein con-
densation (BEC) crossover pioneered by the experiments
with ultracold Fermi gases [22–24] (see also [25–27]).
Here, we show that by creating ultralong-range molecules
with a Rydberg impurity in a background sea of Cooper
pairs, it is possible to a) break the pairs on the BCS
side and b) locally trap a Cooper pair on the BEC
side. The former bears analogies with the breaking of a
binary-star pair by a tidal disruption event into a black
hole [28, 29], while the latter is reminiscent of the cap-
ture of pions (quark-antiquark pairs) in hydrogen [30, 31],
deuterium [32], and helium [33].

By radio-frequency (rf) spectroscopy of the superfluid
pairing gap [34, 35] or Rydberg spectroscopy of the
molecular lines [17, 19], one may, in a local spectroscopic
manner, probe the reaction of the superfluid to tackle
topical problems in condensed matter physics, such as
the Cooper-pair size and pairing energies [36].

A typical Rydberg potential is illustrated in Fig. 1 with
heteronuclear Rydberg molecules formed in Fermi super-
fluids. These molecules form (1) in a diatomic bond be-

∗ cchien5@ucmerced.edu

FIG. 1. (a) A typical Rydberg potential (solid line) and the
outer double-well approximation (dashed line). The forma-
tion of (b) a diatomic Rydberg molecule with a fermion from
a broken Cooper pair and (c) a triatomic Rydberg molecule
with a Cooper pair. The green (black) spheres represent the
Rydberg atoms (fermions in the superfluid). The Cooper
pairs are visualized by two black spheres connected by a
dashed or solid line. The grey ellipsoids mark the Rydberg
molecules.

tween the impurity and a fermion from a broken Cooper
pair and (2) in a triatomic bond - a Cooper pair in a
molecule - with the pair trapped in the Rydberg poten-
tial. To our knowledge, the latter type of pair trapping
has not previously been discussed, and these molecules
are different from the trimer Rydberg molecules ema-
nating from two weakly interacting bosons individually
trapped by a bosonic Rydberg atom that have been real-
ized [37] and theoretically studied [38, 39]. This work
exploits the interplay between two molecule-formation
mechanisms, one between the fermions to bind a Cooper
pair and the other among the Rydberg and its neighbor-
ing atoms to create a Rydberg molecule. Similar compe-
titions influence the physics of the aforementioned astro
and nuclear physics examples.

Leveraging the Bogoliubov-de Gennes (BdG) formal-
ism [40, 41] suitable for studying inhomogeneous effects
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in Fermi superfluids, we extract the low-lying bound
states of the composite Rydberg-Fermi superfluid sys-
tem. By increasing the Cooper-pair strength, distinct
local reactions of the pairing gap will occur: Breaking
(trapping) of a weak (strong) Cooper pair leads to a lo-
cal suppression (enhancement) of the gap function. We
identify the formation of diatomic and triatomic Rydberg
molecules along with their binding energies, which are
raised by the many-body pairing effect when compared
to those in a noninteracting gas. In contrast to previous
studies [42] with impurities carrying onsite potentials in
Fermi superfluids, the Rydberg potential has its furthest
well about hundreds of nanometers away from the core
with controllable width and depth, thereby giving rise to
rich structures of Rydberg molecules.

Rydberg excitation in a Fermi superfluid.– We con-
sider few Rydberg atoms immersed in a two-component,
spin- and mass-balanced Fermi superfluid with contact
pairing interactions. Experimentally, this setup can be
emulated, for instance, by bosonic 87Rb Rydberg atoms
and two hyperfine states of 84Rb or 86Rb for the Fermi
superfluid. Relevant experimental progress towards such
atomic mixtures can be found in Ref. [43]. However, we
emphasize that our results equally hold for other Ryd-
berg atom-Fermi superfluid systems. For simplicity, the
Rydberg atoms are assumed to be immobile and nonin-
teracting with each other. A quasi one-dimensional (1D)
geometry [44] creating a cigar-shaped cloud similarly to
Refs. [24, 45] is considered. It supports the off-diagonal
long-range order of the superfluid while freezing out the
transverse degrees-of-freedom.

The many-body Hamiltonian of the composite system
within the BCS-Leggett theory reads

H = HBCS +
∑
σ

∫
dxVRyd(x)ψ

†
σ(x)ψσ(x)d

†d, (1)

where HBCS =
∫
dx
[∑

σ ψ
†
σ(x)hσ(x)ψσ(x) +

(∆(x)ψ†
↑(x)ψ

†
↓(x) + h.c.)

]
[25, 46]. The fermion

operator acting on the σ =↑, ↓ component of mass m

is ψσ, and hσ(x) = − ℏ2

2m∇2 + Vext(x) − µσ denotes the
single-particle Hamiltonian with Vext(x) summarizing
the total external confinement. The order parameter of
the s-wave Fermi superfluid is the gap function

∆(x) = −U⟨ψ↓(x)ψ↑(x)⟩. (2)

The effective coupling U < 0 is related to the 1D scatter-

ing length a1D [47] via U = − 2ℏ2

ma1D
, tunable by Feshbach

resonance [25], and ⟨. . . ⟩ designates the ground-state ex-
pectation value at T = 0. The BCS-BEC crossover oc-
curs when the chemical potential (here µ↑ = µ↓ ≡ µ)
crosses zero [27] where the minimum of the quasiparticle-
spectrum shifts to zero momentum.

Importantly, the second contribution in Eq. (1) mod-
els the Rydberg atom - fermion interaction [20], with
d (d†) being the annihilation (creation) operator of a

Rydberg atom. The ultralong-range Born-Oppenheimer
potential between a Rydberg atom and a ground-state

fermionic atom is given by VRyd(x) =
2πℏ2ae

me
|ψe(x)|2 [7].

Here, ae denotes the scattering length between the Ry-
dberg electron with mass me and a fermionic atom, and
x measures the distance from the Rydberg impurity to
the fermionic atom. The Rydberg electron wave func-
tion, ψe(x), is calculated with effective valence poten-
tials [48]. In the vicinity of a Rydberg atom, we replace
d†d by ⟨d†d⟩ = 1 and hence VRyd(x) acts as an effective
potential for the Fermi superfluid. In what follows, the
localized Rydberg potential will be implicitly combined
with Vext(x) in hσ. Moreover, the Rydberg potential is
approximated by the double-well form shown in Fig. 1(a)
since the outer two wells represent the two largest lobes
of the Rydberg electron wave function of interest (see
Ref. [49] for more information), and therefore have the
largest Frank-Condon factor for excitation. The Fermi
energy Ef = ℏ2k2f/(2m) and wavevector kf = πn/2,
of a noninteracting 1D two-component Fermi gas with
the same total particle number N =

∫
n(x)dx as the

superfluid serve as the energy and inverse-length units.
For example, g = −Ukf/Ef is the dimensionless pair-
ing strength. Here, mean-field theory is used to describe
ground-state properties of the quasi-1D system. If criti-
cal behavior is encountered, more sophisticated theories
may be consulted [27].

BdG formalism. – To reveal the impact of the Ryd-
berg atoms on the Fermi superfluid, we inspect the com-
posite system as the superfluid undergoes the BCS-BEC
crossover. Specifically, H can be diagonalized by the BdG
transformation [41, 50]: ψ↑,↓(x) =

∑
ñ[u

ñ1,2
↑,↓ (x)γñ1,2 ∓

vñ2,1∗↑,↓ (x)γ†ñ2,1]. The quasiparticle wave functions u
ñj
σ and

vñjσ with j = 1, 2 are to be determined, and they satisfy∫
dx(|uñjσ |2+|vñjσ |2) = 1. The BdG equation for the com-

posite system considered here can be block-diagonalized
into [41](

h↑(x) ∆(x)
∆∗(x) −h∗↓(x)

)(
uñj↑ (x)

vñj↓ (x)

)
= Eñj

(
uñj↑ (x)

vñj↓ (x)

)
. (3)

Moreover, the BdG equation has a discrete symmetry
connecting the positive and negative energy states, so we
drop the indices 1, 2 and ↑, ↓ from the quasi-particle wave
functions. For the ground state, the gap function Eq. (2)
then becomes ∆(x) = −U

∑
ñ
′
uñ↑ (x)v

ñ∗
↓ (x) and the total

fermion density n(x) =
∑

σ nσ(x) = 2
∑

ñ
′|vñ(x)|2 with

nσ(x) = ⟨ψ†
σ(x)ψσ(x)⟩. Here

∑
ñ
′
denotes summation

over the positive-energy states. We discretize the space
and implement an iterative method [41, 51] to solve the
BdG equation (see SM [52] for details).

Spectroscopic signatures of pair breaking and pair
trapping.– To account for the impenetrable core of the
Rydberg atom, the system is embedded in a 1D box of
size L with the Rydberg atom at x = 0 and appropriately
adjusting the relevant energy and length scales, see also
SM [52]. The gap function and density of a representa-
tive BCS (BEC) Fermi superfluid with µ > 0 (µ < 0)
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BECBCS

FIG. 2. Gap function ∆ (top panels) and density (bottom
panels) of a Fermi superfluid in the BCS regime with g = 0.7,
µ = 0.20Ef (left panels) and the BEC regime where g = 3.6
and µ = −0.46Ef (right panels) under the same Rydberg
potential. Reduced (enhanced) undulations of ∆(x) near the
wells of the Rydberg potential are evident in the BCS (BEC)
regime.

subjected to the Rydberg potential are depicted in the
left (right) panels of Fig. 2. While the density profiles
on both BCS and BEC sides show peaks evidencing the
bound states due to the attractive Rydberg potential,
the most prominent contrast is the enhancement (sup-
pression) of the gap function around the minima of the
Rydberg potential in the BEC (BCS) regime. The decou-
pling of the gap function and density of a Fermi super-
fluid on the BCS side has also been discussed in vortex
structures [53, 54]. The oscillatory boundary effects on
the BCS side due to fermionic excitations are explained
in the SM [52].

The bound-state wave functions vn(x) of the Rydberg
potential in the BCS and BEC regimes are presented in
Fig. 3, see SM [52] for all bound-state wave functions un
and vn. Each well may host a series of bound states when
the depth of the Rydberg potential is enough to compete
with the pairing in the Fermi superfluid. Thus, there is
a competition between the intercomponent fermion at-
traction to maintain the Cooper pairs and the attrac-
tion among the Rydberg atom and the fermions to form
molecules. The bound-state energies in the BCS regime
are clearly separated, and each bound state consists of a
single fermion. This implies that the resulting diatomic
Rydberg molecules originate from individual fermions
due to broken Cooper pairs.

The bound states in the BEC regime shown in Fig. 3(b)
are more complex. Indeed, focusing on the furthest well,
the first two bound states are clearly separated in en-
ergy, indicating that they correspond to diatomic Ry-
dberg molecules. However, the subsequent two higher
vibrational bound states in the same well are energeti-
cally adjacent with almost identical wave functions. To-
gether with the enhanced gap function shown in Fig. 2,
the twin bound states suggest the presence of a locally
trapped Cooper pair. Therefore, the furthest well hosts
a triatomic Rydberg molecule as an excited vibrational

BECBCS

FIG. 3. Bound vibrational wave functions vn(x) of the Ry-
dberg potential (dashed lines) depicted in Fig. 1 offset ac-
cording to their energies En. The Fermi superfluid is in the
(a) BCS regime with g = 0.7 and µ = 0.20Ef and (b) BEC
regime with g = 3.6 and µ = −0.46Ef . On the BEC side,
there are two sets of nearly degenerate vibrational states lo-
calized respectively in the inner and outer wells, heralding the
formation of triatomic heteronuclear Rydberg molecules.

state in the BEC regime due to the combination of the
strong Cooper pairing and the Rydberg potential being
capable of trapping the Cooper pair. There is also a pair
of bound states with almost identical binding energies
and wave functions localized in the secondary well illus-
trated in Fig. 3(b). These are again evident of the cre-
ation of another triatomic Rydberg molecule. Therefore,
the double-well approximate Rydberg potential depicted
in Fig. 1 is able to host both diatomic and triatomic Ry-
dberg molecules. Although the excited vibrational-state
wave functions may extend into the inner potential wells,
a four-well calculation, described in SM [52], confirms
that the results with two outermost wells are valid.
The Cooper-pair size may be estimated by the BCS

coherence length [46]

ξ ≈ ℏvf
∆

, (4)

where vf is the Fermi velocity. For the system stud-
ied here, the full width at half maximum of the furthest
(secondary) well is about 0.04L (0.02L). The Cooper-
pair size of the selected BCS (BEC) case of Fig. 2 is
ξ/L ≈ 0.06 (ξ/L ≈ 0.003) since ∆/Ef ≈ 0.10 and
kfL ≈ 35 (∆/Ef ≈ 2.0 and kfL ≈ 36). Hence, the
Cooper pairs on the BCS side cannot be accommodated
within the Rydberg-potential wells. In this context, only
a fermion from a broken Cooper pair is captured, form-
ing a diatomic molecule. In contrast, the Cooper pairs of
the BEC case may fit into the Rydberg potential, which
is deep enough to either break a Cooper pair or trap it
to form a diatomic or a triatomic Rydberg molecule.
For a typical cold-atom cloud with density n ≈ 1014

cm−3 [25], Ef ≈ 10kHz for Rb atoms, the depth of the
Rydberg potential in Fig. 1 reaches the order of MHz.
The pairing gap is roughly of the order of Ef as shown
in Fig. 2, which can be orders of magnitude smaller than
the depth of the Rydberg potential even on the BEC side.
The Rydberg molecule lifetime is typically about 10-100
µs [15], while the timescale in a Fermi gas is governed
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FIG. 4. Normalized binding energies from the BdG equation
(circles and diamonds) and the Schrödinger equation (trian-
gles) with the Rydberg potential of Fig. 1. Solid and hollow
circles and triangles (diamonds) denote diatomic (triatomic)
Rydberg molecules. Dashed (solid) lines connect the data on
the BCS (BEC) side with g = 0.7 and µ = 0.20Ef (g = 3.6
and µ = −0.46Ef ). Blue and green (black) symbols denote
the bound states in the outer (inner) well of the Rydberg po-
tential. The higher bound states with indices 5, 6 occupy both
wells. Each triatomic Rydberg molecule binds a Cooper pair.

by ℏ/Ef (∼ 0.1ms). Therefore, the above treatment of
quasi-equilibrium of a Fermi superfluid in the presence
of Rydberg molecules is physically valid. The Rydberg
potential is seen as a spatially localized impurity to the
Fermi superfluid, imprinting the resulting local deforma-
tion, before the global collective effects of the superfluid
set in. Moreover, since there are only few Rydberg atoms
in a Fermi superfluid and the Rydberg potentials are lo-
cal with finite lifetime, the feedback from the Rydberg-
molecule formation on the Fermi superfluid, such as heat-
ing, is assumed to be negligible. Meanwhile, a shallow
Rydberg potential discussed in the SM [52] is shown to
also form diatomic and triatomic Rydberg molecules.

The respective binding energies (normalized by Ef ) ob-
tained from the BdG equation with the Rydberg poten-
tial of Fig. 1 are illustrated in Fig. 4. The first two lowest-
energy bound states in both BCS and BEC regimes have
comparable binding energies since they correspond to
diatomic Rydberg molecules consisting of the Rydberg
atom and a broken-pair fermion. However, the binding
energies of the higher vibrational bound states in the BCS
and BEC regimes deviate more significantly because the
triatomic Rydberg molecules in the BEC possess rela-
tively larger binding energies within the trapped Cooper
pairs.

We remark that the relation between the diatomic and
triatomic Rydberg molecules in Fermi superfluids is more
complex than that in a BEC [17] due to spin statistics
and many-body effects. Indeed, adding an identical bo-
son to a Rydberg dimer leads to a triatomic molecule
with twice the diatomic binding energy. However, this
does not hold for fermions due to the Pauli exclusion.

Specifically, the formation of diatomic and triatomic Ry-
dberg molecules in a Fermi superfluid competes with the
binding of Cooper pairs. As such, the many-body con-
tribution of breaking or trapping a Cooper pair plays a
decisive role in creating Rydberg molecules, as it becomes
apparent by the BdG calculation shown in Fig. 4.

To discern many-body from single-particle effects in
the Rydberg molecule formation, we also evaluate the
binding energies of diatomic Rydberg molecules with the
Schrödinger equation (hσ + VRyd)ψσ = ES

nψσ, with hσ
from HBCS ; see also SM [52] for the underlying bound
states. The normalized single-particle binding energies
are presented in Fig. 4. The many-body binding energies
obtained from the BdG equation are in general slightly
larger than the corresponding single-particle energies due
to pairing effect. However, the binding energies in the
BCS regime follow a similar trend with the single-particle
energies, and their energy difference remains roughly con-
stant as higher vibrational states are reached. In con-
trast, the BdG binding energies on the BEC side exhibit
larger deviations from their single-particle counterparts.
The emergence of the triatomic Rydberg molecules re-
sults in a substantial energy difference from their non-
interacting counterpart due to the trapped Cooper pair
which keeps its own binding energy.

Implications for experimental realization.– Spatially
resolved rf spectroscopy of atomic Fermi superfluids [34,
35], following original attempts in Refs. [55, 56], maps
out the local pairing gap. As described in Fig. 2, this
will determine the types of Rydberg molecules since the
pairing is suppressed (enhanced) in the diatomic (tri-
atomic) Rydberg molecule. Meanwhile, the Rydberg
molecules in a Fermi superfluid may serve as a probe
for the Cooper-pair size because triatomic Rydberg-
molecule formation is only possible when the Cooper-
pair size is smaller than the width of the Rydberg po-
tential. Differentiating the diatomic and triatomic Ry-
dberg molecules is also achievable by Rydberg-molecule
line spectroscopy [17, 19]. For example, the binding en-
ergies in the BCS (BEC) regime shown in Fig. 4 are
12.5, 7.9, 7.6, 4, 1, 1.6, 1.0 MHz (12, 7.7, 15, 8.4 MHz). At
those values, red detuned spectroscopy of the Rydberg
lines will show peaks, corresponding to the formation of
oligomeric Rydberg molecules, see for instance Fig. 2 in
Ref. [17]. The Rydberg impurity-Fermi superfluid sys-
tem features several tunable parameters, including the
depth, width, and location of the Rydberg potential, de-
termined by the Rydberg excitation [15, 16], and the pair-
ing strength and particle density of the Fermi superfluid
(see, e.g., Refs. [25, 46]).

Furthermore, the quasi-1D setup has several advan-
tages. First, the many-body lifetime induced by Rydberg
atoms in a lattice is found to be longer for reduced di-
mensions [57]. If similar enhancement also holds in the
continuum, it may facilitate Rydberg-molecule formation
in 1D as there are on average few fermions within the
Rydberg orbit, in the cases studied here. Second, the
rotational excitations of Rydberg molecules will be less
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relevant in 1D, significantly simplifying the bound-state
spectrum. Moreover, the 1D geometry eases i) the com-
parison between the Cooper-pair size and the Rydberg
potential width, ii) the identification of diatomic or tri-
atomic Rydberg molecules, and iii) the characterization
of the Rydberg molecules, e.g., from the density and pair-
ing gap profiles.

So far, the Rydberg atoms are assumed to be of dif-
ferent isotopes or species from the Fermi superfluid. We
envision that future experiments similar to Refs. [43, 58]
will prepare a boson-fermion mixture, excite the bosons
to Rydberg states, produce Rydberg molecules in the
Fermi superfluid, and measure the pairing gap and bind-
ing energy by spatially resolved rf spectroscopy and
molecular line spectroscopy, respectively. Alternatively,
if some of the fermions within the superfluid are ex-
cited into Rydberg atoms, forming homonuclear Rydberg
molecules, this results in a reduced effective pairing gap,
see the SM [52]. Once the excited Rydberg atoms are
present, however, the corresponding bound states can be
extracted through the BdG formalism. Therefore, dimer
or trimer Rydberg molecules are expected via Rydberg
excitations stemming from the Fermi superfluid although
the reduced effective pairing gap will favor dimer Ryd-
berg molecules.

Finally, we note that Rydberg molecules are differ-
ent from Cooper-pair splitting in superconductor het-
erostructures [59–64] In this case, the proximity effect
is utilized by dynamically sending a Cooper pair, as an
excited state with spin entanglement or momentum cor-
relation, to two separate non-superconducting regions in
real space. In contrast, the fermion bound in a diatomic
Rydberg molecule no longer retains the pairing correla-
tion, while the tightly-bound Cooper pair in a triatomic

Rydberg molecule localizes in real space. Along the same
lines, there are subtle differences between the Rydberg
molecules in Fermi superfluids and the binary tidal dis-
ruption event and pion matter. For instance, binding in
binary stars (pion matter) stems from gravity (Coulomb
interactions), whereas in Rydberg molecules, it is traced
back to the electron-atom scattering.
Summary and outlook.– The bound states of Fermi

superfluids in a Rydberg-impurity potential testify the
formation of Rydberg molecules. The tunable fermion
pairing gives rise to diatomic (triatomic) Rydberg
molecules from broken (tightly-bound) Cooper pairs, ex-
hibiting different features of the gap function due to their
distinctive nature. The detection of the triatomic Ryd-
berg molecules may reveal information about the Cooper-
pair size, while the bound-state energies reflect pairing
effects. With the rapid developments of Rydberg physics
and Fermi gases, realizations of Rydberg molecules in
Fermi superfluids will provide an elegant example of in-
terfacing few- and many-body physics. Furthermore, go-
ing beyond the Leggett-BCS theory [25, 46] of the su-
perfluid ground state, pre-formed Cooper pairs at finite
temperatures correct the superfluid transition tempera-
ture and lead to the pseudo-gap effect away from the
BCS regime [65, 66]. Incorporating pairing-fluctuation
theories developed for homogeneous systems [27, 67–69]
into the BdG formalism remains a challenge, and finite-
temperature physics of Rydberg molecules awaits future
research.
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Supplemental Material: Breaking and trapping Cooper pairs by Rydberg-molecule
spectroscopy in atomic Fermi superfluids

I. BOGOLIUBOV-DE GENNES CALCULATION

After diagonalization by the BdG transformation (see
the main text), the many-body Hamiltonian takes the

form H =
∑

ñw
′
Eñwγ

†
ñwγñw + Eg. In this expression,

w = 1, 2 represents the quasi-particle components, Eg

is the ground-state energy, and
∑

ñw
′
denotes summa-

tion over the positive-energy states. The ground-state

energy is Eg = − |∆|2
U +

∑
ñ,w(ϵñw − Eñw) with ϵñw

being the non-interacting counterpart of the excitation
energy Eñw. The BdG equation has the symmetry(
uñ2↓ (x)

vñ2↑ (x)

)
=

(
vñ1∗↓ (x)

−uñ1↑ (x)

)
with Eñ2 = −Eñ1. The quasi-

particle operators obey ⟨γ†ñwγm̃v⟩ = δñm̃δwvf(Eñw) and

⟨γñwγm̃v⟩ = ⟨γ†ñwγ
†
m̃v⟩ = 0 with f(E) = [eE/kBT +

1]−1 being the Fermi distribution function. At fi-
nite temperatures, the gap function becomes ∆(x) =
−U
∑

ñ
′
uñ↑ (x)v

ñ∗
↓ (x) tanh(Eñ/kBT ) and the total Fermi

density n(x) =
∑

σ nσ(x) = 2
∑

ñ
′
[|vñ(x)|2(1− f(Eñ)) +

|uñ(x)|2f(Eñ)]. We caution that a bound state with
En < 0 contributes to the density via |un|2. Due to the
symmetry, it is equivalent to a En > 0 state contributing
to the density via |vn|2.
In our numerical calculations, we consider a quasi-1D

system in a 1D box of length L. We discretize the space
x/L = [0, 1] using nx grid points xj = jδx, where δx =
L/nx and j = 0, 1, 2, ...., nx − 1. The BdG equation is
also discretized by using the finite-difference method and
becomes ∑

j

(
hij ∆ij

∆∗
ij −hij

)(
uñj
vñj

)
= Eñ

(
uñi
vñi

)
. (S1)

Here ∆ij = ∆iδi,j for s-wave pairing. The BdG Hamil-
tonian has the size of 2nx × 2nx and we only take the
positive energy eigenstates for the calculations of the gap
function and density. For the ground state of the Fermi
superfluid, the total density becomes

n(x) = 2
∑
ñ

′
|vñ(x)|2. (S2)

The total fermion number is N = N↑ +N↓ =
∫ L

0
n(x)dx.

The gap function is given by

∆(x) = −U
∑
ñ

′
uñ(x)vñ(x). (S3)

The Rydberg atom is placed at x = 0, where the wave
functions should vanish due to the impenetrable core of
the Rydberg atom. The box boundary at x = L is cho-
sen such that the wave functions return to the bulk values
before encountering the wall at x = L. The box intro-
duces an energy scale E0 = ℏ2/(2mL2), but we use the

FIG. S1. Typical Rydberg potentials from (a) Sr(71S) state
and (b) Rb(40S) Rydberg excitation. The solid (dashed) lines
are the full potentials (outer double-well approximations).

intrinsic inverse-length and energy units kf and Ef car-
ried by the fermions. Numerically, we start with a trial
∆(r) and a given set of parameters (U, µ) in order to
solve the BdG equation and thus obtain the eigenvalues
and eigenstates of the Rydberg atom-Fermi superfluid
system. The gap function is then assembled for the next
iteration. The iteration stops when the convergence con-

dition (1/L)
∫ L

0
dx||∆new(x)|−|∆old(x)||/E0 < ϵ is satis-

fied, where ∆new/old(x) denote the gap functions between
consecutive iterations. We have taken ϵ = 10−6 and 1000
grid points and checked that further adjustments of those
values do not cause qualitative changes.

Let us also comment on the oscillatory boundary ef-
fects due to the box confinement on the BCS side in the
profiles shown in Fig. 2 of the main text. The Fermi
superfluid on the BCS side has relatively weak pairing.
Therefore, when the boundary enforces the gap function
and density to vanish, the fermions behave as noninter-
acting ones exhibiting an oscillatory behavior with length
scale 1/kf . This is because noninteracting fermions form
a Fermi sea and the perturbation of the system starts at
the Fermi momentum, which then results in the afore-
mentioned oscillations at the boundary. In contrast,
the fermions form tightly bound pairs on the BEC side,
which behave like composite bosons and no longer fol-
low the Fermi statistics. On the BEC side, the compos-
ite bosons are repelled by the box boundaries, but they
vanish smoothly without the oscillatory behavior. We
emphasize that the box confinement is a simple choice
to satisfy the impenetrability condition of the Rydberg
atom, and the focus should be on the Rydberg-molecule
formation due to the Rydberg potential instead of the
boundary effects due to the choice of the confinement.
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BCS BEC

FIG. S2. Profiles of the gap function (top row) and density
(bottom row) of a Fermi superfluid in the BCS regime with
g = 1.0 and µ = 0.52Ef (left column) and BEC regime with
g = 4.1 and µ = −0.07Ef (right column). The Rydberg po-
tential stems from the Sr(71S) Rydberg state and its furthest
dip is located at R0 = L/2.

II. HIGHER RYDBERG EXCITATION

Upon considering a higher Rydberg excitation results
in a shallower Rydberg potential. As a paradigmatic ex-
ample, here, we assume the Sr(71S) Rydberg state in a
Fermi superfluid. Since the most relevant part of the
Rydberg potential corresponds to the two dips furthest
away from its core, we smooth out the highly oscillatory
potential located close to the core. A comparison of the
Rydberg potentials from the Rb(40S) state and that from
the Sr(71S) state is given in Fig. S1, along with the ap-
proximation concerning their two furthest potential wells
used in the BdG calculations. When the two potentials
are placed in a 1D box with the furthest dips at its cen-
ter and the length and energy scales properly scaled, as
explained below, the potential from the Rb(40S) state is
about ten times deeper. The two Rydberg potentials thus
allow us to contrast the characteristics of the emergent
Rydberg molecules in Fermi superfluids.

Placing the approximate double-well Rydberg poten-
tial in a 1D box accounts for the impenetrable core of
the Rydberg atom and provides a consistent comparison
when different Rydberg states are used. We extract the
distance R0 from the core to the furthest dip and its
depth V0 of the Rydberg potential. For a selected Ryd-
berg atom and its state, R0 and V0 are related. For ex-
ample, R0 = 480 nm and V0 = 0.32 MHz for the Sr(71S)
Rydberg state in a 87Sr Fermi superfluid. The aspect ra-
tio of the Rydberg potential is fixed by introducing the
energy scale ER = ℏ2/(2mR2

0) and obtaining the ratio
V0/ER. By setting R0 = αL with 0 < α < 1, the furthest
dip is located at αL inside the box. This also fixes the
energy relation ER = E0/α

2, from which the Rydberg
potential can be expressed in terms of the corresponding
kf and Ef .
By squeezing the Rydberg potential towards the left of

the box with a smaller α, the effective depth of the po-
tential increases, but the widths of the wells decrease. As
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FIG. S3. Bound-state wave functions of a Fermi superfluid
under the Sr(71S) Rydberg potential in the BCS regime with
g = 1.0 and µ = 0.52Ef (left panels) and BEC regime with
g = 4.1 and µ = −0.07Ef (right panels). The bound states
on the BCS side are of broken-pair nature while the two on
the BEC side are from a trapped Cooper pair. The furthest
well of the Rydberg potential is at R0 = L/2.

shown below, the case with α = 1/4 exhibits similar be-
havior on the BCS and BEC sides as those where α = 1/2
being presented here. This indicates that the number of
bound states is determined by a combination of the po-
tential width and depth. Thus, a simple rescaling of the
Rydberg potential inside the box does not lead to further
qualitative changes. In the following, we will place the
furthest dip of the Rydberg potential at x = L/2 and
scale its depth accordingly.
The left column of Figure S2 shows the profiles of the

gap function and the density for a selected case in the
BCS regime with µ > 0 and the potential taken from
the Sr(71S) Rydberg state. The presence of the Rydberg
potential causes a dip in the gap function, which implies
a suppression of pairing, and a peak in the density, indi-
cating that unpaired fermions accumulate.
Before analyzing the energy spectrum and wave func-

tions of the BCS case, we show in the right column of
Fig. S2 the profiles of the gap function and density of a
Fermi superfluid on the BEC side with µ < 0 under the
same Rydberg potential. In stark contrast to the BCS
case, the gap function features a peak at the location of
the Rydberg potential. The same behavior is evident on
the density profile. Thus, the pairing in enhanced in-
side the Rydberg potential when the Fermi superfluid is
BEC-like. The enhancement of pairing also suggests that
Cooper pairs are trapped by the Rydberg atom.
To explain the contrast between the BCS and BEC

cases, we analyze the eigen-functions obtained from the
BdG equation, see Fig. S3. Since the symmetry of
the BdG equation guarantees that every positive energy
eigen-state is accompanied by a negative-energy state, a
bound state of a particle is also accompanied by a bound
state of a hole having the opposite energy sign. For this
reason, we examine the profiles of the eigen-functions and
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identify the bound states with localized patterns in the
potential wells. For the BCS and BEC cases presented
in Fig. S2, most of the eigen-states exhibit oscillatory
behavior in the box (not shown for brevity). Neverthe-
less, we identify particular states featuring localization
at the dips of the Rydberg potential. The left column
of Fig. S3 depicts the two energetically lowest localized
states on the BCS side that can be identified with this
Rydberg potential. From the number of nodes inside the
Rydberg potential, one may classify them as the first and
second bound states localized in the rightmost potential
well.

The binding energies of these two bound states on
the BCS regime are not adjacent to each other, imply-
ing that they are between a fermion and the Rydberg
atom as only individual fermionic states well separated
in energy are involved. This behavior suggests that the
composite object refers to a diatomic Rydberg molecule.
The suppression of the gap function on the BCS side
can also be understood in terms of the formation of the
Rydberg molecules, which breaks a Cooper pair when a
fermion falls into the Rydberg potential. Meanwhile, the
fermionic atom from a broken Cooper pair in the Ryd-
berg molecule causes a bump in the local density, remi-
niscent to the occupation of the vortex core by unpaired
fermions [53, 54].

For the BEC case demonstrated in the right column
of Fig. S2, there are also two bound states localized in
the Rydberg potential. However, the two localized states
have adjacent energies and similar wave functions, as can
be seen in the right column of Fig. S3. Therefore, two
fermions are constituting the first bound state in the Ry-
dberg potential in the BEC regime. This is a direct indi-
cation that a tightly-bound Cooper pair falls into the Ry-
dberg potential and forms a three-body bound state, or
a Rydberg molecule with a Rydberg atom and a Cooper
pair. Therefore, a triatomic Rydberg molecule forms in
the BEC case presented here. For the Sr(71S) Rydberg
potential, however, the depth is too shallow to host ad-
ditional bound states.

We also estimate the Cooper-pair size using Eq. (4)
in the main text and compare it with the width of the
Rydberg potential. For the Sr(71S) Rydberg state, the
width of the furthest well is about 0.04L after placing it
at x/L = 0.5 of the box. For the BCS case selected above,
∆/Ef ≈ 0.18 and kfL ≈ 98, which lead to ξ/L ≈ 0.06.
Meanwhile, ∆/Ef ≈ 2.9 and kfL ≈ 121 for the shallow-
BEC case selected above, so ξ/L ≈ 0.003. Therefore,
the width of the Cooper pairs on the BCS (BEC) side is
larger (smaller) than the width of the primary Rydberg-
potential well. This also corroborates that a fermion from
a broken Cooper pair is trapped by the Rydberg poten-
tial to form a diatomic Rydberg molecule when the Fermi
superfluid is on the BCS side. In contrast, the relatively
shallow Rydberg potential traps a Cooper pair on the
BEC side in its primary well, forming “a Cooper pair
in a molecule”. Moreover, as compared to the relatively
deep Rydberg-potential discussed in the main text, the

BCS BEC

FIG. S4. Profiles of the gap function (top row) and density
(bottom row) of a Fermi superfluid in the BCS regime with
g = 1.0 and µ = 0.52Ef (left column) and the BEC regime
with g = 4.1 and µ = −0.07Ef (right column). The potential
is created by the Sr(71S) Rydberg state and has its furthest
dip at R0 = L/4.

secondary well of the shallower Rydberg potential pre-
sented here does not support bound states.

III. ADJUSTING THE LOCATION OF THE
RYDBERG POTENTIAL

Here we take the potential of the Sr(71S) Rydberg
state but set R0 = L/4, i.e., α = 1/4. Using this scal-
ing, the depth of the potential increases due to the rel-
atively smaller R0, but the width of the potential re-
duces. Fig. S4 presents the profiles of the gap function
and the density on the BCS side and BEC side, respec-
tively, under the Sr(71S) Rydberg potential. Similar to
the α = 1/2 case, the pairing is suppressed on the BCS
side but is enhanced on the BEC side. Meanwhile, the
density exhibits a peak on both BCS and BEC sides,
signaling the emergence of bound states.
The left column of Fig. S5 illustrates the localized

eigenstates extracted from the BdG equation correspond-
ing to the setup on the BCS side depicted in Fig. S4. It
becomes apparent that there are again two bound states
with clearly separated binding energies. By examining
the nodes of the wave functions, we can infer that they
are the first and second bound states of the Rydberg po-
tential. Therefore, the Rydberg atom breaks a Cooper
pair and captures a fermionic atom to form a diatomic
Rydberg molecule.
In contrast, when the Fermi superfluid is in the BEC

regime, the right column of Fig. S5 shows the localized
eigenstates corresponding to the right column of Fig. S4.
There are two bound states with adjacent binding ener-
gies and similar wave functions, indicating that a Cooper
pair has been trapped by the Rydberg potential. There-
fore, the triatomic Rydberg molecule in this case consists
of the Rydberg atom and a Cooper pair trapped by its
potential. Squeezing the Rydberg potential within the
box increases its depth and reduces its width, but it is
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FIG. S5. Bound-state profiles of a Fermi superfluid upon
formation of the Sr(71S) Rydberg potential in the BCS regime
with g = 1.0 and µ = 0.52Ef (left column) and the BEC
regime with g = 4.1 and µ = −0.07Ef (right column). The
outermost well of the Rydberg potential is located at R0 =
L/4.

still not sufficient to break a tightly bound Cooper pair
in the shallow BEC regime in this case.

IV. DETAILS OF BOUND STATES

The bound state wave functions vn(x) of the Rydberg
potential are summarized in Fig. 3 of the main text.
Here, for reasons of completeness, we provide the full
bound-state wave functions un and vn of the Fermi su-
perfluid under the Rydberg potential shown in Fig. 1 of
the main text. Specifically, Fig. S6 presents the localized
eigenstates in the Rydberg potential which are extracted
from the BdG analysis in the BCS case. Panels (a) to (f)
depict, in a hierarchical order, the lowest-energy bound
state to the highest-energy one. Since the bound-state
energies are well separated and each bound state cor-
responds to a fermion, the bound states of Fig. S6 are
indicative of diatomic molecule formation.

Fig. S7 shows the bound states calculated from the
BdG equation in the BEC regime utilizing the same Ry-
dberg potential. As can be seen, there are two ener-
getically distinct bound states localized in the furthest
well [Fig. S7(a), (b)] followed by two almost identical
lowest-energy bound states localized in the secondary
well [Fig. S7(c), (d)] and another two almost identical
bound states localized in the furthest well [Fig. S7(e),
(f)]. Each pair of the twin bound states corresponds to
a Cooper pair trapped by the Rydberg potential. How-
ever, the secondary well on the left traps a Cooper pair
into its lowest bound state [Fig. S7(c), (d)], while the
furthest well traps a Cooper pair as its third vibrational
state [Fig. S7(e), (f)].
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FIG. S6. Bound-state profiles of a Fermi superfluid in the
BCS regime with g = 0.7 and µ = 0.20Ef with the Rb(40S)
Rydberg potential. The magnitude of binding energies de-
creases monotonically from (a) to (f). Here panels (a), (b),
and (d) show the wave functions for the three lowest bound
states in the outermost well, while the wave function in panel
(c) refers to the first bound state in in the inner well. Panels
(e) and (f) are bound states occupying both wells. All states
here stem from broken-pair fermions.

V. BEYOND DOUBLE-WELL
APPROXIMATION

In the main text, we assumed the double-well approx-
imation for the Rydberg potential, see Fig. 1(a). This is
expected to be a reasonable treatment since most of the
excitation amplitude reside in the outer lobes of the Ryd-
berg wave function which forms the outer wells. To con-
firm the validity of this approximation, here we consider
the four furthest wells of the Rb(40S) potential shown in
Fig. 1 (a), and perform the BdG calculations with the
same parameters. Overall, as expected, additional higher
energy bound states are identified in the third and fourth
wells, which are typically of higher energies. The bound
states of relevance in the furthest two wells are virtually
the same as those obtained in the double-well approxi-
mation with their binding energies only slightly shifted.
To compare the double-well and four-well approxima-

tions, we extract the bound states within the four-well
model in both the BCS and BEC regimes. Fig. S8
presents the wave functions of the first six lowest bound
states on the BCS side, which are almost identical
to those from the double-well approximation shown in
Fig. S6. The bound states in the third or fourth inner
wells lie at higher energies. Next, we show the six lowest
bound-state wave functions from the four-well approx-
imation on the BEC side in Fig. S9. The low-energy
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FIG. S7. Bound-state profiles of a Fermi superfluid in the
BEC regime with g = 3.6 and µ = −0.46Ef with the Rb(40S)
Rydberg potential. The magnitude of binding energies de-
creases monotonically following panels (a) to (f). Here panels
(a) and (b) depict the first two diatomic Rydberg-molecule
states in the furthest well, panels (c) and (d) correspond to a
triatomic molecule state in the inner well, and the states in
panels (e) and (f) form another triatomic molecule state in
the outermost well.

bound states in the furthest two wells are virtually the
same as those from the double-well approximation de-
picted in Fig. S7. A minor difference occurring is that
the second diatomic bound state in the furthest well is
slightly lower than the first triatomic bound state in the
second well in the double-well approximation. This is
because those bound-states are already close in energy
and their order is interchanged due to the quantitative
changes in the presence of the additional inner wells.
Again, the bound states in the inner wells beyond the
two furthest wells have higher energies. Therefore, the
double-well approximation of the Rydberg potential al-
ready captures all important features of the low-lying
bound states.

VI. EXCITING RYDBERG ATOMS WITHIN
THE FERMI SUPERFLUID

Here, instead of introducing bosonic isotopes or atoms
of different species as Rydberg impurities in an atomic
Fermi superfluid, we consider the alternative process of
exciting the atoms of the Fermi superfluid to produce
Rydberg atoms. In this case, our description should be
modified in order to account for the excitation of Rydberg
atoms from the Fermi superfluid. This process is mod-
elled by means of considering the additional Hamiltonian
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FIG. S8. Bound-state profiles of a Fermi superfluid in the
BCS regime with g = 0.7 and µ = 0.23Ef using the four-well
approximation of the Rb(40S) Rydberg potential. The mag-
nitude of binding energies decreases monotonically following
panels (a) to (f). Panels (a), (b), (d) refer to the lowest three
bound states on the furthest well, panels (c) represents the
lowest bound states on the second well, and panels (e) and
(f) are bound states occupying the two furthest wells. The
bound states in the two furthest wells agree with those from
the double-well approximation shown in Fig. S6.

term Hex = gl
∫
dx(d†ψ̃†(x)ψ↓(x)ψ↑(x) + h.c.) which, in

practice, converts a Cooper pair into a Rydberg atom and
an unpaired fermion. In this expression, ψ̃† is the cre-
ation operator of a fermion from the broken Cooper pair
but without excitation to the Rydberg state, d† refers to
the creation operator of a Rydberg atom, and gl is the
coupling constant for exciting the Rydberg atoms. Since
a Cooper pair needs to be broken to create a Rydberg
atom in this case, gl is expected to be larger than the
pairing coupling constant U .

If the Rydberg-atom density nR from the broken
Cooper pairs satisfies nRR

3
0 ≪ 1, with R0 denoting the

range of the Rydberg potential, we may approximate
⟨d†ψ̃†⟩ ≈ ⟨d†d⟩ = nR =

∫
dx⟨ψ̃†(x)ψ̃(x)⟩. Following

this crude approximation, the excitation Hamiltonian be-
comes Hex ≈ glnR

∫
dx(ψ↓(x)ψ↑(x) + h.c.). This has a

form similar to the pairing terms in the BCS Hamilto-
nian. In particular, if it is combined with the BCS Hamil-
tonian, the resulting Hamiltonian leads to a suppressed
pairing gap ∆′ = ∆−glnR, where ∆ is the pairing gap in
the absence of the Rydberg excitation. Therefore, excit-
ing the Rydberg atoms directly from the Fermi superfluid
instead of introducing different isotopes or species results
in a suppression of the pairing gap and favors the forma-
tion of a diatomic Rydberg molecule with a fermion from
a broken Cooper pair. Moreover, the Rydberg molecules
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FIG. S9. Bound-state profiles of a Fermi superfluid in the
BEC regime with g = 3.6 and µ = −0.49Ef employing the
four-well approximation for the Rb(40S) Rydberg potential.
The magnitude of binding energies decreases monotonically
following panels (a) to (h). Here, panels (a) and (d) are the
two lowest diatomic states in the outermost well, panels (b)
and (c) show the triatomic state in the second (first inner)
well, panels (e) and (f) show the lowest triatomic state in
the furthest well. The bound states in the outermost two
wells agree with the results of the double-well approximation
depicted in Fig. S7 except a slight re-ordering.

are homonuclear if the Rydberg atoms are excitations of
the Fermi superfluid. In contrast, the Rydberg molecules
discussed in the main text are heteronuclear because the
Rydberg atoms are different from the fermions in the su-
perfluid.

VII. RYDBERG MOLECULES IN
NONINTERACTING GASES

The energetically lowest six bound states obtained
from the Schrödinger equation with the outer double-
well approximation of the Rb(40S) Rydberg potential are
provided in Fig. S10. Here, we follow the same scaling
process (i.e., α = 0.5) to place the furthest dip of the
Rydberg potential at the middle of the box. We consider
only one component of fermions here, as the other com-
ponent will result in exactly the same results in a non-
interacting system. By analyzing the number of nodes
and the localization position of the wave functions, one
can identify the series of the bound states localized in

the furthest well of the Rydberg potential and the ones
located in the inner well. For example, panels (a), (b),
(d), (e) of Fig. S10 showcase the first four bound states
localized in the furthest dip, while panels (c) and (f)
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FIG. S10. Lowest six bound states of the Schrödinger equa-
tion within the two outer-wells of the Rb(40S) Rydberg po-
tential. The magnitude of binding energies decreases mono-
tonically from (a) to (f). Panels (a), (b), (d) show the first
three bound states in the furthest well, panel (c) depicts the
lowest bound state in the secondary well, and panels (e) and
(f) show the bound states occupying both wells. The furthest
Rydberg-potential well is located at x = L/2.

depict the two lowest bound states localized in the sec-
ondary well. Given the well-separated energies of the
bound states, all bound states shown here correspond to
diatomic Rydberg molecules between the Rydberg atom
and a fermion. Their binding energies are extracted from
the eigenvalues of the Schrödinger equation with the Ry-
dberg potential. After proper normalization with respect
to the values of Ef for the corresponding BCS and BEC
cases, the binding energies are shown in Fig. 4 of the
main text. We note in passing that triatomic Rydberg
molecules binding a noninteracting spin-↑ fermion and a
noninteracting spin-↓ fermion can also form. However,
they will possess twice the binding energy of a corre-
sponding diatomic Rydberg molecule. This is because
for noninteracting fermions, each energy level can be oc-
cupied by one spin-↑ and one spin-↓ fermion since they do
not feel the presence of each other. It should be empha-
sized that this binding process is different from the one of
the triatomic Rydberg molecule encompassing a trapped
Cooper pair, where pairing effects play a decisive role.
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