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We investigate the crumpling of an elastoplastic sheet as it is repeatedly crushed onto itself by
rolling it into a cylinder and twisting it axially while allowing the end-to-end length to evolve freely.
The sheet buckles and folds into structures which repeat but sharpen over hundreds of cycles to a
remarkable degree before forming different configurations. Below a critical amplitude, reconfigura-
tions decrease with applied cycles but continue to occur for large enough loading amplitude as the
topology of the sheet changes as it tears. The sheet structure as measured by the mean curvature
and the total crease length evolves logarithmically with cycle number with a rate which increases
with compaction. We explain the progress of creasing using a flat folding model, and show the
logarithmic growth as being a consequence of individual creases becoming sharper with number of
folding cycles, leading to bifurcations in the folding pathway.

I. INTRODUCTION

A crumpled sheet shows a distinct pattern of inter-
secting creases which carry the subtle imprints of the
complex buckling pathways followed as a result of ap-
plied constraints [1–5]. The evolution of the observed
disordered ridges and facets can provide broad lessons
on a system that can typically only access metastable
states [6–8]. While there have been considerable number
of experimental and theoretical studies on memory ef-
fects after the application or removal of stress [9–12], the
evolution under repeated loading cycles has only started
garnering attention more recently. As a result of sensi-
tive dependence on the loading conditions, a sheet can-
not be expected to pass the same folding path if it is
crumpled again, thus leading to further creases and hys-
teresis [13, 14]. Nonetheless, the presence of creases in-
fluences how the sheet subsequently collapses when the
loading cycle is repeated as the sheet rigidifies along the
length of the crease, while becoming easier to fold about
the crease [15], leading to guided folding pathways as in
origami [16], and possibly their Poynting response [17].
Indeed, supervised strengthening folds and weakening of
misfolds in a repeatedly crumpled sheet has been sug-
gested as a paradigm for reinforced learning of structures
in mechanical systems subjected to classes of forces [18].
It has been argued based on numerical simulations, that
the energy landscape of a folded sheet can become deeper
under repeated loading, driving the sheet to unique fold-
ing pathways [19]. However, investigations with actual
sheets remain limited [20].

In athermal granular systems, reversible motion and
relaxation to limit cycle can be observed in cyclically
sheared colloidal suspensions and amorphous solids that
show irreversible motion above a critical amount of de-
formation [21, 22]. Hysteresis and an approach to a limit
cycle have been observed in pre-crumpled sheets when
repeated loading cycles are below the threshold required
to create additional crumples [23]. But, even a pre-
creased ordered origami can snap between different de-
ployed structures because of their multistability [24–26].
Furthermore, folds in elastoplastic sheets can age [11, 24]

impacting their compaction properties [27, 28]. Thus, the
evolution of the crumpled structure of a sheet subject to
large number of repeated loading and unloading cycles of
varying strength, remains unclear.
To address the evolution of an elastoplastic sheet sub-

ject to large number of training cycles, we examine the
crumpling of a Mylar sheet which is clamped onto circu-
lar end caps, and then repeatedly crushed by applying
an axial twist akin to wringing a towel [29]. Because of
the inextensible nature of the sheet, its length contracts
axially, and the sheet collapses onto itself while forming
a bundle [30] in the strongly crumpled regime where the
sheet comes in self-contact [31]. A hallmark of our design
is that the applied strain can be reversed back to zero,
and thus the loading cycle can be repeated essentially in-
definitely under well prescribed conditions. This system
enables us to examine the effect of sheet training over a
wide range of compaction before material fatigue leads to
fractures or tears in the sheet. We highlight the strong
effect that repeated folding and unfolding elastoplastic
sheets has on crease evolution relative to ageing.

II. EXPERIMENTAL METHODS

We study sheets composed of a biaxially oriented
polyethylene terephthalate (BoPET), also known as My-
lar, of length L0 = 16.5 cm, width W0 = 16.5 cm,
and thickness h0 = 90µm. These sheets have a bend-

FIG. 1. The apparatus used to apply cyclic twist to the sheet.
The dashed circle indicates the ball bearing sliders which al-
low essentially frictionless translation and prevent rotation.
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ing modulus E = 4.16GPa, obtained with standard
beam bending measurements. The sheet is rolled and
clamped onto two circular rigid aluminum disks of di-
ameter D = 52.5mm to form a cylinder of length L0

as shown in Fig. 1. Then one end is twisted axially by
a computer controlled Parker stepper motor through an
angle θ with a rate ω = 3.67 degrees/s (see Supplemen-
tary Movie S1 [32]). Thus, a loading cycle takes approx-
imately 6 minutes and 30 seconds when θ is increased
to θf = 720◦ and then returned back to 0◦. The other
end is not allowed to twist, but allowed to move along
its axis while mounted on linear guides with coefficient
of friction less than 0.1. Although an axial load can be
prescribed, we perform measurements while allowing the
sheet to contract or expand freely.

The surface profile of the sheet is obtained by illumi-
nating the sheet with a 640 nm red laser sheet orthogonal
to the unperturbed surface. The illuminated surface is
then imaged at an angle with a Pixelink digital camera
with a resolution of 2592× 2048 pixels. The bright pixels
are used to locate the surface with a centroid algorithm to
within a few microns. This method yields a single height
profile along the length of the sheet while mounted on the
apparatus. To obtain a full scan of the sheet surface, the
sheet is unmounted to relieve elastic stresses. It is then
placed on a flat scanner bed after being flattened some-
what to remove overhangs. Care is taken to minimize
introducing plastic deformations in the process. Because
the sheet cannot be remounted to have the same bound-
ary conditions as when it was dismounted, we start with
a fresh sheet for each scan while measuring as a function
of cycle number n or final twist angle θf .

III. CRUMPLING BY TWISTING

Figure 2(a) shows the evolution of a sheet as it is
twisted and then untwisted slowly through various twist
angles θ. The sheet is observed to buckle with folds
slanted along the direction of twist in the central sec-
tion between the clamps ends, while the sections close
to the clamps remain relatively cylindrical [33–35] (also
see supplementary documentation [32].) As the twist is
increased further, the initial folds break into smaller sec-
tions, self-contact occurs, and the sheet crumples and col-
lapses inward along its entire length. When the applied
twist is reversed, the crumpled structure show auxetic
behavior [36] with increases in both length and diame-
ter as the sheet returns back close to its initial cylindri-
cal shape as the elastic components of folds relax while
showing imprints of plastic deformation.

Figure 2(b) shows scans of the sheet for increasing fi-
nal twist angle θf using laser profilometry as discussed
further in Appendix II. The local mean curvature of the
surface H is also superposed in colors. In the case of
θf = 180◦, imprints of the initial folds that form can be
observed even as the sheet comes into self-contact and
the folds start to bend and break to accommodate the

increasing twist. The sheet is observed to become more
widely creased and disordered as θf is increased to 360◦

and θf = 720◦, unlike hyperelastic sheets which show or-
dered folds [37]. As quantified further in Appendix A,
the mean curvature ⟨|H|⟩ near the clamped region is sys-
tematically lower compared to the central regions which
form a tight bundle. This effect can be seen most clearly
in the case of θf = 1800, but is also present at higher θf .

We plot the end-to-end length L of the sheet from one
clamp edge to the other in Fig. 2(c) as a function of
θ, and observe that it follows a different path while un-
twisting, which is systematically higher compared to the
twisting phase, before crossing and reaching a length Ln

with cycle number n which is slightly below L0. When
the sheet is again subjected to the same loading cycle,
the hysteresis is observed to decrease on average with n.
We characterize the compression of the sheet by measur-
ing the end to end length Lc when θf is reached, and
plotting the axial strain ε = 1 − Lc/L0 averaged over 3
trails versus θf in Fig. 2(d). We observe that its increase
can be described with the function ε = 1− exp(−γnθf ),
where γn is a fitting constant. This fit is consistent with
a sheet becoming increasingly more difficult to compress
with increasing compaction, and increasing cumulative
plastic deformations with applied cycles, and corresponds
to a regime where L/h0 ≫ 1. Comparing images of
the crumpled structure after application of a full cycle
shown in Supplementary Movie [32], we observe that the
creased structures largely repeat with n, but slow evo-
lution of overall structure, switching between bi-stable
regions, and formation of fresh creases can be also ob-
served. To quantify the evolution with n, we obtain the
distributions of the magnitude of the local mean curva-
ture P (|H|) and plot them in Fig. 2(e) for various n. We
observe that it is broadly distributed, and broadens fur-
ther as the sheet is repeatedly twisted showing that the
sheet continues to evolve with n even as L versus θ graph
appears to show decreasing hysteresis (see supplementary
documentation [32]).

We plot the average of the distribution ⟨|H|⟩ of the flat-
tened scanned sheet in Fig. 2(f) and observe that ⟨|H|⟩
grows systematically higher with increasing θf . Further,
each ⟨|H|⟩ is well described by a logarithmic function
⟨|H|⟩ = H1 + H2 log n, where H1 is the magnitude of
the mean curvature observed after the application of the
first cycle, and H2 captures the growth with number of
cycles. As shown in Fig. 2(g), H2 increasing approxi-
mately proportional to H1. Thus, we find that not only
do the sheet deformations depend on θf , but that the
rate of their grow with n is essentially proportional the
deformations after n = 1. The observed trends are rel-
atively insensitive to increasing the loading rates by an
order of magnitude (see Fig. 5).
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FIG. 2. (a) Images of a Mylar sheet as it is twisted and then untwisted about its axis (L0 = 16.5 cm). (b) The crumples
observed after one cycle corresponding to various θf . The mean curvature H are superimposed with values denoted by the
color bar. (c) The end-to-end length L as a function of θ shows hysteresis. The area enclosed decreases with n. (d) The strain
ε versus θf compared with the function ε = 1− exp(−γnθf ). (e) The distribution of |H| broadens with n. (f) The evolution of
⟨|H|⟩ with n is described by a logarithmic function ⟨|H|⟩ = H1 +H2 logn. (g) H1 and H2 increase with θf .
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FIG. 3. (a) The mean curvature of a folded and a unfolded
sheet increase approximately linearly with applied stress. A
fit to Hf = χfσ and Hu = χuσ with χf = 0.5mmN−1 and
χu = 0.06mmN−1, respectively, are shown. Inset: A cross
section of the folded and unfolded sheets are also shown. (b)
Hu as a function of n, and a fit with Hun

1 = 0.049mm−1 and
Hun

2 = 0.10mm−1 (σ = 0.7Nmm−2; t = 30 seconds). Inset:
Hu increases as a function of time interval over which a con-
stant force is applied. A function Hu = Hut

1 + Hut
2 log(t)

with Hut
1 = 0.051mm−1 at t = 30 seconds and Hut

2 =
0.014mm−1min−1 is also shown. The variation of Hu is sig-
nificantly lower over t compared with n.

IV. LOGARITHMIC GROWTH OF
CURVATURE UNDER REPEATED LOADING

AND LOADING TIME

We examine the curvature of a single crease upon re-
peated folding as a starting point to understand the ob-
served logarithmic growth, and any relation to Arrhenius
behavior that has been observed in response to applica-
tion of stress in crumpled sheets [11, 12, 38, 39]. Accord-

ingly, a folded sheet is placed between parallel plates and
a normal force is applied for a fixed time. The force is
then removed to relax the elastic component of the crease
and the unfolded sheet is placed on a flat-bed for scan-
ning. A representative section of the sheet while folded
and unfolded is shown in the Inset to Fig. 3(a).

We obtain the mean curvature Hf and Hu along the
crease while loaded and unloaded, respectively, and plot
them in Fig. 3(a) as a function of the stress σ corre-
sponding to the applied force per unit length of crease
and the sheet thickness. We observe that the curvatures
for the folded and unfolded sheet evolve linearly as a
function of applied stress over the typical range of curva-
tures observed in our crumpling experiments, similar to
observations with copy paper [2]. Thus, even after load-
ing is removed, a fraction proportional to the maximum
loading applied can be identified, giving us confidence
that the physical features of a crushed sheet can be still
identified after the sheet is relaxed due to the residual
plastic deformations. Next, we perform measurements of
Hu for a typical crease as a function of number of fold-
ing and unfolding cycles for σ = 0.7Nmm−2 applied for
30 seconds. As shown in Fig. 3(b), we find that Hu in-
creases with the number of applied loading cycles n, as
Hu = Hun

1 +Hun
2 log(n) with a rate Hun

2 = 0.10mm−1.
We also measured the evolution of curvature when the
load is applied over varying time interval t. As shown in
Inset to Fig. 3(b), we find that the change in Hu with t
is significantly lower compared with the increase in Hu

with n over comparable cumulative loading time.

Consequently we find that the repeated folding and
unfolding of the crease leads to far greater plastic de-
formations and is the dominant reason for the loga-
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rithmic increase in our experiments. Thus, the evo-
lution in our experiments appears to be more in line
with memory observed due to cyclic driving in sheared
suspensions [21, 40], and different from the logarith-
mic time dependence reported previously in elastoplastic
sheets [11, 12, 39].

V. EVOLUTION OF CREASES UNDER
REPEATED LOADING

Figure 2(b) shows the regions with high H are orga-
nized along intersecting networks of creases with twist
crumpling, visually similar to those which have been
noted with other crumpling protocols [2, 13, 41], but
somewhat anisotropic due to the creases that form follow-
ing the primary buckling instability (see Appendix B).
We analyze the creases in terms of the total crease
length which has been introduced as a measure of crum-
pling [13]. The total crease length ℓ normalized by L0 as a
function of n is plotted in Fig. 4(a) for various θf . We ob-
serve that it increases in all cases with number of cycles,
and can be fitted by logarithm function ℓ = ℓ1+ℓ2 log(n),
where ℓ1 is the total crease length after the first loading
cycle and ℓ2 is the rate of growth corresponding to the
creases with n. Both, ℓ1 and ℓ2 increase with ε, as shown
in Fig. 4(b,c), respectively.

A logarithmic growth of crease length has been re-
ported in sheets crushed uniaxially inside a piston by
Gottesman, et al. [13], but with a different two-parameter
functional form. In those studies, the sheets were flat-
tened after each cycle to scan the surfaces, and thus ran-
dom perturbations were introduced which leads to the
creation of fresh creases since the start point for the fold-
ing sequence is different. Indeed, if we introduce similar
perturbations in our system, by unmounting and mount-
ing after flipping the sheet inside out after each cycle,
we find logarithmic growth as well, but with far greater
rate of increase corresponding to the creation of larger
numbers of fresh creases.

Thus, our study finds that creases grow under repeated
loading even when such random perturbations are absent
due to the underlying plastic evolution of the sheet cur-
vature under repeated loading. This evolution leads to
sharpening curvature of the folds, which then can exceed
the thresholds used to identify creases besides formation
of new creases when the sheet follows different folding
pathways.

VI. EFFECT OF LOADING RATE AND
PLASTICITY

We decreased the loading rate from 190 seconds per cy-
cle to 7 seconds per cycle to study the sensitivity of our
measurements to loading rate since plasticity effects can
be rate dependent. The distribution of the magnitude of
the mean curvature |H| is shown in Fig. 5(a) for repre-

FIG. 4. (a) The evolution of ℓ with n is described by the log-
arithmic function ℓ = ℓ1+ ℓ2 log(n). (b) The crease length af-
ter the first loading cycle ℓ1 increases with compaction ε. The
calculated and observed crease lengths when a sheet is folded
into increasingly small squares plotted versus compaction εs
estimated using the size of the folded sides. (c) The rate of
increase of crease length ℓ2 also increases with compression.
(d) The absolute mean curvature of the sheet increases with
the compaction in both flat folding and twist crumpling cases.

sentative cases of n = 1 and n = 100. In both cases, the
distributions can be observed to be similar within statis-
tical fluctuations. We plot the mean of the distribution
|H| and ℓ for the two different rates in Fig. 5(b) and
Fig. 5(c), respectively. The trends in terms of these plots
essentially also overlap, showing that the trends shown
are relatively insensitive to loading rates probed here. It
is not possible to increase the rates much further without
adding inertial effects. Currently the experiments take
hours to apply hundreds of loading cycles. Decreasing
the loading rate by an order of magnitude further in the
other direction would imply that each data point would
take days, which is practically difficult.

VII. FOLDING MODEL OF CREASES

In order to gain an understanding of the overall growth
of the creases with applied strain, we study complemen-
tary flat square-folding of a sheet into a smaller and
smaller volume [42]. The scans of folded, unfolded and
flattened sheets with the same Mylar sheets as in the
twist-crumple experiments are shown in Fig. 6(a). The
sheet become increasingly more difficult to fold with in-
creasing number of folds, and we found it practically diffi-
cult to fold them into still smaller squares. Even though
they are creased by an ordered sequence of folds, they
show growing disorder and nonuniformity of the curva-
ture along creases. Using the same threshold criteria to
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FIG. 5. The distribution of |H| (a), ⟨|H|⟩ (b), and ℓ (c) are observed to be essentially similar for 360◦ angle of twist as the
loading rate is increased from 7 seconds per cycle to 190 seconds per cycle.
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FIG. 6. (a) Folds become increasingly disordered as the sheet is folded into smaller squares. (b) The detected ridges and valleys
are superimposed on the scans. Each example shown corresponds to starting with a defect free square sheet and applying the
folding sequence and then unfolding and scanning.

detect the ridges and valleys as in the twist experiments,
we identify them, and superpose them on the scans in
Fig. 6(b). Examining the detected ridge and valleys, we
observe that primary folds, which were missed initially,
are detected in their entirety with subsequent folding.
However, the new folds corresponding to folding twice
and thrice have overall lower curvature because of the
thickness of the sheet and are detected to a lower de-
gree. One also observes the appearance of curvature with
opposite signs adjacent to the square folds as the sheet
is forced back to a planar configuration. While overall
smaller in magnitude, they can be noted to be similar
in magnitude to the creases created further along the
folding sequence. Further, disorder and creases at the
intersection of the creases created while folding, earlier
in the sequence, are also observed to appear.

Complementarily, we also consider a square infinitesi-
mally thin sheet with side L0, which is the same as the
sheets used in the twist crumple study. Then, we cal-
culate the total crease length upon flat folding the sheet
into smaller squares with sides L0/m, with m = 1, 2, 4, ...
This flat folded sheet can fit inside a square area that
has a size L0/m. Accordingly, we obtain a compression
εs = 1− 1/m for flat folded sheets.

We plot the calculated total crease length of folded
sheets and those from the flat-folding experiments in
Fig. 4(b), and find them to vary roughly over the same
range as the twist crumple experiments, in spite of the
differences in the exact definitions of the compaction.
Comparing the measured values from flat folding ex-
periments with calculated values assuming ideal folds
along lines, we observe that the total length is greater
in the case of the experiments. Growing disorder due
to the thickness of the sheet results in the formation
of secondary creases as can be seen in the scans shown
in Fig. 6(b). To some extent these creases offset the
fact that not all creases are identified, since their un-
folded curvatures fall below the threshold used to iden-
tify creases. While these two effects offset each other, a
somewhat faster growth is observed in the total measured
crease length compared to the calculated ideal square
folds.

Figure 4(d) shows the average mean curvature ob-
tained from the flat folding experiments and compare
with those obtained by twisting. We find that both in-
crease roughly over the same range, but are systemati-
cally higher due to greater disorder in the case of twist-
ing. Thus, this prescribed folding method allows us to
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not only estimate the total crease length but also gauge
practical differences due to folding a sheet with finite
thickness.

VIII. METASTABILITY

Since the full surface scans rely on dismounting the
sheet after starting with a pristine sheet, it is only possi-
ble to understand statistical trends with those measure-
ments. As a way to interrelate the crumpled configu-
ration of the sheet after application of a training cycle,
we examine the height profile h(x, n) of the sheets along
a length-wise section x after each cycle n. Represen-
tative evolution of a section of the sheet corresponding
to θ = 180◦ and 720◦ are shown in Fig. 7(a,b), respec-
tively. While the sections evolve rapidly in each case
over the first tens of cycles, they converge to show a set
of peaks and valleys which recur in the case of θf = 180◦.
Slow evolution of creases and appearance of fresh creases
can be noted due to the evolving constraints [43] even as
the sheet peaks and valleys mostly repeat and sharpen
with n. While, one notes similar trends in the case of
θf = 720◦, sudden rearrangements occur as well, whereby
the entire cross-section undergoes a rapid snap-through
event. (It must be noted that fresh creases do not have
to arise at that location, but changes in the structure
elsewhere can also lead the sheet to move relative to the
fixed section being examined.) Because the creases be-
come sharper with increasing number of cycles, the num-
ber of creases Nc in h(x, n), identified by using a fixed
curvature threshold criterion, continues to grow on aver-
age over n = 1000 even when reconfigurations are absent
(see Fig. 7(c)).

These observations further corroborate the discussion
of the evolution of a single crease following Fig. 3(b),
i.e. plastic damage accumulates in regions which have
sustained damage in previous cycles. As the overall con-
straints change, peaks and valleys can be added or re-
moved in the curvature field leading to creation or de-
struction of creases (see Fig. 8). Thus, while continuous
evolution of the sheet curvature can lead to recurrent
folded structures, it can also drive rapid reconfigurations
even after the sheet structure repeats over hundreds of
cycle as different nearby folding pathways become more
favorable. Thus, the picture which emerges from these
observations is more subtle than the continuous approach
to a limit cycle over tens of cycles shown by Shohat, et
al. [23] with a precrumpled sheet subject to perturbative
compression cycles.

To quantify the metastability, we computed a measure
ξ = ⟨(h(x, n + 2) − h(x, n))2⟩x, where ⟨..⟩x corresponds
to average over x, and identify the rearrangements by
finding the number of peaks in ξ above a given thresh-
old. The number ⟨Nξ⟩ in the first, second and third part
of the 1000 cycles is plotted in Fig. 7(d) averaged over
three trials in the case of each θf . It shows that the
rearrangements for θf ≤ 540◦ eventually decrease and
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FIG. 7. (a,b) The evolution of a sheet cross section shows
creases becoming sharper with n, sudden changes in the sur-
face profile, and the formation of increasing number of fresh
creases with increasing θf . (c) The total number of creases
Nc along the length of the cylinder counted using the cross-
sections measured after each cycle. (d) The number of peaks
corresponding to reconfigurations increases with θf , but de-
creases with n for θf < 720◦.

(a) (b)

FIG. 8. (a) The evolution of a cross-section with n for θf =
360◦. (b) A zoomed in view of the shaded region in Fig. 8(a)
showing the relative motion of the creases with increasing n,
including creation of peak and valley pairs (black circles) and
destruction of creases (black rectangle).

the folded shapes converge over time even as the creases
sharpen. However, for large enough deformations corre-
sponding to θf = 720◦, the rearrangements can continue
to occur even as they appear to converge over hundreds
of cycles. In fact, we find that rearrangements persist
in the case of θf = 720◦ even as the sheet tears at the
creases due to the weakening caused by repeated plastic
deformations after about n = 1800 (see Supplementary
Document [32]). Thus, a recurrent folded structure does
not always exist for large enough deformations as fatigue
leads the sheet to progressively tear up and its genus
changes.

The observed overall progress toward a limit cycle in
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crumpled sheets over a transient number of cycles that
increase with increased θf is similar to that observed in
cyclically sheared amorphous materials [22]. There, a re-
laxation to a limit cycle, and transitions between limit
cycles was also observed with applied shear amplitude.
For large enough amplitudes only irreversible migration
of constituent particles was observed [21, 22]. In par-
ticular the convergence of the folded structure for suffi-
ciently low θf , but irreversibility for high enough θf , can
be noted to be similar to those observed in multi-body
systems. Our system, with the slow evolution of the cur-
vature of the folds with training cycle, further indicates
that the broad features of reversibility and irreversibil-
ity with applied amplitude can survive sufficiently slow
evolution of fatigue in the system.

IX. CONCLUSIONS

In summary, we find that a repeatedly crumpled sheet
can perform reversible transformations even as they are
crushed significantly over a wide range of applied loading
amplitudes. Even when the system displays metastability
and continuous logarithmic evolution, we find that a con-
vergent structure can be reached after a sufficiently large
number of training cycles depending on the depth of the
compression cycle. However, for sufficiently large loading
and compaction, a convergent structure is not reached as
the sheet fatigues and its topology changes as it tears.
Overall, we find that the behavior of crumpled sheet un-
der repeated loading is similar to other disordered sys-
tem, and in particular the reversible transformation of
athermal particles subjected to cyclic shear [21, 22, 40].
There, reversibility is observed for a range of sufficiently
small strain amplitude, but irreversibility develops with
increasing amplitude depending on the Lyapunov expo-
nents of the system. While, a similar analysis is beyond
the scope of this study, it may be anticipated that our
results can stimulate work in that direction.
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Appendix A: Spatial distribution of crumples

We plot the average |H| as a function of distance from
one clamped end to the other in Fig. 9. As can be seen

from Fig. 9(a,b), H is lower near in the clamped edges
because the sheet is forced to maintain the curvature of
the end disks on which it is mounted. When the sheet is
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FIG. 9. Mean curvature of the crumpled sheet as a function
of distance along the sheet’s length for various θf after cycle
n = 1 (a) and n = 100 (b), respectively. (c,d) Mean curvature
of the cross section as a function of distance along the sheet’s
length for increasing n for θf = 180◦ and 720◦, respectively.
The sheet is more crumpled in the central regions between
the clamps where sheet forms a tight bundle when twisted.

repeatedly twisted, H increase systematically everywhere
and thus the variation across x persists (see Fig. 9(c,d)).
Accordingly, we analyze the distribution of the measured
H over a 146mm by 115mm centrally cropped area of
the sheet to avoid direct boundary effects.

Appendix B: Ridge angle distribution

We obtained the orientation angle the ridges formed
relative to the x-axis which is orthogonal the axis of ro-
tation. Figure 10 shows the distributions observed with
increasing θ and n. We find that the distributions are not
flat, but rather has two broad peaks related to the wrin-
kles which are formed following the primary buckling of
the sheet. The broad peak at ϕr ≈ 120◦ corresponds the
initial wrinkles which form after the primary buckling
instability. These wrinkles then crease into ridges and
valleys which are denoted by green lines. The second
peak at ϕr ≈ 60◦ corresponds to shorter creases which
form between the primary creases with continuing twist
and are denoted in magenta. The peaks are observed
to broaden further with increasing n and with increasing
applied twist.
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(a) (b)

(c)

0 60 120 180
0

0.005

0.01

0.015
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0

0.005
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X

Y

FIG. 10. (a) A schematic of the orientation angle of ridge
ϕr w.r.t. x-axis. The distribution of ridge angles w.r.t. the
x-axis is observed to anisotropic. The distributions become
somewhat broader with increasing twist angle θ (b), and load-
ing cycles n (c). (d) The creases contributing to the peaks in
the ridge angle distribution graph are highlighted with ma-
genta and green colors. Magenta for angles between 40◦ and
80◦, and green for angles between 100◦ and 140◦.
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