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Abstract 

Fostering creativity is vital for tackling 21st-century challenges, and education plays a key role in 

nurturing this skill. According to the associative theory, creativity involves connecting distant 

concepts in semantic memory. Here, we explore how semantic memory changes following an 

educational intervention intended to promote creativity. Specifically, we examine how a scientific 

education curriculum—Scientific Creativity in Practice (SCIP) program—impacts the semantic 

memory networks of 10–18-year-old students in a chemistry class (n = 176). Students in an 

Intervention group who received the SCIP intervention, and a Control group who did not, 

completed creative thinking tests, as well as verbal fluency tasks to estimate semantic networks 

in science-specific (chemistry) and domain-general (animal) categories. Results showed that the 

SCIP intervention enhanced performance on one test of scientific creative thinking but showed 

no significant difference on another. Using network science methods, we observed increased 

interconnectedness in both science-specific and domain-general categories, with lower path 

distances between concepts and reduced modularity. These traits define a ‘small-world’ 

network, balancing connections between closely related and remote concepts. Notably, the 

chemistry semantic network showed substantially more reorganization, consistent with the 

chemistry contents of the SCIP intervention. The findings suggest that semantic memory 

reorganization may be a cognitive mechanism underlying successful creativity interventions in 

science education. 
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Fostering Creativity in Science Education Reshapes Semantic Memory 

Creativity is pivotal in tackling complex contemporary challenges (Newton & Newton, 

2014). Education initiatives increasingly aim to cultivate creativity among students, including 

science education (Pllana, 2019), by teaching students how to generate and evaluate scientific 

hypotheses and experiments. Although specific educational programs have been shown to 

promote creative thinking in students (Denervaud et al., 2021), the cognitive mechanisms 

underlying creative learning are less understood. According to the associative theory, creativity 

involves connecting remote concepts (Mednick, 1962), and the ability to forge such connections 

relies on the organization of knowledge stored in semantic memory (Kenett & Faust, 2019). In 

this study, we explore the impact of a science education curriculum previously shown to 

enhance creative thinking—Scientific Creativity in Practice (SCIP) program (previously known 

as flex-based learning) (Haim & Aschauer, 2022)—on the semantic memory organization of 

middle- and secondary-school students. Using network science tools, we studied whether the 

SCIP program changed how science concepts were organized in semantic memory, which 

could explain improvements in scientific creative thinking. 

Creativity  

Creativity is vital for addressing the multifaceted challenges of the 21st century. 

Solutions to problems such as climate change, increasing wealth inequality, and the rapid 

spread of misinformation require innovative scientific solutions. Like other forms of creative 

thinking, scientific creativity involves both divergent thinking (generating many ideas; Guilford, 

1950) and convergent thinking (narrowing down to a solution; de Vries & Lubart, 2019; Guilford, 

1967; Kind & Kind, 2007). While both general creativity and scientific creativity involve divergent 

and convergent thinking, they differ in terms of the domains in which they are applied, and the 

level of domain-specific knowledge required (e.g., chemistry, physics; Hu & Adey, 2002; 

Mukhopadhyay, 2013). Theories of scientific creativity have emphasized a range of cognitive 

skills, from combinatorial ideation (Simonton, 2003) to abstract reasoning and analogical 

transfer (Kind & Kind, 2007). Identifying the specific cognitive components of scientific creativity 

can inform educational practices aimed at fostering this critical 21st century skill. 

The associative theory of creativity posits that creativity involves forging connections 

between remotely associated concepts in semantic memory (Mednick, 1962; Kenett, 2019; 

Kenett & Faust, 2019). Semantic memory—knowledge of words and concepts—is thought to be 

organized as an interconnected network in the mind (Siew, 2019). In a semantic network, 

concepts are represented as nodes and relationships between them are the links, whereby 

nodes that are “closer” share more meaning (e.g., dog and cat; Collins & Loftus, 1975). Highly 

creative individuals are found to have a distinctly different semantic structure that facilitates 

such conceptual connections as compared to individuals lower in creativity (Mednick, 1962).  

Recent advances in cognitive network science have provided new tools to explore the 

role of memory structure in creativity. For example, compared to individuals with lower creativity, 

those with higher creativity—as evidenced by more creative achievements and better 

performance on creative thinking tests—exhibit a more "flexible" structure to their semantic 



memory networks (Kenett et al., 2014; Kenett & Faust, 2019), i.e., their networks exhibit more 

connections and shorter paths linking concepts. This flexible network configuration appears to 

promote creative thought, as it allows people to efficiently connect seemingly unrelated 

concepts to generate novel ideas. 

Education and Scientific Creativity 

Education may influence creativity by re-organizing semantic memory—expanding, 

refining, and modifying the connectivity between concepts. Despite the importance of education 

in creative thinking, limited research has examined the cognitive mechanisms behind this 

relationship. Education could support creative thinking through two key pathways: 1) acquiring 

new conceptual knowledge (memory content) and 2) modifying the representation of memory 

itself (memory structure).  

One recent study compared two educational systems, traditional and Montessori, and 

found that Montessori students had more “flexible” semantic memory networks, with many 

connections between concepts and shorter distances between them. The Montessori method is 

a child-centered educational approach that emphasizes self-directed learning, hands-on 

exploration, and collaborative play. Students engage with self-chosen learning materials under 

the guidance of teachers (Marshall, 2017). Montessori students also performed better on 

assessments of creative thinking (Denervaud et al., 2021). These findings highlight how 

education shapes the organization of semantic memory, and suggest educational experiences 

have the potential to mold advanced cognitive functions like creative thinking. 

Creativity in the scientific process relies upon the ability to make new connections 

between concepts (Kenett et al., 2016) and educational interventions aid budding scientists in 

navigating this process (Hadzigeorgiou et al., 2012). One intervention is the Scientific Creativity 

in Practice (SCIP) program (previously known as flex-based learning), which aims to develop 

students’ flexibility in navigating different perspectives and applying varied strategies to scientific 

problems (Haim & Aschauer, 2022; School of Creative Solutions, 2021).  

The Scientific Creativity in Practice (SCIP) program, developed at the Center for Science 

Teaching at Upper Austrian University of Education using a design-based research approach 

(Barab & Squire, 2004), and is implemented in approximately 50 schools in Austria. SCIP 

targets key aspects of scientific creativity through techniques such as divergent thinking, 

bisociation, original association, imagination visualization, and metacognition. The program 

emphasizes both domain-specific science competencies and domain-general creative skills, 

employing activities like clustering for original associations and WoSeCo (word-sentence-

construction) for verbal creativity (see Method). Many SCIP learning activities are social in 

nature, such as the "Listen-Think-Pair-Share" technique, where students work individually 

before collaborating in small groups. 

Central to SCIP is the focus on metacognition, comprising cognitive knowledge and 

cognitive regulation. The program integrates various interventions to promote metacognitive 

skills (see Method). For instance, the 'Thinkflex Tasks' (Haim & Aschauer, 2022) foster 



divergent thinking through a structured process of brainstorming, exchange, and reflection. In 

these tasks, students might list advantages and disadvantages of fireworks, considering multiple 

perspectives such as visual appeal, cultural significance, environmental impact, and safety. This 

approach enhances students' ability to view problems from various angles, generate diverse 

solutions, and critically reflect on their thinking processes. Further descriptions and examples of 

activities in the intervention program can be found in the Scientific Creativity in Practice (SCIP) 

intervention section under Materials and Methods and in prior papers (Haim & Aschauer, 2022, 

2024).  

To measure improvement in scientific creativity among adolescents, SCIP employs the 

Divergent Problem-solving Ability in Science-Test (DPAS-TEST; Aschauer et al., 2022). This 

validated tool complements the program's activities designed to develop scientific creativity. 

SCIP's focus on both domain-specific science competencies and domain-general creative skills 

is evident in its various activities (see Method). For example, clustering activities train original 

associations by tasking students to organize and link concepts, while WoSeCo activities 

enhance verbal creativity through sentence construction using technical terms. These activities 

support the creation of meaningful connections between scientific concepts, improving 

understanding and retention while developing flexibility in combining terms. 

A recent large-scale study examined the effects of the SCIP program. The study 

involved 104 teachers and 3,516 Austrian secondary school students aged 10-18 years in both 

laboratory and real-world classroom settings. It found that the SCIP program boosted scientific 

creativity compared to traditional instruction (Haim & Aschauer, 2022). Although these findings 

highlight the potential of educational interventions for cultivating scientific creativity across, the 

cognitive mechanisms behind these benefits remain unknown. Elucidating the mechanisms of 

interventions like SCIP is critical for understanding how learning cultivates creative thinking. 

To address this critical gap, the present study examined the impact of the SCIP scientific 

creativity intervention on students’ semantic memory networks. We compared demographically 

similar students who did or did not undergo the SCIP intervention (N = 176). To estimate 

semantic networks, we used network science methods applied to verbal fluency tasks. In these 

tasks, students generate concepts belonging to specific categories. Students completed a 

chemistry fluency task to capture domain-specific knowledge, as well as an animal fluency task 

as a domain-general comparison. We hypothesized that students who participated in the SCIP 

program would exhibit more flexible semantic networks—with short path distances and high 

connectivity—resembling the networks associated with high creativity. Analyzing fluency-based 

networks allowed us to investigate whether and how the SCIP program shapes the structure of 

semantic memory to promote creative thinking. 

Materials and Methods 

Participants 

A total of 176 students (47 females; 46 males; 83 unspecified) from four schools 

participated in the study. The schools included two academic secondary schools and two middle 



schools. Academic secondary schools and middle schools are institutional education options for 

students in Austria. Academic secondary schools prepare students ages 10-18 for tertiary 

education, while middle schools prepare students ages 10-14 for vocational careers. Compared 

to academic schools, middle schools tend to have more students from lower socioeconomic 

backgrounds and migrant families. On national standardized assessments, middle school 

students also typically score below the national average (Luciak, 2008; Schreiner et al., 2020). 

The control and intervention group both contained one academic secondary school and one 

middle school class. 

The students were from four schools located near each other in Linz, Upper Austria. The 

schools had similar teaching requirements. Two classes of 25-35 students each were sampled 

from each school (eight classes total). Four classes were from the 3rd grade of academic 

secondary schools, with students aged 13. The other four classes were from the 4th grade of 

middle school, with students aged 14. Due to technical issues, data from 9 students was lost, 

resulting in a sample of 167 students. Parental consent was obtained for all students. The study 

was approved by the institutional review board of the Upper Austrian Department of Education. 

Scientific Creativity in Practice (SCIP) intervention 

The SCIP intervention spanned six weeks during the student’s chemistry class. Students 

participated in intensive training sessions once a week, completing a total of six intervention 

sessions. Detailed records of individual session attendance were unavailable for the 

intervention. However, as the training took place during regular chemistry lessons and 

students were not permitted to miss more than a few classes, this ensured consistent 

participation across the group. Due to time restrictions, the entire SCIP program was not 

conducted. Rather, students were introduced to and trained in four creativity methods: Thinkflex, 

Flexperiment, Clustering, and WoSeCo. Each session focused on one or two of these methods. 

In total, students in the intervention class were trained with two Thinkflex tasks, one 

Flexperiment, four Clustering and four WoSeCo tasks. 

Thinkflex (think-flexibly) encourages creative and open-minded thinking in students, with 

the goal of broadening students’ thinking. Thinkflex activities aim to generate many diverse 

answers by approaching tasks from multiple perspectives. Common type of thinkflex task 

includes prompting students to ask questions, investigate why something is not working, and 

consider impacts of decisions (Haim & Aschauer, 2022). An example of such a task may ask 

students to “List as many advantages and disadvantages of fireworks as possible. At the end, 

assign all your answers to specific categories and also think of alternatives to fireworks.” 

Flexperiment (flexible-experiment) involves open-ended experiments with diverse 

possible solutions. Key objectives include encouraging divergent thinking, building tolerance for 

mistakes, enhancing teamwork, boosting confidence in problem-solving, and avoiding fixed 

ways of thinking. These activities are aligned with the subject's curriculum. For science subjects, 

activities can include testing hypotheses, identifying errors, separating/synthesizing substances, 

exploring possibilities, and recognizing features (Haim & Aschauer, 2022). An example of a task 

is to “Find as many ways as possible to make a candle flame go out using only gasses.” 



In Clustering, students organize concepts for a topic into clusters around main themes 

and subthemes. Clustering supports associative thinking and verbal fluency in a given subject in 

two key ways. First, it helps students organize and structure subject content. Second, it 

encourages understanding and connecting relevant technical terms. Clustering prepares 

students for later tasks like WoSeCo that require comprehending subject matter and 

terminology. 

WoSeCo (word-sentence-construction) aims to build students’ verbal creativity within a 

specific subject. The teacher provides a technical term, then students take turns making 

accurate sentences using that term plus their own term. Each subsequent student incorporates 

a new technical term, and this cycle continues until all students have participated once or twice. 

The main aim of WoSeCo is to encourage students to creatively merge technical terms into form 

meaningful contextual sentences, promoting a deeper understanding of the subject matter 

(Haim & Aschauer, 2022). 

Procedures  

         The study used a quasi-experimental non-equivalent groups design between-subjects 

design with an intervention group and control group. Only the intervention group experienced 

the six weeks SCIP intervention during their chemistry class while the control group followed 

their regular class routine. Students were tested between May 26 and June 7, 2023, with each 

session lasting approximately 1-1.5 hours. All tasks were completed online using computers or 

tablets in the computer room or auditorium at the school. The sessions were conducted in 

German. A researcher was present in each class, and a teacher was present in 6 out of the 8 

classes. To ensure uniformity of instruction, the same researcher explained the verbal fluency 

task at the start of each session. Students then engaged in 5 minutes of physical exercises like 

circling their arms or jumping which they also repeated after finishing the first part of the study. 

These exercises are not typically part of the SCIP program, but were incorporated specifically 

for the 45 minute long study to mitigate potential fatigue and raise attentiveness. These physical 

exercises were carried out for both the intervention and the control classes to ensure 

comparability. The 5-minute verbal fluency task was conducted for two topics for 2 minutes each 

and was administered using PsychoPy (version 2022.2.5). Students took a 5-minute break with 

more physical exercises to combat potential fatigue before the researcher explained the 30-35 

minutes DPAS task, administered using SosciSurvey. After finishing the verbal fluency and 

DPAS tasks, students completed a short demographic survey to conclude the session. 

Materials 

Animal Fluency Task 

         The animal fluency task (Ardila et al., 2006) was administered first. It is the most 

common fluency task used to estimate domain-general, group-based semantic networks (A. P. 

Christensen & Kenett, 2021). Students were given 2 minutes to generate as many nouns as 

possible related to a given topic. ‘Plants’ was used as the practice topic, followed by ‘animals’ as 



the test topic The topic remained at the top of the screen while students typed and submitted 

each response by hitting the ‘Enter’ key. 

Chemistry Fluency Task 

         To estimate domain-specific semantic memory networks (Siew & Guru, 2023), the topic 

‘chemistry’ was presented to the students. Identical to the animal fluency task, students were 

given two minutes to generate as many words related to chemistry as possible. This approach 

follows the method of Siew and Guru (2023), who assessed science-related memory networks 

by administering fluency tasks for various science topics (biology, chemistry, mathematics, 

physics, psychology).  

Divergent Problem-solving Ability in Science test (DPAS) 

         The DPAS was implemented to assess students’ scientific creativity in problem-solving 

and evaluate the effectiveness of the program intervention. The DPAS has been validated as a 

reliable measure of scientific creativity both longitudinally and between groups (Aschauer et al., 

2022). It was administered on SosciSurvey (Leiner, 2019). 

The DPAS task consists of two subtests: divergent ideation in science task (DIST) and 

divergent ideation in experiment task (DIET). For DIST, students generated potential alternative 

solutions and explanations for a given empirical observation. For DIET, students used a 

provided list of items/materials to determine a specific scientific quantity or distinguish between 

two quantities.  

A total of six DPAS items were presented: three DIST items (reasons for temperature 

change in a classroom, protecting sheep from UV radiation, reasons for non-frozen ice cream) 

and three DIET items (determine height of 150cm, determine time period of 30 min, distinguish 

mass of two cans). Students completed the task in 30-35 minutes. 

Responses were rated by an author of this paper based on a scoring guide (Aschauer et 

al., 2022) and the dataset was blinded prior to scoring. Furthermore, the responses were sorted 

alphabetically rather than grouped by individual participant, which ensured that the scorer did 

not evaluate all answers from a single participant in sequence. This process facilitated unbiased 

scoring and helped maintain consistency in evaluating similar responses with the same criteria. 

For each item, the sum of appropriate responses assessed the fluency score. 

Group Construction 

         Comparisons between the control and intervention group were made by constructing 

group-based semantic memory networks from the animal (domain-general) and chemistry 

(domain-specific) fluency task responses (A. P. Christensen & Kenett, 2021). Participants’ 

responses were aggregated into the two groups (control N = 78, intervention N = 89). 

 



Semantic Memory Network Estimation 

         The SemNA toolbox (A. P. Christensen & Kenett, 2021) was used for the preprocessing, 

network construction, and analysis comparing the control and intervention groups for the two 

fluency tasks. SemNA comprises three R packages—SemNetDictionaris, SemNetCleaner, and 

SemNeT—that standardize semantic network analysis. All analyses were performed in R v4.3.1 

(R Core Team, 2023) through RStudio v2023.06.0 (“Mountain Hydrangea”). 

Preprocessing 

         Participants’ responses from the two semantic fluency tasks were automatically 

preprocessed using SemNetDictionaries v0.2.0 (A. P. Christensen, 2022) and SemNetCleaner 

v1.3.4 (A. P. Christensen, 2021). Identical preprocessing steps were conducted for the animal 

and chemistry fluency task data. Prior to processing, participants’ responses were translated 

from German to English. Swear words, within-participant repetitions (i.e., duplicated responses), 

and non-category members (e.g., dragon, ant colony, moon for the animals) were removed. The 

data was then cleaned by addressing issues like spelling errors, compound responses, root 

word variations, and continuous strings. Unrecognized words underwent manual spell-checking 

and correction to standard English. 

To create a binary response matrix, the cleaned data was transformed. Each unique 

participant response was assigned as a column, and individual participants were assigned as 

rows. The frequency of response occurrence within participants populated the matrix, with 1 

indicating the participant generated the exemplar, and 0 indicating they did not. To enable direct 

network comparison and control potential confounds (e.g., differences in nodes/edges; Wijk et 

al., 2010), all unique animal responses were matched between the groups. Following semantic 

network analysis conventions (A. P. Christensen et al., 2018; Kenett et al., 2016), only 

exemplars provided by at least two participants overall were included in the response matrix. 

This criterion is necessary to allow a direct comparison between the networks. Network 

parameters are sensitive to variations in node numbers; comparing these parameters directly 

between networks could lead to misleading conclusions, such as attributing network properties 

to specific nodes rather than broader network characteristics. This constraint ensures there's 

enough data (responses from at least two participants) to calculate correlations between groups 

accurately. Responses from a single person might be influenced by individual idiosyncrasies or 

biases. By requiring data from multiple participants, the approach aims to reduce the impact of 

these individual variations on the connections between groups, thus minimizing the likelihood of 

creating misleading associations (Borodkin et al., 2016). For each group, only the responses 

provided by the other group were retained. Thus, all semantic memory network comparisons 

focused solely on organization differences of the same nodes. 

Network Construction 

         The same network analysis steps were conducted separately for the animal and 

chemistry fluency tasks, comparing the control and intervention groups. Using the SemNeT 

package (version 1.4.4; A. Christensen, 2017/2023), association profiles between the fluency 



responses were created. The cosine similarity function, which estimates the co-occurrence 

probability between two words by calculating the angle between their word vectors, determined 

the network edges. This constructed an n x n adjacency matrix representing associations 

between each response within each group (A. P. Christensen et al., 2018). Cosine similarity 

values range between 0-1, with 1 indicating two words always co-occur and 0 indicating they 

never co-occur. This technique mirrors corpus-based methods in text analysis such as latent 

semantic analysis (Landauer & Dumais, 1997) and semantic distance (Beaty & Johnson, 2021). 

         The adjacency matrix was then used to implement the Triangulated Maximally Filtered 

Graph (TMFG) method, which aimed to maximize node association strength while ensuring the 

network planarity, allowing the network to be depicted on a 2D surface without crossing edges 

(Tumminello et al., 2005). To meet this structural constraint, the resulting network retains 3n - 6 

edges, where n is the number of nodes in the network. 

Network Analysis 

         The clustering coefficient (CC), average shortest path length (ASPL), and modularity (Q) 

were calculated for the control and intervention group networks for both animal and chemistry 

fluency tasks. CC measures local connectivity and the degree to which a network clusters 

together. It is calculated by determining the proportion of connections between neighboring 

nodes out of all possible connections. Higher CC indicates a more interconnected, cohesive 

network, while lower CC suggests a more dispersed, less clustered network (Siew, 2019). ASPL 

indicates network efficiency and concept relatedness, calculated as the shortest number of 

steps/edges between any two nodes. Lower ASPL indicates greater node closeness (Kleinberg, 

2000). Q assesses network segregation by comparing connection density within versus 

between communities (Fortunato, 2010). Higher Q indicates robust, well-defined community 

structure, with more within-community than between-community connections (Newman, 2006). 

         The correlation-based network measure estimation method was used to estimate 

semantic networks for each group (control, intervention) across the two fluency tasks (i.e. 

animals, chemistry), resulting in four networks. Random network and bootstrap analyses then 

compared the network matrices (CC, ASPL, Q). Random network analysis is an important first 

step to establish that the fluency networks exhibit greater structure than would be expected by 

chance alone before comparing the group-based networks (via bootstrap analyses). For the 

random network analyses, the fluency-derived networks were compared against randomly 

generated networks with equal nodes and edges. For the bootstrap analyses, a case-wise 

bootstrap method (Efron, 1979) with 1000 iterations per network was used to compare control 

versus intervention networks. The group network matrices were compared via independent-

samples t-test using the SemNeT R package (A. P. Christensen & Kenett, 2021). 

 

 

 



Results 

Demographics and Descriptive Statistics  

First, we tested for demographic differences between the control and intervention groups 

on the animal fluency and chemistry fluency tasks (Table 1). There was no significant difference 

in gender distribution between the groups (p = .24). However, there were significant differences 

in the proportion of participants born in Austria, X2 (2, N = 167) = 9.31, p = .009 and those with 

German as their first language, X2 (2, N = 167) = 10.13, p = .006.  

Table 1. Descriptive statistics for control and intervention groups 

 
Overall Control Intervention p 

n 167 78 89 
 

Gender (%) 
   

0.237 

   Female 45 (26.9) 22 (28.2) 23 (25.8) 
 

   Male 45 (26.9) 25 (32.1) 20 (22.5) 
 

   Unspecified 76 (45.5) 30 (38.5) 46 (51.7) 
 

   NA 1 (0.6) 1 (1.3) 0 (0.0) 
 

Country (%) 
   

0.009 

   Austria 126 (75.4) 52 (66.7) 74 (83.1) 
 

   Others 29 (17.4) 21 (26.9) 8 (9.0) 
 

   NA 12 (7.2) 5 (6.4) 7 (7.9) 
 

German (%) 
   

0.006 

   No 48 (28.7) 31 (39.7) 17 (19.1) 
 

   Yes 118 (70.7) 46 (59.0) 72 (80.9) 
 

   NA 1 (0.6) 1 (1.3) 0 (0.0) 
 

Scientific Creativity (DPAS)   

Responses to the Divergent Problem-solving Ability in Science test (DPAS) test 

underwent rigorous cleaning. Each response was evaluated for suitability, feasibility, and 

accuracy, while nonsense responses were excluded from analysis.  

 



Results showed separate patterns across the two subtests—DIST (divergent ideation in 

science task) and DIET (divergent ideation in experimental task). For the DIST, the SCIP 

program had a significant intervention effect (independent samples t-test, t(165) = 1.76, p = .04). 

Intervention students (M = 4.27, SD = 2.50) outperformed controls (M = 3.64, SD = 2.08) in 

fluency scores. No significant effect was observed for the DIET. Thus, in this sample, the SCIP 

program significantly improved scientific creativity on open-ended verbal tasks (DIST) but not 

complex experiments (DIET). 

 

Verbal Fluency Performance 

 

Significant correlations were found between both DPAS subtests and verbal fluency 

scores (see Table 2). Students with better DPAS performance also achieved higher verbal 

fluency scores for both topics (animals, chemistry). A Steiger’s Z-test was then conducted to 

compare the dependent correlations between the animal verbal fluency score and DIST fluency 

score (r  = .543) with chemistry verbal fluency score and DIST fluency score (r = .595) while 

accounting for the correlation between the animal and chemistry verbal fluency score 

themselves (r = 0.64). The test revealed no significant difference between the two correlations, 

t(162) = -1.00, p = .32. The same test was also used to compare the dependent correlations 

between the animal verbal fluency score and DIET fluency score (r  = .410) with chemistry 

verbal fluency score and DIET fluency score (r = .544) while accounting for same correlation 

and found a significant difference between them t(162) = -2.39, p = .018. The correlation with 

DPAS subtests was numerically larger for chemistry than animals in the DIET subtest, which 

may indicate that the chemistry fluency task likely measures domain-specific semantic memory 

(relevant for scientific creativity), while the animal fluency task assesses more general semantic 

memory. 

  

Table 2. Pearson correlation coefficient between DPAS subtests and verbal fluency scores 

PCC DIST fluency score DIET fluency score 

Animal verbal fluency score .543** .410** 

Chemistry verbal fluency 

score 

.595** .544** 

** … p < .001 

Table 3 shows fluency performance for control and intervention groups on the animal 

and chemistry fluency tasks. There were no significant differences in animal fluency between 

the control (M = 18.13, SD = 5.96) and intervention (M = 19.72, SD = 7.39) groups, t(164) = -

1.54, p = .063, d = -.235, 95% CI [-3.631, 0.449]. However, on the chemistry fluency task, the 

intervention group generated significantly more responses (M = 13.96, SD = 5.30) than controls 

(M = 11.51, SD = 5.33), t(165) = -2.965, p = . 002, d = -.460, 95% CI [-4.069, -0.815]. This 

indicates the SCIP program not only improved scientific creativity but also science-specific 

verbal fluency. 

 



Table 3. Descriptive statistics for the animal and chemistry fluency tasks 

  Animal Fluency Task Chemistry Fluency Task 

  n (average) n 

(within) 

n 

(between) 

n (average) n 

(within) 

n 

(between) 
Group M (SD) Range M (SD) Range 

Control 18.13 

(5.96) 

5-32 226 71 11.51 

(5.33) 

1-26 282 157 

Interven

tion 

19.72 

(7.39) 

6-35 273 118 13.96 

(5.30) 

2-31 269 144 

Note. n (average) = average number of responses per group; n (within) = total unique responses 

given by individuals within the group; n (between) = total unique responses not shared by other 

group. 

Semantic Network Analysis 

Semantic memory networks were constructed for the control and intervention groups. 

The animal semantic memory network had 99 nodes and the chemistry semantic memory 

network had 66 nodes (Figure 1). Cytoscape 3.10.0 (Shannon et al., 2003) generated 2D 

representations of these unweighted, undirected networks. Circles represent participant 

responses and lines represent links between them.  

 



Figure 1. A 2D visualization of the animal and chemistry semantic networks of individuals in 

control and intervention group. Nodes were adjusted slightly manually to ensure no overlapping. 

Random network analysis, matched on the number of nodes and edges, revealed the semantic 

networks differed from random networks across all metrics (ASPL, CC, Q; all p < .001). Thus, 

the fluency networks exhibit greater structure than would be expected by chance alone. 

Next, bootstrapped network analysis compared the control and intervention networks for 

the animal and chemistry fluency tasks (Table 4 and Figure 1).   

Table 4. Comparison of semantic memory networks between groups 

    M (SD)       

Parameter Control Group Intervention 

Group 

t-value p-value d 

Animal 

Fluency 

ASPL 3.282 (0.223) 3.209 (0.211) 7.482 < .001 0.335 

CC 0.718 (0.009) 0.721 (0.009) -9.852 < .001 0.441 

Q 0.627 (0.019) 0.624 (0.02) 3.565 < .001 0.159 

Chemistry 

Fluency 

ASPL 3.331 (0.287) 3.048 (0.233) 24.214 < .001 1.083 

CC 0.694 (0.016) 0.71 (0.013) -26.178 < .001 1.171 

Q 0.596 (0.021) 0.580 (0.025) 16.385 <. 001 0.733 

Note. Results from bootstrapping and two-samples t-tests comparing the animal and chemistry 

fluency semantic memory networks between control and intervention groups. Bootstrapping was 

performed over 1000 iterations. Means (M) of all network parameters (ASPL, CC, Q), t-value, p-

value, and effect size in Cohen’s d (Cohen, 1962) are presented. All p’s < .001. Cohen’s d effect 

sizes: 0.50 – moderate; 0.80 – large; 1.10 – very large. ASPL, average shortest path length; 

CC, clustering coefficient; Q, modularity. 



Regarding animal semantic networks, an independent-samples t-test revealed the 

intervention group had significantly shorter average shortest path length (ASPL; M = 3.209, SD 

= .211) compared to controls (M = 3.28, SD = .223), t(1998) = 7.48, p < .001, d = .34, 95% CI 

[0.054, 0.092]. In addition, the intervention group also showed significantly larger clustering 

coefficient (CC; M = 0.721, SD = 0.009) than controls (M = 0.72, SD = 0.009), t(1998) = -9.85, p 

< .001, d = .44, 95% CI [-0.005, -0.003]. Modularity (Q) was also significantly lower in the 

intervention group (M = 0.62, SD = 0.02) than controls (M = 0.63, SD = 0.019), t(1998) = 3.57, p 

< .001, d = .16, 95% CI [0.001, 0.005]. In summary, the intervention group showed more 

interconnected (higher CC; lower ASPL) and less modular (lower Q) animal semantic networks. 

Regarding chemistry semantic networks, a similar pattern emerged, albeit with much 

larger effect sizes than the animal networks. An independent-samples t-test showed the 

intervention group had significantly shorter ASPL (M = 3.048, SD = .233) than controls (M = 

3.331, SD = .287), t(1998) = 24.214, p < .001, d = 1.083, 95% CI [0.26, 0.306]. The intervention 

group also had larger CC (Intervention: M = 0.71, SD = .013; Control: M = 0.694, SD = .016), 

t(1998) = -26.178, p < .001, d = 1.171, 95% CI [-0.018, -0.015]. Q was also significantly lower in 

the intervention group (M = 0.58, SD = .025) than controls (M = 0.596, SD = .021), t(1998) = 

16.385, p < .001, d = 0.733, 95% CI [0.015, 0.019]. 

In summary, the chemistry network results suggest the intervention group was more 

interconnected (higher CC; lower ASPL) and less modular (lower Q), with effect sizes orders of 

magnitude larger than the animal networks (range: 2.65 - 4.61 times). The SCIP program thus 

impacted both domain-general and domain-specific semantic memory networks, but had a 

substantially greater effect on domain-specific semantic structures with science concepts. 

Discussion 

Past research has shown that educational interventions like SCIP (formally known as 

flex-based learning) can successfully foster scientific creative thinking in students. However, 

less is known about how these creativity interventions may impact the cognitive mechanisms 

that underlie creativity. The present research investigated how SCIP impacts students’ semantic 

memory organization, which is critical for creative thinking (Beaty & Kenett, 2023). Students’ 

verbal fluency responses were used to construct semantic networks in both domain-general 

(animal) and domain-specific (chemistry) categories. As expected, the results showed SCIP 

boosted the open-ended and divergent aspect of scientific creativity (DIST), replicating previous 

findings (Haim & Aschauer, 2022) but found no significance in the more convergent aspect 

(DIET). More importantly, SCIP seems to have restructured the semantic memory networks in 

the intervention group. These changes were observed across both domain-general and domain-

specific networks, with the greatest reorganization occurring within the domain-specific 

chemistry networks. Taken together, these results provide some evidence that reorganizing 

semantic memory may be a key cognitive mechanism by which effective scientific creativity 

interventions like SCIP enhance creative thinking.  

Firstly, the key finding of our study is that participation in the SCIP program is associated 

with changes in the underlying semantic network of students. Results were consistent with our 



hypothesis. We found a significant difference between the intervention and control groups 

across both domain-general (animal) and domain-specific (chemistry) semantic networks. In 

both domains, students in the intervention group displayed a more highly connected semantic 

network, with lower average shortest path length (ASPL), greater clustering coefficient (CC), 

and less modularity (Q), aligned with prior research. Comparison between traditional and 

Montessori education found that Montessori students exhibited more flexible semantic memory 

networks and performed better in creative thinking assessments (Denervaud et al., 2021).  

According to the associative theory, creativity involves forming connections between 

concepts in memory (Kenett & Faust, 2019). Our findings mirror typical characteristics of highly 

creative people, who tend to have a more flexible, “small-world” semantic memory network 

defined by greater cohesion and integration. A small-world structure enables efficient 

communication across the network and spreading activation between concepts, critical for 

connecting ideas during creative thinking (He et al., 2020; Kenett et al., 2014). This small-world 

network was found in students after undergoing SCIP, suggesting the intervention may have 

enhanced their creative thinking by making it easier for them to link concepts in semantic 

memory. The emergence of small-world properties implies an optimal balance of local clustering 

of related concepts and global reachability of distant concepts that could facilitate creative idea 

generation and knowledge integration. 

A key finding was the lower average shortest path length (ASPL) in the intervention 

compared to the control group. ASPL measures the number of steps between nodes in a 

network. Shorter paths in semantic networks relate to closer semantic distance, faster reaction 

time, and higher judged relatedness between words (Kenett et al., 2017; Kumar et al., 2020). 

The reduced ASPL suggests students who underwent the intervention could navigate and 

search conceptual knowledge more efficiently. Within creativity, enhanced conceptual 

navigation can facilitate idea generation. Shorter paths are often influenced by 'bridge' links 

between clusters (Schilling, 2005), which may promote creativity by enabling novel 

combinations of concepts by ‘jumping’ between more remote concepts. 

Additionally, the intervention group showed a higher clustering coefficient, reflecting the 

tendency for connected concepts to cluster together, akin to network density (He et al., 2020; 

Marko & Riečanský, 2021). A high clustering coefficient implies concepts are interconnected 

and form close-knit neighborhoods (Siew et al., 2019). After the intervention, students may have 

developed knowledge structures with tighter connections between related concepts, improving 

search through spreading activation and flexible switching (Marko & Riečanský, 2021). 

Finally, the intervention group had lower modularity (Q), implying their networks were 

less divided into distinct, non-overlapping modules. This structure is more inclusive, with blurrier 

category boundaries. Low-Q networks integrate diverse knowledge and can link seemingly 

unrelated concepts, which is beneficial for creativity, as well as interdisciplinary research, where 

concepts from different domains are interconnected. Unexpected or novel semantic 

associations between concepts may emerge, as there are fewer constraints on how concepts 

are grouped together. Together with a high CC, a low Q is also indicative of a resilient network. 

Percolation analysis of semantic networks from previous research suggests that the semantic 



network of highly creative individuals exhibits greater resilience against simulated network 

attacks. This resilience is evidenced by the slower disintegration of the network, and it aligns 

with the findings from our current result of higher CC and lower Q (Cosgrove et al., 2021, 2023; 

Kenett et al., 2018). 

The results also revealed differences in semantic memory networks for both the domain-

specific (chemistry) and domain-general (animals) categories. Critically, the effect size was over 

two to four times larger in the domain-specific chemistry network across all network measures. 

This substantial effect indicates that the SCIP intervention had a greater impact on science-

specific memory structures compared to general knowledge. The reorganization of the 

chemistry network aligns with the long-established research on the recency effect (Baddeley & 

Hitch, 1993; Greene, 1986) showing newly learned vocabulary concepts exhibit higher 

activation and salience (Wiswede et al., 2007). In this study, students learned the chemistry 

concepts more recently than animals. Therefore, these domain-specific representations may be 

more susceptible to restructuring from the learning intervention. 

However, there could be several potential explanations for concurrent changes in the 

animal knowledge semantic network. Firstly, the effect sizes are consistent with the theoretical 

expectations from transfer learning. According to the generalization theory of transfer learning, 

learning performance in one context can be generalized to performance in another context 

(Perkins & Salomon, 1992). However, transferring skills or knowledge between distinct contexts 

(far transfer) is less likely than within related ones (near transfer). Education interventions have 

been shown to alter the semantic knowledge networks of students (Denervaud et al., 2021). 

Under the SCIP intervention, students may perceive mental concepts in general to be more 

flexible, dynamic, and connected. The educational intervention's emphasis on scientific 

concepts explains the notably larger effect size observed in the domain-specific (chemistry) 

network compared to the domain-general (animal) network, aligning with the principles of near 

and far transfer. Next, the difference in effect size could also be interpreted as the impact of 

changing a smaller part of the network (chemistry) on the larger network (animal). The domain-

specific network could be embedded within a larger domain-general network such that by 

changing a portion of the network through learning, the changes reverberate throughout (Y. 

Kenett & Thompson-Schill, 2023). 

As per prior literature, the Divergent Problem-solving Ability in Science test (DPAS) 

scientific creativity task provided evidence for the effectiveness of SCIP (formally known as flex-

based learning) (Aschauer, Haim & Weber, 2022). Students who underwent the intervention 

showed higher fluency on the open-ended divergent ideation in science task (DIST) compared 

to controls. This aligns with the core aims of the SCIP activities like Thinkflex and WoSeCo to 

boost divergent thinking and verbal fluency. However, no significant difference was found 

between groups on the more constrained divergent ideation in experiment task (DIET). A 

potential explanation in the discrepancy could stem from students' lack of hands-on 

experimental training. Due to time constraints, teachers in the intervention classes conducted 

only one flexperiment—an open-ended experiment with multiple possible solutions. This 

appears insufficient to improve experimental creativity. In contrast, verbal tasks like Clustering 

and WoSeCo were practiced more often (four times each), which improved DIST performance. 



In addition, while the DIST requires flexible solutions, reasons, or consequences for a provided 

situation without restricting students to specific materials, the DIET focuses on practical 

problems with constraints on available materials. Hence, the DIET requires more complex 

domain knowledge and practical skills that the students may not have time to acquire yet. Still, 

overall, the DPAS results demonstrate that the SCIP program significantly enhanced scientific 

creativity, specifically for open-ended verbal divergent thinking. 

Limitations and Future Research 

Our study has limitations that can inform future research directions. Firstly, it is important 

to consider potential between-group differences in language use. Differences in language could 

theoretically influence semantic networks. The absence of a pre-test and the non-randomized 

design (quasi-experimental) also weakens strong causal inferences. A non-equivalent group 

design (Shadish et al., 2002) is the lack of random assignment to treatment and control groups. 

Despite that, the design was chosen for its real-world applicability. We hence urge caution in 

interpretation and future research with pre-tests that would theoretically not be modified by the 

intervention (i.e. fluid intelligence test) to solidify these findings. Another alternative way to 

address this limitation would be to conduct a delayed intervention for a group. 

Next, the relationship between learning, semantic network changes, and creativity 

remains uncertain. While we suspect more flexible networks underlie creativity by allowing 

efficient concept access and flexible combination, we could not directly link these variables 

given the group-based network analysis. Group-based network estimation precludes a dynamic, 

individual assessment of semantic memory structure. Additionally, contextual effects like prior-

knowledge and present goals affect conceptual activation (Yee & Thompson-Schill, 2016). 

Future research should employ individual-based network approaches (Y. N. Kenett et al., 2017) 

to directly examine how interventions impact semantic network structure and creativity within 

individual students. Researchers can use the semantic relatedness judgment task (RJT), 

presenting participants with pairs of words and asking them to judge their semantic relatedness; 

this approach yields continuous data and enables the estimation of semantic networks at the 

individual level. They can then apply a linear mixed model to account for any possible 

hierarchical structure in the data and a mediation analysis to explore if the relationship between 

the educational intervention and scientific creativity can be explained by the participants’ 

semantic networks. 

Another limitation concerns potential age-related differences in the malleability of 

semantic memory, making certain ages potentially particularly receptive to learning-induced 

modifications. Future studies could examine the effect of SCIP across age groups. Additionally, 

although we presume SCIP directly altered semantic networks, this effect could be mediated by 

other factors relevant to creativity, such as  metacognition (Armbruster, 1989), fluid intelligence 

(Y. N. Kenett et al., 2016), self-efficacy (Haase et al., 2018), motivation (Harackiewicz & Priniski, 

2018). Future studies could also compare the effect that education has on creativity by directly 

measuring changes in memory content on top of its structure in the acquisition of new concepts 

through recall and recognition tasks. Finally, we cannot deduce which specific intervention 

activities changed semantic networks. Future studies should explore isolating intervention 



components to provide insights into cultivating flexible knowledge structures. This can help 

create learning environments that promote improved concept understanding and creativity. 
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