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Abstract. We prove the local-in-time well-posedness of the relativistic Vlasov—-Maxwell-Landau
system in a bounded domain Q with the specular reflection condition. Our result covers the case
when Q is a nonconvex domain, e.g., solid torus. To the best of our knowledge, this is the first
local well-posedness result for a nonlinear kinetic model with a self-consistent magnetic effect in a
three-dimensional bounded domain.
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1. Introduction. Let z = (¢,z,p), where t € R, x,p € R? are the temporal,
spatial, and momentum variables, respectively. For a spatial domain Q C R3, we
denote the incoming/outgoing boundaries and the grazing sets, respectively, as follows:

V- :{(xvp) :x6897nl’ 'p<0}7 T+ = {(%p) :xeaﬂanz "p> 0}7
Y0 ={(z,p) :ny - p=0},

where n, is an outward unit normal vector at x € 02. Furthermore, we denote
p
po=(1+pI*)"?,  o(p) ==,
Po

We study the relativistic Vlasov—Maxwell-Landau (RVML) system in a bounded
domain:

OWFT +v(p) - VoFT +(E4v(p) xB) - V,FT=C(F*,F")+C(F",F),
OF~ +uv(p) - VoF~ —(E+ov(p)xB)-V,F~ =C(F~,F")+C(F,F"),

OE -V, ><B:—/v(p)(F'*'—F_)dp7
0:B+V,xE=0,
Vw~E:/(F+—F_)dp, V. -B=0,
(Exng)loa=0, (B-ng)loa=0

with the initial conditions

*Received by the editors October 13, 2023; accepted for publication (in revised form) May 29,
2024; published electronically October 1, 2024.
https://doi.org/10.1137/23M1608938
Funding: The first author was partially supported by a Simons fellowship, grant 007638, and
the NSF under agreements DMS-2055244 and DMS-2350129. The second author’s research was
supported in part by NSF grant 2405051.
TDivision of Applied Mathematics, Brown University, Providence, RI 02912 USA (Hongjie_Dong@
brown.edu, Yan_-Guo@brown.edu).
fDepartment of Mathematics, University of Chicago, Chicago, IL 60637 USA (ouyangzm9386@Q
uchicago.edu).
$Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 USA
(yastrzhembsk@wisc.edu).

6613

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

6614 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY
Fi(07 ) = Foi()a E(07 ) = EO(')7 B(Oa ) = BO(')7
and the specular reflection boundary condition (SRBC)
FE(t,2,p) = F*(t,z,Rop), Rup=p—2(p-ny)n,.

Here F* and F'~ are the density functions of ions and electrons, respectively, and C
is the relativistic Landau collision operator given by

12 e =V, [ APQ(VuiGlale) - [ Tag(0) da

where ®(P,Q) is the Belyaecv—Budker kernel defined in section 2 (see (2.7)). The
RVML is a fundamental model of a hot dilute collisional plasma with magnetic and rel-
ativistic effects. Such a model is relevant for plasma fusion in tokamaks, where plasma
particles may reach high velocities. For the formal derivation, see, for example, [27].

For the sake of simplicity, all the physical constants are set to 1 (cf. [32]) since
the exact relationships among them do not play any role in our analysis. Our goal
is to prove the local-in-time well-posedness of the RVML system near the relativistic
Maxwellian

(1.3) J(p)=e",

which is called the Jiittner’s solution. The global well-posedness of the RVML system
was first established in [32] for the periodic boundary conditions, and later, this result
was extended to the whole space in [36]. For the related studies of this model, see
[28] and [35].

The presence of spatial boundaries is natural in kinetic models, and the study of
boundary value problems is one of the foci of contemporary kinetic PDE theory. In this
context, the investigation of hyperbolic kinetic models poses a formidable challenge
due to the nonuniformly characteristic nature of the grazing set ¢ associated with the
free streaming operator 0; +p- V.. Near the grazing set, the regularity of a solution is
expected to deteriorate significantly, resulting in profound mathematical intricacies.
The standard energy techniques, which typically rely on differentiating with respect
to spatial and velocity variables, become inadequate in such a scenario.

Particularly noteworthy is the occurrence of singularities emanating from the
grazing set in nonconvex domains [24], where hyperbolic kinetic PDEs are expected
to yield solutions of, at best, bounded variation [19]. Furthermore, the introduction of
magnetic effects can trigger singularities even in a half-space domain. An illustrative
example is the one-dimensional relativistic Vlasov-Maxwell (RVM) system subject
to the perfect conductor boundary conditions [16] (see also [15] for an example in a
three-dimensional half-space). This specific case underscores the limited knowledge
we possess, as only the global existence of a weak solution is currently known for the
RVM system in a three-dimensional bounded domain [14].

In stark contrast, in convex domains and in the absence of magnetic effects, re-
cent papers have demonstrated global well-posedness for several important hyperbolic
plasma models such as the Vlasov—Poisson and Vlasov—Poisson-Boltzmann systems
21], [22], [5).

Conversely, when velocity diffusion is introduced, a higher degree of regularity
near the grazing set is expected, owing to a hypoelliptic gain [31]. The nature of
this regularity depends on the specific boundary conditions imposed on the outgoing
boundary v_. Notably, a linear kinetic Fokker-Planck (KFP) equation with the inflow
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(Dirichlet) boundary conditions is anticipated to exhibit at most Holder regularity in
both spatial and velocity variables [23].

However, in the presence of the SRBC, a unique avenue opens. Employing a
flattening and extension strategy, one can extend the solution of the KFP equation
to the entire space and invoke the .S, theory of KFP equations, akin to the Calderon—
Zygmund theory for parabolic PDEs [20], [7], [8]. This approach yields Holder regu-
larity not only for the solution but also for its velocity gradient. Such an extension
argument is unknown for other boundary conditions in kinetic theory.

In recent years, an Ly to L., framework has been developed for the Boltzmann
equation in bounded domains (see [18] and [12], [13], [25] for further developments).
The method is based on interpolating between the natural entropy or energy bound
and the interplay between characteristics and velocity averaging in the collision [17].
However, this approach is less applicable to the Landau equation due to the absence of
characteristic curves. We emphasize that a higher regularity of the velocity gradient
is required to establish the uniqueness for the Landau equation due to the nonlin-
ear diffusion term (see [25]). To handle the Landau and the Vlasov—Poisson-Landau
equations with the SRBC, the authors of [20] and [7] combined the aforementioned
mirror-extension method with the S, estimate. Their results require merely C? reg-
ularity of domains and, hence, allow a solid tori domain, which resembles a tokamak.

Adapting the aforementioned framework to the RVML system poses a formidable
challenge due to the anticipated low regularity of solutions to Maxwell’s equations.
The intricate nature of the relativistic Landau kernel, coupled with the presence of the
relativistic transport term, introduces additional mathematical complexities. Our in-
novative approach involves deducing the regularity of solutions to Maxwell’s equations
by treating them as an elliptic system of the Hodge type. This inspired the devel-
opment of a delicate iteration scheme, where we propagate temporal derivatives and
employ a descent argument, leveraging div-curl estimates and a relativistic adaptation
of the S, estimates for KFP equations with the SRBC.

Our main result is, informally speaking, the following (see Theorem 3.10): if
Fo—J, Eg, By are of order ¢ in some sense, then the RVML system has a unique strong
solution [F,E;,B¢] on [0,7] for some T >0 such that F'* — J,E;,B; are of order .
Due to the delicate behavior of kinetic PDEs near the boundary, there have been few
results on well-posedness for any kinetic models with a self-consistent magnetic effect
in three-dimensional domains (see [6] for the result on RVM in a half-space). To the
best of our knowledge, Theorem 3.10 provides the first well-posedness result for the
system with the Vlasov-Maxwell structure in a three-dimensional bounded domain. In
a separate paper [9], the first, second, and fourth authors established a global estimate
and asymptotic stability for the RVML system near a global Jiittner’s solution.

2. Notation and conventions. Before we state the main results, we introduce
some notation. Throughout the paper, T'> 0 is a number.
e Geometric notation.

(2.1) P=(po,p), Q@=(90.9);, P Q=pogo—p-q;
B(zo) ={z €R3: |z —xo| <7}, Q(x0) =QN B,(x0),
R} ={z€R?: £23 >0}, Hy={(v,p) eR}L xR},
HE ={2€(0,T) xHy}, RL={z€(0,T) xR},
Y =0,T)x QxR 2L =(0,T)xy+.
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Matrix notation.
1; =diag(1,1,1), R=diag(1,1,-1),
(2.4) E=diag(l,-1), & = [ﬂ ) &= [_11] .
Relativistic kinetic transport operator.
Y =0, +v(p)- V.

Relativistic Belyaev—Budker kernel. We introduce

(2.5) AP,Q)=(P-QP((P-Q)*—1)""",
(2.6) S(P,Q)=((P-Q)?—1)15—(p—q)® (p—q)
+(P-Q—-1)(pRq+q®p),
(2.7) a(p,Q)= 2D gp ).
Podqo

Function spaces. Let G C R” be an open set. - -
— C(G) is the set of all bounded continuous functions on G, and C*(G), k €

{1,2,...} is the subspace of C(G) functions with partial derivatives up to

order k belonging to C(G).

— CYG) (CM(@)) is the subset of C'(G) (Lipschitz) functions on G that

vanish for large 2. Similarly, one can define C¥(G),k € {2,3,...}.

— C§°(G) is the set of all infinitely differentiable functions with the support

contained in G.

— Anisotropic Hélder space. For an open set D C R® and « € (0,1], by

C’gé,?”a(D), we denote the set of all bounded functions f = f(z,p) such
that

f T1,P1) — f Z2,D
[f]Ca/:;’a(D) = sup | ( L 133 ( 2 2)| P
o (24, p0) €D (1 ,p1 )£ (2 ) ([T1 = L2[P/2 + [p1 = paf)®

Furthermore, the norm is given by
(2.8) ”chg,/pS-ra(D) = ”fHLoc(D) + [f]Cgf’“(D)'

Weighted spaces on the kinetic boundary. For a weight w >0 on 052 x R3,
we set

2 _ 2
(2.9) Az, w1 ) /Ei fPwdS,dp.

Traces. Let r € [1,00) and f € L,.(37) be a function such that Y f €
L.(XT). Then, the traces of f can be defined (see the details in Appen-
dix D). In particular, there exist functions (fr, fo, f+, f—), which we call
traces of f, such that a variant of Green’s identity holds (see Proposi-
tion D.2).

Weighted Lebesgue space. For 6 € R and r € [1,00], by L, ¢(G) we denote
the set of all Lebesgue measurable functions u such that

L, o (@) = IPoullL, (@) < oo
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— Weighted Sobolev spaces. For r € [1,00], by W' 4(R?) we denote the Banach
space of functions u € L, ¢(R?) such that the norm

lullw; @) = lllul + [Vpull L, o @s) < 00

For 6 =0, we set W' (R?) := W} (R?).
— Dual Sobolev space. Let ngl (R?) be the space of all distributions u such
that

(2.10) u=0p,m; +§

for some &,7; € L2 p(R3),i = 1,2,3. Furthermore, for u € W{l(R?’) and
feW;(R?), by

(2.11) W)= [ (-0 f +Ef)db

we denote the duality pairing between W, '(R3) and W3 (R3), which is
independent of the choice of 7; and &.
— Nonrelativistic (Newtonian) kinetic Sobolev space.

SN(G)={f €L (G): (0 +p-Va) [,V f, Dif € L(G)},
and the norm is defined as follows:

(212)  |Ifllsy () = NI +IVpfl + Dy fl +10: +p- Va) fllL.(o)-

— Mized-norm spaces. For normed spaces X and Y, we write u = u(z,y) €
XY if for each z, u, :=u(z,-) €Y, and

[ullxy = [[[[ualy [l x < oo

— Weighted unsteady relativistic kinetic Sobolev spaces. Let S, 9(G) = {f €
Lyo(G):Y [,V f,D2f € L 6(G)} be the Banach space with the norm

(2.13) 1£1ls,.0c) = £+ Vo f I+ D fI + Y fllL, 0 (0)-

In the case when 6 =0, we set S,.(G) = 5,0(G).
— Steady S, spaces. For r € [1,00], by S, (0 x R3), we denote the set of all
functions u on Q x R? such that

(2.14) u,v(p) - Vaou, Vpu, D2u € Ly o(Q x R?).
The norm is given by

(2.15)
[ulls, xrsy = lllul +[0(p) - Voul + [Vpul + [Djul| 1, , @xrs)-

— Vector fields. We use boldface letters to denote vector fields. We write
u € X, where X is some vector space if each component of u belongs to
X.

e (Conventions.

— We assume the summation with respect to repeated indexes.

— If functions f and g are defined on D C R? and R3, respectively, and g
vanishes outside D, then, for x & D, we set (fg)(z)=0.

— By N =N(---), we denote a constant depending only on the parameters
inside the parentheses. The constants N might change from line to line.
Sometimes, when it is clear what parameters N depends on, we omit them.
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3. Main results. Let f = (fT, f~) be perturbations of F* near the relativistic
Maxwellian given by

F:t:J+J1/2fj:

(see (1.3)). We denote

Lf=-Af-Kf,
Axf=2J712C(JV2FE ), Af=(ALf A_f),
(3.1) Kf=J7'2C(1,JV2(f7 4 £7))éo,

Ty(f.g)=J2C(JV2fE T2 (g" +97)),
F(f7g) = (F+(f’g)7r—(fvg))v

where C is defined by (1.2) and (2.5)—(2.7). Then, the triple [f, E,B] satisfies the
following system (see p. 276 in [32]):
3

(3.2) Yfi=-&E+uv(p) xB) - Vpf+ - (v(p) - E)f + Af

+&(p)-B)JV2+ Kf+T(f,f),
f(Ov) :fO(')’ f(tvxvp) :f(tvzvap)a FAS ZT,

(3:3)  OE-V.xB=—j;i=— [vp)I0) ) Edp

(3.4) OB+V, xE=0,

(35) V. -E=ps ::/J1/2f(p> -&dp, V. -B=0,

(3.6) (E xng)joa =0, (B-ng)jpaq =0, EO,)=Eq(-), B(0,-) =Bog(-),

where £ and &, are defined in (2.4). For the sake of convenience, we also call (3.2)-
(3.6) the RVML system.

Before we state the definition of the strong solution to the RVML system, we
introduce the notions of finite energy and strong solutions to the linear relativistic
Landau equation

(3-7) Yf_vp' (Ugvpf)+b'vpf+(c+>‘)f:7la
(3.8) f(t,z,p) = f(t,z, Rep), z€ XL, £(0,)) = fo("),
where

(3.9) oy (b, p) = /R O(P.Q)(2T + TV g(t,5,0)) da.

Remark 3.1. The Landau equation (3.2) can be rewritten as (3.7) with g =
ST+ f"in (3.9), A=0, and b, ¢, n depending on f. See the details in the proof of
Proposition 6.3 (cf. (6.17)).

DEFINITION 3.1 (finite energy solution). We say that
feC(0,T])La (2 x R*) N La((0,T) x Q)W (R?)

is a finite energy solution to (3.7)—(3.8) if for any test function ¢ satisfying
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(3.10) ¢ € La((0,T) x QW53 (R?),Y¢ € Ly(X7),
(3.11) ¢ € C([0,T])L2(Q x R?),
(3.12) o(t,z,p) = ¢(t,x, Ryp), (t,z,p) € LT (in the trace sense),

and all t €[0,T], one has

1) [ (Ot~ o0~ [ fve)ds

(0,t) x 2xR3

+/ . ((Vp¢)TUngf+ (b-Vpf)o+ (c+)\)fqb> dz
(0,t) xQ2xR3
:/ <'I7(T,{E,'),¢(T’x’-)> ded’D

(0,t) xQ2

where (-,-) is the duality pairing between Wy *(R?) and Wy (R?) (see (2.11)).
Furthermore, let g, b, ¢, f, and n be t-independent functions. Then, we say that
f € Ly(Q)W3(R?) is a finite energy solution to the steady equation

v(p) - Vaf =V - (04Vpf)+b-Vof+(c+ N f=n,

(8.14) F(@,p) = fla, Rup), 2 €7

if for any test function ¢ = ¢(x,p) satisfying the conditions analogous to (3.10)—(3.12),
the “steady” counterpart of the identity (3.13) holds.

Remark 3.2. By Lemma D.5, if ¢ satisfies the conditions (3.10), (3.12), and
b0 € La(2 x R?) in the trace sense (see Definition D.4), then ¢ € C([0,T])La (2 x R3).

DEFINITION 3.2. We say that f € So(X7) is a strong solution to (3.7)~(3.8) if
e the identity (3.7) holds in the Ly(XT) sense,
e the initial condition and the SRBC in (3.8) hold a.e. for the trace functions
fo and fy (see Definition D.4).
Similarly, we define a strong solution to the steady counterpart of (3.7)—(3.8).

Remark 3.3. By using the Green’s identity in (D.4), one can show that any strong
solution is also a finite energy solution. Conversely, if f is a finite energy solution
such that f € S2(X7), then f is a strong solution.

DEFINITION 3.3. We say that the VML system (3.2)~(3.6) has a strong solution
[f,E,B] on the time interval [0,T] if
— [ is a strong solution to the Landau equation (3.2) (see Definition 3.2),
- E,BeC'([0,T], L2(%)),
~ for any t € [0,T], E(t,-),B(t,-) € W3 (), and (E(t,-) X ng)j90 =0, (B(t,) -
nz)jon =0,
— the identities (3.3)~(3.5) hold in the L2((0,T) x ) sense.
Assumption 3.4. The domain ) satisfies the following variant of the div-curl
estimate. For any r € (1,00) and any u € L,.(Q2) such that
~ Ve xu€L(Q), Vy-ueL.(Q),
— either (u X ng)jp0 =0 or (u-n.)jpo =0,
one has uw € W}(Q2), and

(3.15) [ullwi@) SNIIVe X ul + Ve - ul +ulllL, @)

where N = N(r, Q).
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Remark 3.5. Loosely speaking, if €2 can be transformed into a simply connected
domain of class C*! by removing a finite number of “cuts,” then ) satisfies Assump-
tion 3.4. See Hypothesis 1.1 and Theorems 3.2-3.3 in [1]. We point out that a solid
torus By x S! satisfies the aforementioned assumption since one needs to make a single
cut to obtain a simply connected C'*! domain.

Remark 3.6. A reader might be familiar with a variant of (3.15) where the right-
hand side (r.h.s.) does not contain the term |lu||z, ) (see [34]). However, in the case
when the boundary condition (u-n,)jpq = 0 is imposed, such an estimate might be
false if €2 is not simply connected. We refer the reader to a beautiful counterexample
in section 9 of [4].

We will construct the solution to the VML system via a Picard type iteration ar-
gument. It turns out that to close such an argument, one needs to control the temporal
derivatives up to order m > 20 of the particle density functions and the electromag-
netic field (see (3.46)—(3.50)). To this end, one needs the initial data to satisfy certain
regularity and compatibility conditions. Loosely speaking, those are the conditions
on the temporal derivatives at ¢t = 0. One can deduce the expression of such deriv-
atives from the RVML system as follows. Given [0F f(0,,p),0FE(0,x),0FB(0,2)],
we formally apply the operator 9f to (3.2), (3.3)-(3.4), plug t = 0, and solve for
08 £(0,2,p), 0, T E(0, 2), 9 T B(0,2)].

DEFINITION 3.4. We set [fo,0,E0,0,Bo0] = [fo,E0,Bo]. Furthermore, given
fO,j(ajap)7 EO,j(I)7 BO,j(x)hj = Oa ey k} we set
(3.16)
g
foker ==0(0): Vafou + (44 K)os + & 00) Ba) s+ 3 (1)
j=0
X ( —&(Eo,; +v(p)-Boy) - Vpfor—j+ %(U(p) “Eoj)for—j+ F(fO,j:fO,kj))>
(3.17)
Eo,k+1(2) ==V, x Bo 1 (2) f/ v(p) T2 (p) fo k(. p) - € dp,
R3
(3.18)

Bo i1 =—Ve X Egp.

Assumption 3.7 (compatibility conditions). We assume

(3.19) fo.ris a finite energy solution to (3.16) with the SRBC, k <m — 1,
(3.20) fox(z,p) = for(z, Ryp), (z,p) €y (in the trace sense), k <m — 8,
(321) (E()’k X nw)‘agEO, (BO,k 'nm)gQEO, kgm— 1,

(3.22) V-Bpir=0, V-Eg(z) :/J1/2(p)fo,k(x,p) “Edp, k<m —1,

where in (3.20), we implicitly assume that fo x, p% -V for € La(Q x R3), so that the
trace is well defined.

Remark 3.8. Here, we show that for k > 1, (3.22) can be derived formally from
(3.22) with £ = 0. The first identity in (3.22) follows directly from (3.18). Due to
(3.17), to prove the second one, it suffices to demonstrate that for k=0,...,m,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

VML WITH THE SBC 6621

(3.23) /]R TV fo ki1 - €dp+ Y, / (p)J*? fo - €dp=0.

To this end, we denote Fy , = J + J1/2f0 x and note that the function Fj ;4 satisfies

(3.24)
unyes
F(;rk+1 p)'vIF(fk—FZ(j)
j=0

X <(E07j+v(p) X Boj) - Vo +C(F Fof i) + CFy, oy J)> =0,

(3.25)
e
Fops1=—v(p) - Vol + Z (]>
=0

x ( — (Bo+v(p) xBoy) - VpFy i +C(Fo, Fo i) +C(Fo Fofkj)> =0.

The above identities can be derived by using the definition of A, K,T" (see (3.1)) and
the fact that C(J, J) = 0. One can also deduce (3.24)—(3.25) by differentiating formally
the first two equations in (1.1), plugging ¢t = 0, and replacing OF F' with Fy ;.. Finally,
subtracting (3.25) from (3.24), integrating over p € R3, and using the definition of C
(see (1.2)), we obtain (3.23).

Remark 3.9. One can show that Assumption 3.7 is satisfied if fp, Eg, and Bg are
smooth compactly supported functions away from 99, fo decays fast for large p, and
(3.22) holds with k£ =0.

We introduce the key functionals that will be controlled in the proof of the local
existence. Let 6,7 > 0 be numbers, and let f and [Ey,By] be sufficiently regular
functions on X7 and (0,7) x €, respectively.

Instant energy functionals. We introduce the baseline instant energy

3200 &)= (1L mus + 10HEs Byl e )70,
k=0
and the energy
(3.27) Er(r) = E1.4(7) + Z 108 F(r IR, , ey
Higher regularity instant functional. Let Ar € (0, 42) and denote
1 1 1
(3.28) =2, — (—Ar),i:2,3747
7’1 —1 6
(3.29) r2€(2,3), r3 6( 6), r4>14,
4 m—4—i
(3:30) Hp(r) =) > N FTE,, unioxes)
i=1 k=0
m—1 3 m—4—i
10K B BAT gy + D D KB BT )y (@)
k=0 i=2 k=0
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Total instant functional. The total instant functional is the sum of the total
instant energy and the higher regularity functional:

(3.31) Zy(1) =E&p() + Hy(r),7>0,
(3.32) Z;(0)is given by (3.31) withoF[f, Ef, B;](r,-) replaced with [fo 1, Eo., Bo k).

Dissipation functionals. The baseline dissipation is defined by

(3.33) Dy (T Z 10F £ ( HLZ(Q Wi (R3)

and the total dissipation is

(3.34) Dy (1) =Dy 4(r +Z 105 ) Lawsy, -
Total functional.

(3.35) yr(T) =supZs(t) + /OT Dy (t) dt.

t<t
Here is the main result of the present paper.

THEOREM 3.10. Let m > 20 be an integer, r € (14,00) be a number, and
be a CY' bounded domain satisfying Assumption 3.4. Then, there exists a constant
0o =00(r1,...,74) > 1 such that for any 0 > 6y there exist constants

M=M(ry,...,r4,m,0,9) > 1,

3.36
( ) co=¢co(0,r1,...,74,m, Q) €(0,1), T=T(0,r1,...,74,m, Q)€ (0,1)

such that if Tr(0) < oo (see (3.32)), and

m

(3.37) £0):=3" <|[Eo,k,Bo,k}i2<m n |fo,k||12(ms>)
k=0
m—4

+) |\f0,k||2Lz’9/2,€(Q><R3) <eo/M
k=0

(see (3.16)—(3.18)),
— the compatibility conditions (3.19)—(3.22) in Assumption 3.7 hold,
then the following assertions hold.
(i) RVML system (3.2)(3.6) has a strong solution [f,E¢,By] (see Definition 3.4)
on X1 such that

(3.38) yr(T) < eo (see (3.35)).

(ii) For k<m, OFf is a finite energy solution (see Definition 3.1) to (3.2) differ-
entiated k times in t with the initial data O f(0,-) = fox(-) and SRBC.

(iii) For k <m —1, 9F[E;,By] € C([0,T])L2(2) N Lo ((0,T))W1(R) is a strong
solution to Mazwell’s equations (3.3)—(3.4) differentiated k times with the
initial data [Eo 1, Bo.x] and the perfect conductor BC, whereas 0" [E¢,By] €
C(]0,T])L2(?) is a weak solution (see [11]).
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(iv) The identities V,-OFEf =0Fps, V4-0F By =0 hold thanks to the compatibility
conditions (3.22) and the continuity equation
Oy (0 ps)+ Ve 0fg; =0k<m

(see (3.3), (3.5)).

(v) In addition, if [fi,Ey,,By,],i=1,2, are strong solutions to the RVML system
on X7 satisfying the bound (3.38), then we have fi = fo on X7 and Ey, =Ey,,
Bf1 ZBfZ on (O,T) x .

3.1. Iteration scheme. To prove the existence, we set up an iteration scheme
(cf. [32]). Let [f°,E° B = [fy,Eo,Bo], and, given [f” E", B"], we set [f"T1 E"tL
B"*1] to be the strong solution to the following linear system (see Proposition 6.2):

3

5 (’U(p) . En)fn+1 4 Lfn+1

(3.39) y frtt +E&(E" +v(p) x B") - V,,f”“ —
=&, (v(p) - ETHIVE 4 T(fH ),

(3.40) [t p) = Pt 2, Rep), €85, fTH0,) = foo,

Ba) OB VLB = [ ) ) €

(3.42) OB 4V, x E"T =0,

( ) V- | Dl :/J1/2fn+1(p) -£dp, V- B ! — 0,

(3.44) E" X ng)jpe=0, B ngy)pa =0,

(3.45) E"(0,)=Ego(), B""(0,-)=Boo(),

where L =—A — K is the linearized Landau operator (see (3.1)).
Setting f:= "l g:= f, E; :=E""! E,:=E", By =B""!, B, :=B" gives

3

(346) Y[ +E(Ey+v(p) x By) Vyf = S(v(p) Eg)f +Lf

=& (v(p)-Ef)J'2+T(f.9),
)=

£(0,) = foo, f(t.z,p) = f(t,x,Ryp), z€ 5T,
(34T) Oy -V, xBy=— [ o) 0) () -€dp,
(3.48) 0Bf+V, xE;=0,
(349 Va-By=ps= [ P0)0) - €dp. VaoBs=0,
(3.50) (Bf xng)jon =0, (Bf-na)j90 =0, Ef(0,-) =Eq(-), B#(0,-) =Bo().

The following proposition is the crux of the proof of the existence part in Theo-
rem 3.10.

PROPOSITION 3.11 (propagation of smallness). Invoke the assumptions of Theo-
rem 3.10 and let 0, M, eq, and T' be the constants as in (3.36). Let g= (97,97 ), Ey, By
be a triple such that for each k € {0,...,m},

(3.51) 0fg € C([0,T]) Lo (2 x R?), OF[E4, By] € C([0,T])La(2), k <m,
(3.52) g(t,z,p) =g(t,, Ryp), (t,z,p) € LT,

(353)  059(0,9) = fou(:) (see(3.16)),

(350  0F[E,B,)0,) = [BosBoxl() (see(3.17)—(3.18)).
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Then, if 0 and M are sufficiently large and eq is sufficiently small, and
(3.55) yg(T) <eo, (3.37) holds,

then the linear RVML system (3.46)—(3.50) with the initial conditions [fo, Eo,Bo] has
a unique strong solution [f,Ey,By| (see Definition 3.4). Furthermore, we have

(3.56) yr(T) < o,

and in addition, the assertions analogous to (ii)—(v) hold for OF[f, E;,By]. Moreover,
the conditions (3.51)~(3.54) hold with [g, E4,Bg| replaced with [f,E¢, By].

4. Method of the proof and organization of the paper. The goal of this
section is to highlight the key difficulties and to delineate the main ideas in the proof
of Theorems 3.10 and Proposition 3.11. For the sake of clarity, we will omit some
technical details.

4.1. Unique solvability and the velocity Hessian estimates for the linear
Landau equation. First, we need to show that for each n, the iteration scheme
(3.39)—(3.45) is well-posed. We will focus on the case when n = 0 and will only
consider (3.46) with g = fo. We want to show that it has a unique strong solution
f (see Definition 3.2), under the assumption that fy, Eg, and Bg are sufficiently
regular functions. In addition, our argument will enable us to deduce that f and V, f
are bounded functions, which is important for proving both the existence and the
uniqueness parts of Theorem 3.10.

Uniqueness and Sy regularity. The basic difficulty in establishing the uniqueness
of the boundary value problems for the velocity diffusive kinetic equations lies in the
fact that for the natural solution class

f € La((0,T) x W, (R?), Y f € La((0,T) x Q)W ' (R?),

it is unknown if the traces are well defined and if the energy identity for the transport
operator Y holds. On the other hand, if f,Y f € Lo(37), then the traces are well
defined (see Appendix D), and if, additionally, f satisfies the SRBC, then a variant of
the energy identity does hold (see Lemma D.5). To summarize, we first construct a
solution to (3.46) in the natural energy class. We show the uniqueness by establishing
the Sy regularity, i.e.,

(4.1) Yf,Dif € Ly(E7).

Mirror-extension argument and Sy reqularity. To prove (4.1), we use an extension
argument, which first appeared in [20] and was later used in the studies of the Vlasov—
Poisson-Landau [7] and linear Landau [8] equations. First, we localize in the spatial
and momentum variables by deriving an equation for f multiplied by a suitable cutoff
function (see (5.25)—(5.26)). By using a flattening and extension argument (see the
proof of Lemma 5.10), near the boundary, we reduce (3.46) to a parabolic PDE on
the whole space (5.46) with discontinuous drift coefficients X’ (see (5.37), (5.43)). We
point out that such a drift term is absent when the boundary is flat. Thus, one needs
to use a Calderon—Zygmund type result to obtain (4.1). However, in contrast to [20],
[7], [8], our new equation (5.46) is quite different from the Newtonian KFP type equa-
tion (see (4.2)) since the coefficient in the transport term depends on both spatial and
momentum variables. We are not aware of any Calderon—Zygmund type result for such
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an equation. To overcome this difficulty, we make a change of variables in the momen-
tum variable, which enables us to reduce (5.46) to a Newtonian KFP equation on the
whole space (see (5.65)). Finally, we use the SY¥ (see (2.12)) estimate of [10] to deduce
(4.1). We remark that for other prominent boundary conditions in kinetic theory, e.g.,
inflow and diffuse boundary conditions, such an extension argument does not work.

Higher regularity. Near the spatial boundary, we work with the Newtonian KFP
equation (5.65), which we derived from (3.46). By using the Sobolev embedding
theorem for S spaces (see [30]) and the S regularity theory developed in [10], we
conclude that

fiVof € Loo(27).

SN theory on the whole space for a Newtonian KFP equation with rough coeffi-
cients. Here, we want to highlight one of the main ingredients of the present paper,
that is, the Calderon—Zygmund theory for nonrelativistic KFP equations established
in [10]. We explain the importance of this theory by considering the equation

8tf+p'vzf_Apf:77

in £7 with the initial condition fy =0 and the SRBC. Near the boundary, one can
use a flattening and an extension argument as in [20], [7], [8] to derive the following
equation for the “mirror extension” f on (0,7) x R3 x R} (see section 2.1 in [8]):

at? +w- vu? - a'ij (y)awiwj? - vw ) (XT) :ﬁ in R;a

where X is the “geometric” term which is quadratic w, depends on the curvature of
€, and is discontinuous across the hyperplane {y3 = 0} x R2. Before the work [10],
the unique solvability in the class of strong solutions and the global L, estimate of
D2 f. (0 +w-V,)f was unknown for the equation

(4.2) O+ w - Vyu— a(t,y, W) Oy, U
' + 00y, u+cu=nin R u(0,-)=0,

with a € Lo ((0, T))C;‘,{E”O‘(de). In particular, in the papers [3] and [29], the authors
imposed the uniform continuity assumption with respect to the following “kinetic
distance”:

diin (L, y,w), (U9, w')) =max{|t —t'|Y/2, |y —y' — (t — t")w'|*/3, |w — w']}.

It is easy to see that even in dimension 1, the function a%(t,y,w) =2 + sin(y) is not
uniformly continuous on R” with respect to diin. In contrast, the theory developed in
[10] covers (4.2) with more general leading coefficients a*/ including the ones satisfying
the uniform continuity with respect to the metric d((y,w), (y/,w")) = |y —¢'|*/3 + |w —
w’| uniformly in time. As we mentioned above, to show the uniqueness and higher
regularity of (3.46), we reduce it to the one of the form (4.2) (see (5.65)). It turns out
that for such an equation,

a” € Lo ((0,1))Cy 0 (R),

and, hence, the results of [10] are applicable.
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4.2. Propagation of smallness. Here, we highlight the main difficulties in the
proof of Proposition 3.11 and describe the key features of the argument.

Issue 1: Lo bound of the electromagnetic field. As usual, to control the “cubic”
terms involving [E;,By] in the energy argument, we need an L., bound [Ef, By].
However, in contrast to the Vlasov—Poisson-Landau equation, we do not expect an
“instant” regularization of the electromagnetic field due to the hyperbolic nature of
Maxwell’s equations.

To overcome this issue, we rewrite the Maxwell system into two div-curl systems:

Vz X Ef = —8th,
(4.3) Ve -Ep=[JV2(p)f(p)- & dp,
(Ef xng)lon=0,

Ve x By =0Ef+ [v(p)J'/2(p)f(p) - & dp,
(B - ny)|oa=0.

If we have the bound of the Lo ((0,7))L2(2) norm of 9,[E;, B/], then, by using the
div-curl estimate (3.15) with r = 2, we can bound the L. ((0,7))W3(£2) norm of
[Ef,By]. This yields an Lo ((0,7))Le(2) estimate of [Ef,By] due to the Sobolev
embedding W} (Q) C Le(Q2). To achieve this, we differentiate Maxwell’s equations
with respect to t and use the div-curl estimate. It is clear now that to close the iter-
ation argument, we need to control certain norms for 9F[E;,B;] and 9f f for k <m
for some m.

Issue 2: existence of the temporal derivatives of [f,Ef,Bs]. One needs to justify
that the higher-order temporal derivatives 0F[f, E 7, Bf], k <m, are sufficiently regular
functions. Let us consider the case when k= 1. By differentiating formally the linear
VML system (3.46)—(3.50), we write down the initial boundary value problem for
Oi[f,Er,By] with the initial data [fo1,Eo1,B0,1] defined in (3.16)-(3.18). We then
use the well-posedness theory for the KFP equation in the finite energy solution class,
developed in section 5 of the present paper, and the well-known results for Maxwell’s
equations (see [11]). See the details in Proposition 6.2 and Appendix G. To apply
these theories, one needs to impose certain regularity and compatibility conditions on
the “initial data” [fo.1,Eo1,Bo,1] (see (3.19)—(3.22)).

The scheme. The basic structure of the argument is similar to that in [7]. The
primary functional that needs to be controlled throughout the iteration argument is
the energy norm, while the Lo ((0,7))S,(2 x R3) (see (2.14)—(2.15)) estimates are
needed for establishing higher regularity bounds of the lower-order ¢-derivatives for
the closure of the energy argument. Here, we explain the main steps of the argument
and the motivation for designing the functional y; (see (3.35)).

e First, we derive the energy bound of 9F f, k < m, by using the estimates of the
terms A, K, and I'(f, g) established in [32]. As usual, to close such estimates,
one needs to control the Ly, norms of 0F[f,Ez,By],k <m/2.

e To gain the Lo, regularity of the lower-order derivatives of the electromagnetic
field via the W div-curl estimate, one needs to descend from the top-order
temporal derivatives to lower-order ones. As we descend, the electromagnetic
field gains integrability.

e To prove the Lo, estimates of OF f,k < m/2, we use the weighted L{_S, (2 x
R?) estimate. Due to the presence of the term (v(p) - Ef)v/J€; in the linear
Landau equation (3.46) and the loss of ¢-derivatives in the higher regularity
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estimate of OF[E¢, Bf], we combined the L S, estimate with a descend ar-
gument.

e The specific gap between the unweighted energy control (up to k& < m) and
the weighted energy one (up to k < m—4) is motivated by the global estimate
for the RVML system established in the subsequent paper [9)].

4.3. Organization of the paper. The rest of the paper is organized as fol-
lows. In section 5, we establish the results concerning the existence, uniqueness, and
higher regularity of the strong solution to the linear Landau equations (3.7)—(3.8) and
(3.14). Additionally, in this section, we present the well-posedness result for the KFP
equation in the class of finite energy solutions. In sections 6 and 7, we prove Propo-
sition 3.11 and Theorem 3.10, respectively. In Appendices A—G, we collect various
auxiliary results.

5. Regularity theory of the linear relativistic Landau equation with the
specular reflection boundary condition. The purpose of this section is to present
the results on the unique solvability and certain estimates for the linear equation (3.7)—
(3.8) and its “steady” counterpart (3.14). This section is organized as follows. First,
in section 5.1, we present the results on the strong solutions (see Definition 3.2) to
the unsteady linear Landau equations (3.7)—(3.8). Second, in section 5.2, we establish
the “steady” counterparts of the aforementioned results. Finally, in section 5.3, we
prove the well-posedness of the unsteady linear Landau equation in the class of finite
energy solutions (see Definition 3.1).

5.1. Strong solutions to the unsteady Landau equations.

Assumption 5.1. There exist s € (0,1] and K > 0 such that

(5'1) Hg”Lm((O,T))Cﬁé)?””(ﬂx]l{% <K,

(5.2) Vgl zry < K.
Assumption 5.2. For a.e. (t,z,p) € X7,

(5.3) g(t,x,p)=g(t,z, Ryp).

We will use the fact that if g is sufficiently small (J + v/Jg is near Maxwellian),
then the leading coefficients o, are uniformly nondegenerate.

LEMMA 5.3. There exists €, >0 and 0o € (0,1) such that if for some T >0, one

has

(5.4) 9l =y <eéx,

and (5.2) holds, then

(5.5) ag(2)€&5 2 00lE?, €216 R, [0y, Vpoylll L. mr) <85

The constants €, >0 and 6o € (0,1) are independent of T.

PROPOSITION 5.4 (unique solvability in weighted S spaces). Let
- A>0,k€(0,1), »€(0,1], K >0 be numbers,
— Q be a O™ bounded domain,
— b= (b4,0%,6%)T and c be bounded measurable functions on RY. such that for
some K >0,

(5.6) 1l sm) + el sy < K,
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— g satisfy (5.1)~(5.3),
— the condition (5.4) hold.
Then, there exists 0 = 0(k, ) >0 such that if

(5.7) NE€Lag(XT),  fo € S26(2 xR3),

then the following assertions hold.
(i) There exists a unique strong solution f to (3.7)—(3.8) (see Definition 3.2).
(ii) We have f € Sa .0(XT), and, furthermore,

58) Iy o)
< Nulllza o) + Nullfollza g e,
(5.9) [fllsy o=y + 1 FllLrss 0Ty F IV SllL, 5,007
< Nolll 2 o7 + oL+ Ml folls iy + Noll L o)

where Ny = N1(K,00,T), No = Na(do, 5, k,K,0,Q) > 0.

Remark 5.5. Invoke the assumptions of Proposition 5.4 and let f be the strong
solution to (3.7)—(3.8). Then, f satisfies the mirror-extension property, which is de-
fined (imprecisely) below. We will make this statement precise in the proof of the
present remark (below).

Let &,,n > 1, be a dyadic partition of unity in R? and let x5,k =1,...,m be a
partition of unity in 2. A strong solution f satisfies the mirror-extension property if,
near the boundary, fi ., := fx#&, can be “extended” to a function U satisfying the
identity

atZ/:l +uv- VyZ/:l —V,- (a(t,y,v)vq,lj)
+b0°0,,U + cUd =1 in RY,
for certain a, b, c, and v, which are “under control.”

PROPOSITION 5.6 (higher regularity of a strong solution). Invoke the assump-
tions of Proposition 5.4 and let v > 2 be a number. Then, there exists a constant
0 =0(k,s,1) >0 such that if, additionally,

NE Lag(XT)N Ly g(ET),  fo€S26(Q2 xRN S, 0(2 x RY),

then for the strong solution to (3.7)—(3.8), one has

(5.10) FE€82,:0ET)N S, .0(2T),
(5.11) £ 115, oy SN D (llz, omry + T+ N folls, o(oxes))
se{2,r}

+ N[ fllLs.0(z7)5

where N = N (0o, k, »,7,K,0,Q). Furthermore,
- ifre(2,7), we have

(5.12) 1f 1z, oty + VoS ln,, omry < mhos. of (5.11),

where 1,19 > 1 are numbers satisfying the relations
1 1 1 1 1 1

5.13 = _Z =Z__
( ) roor 7 ry r 14’
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—if re(7,14),

(5.14) 1t o) + V0 F s, o) < s, of (5.10),

where 1o is defined in (5.13),
— if r > 14, then, for any a € (0,1 —14/r), one has

(5.15) > Mlemxaw: =
s€{2y00}

+ 1, fo]HLOC<<o.,T))c;/,,M(mRs> < r.h.s. of (5.11).

In all the estimates (5.12), (5.14), and (5.15), one needs to take into account the
dependence of N on 1,712, and .

Remark 5.7. We point out that for the Newtonian KFP equation on the whole
space, there is no loss of the weight in the momentum variable in the SY (see (2.12))
estimate (see [10]). Furthermore, in [8], the present authors have established an
SN estimate with the loss of weight in the presence of a spatial boundary. In the
relativistic case, we, loosely speaking, lose weight due to the presence of the spatial
boundary and the relativistic transport term.

We will prove the assertions in the order we stated them.

Proof of Lemma 5.3. Denote
(516) o) =2 [ 2(P.QI@)da
R3

It is well known that o is a bounded uniformly nondegenerate symmetric matrix-
valued function (see Lemma B.2 (i)). The desired assertion follows from this and
Lemma B.3. O

We will break down the proof of Proposition 5.4 into three significant steps. The
initial two will be explained in Lemmas 5.8-5.10. Our argument goes as follows.

e First, we construct a variational solution, which we call the “finite energy
weak solution” (see Lemma 5.8). It is a quadruple (f, 1, f*, f}), where f}
and f7. are the functions that appear in the boundary terms in the inte-
gral formulation. We impose additional conditions fy € Loo(Q x R?) and
N € Loo(ET),Vpb € Loo(ET). The first two are needed to ensure that the
boundary terms in the integral formulation are well defined for any test func-
tion ¢ € Cg’l(ET).

e By using a mirror-extension argument as in [20], [7], [8], we show that if 6 is
sufficiently large, then any “finite energy weak solution” is a strong solution
(see Definition 3.2). To implement the mirror-extension argument in the
integral formulation, one needs to work with general test functions that are
Lipshitz up to the grazing set. This explains the necessity of the additional
boundedness assumptions in the previous paragraph.

e We use a limiting argument to get rid of the boundedness conditions on fjy,
n, and V,b. The resulting solution f satisfies Y f € Lo(X7T), so that the
traces are well defined (see (D.2) in Lemma D.3), and they coincide with the
functions fI, f7, fo, and, in addition, the SRBC holds. We will also explain
why the limiting procedure preserves the energy identity and the “mirror-
extension property.”
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We first state a lemma concerning finite energy weak solutions to the general KFP

equation
(5.17) Y =V, - (aV,yf)+b-Vpf+(c+N)f=n,

The nonrelativistic counterpart of this result was established in [8].

LEMMA 5.8. Let

— Q be a OV domain,
— a=a(z),z € RY be a bounded measurable function satisfying

(5.19) Sl¢1° < aij(2)&&; <07HEP VzeXT, EeR

for some § € (0,1),

— b and c satisfy (5.6),

— V,a,Vpb€ Loo(E7),

~ fo € Lap(2 x R?) N Lo (0 x R3),
~ NE€Lyyg(ET) N Lo (ET).

Then, for any X >0, there exists a quadruple (f, fi, f*, fr) such that

() £,Vpf € Log(ST), f1 € Loo(ST), f2 € Ly (2 x R3) N Lo (2 x R?),

(ii) fx(t,z,p) = fi(t,x, Ryp) a.e. on ¥,
(iii) for any ¢ € C’g’l(ZT),

(5.20)
- / (V) dz
ET

+/Q e (f7(z,p)p(T,z,v) — fo(z,p)(0,2,p)) dzdp
+/ f1¢|v(p)-nm\dszdpdt—/ fx¢v(p) - ny|dSdpdt
=T o7

[ @ Vot [ (crNfodst [ 49, 0de= [ node

Furthermore, one has

(5.21) 17 L2 0 xra) + 1f 2o 0,7y x w2, ()
<Nnllzyemry + Nl follLs o 2xr3)s
(5.22) max{|| 7] L xra): [fElLom) 1l er)

<|nllzo =y + 1 follL o (2xr3)

where N =N (6,0, K,T).
We say that f is a finite energy weak solution to (5.17)—(5.18).

Remark 5.9. Here, we elaborate on various notions of weak solutions to the linear
Landau equation (3.7)—(3.8) that we use in the present paper.

e Finite energy solutions. These are functions of class C([0,7])L2(Q x R3) N

Lo ((0,T) x Q)W4 (R3) that satisfy the integral formulation of (3.7)—(3.8) with
the test functions satisfying the SRBC. See Definition 3.1.

e Finite energy weak solutions. In the proof of the existence part in Proposi-

tion 5.4, we need to construct a “weak solution” in the class f € La((0,T") X
Q)W (R?) such that its integral formulation holds for test functions that
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are Lipschitz up to the kinetic boundary 9Q x R3. This integral formula-
tion is necessary for the mirror-extension trick, requiring well-defined “ki-
netic boundary” terms. Lemma 5.8 provides a weak solution meeting these
requirements.

o Very weak solutions. We justify the uniqueness in the class of finite energy
solutions via a duality argument, which works for a class of weaker solutions,
which we call “very weak solutions.” These are Lo(X7) functions satisfying
an integral formulation with all derivatives “transferred” onto a test function
satisfying the SRBC. See Definition 5.1.

e Intermediate finite energy solutions. In the proof of the existence of finite
energy solutions (see the argument of Proposition 5.13), we first construct a
solution in a slightly weaker class, where elements lack the temporal continu-
ity in Lo(Q x R3) (see Definition 5.2).

We note that

finite energy solution = intermediate finite energy solution = very weak solution,

finite energy weak solution = intermediate finite energy solution.

The present authors also used the notion of the finite energy weak solution in the
construction of a strong solution to a linear nonrelativistic Landau equation (see [8]).

Proof of Lemma 5.8. We repeat almost word-for-word the argument of Theorem
1.5 in [8] (see section 3 therein). Here, we delineate the argument. The main idea is
to discretize the velocity diffusion to obtain a perturbed kinetic transport equation
in a bounded domain for which the well-posedness problem is well understood (see,
for example, [33] and [2]). We use the energy argument to derive uniform estimates
with respect to the parameters of our approximation scheme. The key difficulty is
to “preserve” the “boundary information” on (0,7") X v+ in the weak* compactness
argument. By designing a specific discretization of the velocity diffusion that respects
the maximum principle, we are able to obtain L., estimates of the solution and its
traces that are uniform throughout the approximation scheme. 0

We first prove the following lemma, which is Proposition 5.4 under more restrictive
assumptions mentioned at the beginning of the section.

LEMMA 5.10. Invoke the assumptions of Proposition 5.4 and assume, additionally,
(5.23) fo=0, n,Vybe Lo (X7).

Then, for sufficiently large 0 = 0(k, »c) > 0, the following assertions hold.
(i) Any finite energy weak solution f to (5.17)—(5.18) constructed in Lemma 5.8
must be a strong solution (see Definition 3.2).
(ii) The estimate (5.9) holds.

Proof of Lemma 5.10. The proof is split into six steps. First, we localize in
space and momentum variables and use a boundary flattening argument. Then, we
use a mirror-extension argument (see Step 3) to “erase” the boundary conditions and
reduce the equation to the one on the whole space. Then, we use a transformation
that reduces the equation to a Newtonian KFP equation, and we apply the SY (see
(2.12)) estimate of [10].

Step 1: Localization. Let x; = xx(x),k=1,...,m, be a standard partition of
unity in Q such that supp xy1 CQ, 0<xx <1, k=1,...,m, and
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Xk = 1 in Br0/4(Xk),

5.24 Vaxe| < N/ro, .
( ) I k| / 0 {szo in B;fO/Q(xk)’

where x, € 0Q,k=2,...,m.
Let &, =&,(p),n > 1, be sequence of functions such that
gOECOO(Bl)a 50:1011 {|p|§3/4}a
gn c Coo({2n—1 < |p| < 211-',—3/2})7 gn —1lon {2n—1/2 < |p| < 271-',—1}7
D& | < N()27™ n,le{1,2,...}.

We will assume that n > 2 because the case n =1 is handled in the same way.
We denote

(5.25) frn(2) = F(2)xk ()60 (P)PG”
and note that f , satisfies the identity
(526) Yfk,n - Vp ' (Ugvpfk,n) +b- vpfk,n + (C + /\)fk,n ="k,n

in the sense of the integral identity (5.20), where

(5.27)
Mo = (0(p) - Vaxne) F50 €0 + mxap®6n

+ Xk ( - (th U;j)(apj (gnp‘(l)ﬁ))f - 20—? (a% f)(apg (pgegn)) - O—;japipj (p59§n)f
0 Vu(6rt) ).

where w € (0,1). We will focus on the near boundary case when k> 2. At the end of
the proof, we discuss the case when k=1. Our goal is to show that
Y frnl + D5 (fra) Lomry + 1l .y s s7) + 1V fin
S N||(|f| + |vpf| + |77D12"*1<\p\<2"+3/2 ||L2J3+_,9(ET)
for some number 8 = §() > 0. When n =0, the indicator function in (5.28) should

be replaced with 1, ;.

If (5.28) is true, we take w; € (w, 1%’) and 6 large, so that 8 + wf < w16, raise

(5.28) to the power 2, and sum with respect to n and k. We obtain

(529) Y (6 Loy + 1D (FP5 ) zacery < NI+ Vo f L+ 0l s, 057 -

Integrating by parts and using the Cauchy—Schwarz inequality, we get for € € (0,1),

(5.28) [27/5057)

0 _
/zT IV, f 2020 dz <g 0, €||fo||2LQ,w19(zT) +e 1||fH%2,wl9(zT)
+el|D3fIT, o) +5_1Hf||%2)(2w1_w)9(2T)'

Due to our choice of wy, we have 2w; —w < 1. Hence, by choosing ¢ sufficiently small,
we can drop the norm involving V,f on the r.h.s. of (5.29) and replace w; with 1
therein, and obtain the desired estimate of the weighted Ss norm in (5.9). Similarly,
we conclude the validity of the estimates of the second and the third terms of the
Lh.s. of (5.9).
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For the sake of convenience, we denote

(530) U= fk,n H:nk,n'

Without loss of generality, we may assume that w = %

Step 2: Boundary flattening. We fix a point x; € 0Q,k =2,..., m, and relabel
it as x¢. There exists a function p € C; ! (R?) such that

00NN Byy(xo) C{z:23=p(x1,22)},
Qo (x0) :==QN By (xg) C{z: 23 < p(21,22)}.

Let

(5.31) U (20) x RP 5 H_ =R* xR*,  (z,p) = (y,w)
be the transformation given by

(5.32) y=v(x), w=(Dy(x))p,

where v is the inverse of

1 m *P§y3)
v (y) = Y2 +us [ —pl) |
p(y1,92) 1

where p; = 0,p,% = 1,2, and p® is a standard mollification of p. It follows from the
expression of the Jacobi matrix (g—Z) (see (A.5)) that v is a local C'1! diffeomorphism.
A similar diffeomorphism was used to study the Newtonian KFP and the Landau
equations in a bounded domain with the SRBC (see [20], [7], [8]). ¥ has two special
features:
e it preserves the form of the Newtonian KFP equation in the sense explained
in section 2.1 of [8];

e it preserves the SRBC, i.e.,

(5.33) U* (t,y1,y2,w) = ﬁfr(t, Y1, Y2, Rw), whenever ws < 0,
where
(534) ﬁj*:(tayhyQaw) = Ui(ta55(917?427O)7P<y1792>0,w>)a

and U} were introduced in Lemma 5.8. The identity (5.33) follows from the
fact that whenever y3 =0, one has

(Rzp) (y,w) = (p - 2(p : nm)nx)(y7w)
w1 + p1ws O w1
= wa + paws3 = <8> wy |,
p1w1 + paws — w3 Y/ lya=0

where the Jacobi matrix is computed in (A.5).
The first property does not hold for the relativistic Fokker—Planck (see (5.39)). Nev-
ertheless, this equation can still be reduced to a Newtonian KFP type equation (see
Step 4 below).
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ox
w oy\ .. [0y T oy \~
. - 7 A= (Z 9y _ (%
o v @) =@P
y

(5.37) X =(X1,X2,X3)T = (gi) (g*;’)wz (gi) 8((%2w>w

3

Next, denote

(5.35) u(t,y, w) = u(t,z(y),p(y,w)), Jy=

2

)

Sy

For a function = on Q,,(xg) x R3, we denote

(5.38) E(y,w) = Z(y, w)dy ().

Changing variables in (5.20) (see section E.1), we conclude for any ¢ € Co* ([0, T] x
Qo (20) x R3) (see the definition below the formula (2.7)), we have

(5.39)

~ [ @+ W 9,0 Ddydude + [ 5T w)3(T ) dyd
HT

- / (V)T AV ¢+ UX - Vo + (B-VuU) ¢+ €+ NU ¢) dydwdt
HT

T T
+/ / \w3|U_|*_¢dy1dy2dwdt—/ / |ws|U* ¢ dyr dyodwdt
0 Jr2xRr3 0 JRZxR?

= | ¢Hdydwdt,
HT
where U% = U Jy|ys—o-
Step 3: Mirror extension. For a function = = Z(z,p) on Q,,(7) x R?, we
denote

(11|

(5.40) (y,w) == {E(va), (y,w) €H_,

Z(Ry, Rw), (y,w) € H,
(see (5.38)). We call = the mirror extension of =.

Next, let G C R?® be the even extension of ¥(€2,(20)) C R® across the plane
ys =0. We set

At,y,w),  (ty,w) €(0,T) x ¥ (Bry(20)) x R?,
RA(t,Ry, Rw) R, (t,y,w) € (0,T) x (GNR3) x R?,
B(t,y,w), (t,y,w) €HL,

R B(t, Ry, Rw), (t,y,w) € Hi,

X(y,w), (y,w) €H-,

R X(Ry, Rw), (y,w) e H,,

w -
75, (y,w) € Y(Bry(20)) x R?,
(1 + |‘£|2)1/2 0

(5.41) Alt,y,w) = {
(5.42) B(t,y,w) = {

(5.43) X(y,w) = {

) y7w € G ]Ig IER I
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R (G

We also set C to be the even extension in y3 and ws of ¢.

We now find an equation satisfied by U. We fix a test function ¢ € C%*([0,T) x
G x R3) vanishing for large z. Replacing ¢ with ¢(¢, Ry, Rw) in the identity (5.39)
and changing variables z — Rz, w — Rw give

(5.45)

where

— / (0 + W -V, 0) Udydwdt + A(T,y,w)U (y, w) dydw
HT H,
+ / (Vo) AV ¢+ UX -V + (B-V,U) ¢+ (C+ AU ¢ ) dydwdt
H

T
+

T

+/ / w3 U™ (t, y1, Y2, Rw)d dyy dysdwdt
0 R2 xR3
T —*

—/ / |w3|U_ (t,y1,y2, Rw)$ dy1 dyadwdt
0 ]R{?x]Rﬁr

= / ¢ H dydwdt.
H

T
T

Adding (5.45) to (5.39) with g/greplaced with ¢ and using (5.33), we cancel the integrals
over the incoming/outgoing boundaries and conclude that the mirror extension U
satisfies the identity

(5.46) QU +W-V,U -V - (AV,U)+B-V,U—-V, (XU)+(C+NU=H
in the weak sense on [0,T) x G x R?, i.e., for any ¢ € C5'([0,T) x G x R3),
(5.47)

—/R (O +W -V, ¢) Udydwdt

+/ (Vo) AV ¢+ UX -V + (B-V,U) ¢+ (C+ AU ¢ ) dydwdt
R7.
= ¢ H dydwdt.

R

Step 4: Reducing (5.47) to a Newtonian KFP equation. Recall that
U(t,-) = fun(t,") is supported on Q. 2(20) x {2"1 < |w| < 2"+3/2} | and hence,

(5.48) U(t,-,-) vanishes outside By /4(w0) % {2n73/2 < |w| < 27F?}

for sufficiently small ry. For any y € GG, we denote

(5.49) W, (1) = Wiy, w)

(see (5.44)). By the assertion (ii) in Lemma A.2, for any y € G, the mapping

W, {lw| < 2"} - R?
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is a diffeomorphism onto its image, and by (A.18)—(A.19), one has

sup |DIW,| < N279" j=0,1,2, sup IDOW,) " < N2°3",
[w|<2nt2 W, ({lw|<2n+2})
(5.50) 5 1 n v
sup | D (W,) " | < N2°",

Wy ({lw]<2n+2})
where N = N(Q) > 0. We also introduce the mapping
(5.51) T, (y,w) = (y, W(y,w)) : G x {|w| < 2"?} — RE.
Due to Lemma A.3 (i), T, is a globally bi-Lipschitz map onto its image, so that, if
we change variables
(5.52) v=Wyw

in (5.47), then the new integral identity (5.55) will hold on a set of Lipschitz test
functions.
Next, for a function Z=Z(y,w) on G x {|w| < 2"T2}, we set

(5.53) E(y,0) =E(y, W) (0)); (y,0) € T (G x {Jw| < 27F2}).
For the sake of convenience, we change the notation as follows:
(5.54) U:=U, H:=H.

We fix a test function
¢ € Cyt([0,T] x G x {|w] <2"2})

and change variables

w=(W,)"(v)
in the identity (5.47). Due to the identity (E.4) in section E.2, we obtain
(5.55) —/ (atq€+v~qu€)b?deydvdt+/ qfi(T,y,v)L?(T,y7v)JWdydv
]R; R6
+ / (Vo U)'AV,0 + (X +G) - Vo) U
RY,

+ (B-Voll) 6+ (C+ N U ) Iyvdydvdt

= gZ?fledydvdt,
R7.
where
ow
) T
630 At = () Ao (52)

(5.58) B(t,y,v) =

(t,y, w(y, ) lyea, jw(y,v)|<2n+2s

)
( ) Blt,y,0), Clt,y,v) = @) (t ow(y,0)),

(5.59) X(t,y,v)z( )

()

(5'6()) G(tay»v) = ) v 1yEG,\w(y,v)\<2"+2'

<
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fA\s we mentioned in the previous paragraph, thanks to Lemma A.3 (i), we may replace
q/3 with any test function
¢ €Cy ([0,T] x T (G x {|w| < 2"F2}))

in the identity (5.55).

We now replace A with 2 as follows so that 2l = A on the support of Zj{ contained
in ,,(G x {|Jw|] < 2""2}). Let ¢, = (u(y,v) be a smooth cutoff function such that
0<(¢,<1and

Co=1o0nT,(G x {|Jw| <2""?}),

(5.61) VGl + [Voa| < N(Q).
Introduce

(5.62) A=AC, + (1 (o)1,
(5.63) 0 =0Uly.

We also extend B, X, and C by 0 outside [0,7] x T(G x {|w| <2"2}). It follows that
for any ¢ € Cy' ([0, T] x R®) such that ¢(T,-) =0, we have

/ ( Db+ v V) U+ (Vold)TAV 6 + Az%) dydvdt
RY.

(5.64) :/W (—U(X+G)-Vyp— (B Vo) d—CUS) Iydydudt

T

+ ¢7':[JW + (VUJW)TA(qub)Zjdydvdt.
R%

In other words, the identity

INg!!

QU +v-VyU—V,- (AV,U) +
(5.65) :(v (X+G)U) -B -vv&—cziJrﬁ)JW

— VY, (A(VyIw)U) = rhs.

holds in the weak sense. For the reader’s convenience, we briefly review the notation
introduced above.

B U:fk,'m H:nk,n (See (530)7 (527))7

- (z is U in coordinates (t,y,w),

— U is U multiplied by the Jacobian determinant of the change of variables

(z,0) = (y,w) (see (5.38)),
~ U:=T is the mirror extension of U (see (5.40)),

- U is U in coordinates (t,y,v),

— U is U multiplied by the Jacobian determinant of the change of variables
w— v,

— 04(2) (see (3.9)) is the matrix of the leading coefficients in the original equa-
tion,

— G is the even extension of ¥(Q,, (o)) across the plane {y3 =0},

— A and B (see (5.36)) are the diffusion and drift coefficients on (0,7) x R® x R3
obtained after the change of variables (z,v) — (y,w),
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- A, B,C, X (see (5.41)) are the drift, diffusion, and discount, and “geometric”
coefficients “extended” across the boundary {y3 =0} x R?,

- A B C x (see (5.53)) are the coefficients A, B, C, X in the new coordinates
t’ y? ,U7
— AB,C, X are the drift, diffusion, discount, and “geometric” coefficients on
(0,T) x T,,(G x R3) obtained after the change of variable w — v,
— G (see (5.57)) is the second “geometric” coefficient due to the change of
variables w — v,
— 2A (see (5.62)) is an extension of A to RT.
Step 5: Sé\r estimate in the t,y,v coordinates. We now apply Lemma F.6.
We first check its conditions.
Estimates of the coefficients A, 2, B, X. In Lemma C.1, we show that the follow-
ing bounds are valid:
(5.66) No(2)27%"[¢[* < A(2)&¢;,
(5.67) |AlL(y vyex, (@x{lpl<2n+ey) + [/ < N(Q, K),
(5.68) VoAl Lo (0.7)xLn(@x {lw]<2n+2})) T [IVoR_ L m7) < N27,
( ) Hm”Lw((07’1"))0;{)3”"({[{6) SN(K’Q,%)2”7
(5.70) IBIl oo ((0,7) % (Gx {Juw]<2n+2})) < N (2, K)277,
(5.71) XN 2w (0 (G (] <2n+2})) S N (),
(5.72) IV X poo (1o (@ x {luwl<2nayy) < N (€2)2°7,
(5.73) G| Lo (7 (G x {lw]<2n+2})) < N (),
(5.74) IVoGllL o (ra(ox [luf<2ntzyyy < N ()27
_ Lo-integrability of the r.h.s. of (5.65). To show this, we need to first estimate Jyy,
H, U, V,U.
First, we estimate Jyy (see (5.56)). By (5.50) and Lemma A.2 (ii) (see (A.19))
and (A.29) in Lemma A.3,
Nl < |JW1y€G,w(y,U)<2"+2| < N29n’
IVodwlyec iy <zntz| < N2,

(5.75)
|vyJle€G,w(y,v)<2"+2| < N211n’

2 13
|DUJW1yeG,w(y,v)<2"+2| < N2 n,

where Ny = N1(Q), N=N(Q).
Second, we bound H, U, V,U. By (5.75),
2 " 2 1/2
[HIwlyec wyv<en+zllL,@r) < N2 211 H 2 w1y ey 0)<2nte HL/I(R;)
= N2O2H| 1, 0,1y xax {ul<2wt2y) < N2O2 | H| s,
where N = N (). Similarly, by (5.75),
(5.77)
||(|Z/?| + |vvZ]|)Jle€G,w(y,v)<2"+2 HLQ(R;—‘) < N(Q)Q(gn)/2|||U| + |VpU|||L2(ZT)-
Next, combining (5.67)—(5.68), (5.70)—(5.74), and (5.75), we get
(5.78)
[r-h.s. of (5'65)||L2(R7T) < N25n|\(|a| + |Vv7;’| + |7:l|)JW1yec,w(y,v)<2n+2 HLQ(R7T)7

(5.76)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

VML WITH THE SBC 6639

where 8 > 0 is some constant independent of n, e, ¢, and 6, which might change from
line to line. Furthermore, by (5.76)—(5.77), we get

(5.79) [rhus. of (5.65) |, sy < N2 [[|U| + VU | + [H || y2m)-
SN -estimate in the t,y,v variables. An application of Lemma F.6 with
(5.80) § = Np275" (see (5.66)), K =N (see(5.69)),
gives Ue SY(RY.). Furthermore, by the same lemma (see (F.5)), one has
(5.81) Wls g7y < N22 (s + U]+ [V o U | ygez)-
By the fact that u :L?JW (see (5.63)) and the bounds (5.75) and (5.77), we have

3 . . 2 2 1/2
] + 1V o Ul gy < NP I (41 + IVUU|2)1yeG,w(y,v)<2"+2||L/1(R7T
< N2P|U| + VU ||| 1y ()

(5.82) )

Combining (5.81)—(5.82) with (5.79), we obtain
(5:83) (@ +v- V) U+ DUl 7y < NPT+ VU] + [H] | Lysmy.

Step 6: Going back to the original variables t,x,p. FEstimate of DgU.
First, by the chain rule and change of variables,

(5.84)
IDSU | Ly ((0.7) x 2y () xB3) < NNV U + D5 U Lo (0,7 x4 (2 (0)) xR3) -

Furthermore, recall
e U =U, where the latter is the even extension in the y3,ws variables of the
function U (see (5.40));

e the definition of ¢/ in (5.63).
Then, by (5.50) and the estimates of Jyy and its derivatives (see (5.75)),

IV Ul + D8 U Lo ((0.7) xap(2rg (0)) xE2)
" 2 2 1/2
(5.85) < NIV UP +ID3UPY Iwlyeawiwmi<amz ] p )
< N2PM|[U| + Vo U| + | DU 1y ) -
Next, combining (5.83)—(5.85), we obtain
(5.86) IDRU | Lo (0.7 x 20y (w0) x3) < N2 [[U] + (VU + [H||| o7y

Since U(t,x,-), H(t,z,-) vanish outside {21! < |p| < 2"*3/2}  we may replace the
r.h.s. of (5.86) with

(5.87) U]+ VUl + [H||| Ly 5((0,7) x2xR3).-
Recall that

(5.88) U=fmp?, H=npn,
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where 1y, is defined in (5.27). We conclude that the expression in (5.87) is less than

NI+ IV LT 10 Lg g 05 (0.7) x2x {271 < [p| <2 +3/27) -

Thus, the estimate (5.28) for D2U is proved.
Estimate of the transport term. First, by the estimate (E.3) in Lemma E.1, we
have

(5.89)  [YUllLyer) N[0 +W - V) Ul ey + NINUI+ VUl 20 (s7)-
Similarly, by the identity (E.4) in section E.2,

(5.90) @+ W - Vy)Ullp,r) < N(10; + v V) UP +ICP [V UP)Iwlly e )

where G is defined in (5.60). Note that

(5.91) @ +v- V) U= (0 +v- V) U) Iy + (- V,Iw)U.

Then, by (5.90)—(5.91), the Jacobian estimate (5.75), and the estimate of G (5.73),
and (5.77), we get

1@ +W - V)Tl ) < NI@e + v - V) Ul 1, w3 + N2 101+ VUl 1 .-
Combining (5.89) with (5.91) and (5.83) gives

IYU| L,y < N2PH[U T+ VUl + [H] | Loy + NIVRU Iz, 57y
SN+ IVpfl+ |77\)||L2,9/2+,3((0,T)><Qx{2n*1/2<\p\<2n+3/2})

provided that 5 > 1, which we may certainly assume. Thus, the estimate (5.28) holds
for YU. Finally, note that by the embedding theorem for the S3'(R7.) space (see
Theorem 2.1 [30]), the norms

U L5 @z IVoUllL, @1

are bounded by the r.h.s. of (5.81). Then, repeating the above argument, we prove
the bound of the second and third terms on the r.h.s. of (5.28). 0

Proof of Proposition 5.4. We first impose the additional assumptions (5.23), which
will be removed at the end of the proof.

Existence. Let b, € Loo((0,T) x Q)WL (R3),n > 1, be a sequence of functions
such that b, — b a.e., and ||b,||__(x7) < Ny with N; independent of n. We set f, to
be a finite energy weak solution (see Lemma 5.8) to the equation

(5'92) an - vp : (Ugvpfn> + bn ' vpfn + (C + )‘)fn = Xn(n)v fn(07 )

0,
with the SRBC, where x,,(t) = —nVtAn. By (5.9) in Proposition 5.4, we have

(5.93) [ fallsy oty + 1 fallrs s oty 1V fallL, s @) S NINlL, o7

By this estimate, there exists a function f such that f,, — f in the weak® topology of
S5 x0(XT), so that the bound (5.9) is true for the limiting function f. We now show
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that f satisfies the initial condition and the SRBC. By Ukai’s trace lemma (D.2) and
(5.93),

1l Lo =T awfvna ) < Nl Ly o)

Then, (f,)+ — fi in the weak* topology of Lo(3% w|v - n.|), and fi satisfy the
SRBC. Furthermore, since Y f,, € La(X7), we have Green’s identity (D.1) with u
replaced with f,. Then, by using a limiting argument, we see that the integrals over
T converge to those with the integrand f%. Hence, the latter are the traces of f on
T, and 0 is the trace on {t =0} x Q x R3. Testing (5.93) and passing to the limit
in (5.92), we conclude that the identity (3.7) holds in the Ly(X7) sense, and, thus, f
is a strong solution to (3.7)—(3.8) (see Definition 3.2). Finally, the “energy” estimate
(5.8) is obtained via the same limiting argument.

To show the existence with the initial condition fo € S2 (2 x R?) satisfying
the SRBC, we reduce the problem to the case when fy = 0 by replacing f(z) with
f(z) = f(z) — ¢(t) fo(x,p), where ¢ € C§°(R) such that ¢(0) = 1. We note that f
satisfies the identities

Of +0(p) - Vaf = V- (04V,f) +b- V,f + (e + NF =17,
fi(t’$’p):fi(t7x7Rrp)vz€ET7 f(Oa)EO,

where

n=n+¢fo +¢(U(P) “Vafo) = Vp - (04Vpfo) +b-Vpfo+ (c+ >\)f0)~

Since the Lo, norms of o4, V,04,b,c are bounded by N (see (5.5) and (5.6)), we have

170l 22627y S NIl s 2y + N+ N foll sy 027y

This concludes the proof of the existence part.

Uniqueness. Let f be a strong solution to (3.7) with =0, fo =0. Then, we may
use a variant of the energy identity for functions satisfying the SRBC (see (D.4) in
Lemma D.5) with v = f and ¢ = fe_QXt. Integrating by parts in p and using the
Cauchy—Schwarz inequality, we get

(5.94) /ET (‘Z’fo|2+(A+X—N)|f|2> dz <0,

where N = N(K) >0 and Jy is the ellipticity constant of o, (see Lemma 5.3). Hence,
taking A’ > N gives f =0. The uniqueness is proved. ]

Proof of Remark 5.5. Invoke all the notation in the proof of Lemma 5.10. We say
that f satisfies the mirror-extension property if

(5.95) the identity (5.65) holds for / onR”.

To show this, we regularize f by using an approximation scheme f,, defined as

in the proof of Proposition 5.4 (see (5.92)). Then we construct U for such f,, and
Nn- Since f, — f in the weak* topology of Sa .9(X7), by passing to the limit in the
integral formulation of (5.65) as n — oo, we conclude that (5.95) is true. O

Proof of Proposition 5.6. We inspect the proof of Proposition 5.4. We use a
bootstrap method to show that U (see (5.63)) is of class SN (R7) and to estimate

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

6642 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

|lA]| s~ (r7)- In particular, one needs to use an induction argument with “the base” at
SN (RT). In the induction step, one uses the embedding theorem for SV spaces (see
Theorem 2.1 in [30]) combined with the S¥-estimate (F.6) in Lemma F.6 (ii). Refer
to the proof of Theorem 1.7 in [8] on pp. 493-494. We point out that the embedding
theorem in [30] is stated for S5 (RT.) with T'= oco. Nevertheless, it is easily seen that
the case T' < oo is treated by the same method, which involves using the explicit
fundamental solution to 9; + v -V, — A, (cf. Lemma F.7). 1]

5.2. Strong solutions to steady linear Landau equations. In this section,
we establish the results analogous to those in Propositions 5.4 and 5.6 for the steady
KFP equation (3.14).

PROPOSITION 5.11 (steady S, estimate in the presence of SRBC). Invoke the
assumptions of Proposition 5.4. In addition, assume that g,b, ¢, andn are independent
of t. Let r € [2,00). Then, there exists a constant 0 = 0(r,s,k) > 0 such that if,
additionally,

(5.96) N E Lyg(Qx R3) N Ly (2 x R?),

then the following assertions hold.
(i) There exists a unique strong solution f to (3.14). In addition, f € Lo(2)
WL (2.
(ii) For the strong solution f to (3.14) satisfying f € La(Q)W; 4(R?), one has

(5.97) [ E€82.,:0(QxR3) NS, .0(Q x R,
and
(5'98) HfHSz,w(QXRg) + Hf||ST1,,;g(Q><R3)

< N<||77||L2,9(Q><R3) + L, o@xre) + f”LQ,s(QXRs))’

where N = N (3, k,r,d0,0, K,Q).
Furthermore, in the case when r < 6, we have

(5.99) Ifz.,, co@xre) + IVpfllL,, @xre) < 7hs. of (5.98),

where 11,179 > 1 are the numbers satisfying the relations

1 1 1 1 1 1
5.100 el
( ) r1>7“ 6’ r2>r 12

In the case when r € (6,12),

(5:001)  [f i o) + V5 F 1 o rnis) < 7hes. of (5.98),

where 1o satisfies (5.100). Finally, in the case when r>12,

(5102) H[fa fo]”Loo,K,g(QxR?’) + ||[f7 vpf]HC?y/p&a(QXRz) <r.h.s. Of (598)7
where o € (0,1 — 12). In (5.99), (5.101), and (5.102), one needs to take

into account the dependence of N on the additional parameters such as 1,72,
and «.
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Proof of Proposition 5.11. We repeat the argument of Propositions 5.4-5.6 with
the following modifications:
— One needs to use the steady counterparts of Theorem 2.6 and Corollary 2.8
in [10] (see Remark 2.11 therein).
— The estimates (5.99) and (5.101)—(5.102) are proved by using the embedding
results in Lemma F.7. 0

COROLLARY 5.12. For any k € (0,1), there exists 8 = 0(k,r) > 0 such that for
any f € Sy9(2 x R3) satisfying the SRBC, the following assertions hold.
(i) If re(2,7), we have

(5.103) N fllL,, woxrs) T IVpfllL,, o@xr3) So.m,mr1,m.9 | flls, o (xR3)s

where r1 and o are numbers satisfying (5.100).
(i) If r € (6,12),

(5.104)  fllLw woxrs) +IVpflL,, w@xrs) Somrrllflls, o@xrs),

where 1o satisfies (5.100).
(iii) If r > 12, then, for any ac € (0,1 —12/r), we have

(5.105) I Vo flll co o @ may Som.ma0 [ flls, @xms)-
Proof of Corollary 5.12. Let

ni=L Vo f =V, (0,V,f)
Po

and note that n € L, ¢(Q X R3). Since f has the mirror-extension property (see
Remark 5.5), the function U satisfies (cf. (5.65))

v VU~V (AV, 1)
= (Vo (X4 G)U) + H) I

— Vo (A(Vodw)U) — (v- V) U.

Then, applying the steady S.¥ estimate in Proposition 5.11 to the above equation and
using the embedding theorem for the steady S spaces (see Lemma F.7), and going
back to the original variables as in the proof of Lemma 5.10, we obtain the desired
estimates (5.103)—(5.105). d

5.3. Finite energy solutions to unsteady KFP equations. The goal of
this section is to establish the existence and uniqueness result for the unsteady linear
Landau equation (3.7)—(3.8) in the class of finite energy solutions (Definition 3.1).
In particular, we employ a duality argument to prove the uniqueness and utilize an
approximation argument to establish existence. The well-posedness result is used to
prove Lemma G.1 about differentiating finite energy solutions in ¢. This lemma plays
a crucial role in demonstrating the temporal differentiability of the nonlinear RVML
system (see assertion (ii) in Theorem 3.10 and (a)—(b) in Proposition 6.2).

PRrROPOSITION 5.13. We invoke the assumptions of Proposition 5.4 and assume,
additionally, that

(5.106) IVp bl nry) < K.
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Then, for any 8 >0 and
fo€ Lap(ET), me La((0,T) x QW 5 (R?),

there exists a unique finite energy solution to (3.7)—(3.8) (see Definition 3.1). In
addition, for any t € (0,T), f satisfies the energy identity

(5.107)
/Q . (f2(t,x,p) = f3 (x,p))p5’ dwdp

+ /Z (Vw3 ) 0Vl + (0 Vuf)f 4 (X 1)pY dz = /( . t)XQO?,fp%G)dwdﬂ

where (-,-) is defined in (2.11). A similar result holds for the steady equation (3.14).

Before we prove Proposition 5.13, we first establish the uniqueness in the class of
very weak solutions defined below.

DEFINITION 5.1 (very weak solution). We say that f is a very weak solution to
(3.7)(3.8) if
feLyx),
and for any test function ¢ € So(XT) satisfying SRBC and ¢(T,-) =0, we have
(5.108)
—/ fo(2,p)$(0,2,p) dzdp
QxR3

+ / f( — YV, (0,Vp0) — V- (b9) + (e + A><z>) dz= / (0, ¢) dxdr.
nT (0,T)x

Remark 5.14. We note that due to Lemma D.5, any test function ¢ in Def-
inition 5.1 belongs to C([0,7])L2(Q x R3). Hence, any finite energy solution (see
Definition 3.1) is a very weak solution provided that b is sufficiently regular. See also
Remark 5.9 for a comparison with other notions of weak solutions used in this paper.

LEMMA 5.15 (uniqueness of very weak solutions). We invoke the assumptions of
Proposition 5.4 and assume, additionally, that V,-b € Loo(XT). Then, the uniqueness
holds for the problem (3.7)—(3.8) in the class of very weak solutions.

Proof. Assume that u(), j = 1,2, are very weak solutions to (3.7)—(3.8) and denote
u=u® —u?. Then, for any function ¢ € Sy(X7) satisfying SRBC and the condition
o(T,-) =0, we have

/ETU(—W—VP (0,Vp) — (V- b)b— b=V + (c+ A)@) dz 0.

Let ¢ € C5°(R?) be a nonnegative function such that ¢ = 1 on B;(0) and denote
¢n(-) =¢(-/n),n>0. We consider the equation

Yo, —Vy- (Ugvp¢n) —b-Vypon+ (c+A— Vp - b)pn = uly,
¢H(Ta)50a ¢n(tax7p):¢n(t7x7Rl’p)aZEZT
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Since u¢, € Lag(XT) for any 6 > 0, by Proposition 5.4 the above equation has a
unique strong solution ¢, € Sa(X7). Then, we have

/ u?Cpdz =0,
ET

and by nonnegativity of ¢, we have u2(, = 0 a.e. Since n is arbitrary, we conclude
u =0, as desired. 0

Proof of Proposition 5.13. The uniqueness follows from Remark 5.14 and Lemma
5.15.

Ezistence. For the sake of clarity, we will only consider the case when 6 =0, as
the case when 6 > 0 is handled by the same argument. The proof is split into two
steps.

We will need an auxiliary notion of finite energy solutions, which we call inter-
mediate finite energy solutions.

Step 1: Construction of an intermediate finite energy solution.

DEFINITION 5.2. We say that f is an intermediate finite energy solution if
f€ Lo ((0,T))La(2 x R?) N La((0,T) x Q)W (R),
and for any test function ¢ satisfying the conditions (3.10)—(3.12), and ¢(T,z,p) =0

(see Remark 3.2), one has

(5109) [ f(¥é)dz— / fol,p)é(0, 2, p) dedp

=T QxR3

+ /ET ((qub)ngfo + (- Vpflo+(c+ A)¢) dz :/E (1, &) dwdr

T

(see (2.11)).

We refer to Remark 5.9 for a review of various definitions of weak solutions em-
ployed throughout this paper.

Proof by approximations and weak* compactness. Let fo ,,n > 1, be a sequence
of functions such that

(5.110) fon € 52,20(82 x R3), fon satisfies SRBC,
fon — foin La(Q x R?),

where 6 is large. For example, one can choose fo,, € C5°(Q x R?) such that fo,, — fo
in Ly(Q x R?), so that both conditions in (5.110) are satisfied.

Furthermore, let ¢, & € C§°(R?) be functions such that [p, (dp=1and £ =1 on
B;(0). We set

Calp) =n"%Cp/n),  &nlp) =E(p/n).

For any function h € Ly j,.(RY.), we denote

h(”)(t7x7p) = (h *p Cn)(t7$7p)~
Next, let 179,77, be any Ly(X7T) functions such that

(5.111) n=mno+Vp-1n.
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Since (5.110) is valid and one has

EnMos Vp - (§n771)(n) € LQ»G(ET) Vo >0,

by Proposition 5.4 (i) there exists a unique strong solution f,, € So(X7) to the equation

(5.112) Y=V, (Ugvpfn) +0-Vpfa+ (c+A) fu="Emo+ Vp - (gnnl)(n)a
fn(taxap) = fn(t?x7 pr)7 z e ZZ7 fn(0> ) = fO,n(')'
By using the energy identity (D.4), integration by parts, and the Cauchy—Schwarz
inequality, we get
(5.113) [ frll Lo (0. 1)) Lo@xR3) + | frll o 0,7y x ) W2 (R3)
SN0, ) | Loxrsy + Nlllnol + [mlll o2,
where N = N(do, K,T) > 0.
By the weak™ compactness argument, there exists a function f and a subsequence
n’ such that
fE€Loo((0,T))La (2 x R*) N Lo((0,T) x Q)W (R?),
for — f in the weak* topology of Lo ((0,T))Lo(2 x R?),
fnr — f in the weak topology of Ly((0,T) x Q)Wy (R?).
Hence, by passing to the limit in the integral formulation (5.109) of (5.112), we con-
clude that f satisfies the integral formulation (5.109). Thus, f is an intermediate
finite energy solution to (3.7)—(3.8). The uniqueness follows from Lemma 5.15. Tak-

ing liminf in (5.113) and then infimum over all 19,1, € Lo(X7) satisfying (5.111), we
obtain the estimate

(5.114) 1| Lo (0.7 L2 (@xR3) + 1 F | Lo 0.0y x ) w2 (B3
< N[ £(0, ')||L2(Q><]R3) + N||77HL2((07T)xQ)W;l(RS)v

where N = N (0, K,T).
Step 2: Existence of a finite energy solution. We first show that

(5.115)  fn, — fstrongly in Lo ((0,7))La (2 x R?)and in Ly((0,T) x Q)W (R?).
We note that w,, = f,, — f is an intermediate finite energy solution to
(5.116) Yw, =V, (04Vpwy) +b- Vyw, + (c+ Nw,

= (gn - 1)770 + vp : ((gnnl)(n) - "71)7
wn(t,xap) = wn(tvvamp)7 EAS ET, wn(oa ) = fO,n(') - fO()

By the estimate (5.114) obtained in Step 1, we have
||wnHLoo((0,T))L2(QxR3) + ||wn||L2((O,T)><Q)W21(R3)

<N fon = follL,xr3)
+ N0 — &anol + [m1 — (fnm)(nﬂ”Lg(zT)-

Passing to the limit, we prove (5.115). Since f,, € S2(37), fo.n € L2(Q x R?), and f,
satisfies SRBC, by Lemma D.5, we have f,, € C([0,T])L2(Q2 x R3). Then, due to the
convergence (5.115), we conclude f € C([0,7])L2(2 x R3).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

VML WITH THE SBC 6647

Finally, we prove the validity of the weak formulation (3.13). We fix arbitrary
€[0,T]. By the energy identity (D.4) with ¢ in place of T applied to (5.112), we get

[ 1vodet [ (10)(ta0) = fonle.p)ol0.0.0) dodp

QxR3

+ / ((Vpcb)Tangfn +b-Vyfud+ (c+ A)qs) dz
Zt
(0,t)xQ2

Passing to the limit as n — oo, we obtain the desired identity (3.13). Thus, f is the
finite energy solution to (3.7)—(3.8), as desired.

6. Proof of Proposition 3.11. The section is organized as follows. First, in
section 6.1 we prove the desired estimate (3.56) given that the linear RVML system
(3.46)—(3.50) is well-posed and the triple [f,E¢,By]| is sufficiently regular. See the
details in Proposition 6.2. We justify the existence, uniqueness, and higher regularity
in the proof of Proposition 6.2 in Appendix G. Denote

61 oy =2 [ ARQI@A+ [ BPQI (00 €

RB
=a(p)
62 = [eIRQI 0 ( Lyt +0,9(t00)) - €oa
1 i1 Pi P ijPj
63)  Cyls)=—y0 p0p0+a( )
- ( y ><I>”PQ TV2(q)0, 9(t,2.4) - € da.
64)  Kg=—J""(p)o, (J<p> [ @90 0y 002.0

+ g glta.0) 6o o

The following lemma will be used many times in the paper.

LEMMA 6.1. Under the assumptions of Proposition 3.11, we have

(65) HatgHLoc((O T)XQ)Wle/szrQ(R )

< Nosup 1/Zy(1) < Nov/eo, r€{2,00},k=0,1,...,m -8,
T<T

(6.6) ||6ngLW((O’T))Cg‘/pa,a(ﬂxw)<N0 bup,/z( ) < Nov/eo, k=0,1,...,m -8,

(6.7) 107 By BylllLo. (0.1)x0) < Noﬁ7 kE=0,1,...,m—71,

(6.8)  [|0fagllL. =7y < Noveo, k=0,1,...,m—38,

(6.9)  Mogtrg-|+|Vpogrig-| +Clll L (mr) < No,

(6.10)  [|0f 0yt yg-| + [0FVpo gt g- | + 107 Cyll Lo 57y < Nov/eo, k=1,...,m —38,

where o € (0,1 —12/ry). Furthermore, for h = [04+44-,Vpogt19-,Cq,a4], and i €

(1,...,4},
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(6.11) ”athLoc((O,T))Lri () Lo (®3) < Nov/Eo, k<m —4—1i,
where r;,1=1,...,4, are given by (3.28), and Nog= No(r1,...,74,0,Q,a,m).

Proof. In this proof Ng = Ny(r1,...,74,0,Q, a,m) might change from line to line.
We note that by the definition of H4(T) in (3.30) and the assumption y, (1) < eo (see
(3.55)), the fact that 74 > 12, and the embedding theorem for steady .S, spaces (see
(5.105)), we have for k< m — 8 and r € {2,000},

B3) Sra0,6,2 1079l Lo (0,75, o arss (@xED)
1/2
< Noll Ml (0.7 < Nov/Zo-

By the same embedding result, we obtain (6.6). The estimate of the L., norm

OFIE,,B,] follows from the fact that 73 > 3 (see (3.29)), the Sobolev embedding

theorem, the definition of Hy(T') (see (3.30)), and the smallness assumption (3.55).

Furthermore, using the identities (6.2)-(6.4), the estimate (B.7) with r = oo in

Lemma B.3, and the bound (6.5) with r = oo, we obtain the estimate of o, in (6.9)—

(6.10). By (B.9)-(B.10), we obtain the estimate of a, and C, in (6.8)—(6.10).
Finally, using the bound (B.7) again, we get for fixed ¢, x,

107 P (t, 2, ) re) < NolOF [Eg, Byl(t,2)| + Noll0r[g, Vgl (t, 2, )|z, =)-

Taking the Lo ((0,T))Ly, (2) norm and invoking the definition of H, in (3.30), we get
for k<m —4—1i (cf. (6.12)),

Lh.s. of (6.11)
< NollOF[Eg, Bylll Lo (0.1 L. (2) + NollOF 19, Vgl Low (0.1 L., (2xk3) < Nov/Eo- 0

(6.12) 1079/l 1. 0.7y x 2y

r,9/2k+9(

The next lemma asserts the well-posedness of the linear RVML system. We will
prove it in Appendix G.

PROPOSITION 6.2. Under the assumptions of Proposition 3.11, there exists a

triple [f,Er,By] such that

(a) OFf,k < m — 5, is a strong solution (see Definition 3.2) to the linear Lan-
dau equation (3.46) differentiated k times with respect to t with the initial
condition OF f = for (see (3.16)),

(b) OFf,m —4 <k <m, is a finite energy solution to (3.46) (see Definition 3.1)
differentiated k times with respect to t with the initial condition fo x,

(c) OF[E;, By, k < m — 1, is a strong solution to Mazwell’s equations (3.47)-
(3.48) differentiated k times with respect to t with the perfect conductor BC
and the initial condition [Egx,Bo x| (see (3.17)—(3.18)), whereas O f is a
weak solution to differentiated Mazwell’s equations,

(d) for any k <m, we have 0F [V, -Ef, V. B¢l =0F[ps,0] (cf (3.49)),

(e)

(6.13) OFF(t,) € Lo (WL 0/2k+9 (R3),k <m —8, for anyt € (0,T],

oo

Furthermore, any two triples [f), Egcj), Bgcj)],j = 1,2, satisfying (a)—(e) must coincide.

The next result shows that given the energy-dissipation control (see (3.27) and
(3.34)), one can establish the higher-regularity control by estimating H;(T) (see
(6.14)).
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PROPOSITION 6.3. Assuming that Proposition 6.2 is valid, we have for 7 <T,

4 m—4—1q
kf
=2 S IR, o
k=0
m—1 3 m—4—1
(6.14) + D IO B BAT ) R+ D 107 BB (o)
k=0 =2 k=0 '
< Neg sup Zy (1)
<<T
m—1
+NZ Hakf”L (0,T)) L3 (QxR3) +NZII0k [Es,Bfll7.. ((0,T))L2 ()
k=0 k=0
m—4
+N Y Haff”%m((O,T))Lz‘e/Qk(QXR3)7
k=0

where N =N (r1,...,r4,,9,0,m).

Proof. Here we estimate the functional H;(7) (see (3.30)). For the sake of clarity,
we assume, additionally,

(6.15) Hy(T) <oo, T<T,

which is used to perform the descent argument (see section 4). This assumption will
be removed at the end of this step.

First, we differentiate Maxwell’s equations formally k times in the ¢ variable and
rewrite them as two systems of div-curl type as in (4.3)—(4.4). By the W' div-curl
estimate (see (3.15)), we have

(6.16) 10F[E s, Bl o.mnwz @)
k+1
S D OB Bl o)L, @ + 108 Fllw 0.1) L., (@xEs);
=k

where k<m—1ifi=1 (r=2), and k <m—4—1iif i € {2,3}. This gives the desired
estimate of the second term on the Lh.s. of (6.14).
Next, differentiating (3.46) formally and using the expressions of A and I'(f,g)
n (B.1) and (B.3), and those of g4+ ,-, ag, and Cy (see (6.1)—(6.3)), we conclude
that for each ¢, the function u(t,-) = 9F f(t,-), k <m — 5, is a strong solution to the
“steady” equation

(6.17) pﬁ Vott = V- (0t 1g- Vyptt) + E(By +0(p) X By — ag) - Vyu
0
+ (Cg - gv(p) ’ Eg)”

3
—OF & (0@) AENT VKO N+ Ts0) D gy

G=1 k1 +ko—k k1 >1
(618) ult.z.p) = ult.. Bup). (r.p) €7-.

M = —€08 (B + 0(p) x By) - V(00 ) + 5 (0(p) - DR B, )M,
Ty s = (O, 6’“ 0 g — 0 al) (Dp, 0 ) + (07 Cy) O
Mo = O 0, o) By, D11,
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We apply Proposition 5.11 (see (5.98)) to 9F f*(t,-) for each t with

b==x(E; +v(p) xBy) —ay, c=Cy— gv(p) -Ey.

We first check its assumptions (5.1)—(5.2), (5.3), (5.6).

We note that (5.1)—(5.2) in Assumption 5.1 hold with K =1 due to (6.5)—(6.6) in
Lemma 6.1 provided that eq is sufficiently small. Similarly, (5.6) with K =1 follow
directly from (6.9) in Lemma 6.1. Finally, (5.3) is valid due to (3.52).

We fix i=1,...,4 and 0 <k <m—4—i. Then, by the estimates (5.98)—(5.99) and
(5.101)(5.102) with 6/25*2~1 in place of § and k = 1/2 applied for each t € [0,T],
we get

(6.19) Haff”%m((O,T))S”ygmk_,_%(QXR?’) + 1i<4||aff||%m((O,T))L”+119/2k+27¢ (QXR3)
< N Z ||rhs of (6.17)||%oc((07T))LS)g/2ky+2i—l (2xR3)
se{2,r;}

+ N”atkf”%w((O,T))LQYS/2;C+21',1(QXR3)'

Furthermore,
4
(6200 > b of (G-1DIF_(r)L , pepars (2xm) < D Lk
se{2,r;} j=1
Zik=1lkso Z Z ||77i17;€2 ||%m((O7T))LS’9/2k+2i71(QXR3)7j =1,2,3,
se{2,r;} kitka=k,k1>1
k+1
Loy = Z |0y + f||%oo((0,T))Ls,e/zk+2"'*1 (2xR3)>
se{2,r;}
k
Tsx = |0 Ef“%oo(((),T))Lri(Q)v
Lo = Z HK(atkf)||%w((O7T))LS,9/2k+2i71(QXRB)-
se{2,r;}
We chose weights 6/2%+2% because for each i =1,...,4, and k <m —4 — i, we need to

compensate for
(a) the “natural” weight loss in the steady S, estimate with x =1/2 (see (5.98)—
(5.99) in Proposition 5.11),
(b) the presence of the term 0f+1f € Ly g/omt1 (3T on the r.h.s. of (6.17), which
has a worse decay than Of f.
Loosely speaking, due to (a)—(b), for each 4, the loss factor in the weight parameter
is 1, which leads to the factor 272" in the “hierarchy of weights.”
Estimates of I , and Iy ;. We will show that

k—1
(6.21)  Tie+TZon<Neo Y > 0LVl ooy

b,9/2k2+21(QXR3)
s€{2,r;} k2=0
2
k
+ Neolesm—7 Z 10¢ [, vpf]”QLoo((O,T))LOC o aka+o (AXR3)*
ka=0 ’

Recall that £ < m — 4 —¢. We will consider the case when k > m — 7 since the
remaining case is easier to handle due to (6.5)—(6.10). Furthermore, splitting the sum
into k1 <m — 8 and k1 > m — 7 gives
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(6.22)

i +Ior < Z ||aflh||2Lm(zT)
ki +ka=k: 1<k <m—8

X Z ”atkz[fafo]H%m((O,T))Lsyekarzl-,l(QxRi'*)
se{2,r;}

k _
+ lm—7<k<m—4—i Z Z (0, h)po 2||2Loo((0,T))LS(Q><]R3)
k‘1+k2:k}:k}12ﬂ’7,77s€{2,7‘i}

x 082 (£, Vi I3

where h = [Ey,Bg,a4,Cq,04+44-,Vp04t14-]. Due to (6.5)-(6.8) and (6.10) in
Lemma 6.1,

24e/2k+2i—1 (7))

(6.23) Lick <m0 B} _ sr) < Neo,

and by (6.11) in the same lemma, and by the fact that H,(7) <eo, we get
Liy<m—a—i > 1@ R I3 0.0y L. xrs) < Neo.
s€{2,r;}

Next, since k1 > 1, we have ko < k — 1, so that the second factor in the first term
on the r.h.s. of (6.22) is bounded by

> 108 Vel L 0

se{2,r;}

.02k +2i (AXR3))

as desired. Furthermore, if k1 > m — 7, one has ko < 2 (recall that £k < m —5), and
hence, ky +9 <11 <m —6 <k + 2i — 1, which gives
(6.24) 24028271 < g jokatO

for large 6. Then, for sufficiently large 6, the second factor in the second term on the
r.hs. of (6.22) is bounded by

k 2
HatQ[f7 vpf]"Lw)9/2k2+9(ZT).

Thus, the inequality in (6.21) is true.
FEstimate of I ;. We will show that

k—1

k
(6.25) T3 <Neo . ”8152D12)fH%oc((O,T))Lsyg/ZkZJFQi(QX]R3)
se{2,r;} k2=0

2
e
+ Neolk>m—7 Z Z ||8t2f||2Loo((o,T))ss ojaka+s (AXRS)"
s€{2,r4} k2a=0 ’

Inspecting the proof of (6.21) and using (6.23), we conclude

(6.26)

3 2
E E anl,k2HLOO((O,T))LSYQ/ﬁQJrzi,l(Q><]R3) <r.hs. of (6.25).
s€{2,r;} k1+ka=k,1<k1<m—8

Hence, we may assume that k4 >m — 7, ko < 2.
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We denote

9/2k+2i—1 R 2+9/2k+21—1
0

Do =py P =: w1 (p)wa2(p).

By using Holder’s inequality in the x, p variables with the exponents ;11 /r; and n; /r;,

where n; := (r; ' — )71, we get

(6.27)

T5 ) = sup (/ |8§109++g7 |"¢ (7,2, p) \Dg@f"’f(T,x,p)
T<T QxR3

2/T‘i

i pSi(9/2k+2i_l) dl‘dp)

<sup Zz 1 1 (7) I3 ,2,1(7),
T<T

2/7Tiv1
Tar) = ([ 000y il ol )
X

2/n;
T30.k(T) = (/ \Dg@fzf(nm,p) "l (p) dxdp) .
QOxR3

We estimate 731 first. Recalling the definition of ;11 in (3.28) and using the
embedding result in (5.103) in Corollary 5.12 with r; in place of r, and invoking the
definition of H4(7) in (3.30), and the fact that k1 <m —4 — i, we find

k k
10897, )3, iy S VIO GG sy < NHy(7) < Neo,

Furthermore, differentiating the identity (6.1) and using the pointwise bound (B.7)
in Lemma B.3, we find

(6.28)
Ty 0(r) = 105208 041 g (7). (crmsy S NIOF ()2, s < Neo.

We move to Z3 2 ;. We first note that since kg <2, (6.24) is valid, and hence, we may

ko+8
replace wy(p) with pg/2 ", Furthermore, by the definition of rq,...7r4 in (3.28) and

the fact that Ar < é, we have

1
i i i1 6 ~ 6 42 ? '

Hence, by interpolating between Ly and L,, (r4 > 14), we obtain

(6.29) Tson(r) SN Y ”atk?f(T,')||§519/2k2+g(9><]1§3).
s€{2,ra}

Combining (6.26)—(6.29), we conclude that (6.25) holds.
Estimate of Is j. In the case when 7 =1 and r; = 2, we keep Z5 ;, as is. In the
remaining case i > 1, we first note that by Sobolev embedding and the fact that

6 6
T
Ti-1 g

1—

which follows from (3.28), we have

107 B, By](r, )]

L@ Se llOF[Er,Brl(r,)lws (@)
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Hence, by (6.16) with ¢ replaced with ¢ — 1, we obtain

(6.30)  Zsx =0 [Ef’Bf]H%OQ((O,T))L,,.i(Q)
k+1

< N”affnim((O,T))L”_l(Q><]R3) + NZ ”(%[Ef?Bf]”%oo((O,T))Lm_l(Q)'
=k

Estimate of Zg . By (B.11) in Lemma B.5 and interpolation and Holder’s in-
equalities, for any 1 € (0,1) and sufficiently large 6, we have

(6.31)
To = Z ||K(5ff)||iw((o,T))Ls)9/2k+2i_1(an@)
se{2,r;}
<N Z ||3tkf||2Loo((o,T))LS(Q)W;(Rs)
se{2,r;}

<allDEOF I 0, o i @xws) + NET IO FIL ), has sy @xES)-
Finally, gathering all the estimates (6.20)—(6.21), (6.25), (6.30)—(6.31) gives
(6.32)

Y lrhs of GADT | L er

se{2,r;}
k+1
—1 1A 2 k 2 2
<SNep' Y N0fI1Z . oy, o atracion @xB) TEUOEDLFIL 0L,y peras (@xE?)
1=k

k
+ 1164 +1f||2Loo((o,T))L“mk”i,l(Qst) + le‘:l||3tkEf||2Lm((o,T))L2(QxR3)

k+1
+ Nl <||aff|%oo((0,T))Lri1(Q><]R3) + Z 16; [Evaf]”%oo((O,T))Lri1(Q)>
=k
k-1

k
+ 1k>0Neo Z Z |9y 2f||2Loo((o,T))Ss o aka+2i (5T)
se{2,r;} k2=0 '

2
+Nealiomr 3 (1P V111

ko=0

+ ) ”anf”%oo((O,T))SS,e/zh_,_s(QXRB))'
se{2,r;}

co,0/2%2+9 (37T)

We note that the first term involving weighted L%%P norm on the r.h.s. is bounded by

2
k
€olkzm—7 kZO 10215, Vo WIZ,_, ey o) < Neo sup Zy(7)
- <
due to the first inequality in (6.5).
Combining (6.16), (6.19), and (6.32), and summing up over k < m — 4 — i, and
invoking the definition of Zy in (3.31), we get

m—4—1 m—4—1
k k
Z Hat f||%°°((07T))Sri,9/2k+2i (QXRs) + 17;<4 Z Hat f”%w((07T))Lri+1,9/2k+2i (QXRJ)
k=0 k=0
+lim1 Y Hatk[Ef’Bf]”%,m((O,T))W}i @
k=0
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m—4—1
+lis1 Y llof [Efan]||2Loo((0,T))w,}i )
k=0
m—4—1
+ Lis1 Z ||3f[Ef’Bf]||2Lm((o,T))L”+1(Q)
k=0
m—4—1i
<er Y Haff”%x((o,T))S,,._,e/wzi (axrs) + Neo SEFT)If(T)
k=0 : =
m—3—1
- k
+ Nept Z |0y f”%oo((O,T))LT’_ a2t (QXES)
k=0 v
m—4—1
+ Nlis1 Z ||8tkf||%oo((0,T))Lri71(QXR?’)
k=0
m—3—1
+ Nlisa Z |oF [EfaBf]||2Loo((0,T))L,,.H(Q)
k=0
m—3—1i
+N Z ||aff||2Lm((o,T))L2,9/2k (QxR3)-
k=0

We point out that

e by choosing ¢; sufficiently small, we may absorb the first term on the r.h.s.
into the Lh.s.,

e the fourth term on the r.h.s. is bounded by the third one due to Hélder’s
inequality provided that @ is sufficiently large,

e if we replace ¢ with ¢ — 1 in the second term on the 1.h.s., we obtain the third
one on the r.h.s.,

e if we replace ¢ with ¢4 — 1 in the fifth term on the 1.h.s., the resulting term
dominates the fifth term on the r.h.s.

Then, by using induction on 4, we obtain the desired estimate (6.14) for the first
and the third terms on the lL.h.s. therein.

We note that the assumption (6.15) is actually not necessary, as one can use an
induction argument by ascending from k=0 to k = m — 4 — i and using the bounds
(6.19) and (6.32). At each step of the induction argument, one needs to use the
existence and uniqueness results

(a) for finite energy and strong solutions to the steady KFP equation (3.14) (see

Propositions 5.11 and 5.13),
(b) for strong solutions to Maxwell’s equation (see Chapter VII in [11]). ad

6.1. Proof of the bound (3.56). In this proof, N = N(ry,...,r4,a,Q,0,m).
We will do some formal calculations below assuming that Proposition 6.2 is valid. We
first prove the energy-dissipation estimate. Combining this inequality with L% S, and
L W3 (£2) bounds in (6.14), we are able to close the estimate of y(T).

Step 1: Energy-dissipation bound. Here, we estimate the total energy and
dissipation, that is, () + [; Ddt (see (3.27) and (3.34)). First, applying the stan-
dard energy identity for the weak solution to Maxwell’s equations differentiated k
times with respect to ¢t and using the Cauchy—Schwarz inequality, we have

1 1
(6.33) SIOFBL BT (0,1 200 < 51Boks BokllZ, o) + NIOFFIT,m)

+ ”afEinz((O,T)xQ)'
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Next, for the sake of convenience, we introduce

2k k=01,... m—4
(6.34) 9k:{ 0/2% k=0,1,...,m—4,

0, k=m-—3,...,m.

Differentiating the linear Landau equation (3.46) formally & times in the ¢ variable
and using a variant of the energy identity (5.107), we get for each 7 >0,

(6.35) (H&ff(r,)\liwk (OxR3) ||f0,k||2L2,9k (Q><R3)>

o [ [ oot rag) ot
=I
~& /E (v(p) - O ) (OF f) VI d=
=1,

-/ ' [ (T (7.9). 06 1) 53 o
0 Q
I

4

DN =

kq

#5 2 (n) L oo sk n@kni

Is

—-& Z (k) /T (8tklEg + ’U(p) X (8?1Bg)) . (Vpanf)(aff)ngkdz7

1

Ig

where fo j is defined in (3.16).

Estimate of “quadratic terms.” Using the fact that L = —A — K (see (3.1)) and
combining the coercivity estimate of A in (B.13) in Lemma B.7 with the estimate of
K in (B.14), we have

(6.36) L > ’fHVpaffH%z,gk(y) — N1(0,k)10F f1I7, (57 -
Next, by the Cauchy—Schwarz inequality, we get
(6.37) Iy < [1OFEl17, (0. <) + N0 FI T 00)-

Estimate of “cubic terms.” To estimate Iy — I, we need to prove the following
claim: for any nonnegative integers ki, ko such that ky 4+ ko =k, one has

(6.38) ol [ [ <<afr<f,g>>,(aff>p30k>dwdt]szvﬁoyf(T),

(6.39) (if) <NVeoys(T).

L 008 1+ 19,08 70108 By By 0k 1158 oz

Then, applying (i)—(ii), we get

(6.40) Iy + Is + Is < N\/eoys (T).
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First, we consider the case when k <m — 4, so that 6, = 6/2%. We start with (i).
It suffices to consider the case when m — 7 < k < m — 4 since the remaining case is
simpler thanks to (6.5). By the estimate (B.15) in Lemma B.8 with » = 2 in and
LE* — LY* — LY" Holder’s inequality, the integral on the Lh.s. of (6.38) is bounded by

N(a)jkl (17€1Sm78\71912\71921 + 1m77§k17k2§3s7}§2j]€41)7
T =101 f Nl o ((0.m) x w2

L, an B3
T =109l 1. 0,7y x )W (&2
«713 = Haéf”Lw((O,T)><Q)W2110/2k(R3)a
Tt = 10491l Ly (0,1 x )W (R2)-

By the definition of Dy in (3.34), for [ <m — 4,

T 1/2
T < (/ Df<r>dr) ,
0

and similarly, by the smallness assumption on y,(T") (see (3.55)), we get for I <m

T 1/2
jf*g (/ Dg(T)dT> </%0.
0
Next, due to the bound (6.5) in Lemma 6.1, we have
Liy<m—sJ, < Ny/zo.
Furthermore, observe that for ko <3 and k>m — 7, one has ks +9<12<m —-7<k

(recall that m > 20), so that lp,<3r>m-_70/2% < 6/2%2%9 By this and the first
inequality in (6.5), we conclude

1/2
Lia<ahom—1T5 < ”athf”Loo((O,T)xQ)WQl )k to (B S N||Hf||L/w((o,T))~

Combining the above estimates, we obtain (6.38).
The assertion (ii) is proved in a similar way. We note that in the case when k >
m —3, we have 0, =0, and the same argument gives the desired bounds (6.38)—(6.39).
Finally, gathering the estimates (6.35)-(6.37) and (6.40) and summing up over k,
and invoking definitions of £ and Dy in (3.27) and (3.34), respectively, we obtain

(6.41)

T

sup £¢(7) +/ Dy(r)dr

7<T 0

= Z 10F FIIT . (0.7 Lo 2xB3) + Haff||%2((0,T)xQ)W2l(Ra)
k=0

+ |3tk[Ef7Bf]“%oc((o,T))Lz(Q))
m—4
k £)2 ko2
+ ];J <||3t f||L<x,((0,T))L219/2,€ @xrs) +[10; f”Lz((O,T)XQ)Wzl‘Q/zk(R3))
<83 (ol ke B0 Boal ey 108 ory HOEESE o
k=0
m—4
FN Y ol s + NyETUs(D).
k=0
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Step 2: Closing the estimate of yy. Finally, combining (6.41) with (6.14),
and using the smallness assumption on [fo x, Eo x, Bo.x] in (3.37), we obtain

(6.42)

ys(T) < Nz (D) + NS (||fo,k||%2<ms> n ||[Eo,k7Bo,k]||%2(m)
k=0

m—4 m
N3 Vsl i+ N3 (1L o) + 1OFB I, o1
k=0 k=0

< N(y/o + T)ys(T) + Neo/M

By choosing g9 < (4N)™2, T < (4N)~!, M > 4N, we obtain the desired estimate
Y (T) <Egp.
7. Proof of Theorem 3.10. We first state an auxiliary result that is useful

for establishing both the existence and the uniqueness of the solution to the RVML
system. See also the proof of Lemma 8.2 in [25].

LEMMA 7.1. Invoke the assumptions of Theorem 3.10 and let €y, 6, M, and
T be the constants introduced in the statements of that theorem (see (3.36)). Fur-
thermore, let [g(j),Egu),Bg(j)],j = 1,2, be functions satisfying (3.51)—(3.55) and let
[f(j),Ef<J),Bf(j)],j =1,2, be two strong solutions to the linear RVML system (3.46)—
(3.50) with [g,E4,Bg] replaced with [g(j),Eg(j),Bg(j)],j = 1,2, such that [f(j),Efm,
B;w],j = 1,2, satisfy the conditions analogous to (i)—(iv) in Theorem 3.10. We also
denote f12 = f1) — £ E}’Q =E;u) —E;o and define B}’z, 9“2, Ey?,BL? in the
same way. Then, we have

m—8
(7.1) Z (8ff1’2||2Loo((0,T))L2(Q><R3) + Haffu||i2((0,T)xQ)W,;(R3)
k=0
1 m—8
1,2 1,2 c L,
+ 10 [E}*, By ]H%w((O,T))Lz(Q)) <35 Z ((||8fgl 27 (07 Lo (xR
k=0

+ ||8z{€91’2||%2((0,T)xQ)W21(1R3) + ”af[ExlfQ’B.clfz]HZLoo((O,T))Lz(Q)))'

Proof of Lemma 7.1. We inspect the argument we used to establish the energy-
dissipation bound (6.41). In particular, we write down the equation satisfied by
OF f12 and use a variant of the energy identity in (5.107). The “quadratic” terms in
the energy identity are estimated in the same way as in (6.36)—(6.37). On the other
hand, we need to slightly modify the estimates of the “cubic” terms. For the sake of
clarity, we focus on the integral

I— / (@F (D0, gO) —T(f®, g@)), 08 1) dudr
(0,T)xQ2

:/’ <wcgijywﬂ%mm+/ (OF(T(f@, g"2)),0F 12 dwdr .
(0, T)xQ

0, T)xQ

=141 =I4,2

Inspecting the proof of (6.38), using the bounds Yy < €0, Ys2) < & combined with
Lemma 6.1, and employing the Cauchy—Schwarz inequality, we conclude

m—8
Is1 < Ny/eo Z (5ff1’2||%m((o,T))L2(QxR3) + ||aff1’2||2L2((0,T)xQ)W§(R3)>a
k=0
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m—8

Ii2 <Ny Z (||3tkgl’2|%m((o,T))L2(QxR3) + ||3fgl’2||2Lz((o,T)xQ)W21(R3)>

k=0

1 k 1,212
+§H3tf’ ||L2((0,T)><Q)W21(]R3)7

where N = N(ry,...,14,0,Q,a,m). For the closure, one needs to take g and T
sufficiently small. 0

Proof of Theorem 3.10. We note that the uniqueness follows directly from the
above lemma.

The existence is proved by passing to the limit in the iteration scheme (3.39)-
(3.45). Since the argument is standard (see, for example, [25]), we will not present it
here but point out major steps.

(1)

By Proposition 6.2, the sequence [f™,E™" B"|;n > 1, is well defined, and
by (3.56) in Proposition 3.11, one has yy, (T') < go for each n. By (7.1) in
Lemma 7.1, the sequence 8 f, k <m—8, is Cauchy in L!_LI"NLY" W} (R?),
and [E",B"],n > 1, is a Cauchy sequence in the space L! L%, and hence,
[f™, E™, B"] converge to some [f,E,B|. In addition, using (7.1) again and
(3.56), we conclude that all the temporal derivatives up to order m also
converge in the weak* topology of the same space.

By using Green’s identity (D.4), we write down the weak formulation of the
system with a test function ¢ satisfying (3.10)—(3.12). Due to the uniform
in n estimates in Proposition 3.11 and the fact that f, converges to f, we
may pass to the limit in the weak formulation. In particular, one needs to
use Lemma 7.1 and (3.56) to pass to the limit in the integrals involving the
Lorentz and collisional terms.

Due to the convergence in (2), OFf € Loo((0,T))La(Q x R?) N La((0,T) x
Q)W3(R3),k <m, is an intermediate finite energy solution (see Definition 5.2
in the proof of Proposition 5.13) to (3.2) formally differentiated & times in
t with the SRBC and 97 f(0,-) = for(-). We point out that in the proof
of the aforementioned proposition, we showed that any intermediate finite
energy solution is a finite energy solution in the sense of Definition 3.1, and
hence, 9Ff € C([0,T])L2(Q2 x R®),k < m, as desired. Furthermore, since
OF f € So(XT),k <m — 5, by Remark 3.3, we conclude that 9F f,k <m — 5, is
a strong solution to the k times differentiated Landau equation.

By using a limiting argument, we conclude that 9F[E ¢, B¢] € C([0,T])L2(2)N
Loo((0,T))W3(Q),k < m — 1, is a strong solution to Maxwell’s equations
(3.3)—(3.4) with the perfect conductor BC, initial data [Eq x, Bg x], whereas
O"[Ef,Bf] € Loo((0,T))L2(?) is a weak solution. In addition, the iden-
tities in (3.5) formally differentiated & times in ¢ are valid. The fact that
0" [Ey¢,Bf] € C([0,T])L2(£2) can be proved by a mollification argument as in
the proof of Theorem 4.1 in Chapter VII in [11]. d

Appendix A.

LEMMA A.1l. Let U : Q. (29) x R® — H_ be a local diffeomorphism given by
(5.31)~(5.32). Then, the following assertions hold.

(i)

For

() (%)
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one has
(A1) CP(y)=0,ie{1,2}, ifys=0.

(ii) For any y € () N{ys =0} and any w,

2 () =155 el

(iii) Let u be a function on Q. (x9) x R3 satisfying
(A.3) u(z,p) = u(x, Ryp), (,p) € 7-

and denote

UGe) = [ @(P.@ute.q)da. Oy w)=U(an).ply: ),

Then, one has
(A4) U3y, w) = —U(y, Rw), i € {1,2}, ifyz=0.

Proof. (i) We assume that p(*) is a mollification of p with a standard mollifier ¢
and let p(¥)7 be the mollification of p with the mollifier y;it,j = 1,2. The assertion
follows from the identities

)1 Y3),2
O 1- y3f(’§1{j) —y3pg‘%3)) —Pily?’; + ys(pé‘lfi X + pifé‘”’; 2)
(A-5) (5:1/) =1 —yspi? L—yspsn”  —ps’™ +ys(pis +ps5 ") |
P1 P2 1

1 0 p 1 0 —p;

C(ylay270) = 0 1 P2 0 1 —pP2
—-p1 —p2 1 pr op2 1

L+pf  pipe 0
=| pp2 1+p3 0 :
0 0  1+4pi+p3

where pij = 0y,y, p-
(ii) The desired identity follows from the equality

(5=
and (A.1).

(iii) We denote go = (1 + |¢|?)!/2,

2
= C"(y)(Rw)i(Rw);

P(y,w) = (o, p(y,w)), Qly,w') = (Go,aly,w)).

Furthermore, changing variables ¢ = (g—i)w’ gives
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(A.6) det@z) /3@(13 O)aly,w') du',
T R
(A7) u(y,w):J/RS E(y, w,w")u(y,w") dw',

where u(y,w’) = u(z(y), q(y,w’)) (cf. (5.35)), and

(A8) =)= (52 ) 0P Q) (5 )T.

Furthermore, by the change of variables w’ — Rw’,

(A.9) Uy, Rw) =T . E(y, Rw, Rw")u(y, Rw') dw’

Since u satisfies the SRBC (see (A.3)), we have

(A.10) u(y, Rw) =u(y,w) ifyz=0,

Thus, due to (A.6)—(A.10), to prove (A.4), it suffices to demonstrate that

(A.11) E83(y,w,w') = —E3(y, Rw, Rw'), i € {1,2}, whenever y3 = 0.
Verification of (A.11). First, by the definition of ® in (2.5)—(2.7),

(A.12) = AP, @)(%) (P, @)<gz>T.

Poo

We will need the following identities:

(A.13) Bo = <1+ ‘(gi)

T
A4 P-O=podo—w" (25} (2w,
dy

ox
(A.15) (Z)S(ﬁ, Q) (ZZ)T
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We first handle the factor A(P,Q) (see (2.5)). By (A.1) in assertion (i), we have
(A16) f(y?waw/):f(y7RwaRw/)a forf:ﬁ0a607ﬁ'@7 1fy3:07

and, hence, (A.16) is also true for f =A(P,Q).

We consider the remaining factor on the r.h.s. of (A.12). By (A.1) in the assertion
(i), we conclude that (A.11) holds with = replaced with the 1L.h.s. of (A.15). Thus,
(A.11) holds, and the desired identity (A.4) is valid. 0

LEMMA A.2. Let M be a nondegenerate 3 by 3 matrixz, and denote

w
A7 = =:.
( ) Qﬂ(IU) (1+ |M'LU|2)1/2 v
Then, the following assertions hold.
(i)
(A.18) |DIW| < N(M)(1 4 |w[?)77/2,j=1,2.

—1id
=D3,v

(i) Let m>1 be a number. Then, 25: {jw| <m} — R? is a diffeomorphism onto
its image, and

(A.19) sup | DI < NmPH j=1,2,3,
W({lwl<m}) >
(A.20) sup | D((DW) o W) | < Nem,
W({|wl<m}) S~ ——
=D, (Dwv)(w(©)))

where N = N (|M]).

Proof. (i) Let c¢;;, be the ik-th entry of the matrix M7 M. Then, by direct com-
putations,

(A21) 8111‘ _ 57;j _ Cjlww; ’
owj (14 [Mw)/2 (14 [Mw|?)3/2
%v; 0ijCriwy _ CiRW; F Okiciiwr | 3¢iCrr wiwwy

Jwsdwe (L [MwPP? (L [MwP)y? (1 + [MwP)?
Combining the above identities with the fact that
|Muwl|* > N(M)w|?,

we prove the first assertion.
(ii) Multiplying both sides of (A.17) by M gives

Muwl|? 1

A.22 M 2:|7 1— | My?=——

( ) M 1+ |Mw|?’ Mol 1+ |Mw|?’
Mol? v

A.23 M 2 _IMvl” S ——

(4.23) Ml =T R = G- e

Note that 1 — |Mw|? is bounded away from 0 on 23({|w| <m}), and hence 20 : {|w| <
m} — R3 is a diffeomorphism.
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Next, differentiating the second identity in (A.23), we get

ow; 045 Ci1U0;
A.24 o _ j i
A2 5 = TPy T MR
82wi o Pg(v) 8311}2‘ P5(’U)

ov;ov, (1 —|Mof2)5/2"  Qv;0vpdv, (1 —|Mo|2)7/2’

where P;(v) and Ps(v) are certain polynomials of orders 3 and 5 with coefficients
bounded by N(|M|). Then, by (A.22) and (A.24), and the fact that

(A.25) v = |W(w)| < N(M),

for v € W({|w| <m}), we have

ow;
‘ (0 SN(1+|MUJ|2)3/2 Sle%’

8'Uj

where N = N(M). Similarly, we prove the estimates of the second- and third-order
derivatives.
Finally, to prove the bound (A.20), we note that by (A.21) and (A.22)-(A.23),

8’01‘
8wj

= (1= |Mv|*)Y2(8;5 — cirvivy).

Differentiating the above expression and using (A.25), we conclude

81},'

\Dv Ul < N1~ [Mo) 2 < Nim,

J

so that (A.20) is true. 0

LEMMA A.3. Let n >0, G CR? be the even extension of V(. (xg)) across the
plane y3 =0 (see Step 3 in the proof of Lemma 5.10). Let W and Y, be the mappings
given by (5.44) and (5.51), respectively. Then, the following assertions hold.

(i) The mapping Y, : G x {|w| < 2"*2} is a bi-Lipschitz homeomorphism onto

its image, and

(A.26) Y, (y,0) = (4, W(y,v)),
where

ey @) € T (o (o)) x {ful <27753),
W(y,v) = 1= M(y)vv 3 2
(1-| MRy Ro|) (y,v) € Tr (GNRE x {w] <272},

M) = (52) )

Furthermore, for the sake of convenience, we denote

and

v=W(y,w), w=W(y,v).
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(ii) One has

(A.27) | w I ((0.1)x ¥, (G x {lw|<2n+2})) < N2%,
ow
~ oy
(A28)  [[VyVuW L0 xax {lw]<an+2zyy S N27™,
—_———
o%v
- Oyow
(A.29) H|VyV1,W\ + | VvvamLm ((O,T)><T,,,(G><{\w|<2n+2})) < N25na
O%w 0%w
- m - 02

where N =N(Q).

Proof. (i) First, note that (A.26) follows from (A.23). We now show that T,
is bi-Lipschitz. Since Q is a C'! domain, we only need to show that the functions
W, W are continuous across the boundary {yz = 0} x R3. To this end, it suffices to

demonstrate that
0z w|= Oz Rw| whenever y3 =0.
dy dy

The latter is true thanks to (A.2) in Lemma A.1 (ii).
(ii) Invoke the notation of Lemma A.2. Let M (y) be either

(35) (5w

and C(y) = (cij,i,j=1,2,3) := MTM, and

_ w
v(y,w) = 1+ |Mw|2)1/2'

First, we claim that the functions

v (9w

ow )’ \ v
are continuous across the set {y3 =0} x R3. This assertion follows from the explicit
expressions of these functions (see (A.21) and (A.24)) and the identity (A.2). Hence,

we only need to prove (A.28)—(A.29) away from {yz =0} x R3.
Next, by (A.23) and (A.22), whenever ys # 0, we have

awi - (ayrc”/)vlvl/vi .

Ay (1—|Mo2)1/2 By, cur o v (1 + | Mw|?) 2,

and this implies (A.27). Furthermore, by (A.21) and (A.24), away from {ys =0}, the
following identities hold:
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= (Oy,. clr )wiw 1 0ij —|—§ G
= yr CU Ly 2(1+|Mw|2)3/2 2(1+|MU}|2)5/2

32vi

ow; 0y,

(9y, cjt)wiw;
(L [MwP)3/2
1 (52‘]‘ 3 CikVEU; )

0w; B

ooy, Gw-cuvior) <2 (1 [Mo[2)32 ~ 2(1— [Mu2)5/2
(Oy, cji)vrvs

(1—[Mv?)3/2

+

The first identity implies (A.28). Furthermore, the second identity combined with
(A.22), and (A.25) yield

200
‘ 0w, < N(1+ | Mw[?)®? < N(2)2°".

0v;0yy

The bound of V,V,W follows from (A.19) with j =2. The assertion (ii) is proved. O

LEMMA A.4. Let G be an bounded domain and 1) : G — R? be a diffeomorphism
such that

ID¥llcwe) < No,  ID@) ™ Hleway < N
Let a be a bounded matriz-valued function such that

§11E7 <a’ ()& < 6|EP Vwe G EER?.
Denote

a=(Dy)(aoy™")(Dy)".
Then, a satisfies
(A.30) 011€]> < @ (w)&i&; < 621€%, w e ¥(G), £ €R®
with
51 = 051]\71_2, 52 = 67152]\[57

where c € (0,1).

Proof. To prove the lower bound, note that

7ag = (D)7 (aoy™")(D¥)T€) > 81 (D)€ > e Ny 2.
The upper bound follows from the same argument. 0

Appendix B. Auxiliary results about the relativistic Landau equation
near Jiittner’s solution.

LEMMA B.1 (Lemma 6 in [32]). For sufficiently regular functions f = (f*,f7),
g=(g",97), h=(h*,h™) on R3, the following formulas hold:
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(B1)  Af=2V, (0V,f) ~ 3 0p) ov(p)f + V- (o0(p) ],
(B2) K7 =)0, (1) [ @RI 000 10+ 2 1(0) -0 )
(B.3)
Ii(g.h) = (a - ;jjo)apjgi o) [ P, o) - da

- (a - fzjo)ggp) [29(P.QT@0,h0) - da

where o is defined in (5.16).

LEMMA B.2 (Corollary 4.5 with « = —3 in [26]). Let o be the function defined in
(5.16). Then, the following assertions hold.
(i) There erist constants N1, No >0 such that for any & € R3

(B.4) N[E? < 0% (p)€i&; < Nofg]”.
(ii) For any multi-index 3,
(B.5) Do) < N (3w, .

LEMMA B.3. Let k>0 be an integer, r € (3/2,00], and g € WF(R3). Then, for

(B.6) I(p) = / &9(P,Q).T"2(q)g(q) da,
we have

(B.7) IDEI 1o z2) S llgllwe -

Proof. By Theorem 3 in [32] (see p. 281 therein), for any multi-index =
(61a62)/63)7

D} [ @9(P.Q01 a)g(a) do
- ¥ / 05, (,0)0 (P, Q) *(0)D3,9(a)05, 5, (v, ) da,
Br+B2<p
where
B Bs B3
90 4o q0
@51 (pv q) = (apl + aih) (apz + alh) (aps + ath) )
Po Po Po
and qbgh 5, 18 a smooth function satisfying the bound

Bl_|B1l—18
‘¢g1732753(p7Q)|SQ(|) ‘pllll | l-

By using the above identity, the estimate

105, (p,0)®(P,Q)| < Npy g3 (1+[p—q| ")

(see Lemma 2 on p. 277 in [32]), and Holder’s inequality with r € (3/2,00] and
r'=r/(r—1)€][1,3), we obtain (B.7). O

The following lemma follows directly from Lemma 4 on p. 287 in [32].
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LEMMA B.4. For r € (3/2,00], g € W}X(R3), the following identity holds in the
sense of distributions:

BS) 9, / B (P,Q)J"()dy,9(q) dg

=0y, ‘P”(RQ)J”Q(Q)%Q(@ dg

. ~1/2
- 4/ ];oq(;2 ((P Q) - 1) T2 (@)g(q) da — k(p)T2(p)g(p),

where r(p) =27/ %mpy [ (14 |p|* sin® ) ~3/%sin(6) df.

LEMMA B.5. Let r € (3/2,00], g = (g%,97) € W(R?) and a4, Cy, and Kg be
given by (6.2)—(6.4), respectively. Then, one has

(B.9) llagllL. 3y < llgllw: ®s),
(B.10) 1Cy Lo rs) <N + Nlgllw: (rs),
(B.11) |Kgl(p) < NJY*(0) | gllw (ze),

where N = N(r).

Proof. Estimate of ag. The estimate follows from the definition of a, (see (6.2))
and (B.7) with k=0,1 (see Lemma B.3).

Estimate of C,. By the estimates of ¢ in (B.5), we only need to handle the integral
term in (6.3), which we decompose as follows:

Oy, / (P, QI ()04, 9(q) - €9 dq

- 2% / O (P,Q)J"(q)0y;9(q) - €y dg=: Cy1 + Cy.2.
Next, by the identity (B.8),

Cyn =0y, / BI(P.Q)I0) 3 ol0) 6 do

. —1/2
_ 4/ ];Oq? ((P Q)% — 1> J'2(q)g(q) - & dg

- K’(p)Jl/Q(p)g(p) : 60 = Cg,l,l + C 1,2 + C 1,3

Applying the estimate (B.7) with k=0, 1 to the terms Cj 1,1 and Cy 2, we get

|Cg,11

+1Cy 2| < Nlgllw(ms)-

By a simple bound (see the formula (32) in [32])

p 1>N |p—q|21 pol
Q12N qg \p—q\<(|p|+1)/2+q*0 l[p—ql>(|p[+1)/2

and Holder’s inequality,

|C,1,2] < NllgllL, vs)-

Finally, we note that the last inequality also holds for Cj 3 since x is a bounded
function. Thus, (B.10) is valid.
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Estimate of Kg. First, we split the integral in (B.2) as follows:

Ky = @) 0) [ 09001 20) (0,000 + Lato)) - sty

_ (), / BIP.Q)I )2 g(0) - € oy

— JY2(p)0y, / I (P,Q)J?(q)0q,9(q) - €y dg €y =: K1 + K» + K.

We observe that the following terms are similar:
- K and Oy 9,
- K2 and Cg,1,17
- Kz and Cy 1.
Hence, the estimate (B.11) is proved by repeating the above argument. 0

LEMMA B.6. Let g be a function satisfying Assumption 5.1 (see (5.1)-(5.2)).
Then, for o4 defined in (3.9), one has

(B.12) HVPO-QHLOO(ZT) + ||0-9||LOC((0,T))C:é,3'%(QXR3) < N(K)

Proof. First, note that the estimate of V0, follows directly from (B.7) with k=1
and the assumption (5.2). Furthermore, for any ¢t >0 and 1,22 € Q, p € R3,

o—g(tvxlap) - Ug(t?x27p) :/@(P7Q)J1/2 (g(taxlaQ) - g(t7x23(Z)) dq
Then, by (B.7) with £ =0 and the assumption (5.1),
Io.g(tvxlvp) - Ug(t7x2ap)| S N Suﬂgi’» |g(t7x1ap) - g(t,ﬂfg,p)l
pe

S N|171 —.ZE2|%/3.

Now the assertion follows from the above inequality, the Lo, estimate of |V, 0,4/, and
the interpolation inequality for Holder spaces. 0

LEMMA B.7 (cf. Lemma 7 of [32]). For any 6 >0, there exists k >0 such that for
any g=(g",97) € W3 4(R?),h = (h",h7) € L2 4(R?),

(B.13) ~(Ag.993") 2 KIVpall, o) = NONgIIZ, @s)-

Furthermore, for any € € (0,1),

(B.14)

/W (Kg)- hp%"dp‘ <ellgllvs sy + N(O)e AT, ge)-

Proof. In the case when 6 =0, the estimate (B.13) is proved in Lemma 7 in [32].
The case 6 > 0 is handled by the same argument, and hence, we omit the proof. The
bound (B.14) follows from (B.11) in Lemma B.5. O

LEMMA B.8. For sufficiently reqular functions f; = ( ]»Jr,fj_), j=1,2,3, on R3
and any r € (3/2,00] and 6 >0, we have

(B.15) [(T(f1s f2), Fs907) | So IV pfillna ooy | ol e | follwy o)
1Al oo @) IVl @) | f3llwy , re)-
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Proof. Invoke the explicit expression of T'(f1, f2) in (B.3). For the sake of sim-
plicity, we assume that f; and fo are scalar functions, and we estimate a simplified
integral given by (cf. (B.15))

I=( |0y — Di Y (P, Q)J1/2(q)8p]. F1(0) f2(q) dgs f3p2°
<< 2]30) / >
- <(3 - zifo) / Y (P,Q)T*(9) f1(p)Oy, f2(a) dq,f3p39>.

Integrating by parts in p gives

1= (0,11 [ 92,7 ) o) do, (0, - L) i)

+ <f1 [ 2.1 0y fla da (a + jpo) (f3p39)> L4 DL

Finally, applying the Ly — Lo, — Ly Holder’s inequality to I; and I and using the
bound (B.7) with k£ =0, we obtain (B.15). d

Appendix C. Verification of estimates (5.66)—(5.74).

LeEmMA C.1. Estimates (5.66)—(5.74) are true.

Proof. Ellipticity and boundedness of the leading coefficients.

(1) Bounds of A (see (5.41)). By Lemma 5.3 and (A.30), for sufficiently small ro,
(80/4)[E]* < AV (2)6i¢; < (465 )[¢]* Yz €RT, € R,

where A is defined in (5.36), and hence, the same estimate also holds for A.

(2) Bounds of A (see (5.62)). First, we estimate A via Lemma A.4 with ¢ =W,).
By (A.18)—(A.19) with m = 2"*2_ the assumptions of Lemma A.4 hold with
No=Nj§27", Ny = N{23" and §; = &y/4. Then, by (A.30), we conclude that
for any £ € R? and z € (0,T) x Y,,(G x {|p| < 2"*2}),

(C.1) N'276m < A (2)€,6; <N,

and hence, the same bounds (with, perhaps, different constants N’ and N”)
are true for 2.

Boundedness of V,2.

(1) Estimate of V,A. By (B.12) in Lemma B.6 and the construction of the
coefficients A (see (5.36)),

IVwAll L ((0.7) (2 (20)) xR2) < N (K, ).

Then, by (5.41) we have

(C.2) IVwAllL 0, xaxrsy < N(K,Q).
(2) Estimate of 2. First, we estimate A, which is given (5.53). By (A.20) with
m=2"+2,
v n
(C3) Vol 5~ | (w(y,v)) < N2™
w Lo (¥ (G ] <27+2})
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By the chain rule and (C.2) and (A.19), one has

IV A”L (0.7)x T(Gx {Jw|<2n+2})) < N2%™.

Next, recall that A is defined in (5.57). Combining (5.50) (with j = 1) and
(C.3) with the last inequality, we get

VoAl L ((0,1)x T (Gx {Jw]<2n+2})) < N2™.

Then, the definition of A (see (5.62)) and the last inequality give the desired
bound (5.68), that is,

VoL (0,7)xrs) < N2™.

Holder continuity of the leading coefficients. Here we verify (5.69).
(1) Estimate of A (see (5.41)). First, by the definition of A in (5.36) and (B.12)
in Lemma B.6, we have

”A”L 0.1)CrL” ”wmm(mo))xw) N(K,Q, ).
To show that A is Holder continuous, that is,
(C4) ||A||Loo((OyT))C;%s,K(Gng) < N(K,Q, »),
it suffices to check that
(C.5) A s continuous across {y3 =0} x R3.

Note that for any arbitrary 3 by 3 symmetric matrix M = (m% i,j =1,2,3),

mll 12 13
RMR=| m'? m*? -—m?
13 23 33

Then, by the definition of A (see (5.41)), if the identity
(06) AiB(tv Y1,Y2, Oa w) = 7Ai3(t7 Y1,Y2, Oa Rw)al € {17 2}7

is valid, then (C.5) is also true. The identity (C.6) follows from Lemma A.1
because Assumption 5.2 is valid as g satisfies the SRBC (see (5.3)).

(2) Estimate of 2. First, we estimate A (see (5.53)). By (A.19) with m = 2"+2
and (A.27), we have

< N(Q)23",
Lo (T(Gx{|w|<2nt2}))

< N(Q)2".
Lo (T(Gx {[w]| <27+2}))

H ov

|5

By the definition of fi in (5.53) and (C.4), and (C.7), we have

(C.7)

(C.8) < N(K,Q, 2)2°".

MLz 0. myezte=cr@xtmlansay)
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Next, we estimate the Holder norm of A. First, we need to bound the Holder

norm of
(;ﬁ)(y,w(yw))-
By the chain rule, for any (y,v) € T(G x {|w| < 2"*2}),
31} 8'0
M-
w W L oo (Gx {w|<27+2})
(C.9)
5 |5
+ |Vwa— il .
WL (Gxflw<2n+2}) 9 Leo (Tr(Gx {|w|<27+2}))

Hence, by (A.28) in Lemma A.3 (ii), the first term on the Lh.s. of (C.9) is
bounded by N(Q)2~™. Furthermore, by (A.18) and (A.27), we conclude that
the second term on the r.h.s. of (C.9) is also bounded by N2~", and hence,

<N(Q)27".
Lo (T(Gx{[w]<27+2}))

(C.10) Hvy (gz;) (v, w(y,v))

Furthermore, by the definition of A in (5.57), (C.8), and (C.3) and (C.10),
we obtain

(C.11) . < N(K,Q, )2".

”A”Loo((O,T)) v (TR x{Jw]<2+2})) =

Finally, by the definition of 2 (see (5.62)), the bound (C.11), and our choice
of the cutoff function ¢, (see (5.61)), we obtain

1A o,y e/ oy < NV 2, 50)2°

(see (5.69)).

FEstimates of the lower-order terms. Invoke the definition B (see (5.36), (5.42),

(5.53), (5.58)). By the assumption (5.6) and (5.36), and (5.42), we have
1Bl 0,1y xGxr3) < N,

and then, by the first inequality in (5.50), we obtain (5.70).
Next, recall the definition of X (see (5.37), (5.43), (5.53), (5.59)). Note that
by (5.37), for any (y,w) € (R, /a) X {Jw| <272},

[ X (y, w)| + [V X (y, w)]

(C.12) < N(Q)(1 + [w]?)/2 < N2™.

Hence, by (5.43), the same bound is true for X'. Furthermore, by the definition
of X (see (5.59)) and the first inequality in (5.50), we get

IXI L (r(ax flw|<2n+2yyy < N(€Q).

Next, recall the definition of X (see (5.53)). By the chain rule, (C.12), and
(C.7) (cf. (C.8)), we get

(C.13) IV o |1 (r(@x fuwl<znteyy) < N2
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Finally, by the definition of X (see (5.59)), (C.13) and (C.3), and the first
inequality in (5.50), we conclude that the bound (5.72) is valid, that is,

IVoXl Lo (r(@x{wl<2n+2yy) < N2%™

Finally, we estimate the second “geometric” coefficient G (see (5.60)). By
(C.7) and the first inequality in (5.50),

Gl Lo (r (G x {Jw|<2n+2})) < N.

Furthermore, by differentiating (5.60) and using the estimates (C.3) and
(C.7), and (A.29) combined with the first inequality in (5.50), we conclude

VoGl (r(ax {w|<an+eyy) < N24™. 0

Appendix D. Relativistic kinetic transport equation in a domain. All
the assertions here are either contained in [2] or [33], or can be easily proved by
adapting the arguments therein. We start by introducing the relativistic counterpart
of the set of test functions in [2] (see Definition D.2).

DEFINITION D.1. We say that G C T UYL is a good set if there is a positive
lower bound of the length of the characteristic lines (t+ s,z +v(p)s,p) inside YT UXT
that intersect G.

DEFINITION D.2. Let ® be the set of functions ¢ on L7 such that
— ¢ is continuously differentiable along the characteristic lines (t+s,x+v(p)s,p),
— ¢, Y are bounded functions on X7,
— the support of ¢ is a bounded good set.

Remark D.1. By following the argument of Lemma 2.1 in [14], one can show that
oh (ZT\ (((0,7) x 70) U ({0} x 9 x R*) U ({T'} x 09 x R3))) Co.

DEFINITION D.3. For r € [1,00), we say that € € L,g 10 (X1) if for any good set
G, one has 1 € L, o(3%).

To define the traces of functions on 7, we need the following assertion, which is
similar to Proposition 1 in [2].

PROPOSITION D.2. Let r € [1,00), 6 > 0 be numbers, and let u € L, o(X7) be a
function such that Yu € ng(ET). Then, there exist unique functions u+,ur,ug on
YT and Q x R3, respectively, such that

—ux € Lr,(f, loc (ET)y ur, Ug € LT,O(Q X R?));

— the following Green’s identity holds for any ¢ € ®:

/ET(Yu)gb—l—(YqS)udz
o1 = [ wneTep o= [ ulep)o0.e.p) ey

QxR3

b [ ueolo) nalaSudpdt— [ u_olo(p) -] dS.dpat.
T »T

+
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DEFINITION D.4. Such functions u4,ur,uy are called the traces of a function u.

The next lemma shows that w4 belongs to a certain weighted Lebesgue space (see
[33]).

LEMMA D.3 (Ukai’s trace lemma). Let r >1 and u be such that u,Yu € L,.(37).
Then, we have uy € L,.(SL, w|v(p) - n|), where w(z) = min{1,1(2)}, and I(z) is the
length of the characteristic line (t + s,z +v(p)s,p) inside T UYL, and, in addition,

(D.2) 1wl (27T wlo@)n.) < NIYullr, gry + Nlulz, sy,

where N = N(r,T), and the weighted Lebesque space on the l.h.s. is defined in (2.9).

PROPOSITION D.4 (see Theorem 5.1.2 in [33]). Let r € [1,00),0 > 0 be numbers
and u and ¢ be the functions in the following class:
o u,Yuc LT,Q(ET)7
e cither ug or up belongs to Lo o(2 x R?),
e cither uy or u_ belongs to La o(3L, |v(p) - nyl).
Then, we have

/Q s (ur¢r(x,p) — uodo(z,p)) pidrdp

(D.3) + /T u+¢+pgT [v(p) - ng| dS.dpdt — /T u_gb_pgT |v(p) - ng| dS,dpdt
) P2k

+

= [ (@ Do+ ronnaf i

The following lemma shows that one can drop the “strong” integrability conditions
on the traces u and ¢ on X% in Proposition D.4 if u and ¢ satisfy the SRBC.

LEMMA D.5. We assume that
U, (ba Yua qu € LQ,Q(ET)f
— either ug, ¢ € L2 9(Q x R3) or the same holds for ur, ¢r,
— w and ¢ satisfy the SRBC.
Then, the following variant of the energy identity holds:

Oa) [ (o))~ (w)0,0.00) i dodp = [ (Vo) + (V) gl

»r
In addition, u,$ € C([0,T])L2(Q x R?).

Proof. We repeat the argument of Lemma 3.7 in [8]. The key idea is to cut off
away from the grazing set so that the traces on X1 of the regularized function ¢,
are of class Ly (X7, p3%|v-n,|) and they satisfy the SRBC. Then, the Green’s identity
(D.3) is applicable. We list below a few minor modifications in the argument of the
aforementioned lemma.

— We note that the integrals over X1 cancel out thanks to the SRBC.
— One needs to modify integrals I and I3:

L=l + Iy = / (W vysz?)fs(y,w)g(i)g(T;tﬁdydwdt

HT

~ (t\ . (T—t 3 + w3
+ 2/ a¢£()£< > W32y3 5’(y3 J;w?’) dydwdt,
HT :e2 <y2+w2<2e? € € € €
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h=hythai=— [ (X vwas)sa(y,w)s(z)f(TEt)adydwdt

~ ([t T—t\X
HT :e2<y2+w?<2e? € € € g2

where W and X are defined by (E.1). Repeating the argument on p. 489 in
[8], we conclude

11111(]272 + I372) =0.
e—0

The rest of the proof is the same as in Lemma 3.7 in [8]. d
Appendix E. Verification of the identities 5.39 and 5.55.
E.1. Identity 5.39. Let Q be a C*! bounded domain, and let

Y Qpy (z0) = R?
be a local C1! diffeomorphism and W : (x,p) — (y,w) be a mapping given by

y:’(/J(QT), w:(Dw)p
For a function f vanishing outside (0,7 x ., (xo) NR3, we set

Fly.w) = FV (y,w)) = f(z(y), ply, w)).

We compute the transport term Y in the (¢,y,w) variables. We repeat the calcu-
lations of Appendix A in [8] with minor modifications.

Let f € Ly11oc(R7), ¢ € CO'(RT) be functions such that f(-,z,-), (-, z,-) =0 for
(Vp¢)(t,f'3(’y),p(y7w))

x & Q. Using the chain rule gives
oy r .
(ax) waﬁ(t,yaw),
;2 (y), p(y, w))

( ) [v 3(t, ) - (Z;’)Twp@(m(y»p(y,w>>]

2 ay op\" foy\"_ ~
Therefore,

T
(s (o

T N T o\T 7o\T -
1+ | 2w 1+ [GEw|? \OY r

=w- V’l/(g(tﬂga w) -X- vw(Z(t,yﬂU),

©1) W x = () ()=
1+\g—‘;w|2 Oz ) \ Oy

)5
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Thus, by the above computation, we have

[ o

(E.2) ~ o o
= / (0 + W -V, 0) f J dydwdt — / (X - Vo) [ dydwdt,
HT

HT

where H7 is defined in (2.3), and

2
1= (ae(5)) -

dy
The following lemma is a consequence of (E.2).

LEMMA E.1. Let U be the local diffeomorphism given by (5.31)=(5.32), r > 1 be a
number, and u € L,.(XT) be a function such that
- Vpu S L271(ET), Yue LQ(ET)7

B U(t, 7p) =0 forz g QT(ZO)‘
Then, one has

(E.3) Yullp, r) < N[0 +W - Vy)ull,m@r) + N VpulL,, =),

where N =N(Q,r).

Proof. The estimate follows from (E.2) and the fact that for any y € ¥(y, (o))
and w € R3,

W (y,w)] < N (Q) max{|w], 1}. 0
E.2. Identity 5.55. Invoke the notation of Step 4 in the proof of Lemma 5.10.

Proceeding as in section E.1, for any test function ¢, we have

(Tt 00 = (5 ) od(ta.0).

@) =96e00 ~ (2) (2) .dn0

By this computation, we conclude

(B.4) /]R

where

(v- vyé))i{dydvdt - / (G- Vvq@)z/?dydvdt,

(W -Vy,0)U dydwdt = /
R

7 7
T IRT

o= (an) ()

Appendix F. S, theory for the KFP equation on the whole space.

T
T

Assumption F.1. (v.) There exists Ry > 0 such that for any zo = (tg,20,v0)
satisfying to < T and r € (0, Ry],

(Fl) OSCL;D(GHQT(ZO)) Sr}/in

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

VML WITH THE SBC 6675

where

(F.2)  oscyp(a,Qr(20))

to
:7’714/ / ‘a(t7x1,p1)7a(t7x2,p2)|dxldp1d$2dp2dt,
t DT(Zf)ﬂt)XDT(ZO’t)

o—r2

and
D, (z0,t) ={(z,p) : |z — 20 — (t — 750)1?0|1/3 <r,|p—pol <r}.

Remark F.2. Note that if a € Loo((—00, T))Ci4>” (RS) for some € (0, 1], then,

. ; =1 P

for any v, €(0,1), Assumption F.1 (v, ) holds with RO_([a]Loo((foo,T))C’;f{,S’”(RG)’y*)
The following theorem is a simplified version of Theorem 2.4 of [10].

THEOREM F.3. Let
—r>1, K>0, A>0, —co< S <T <00 be numbers,
— a,b,c satisfy the assumptions (5.19) and (5.6) with RY. in place of X7,
- [a]Lm((S,T))C;‘f’”(RG) <L for some > € (0,1] and L > 0.
Then, for any f € L.((S,T) x RY), the equation

(O +p-Va)u— aijapipju +b-Vyu+cu+iu=f, u(0,)=0,
has a unique solution u € SN ((S,T) x RY) (see (2.12)). In addition,

[ull + [IVpull + 1 Dull +1(9 + p- Va)ul
+ 1 (=22)Pull + |V (=A0)Youl < N £

where || - || = - ||z, ((s,7)xrs) and N = N(6,»,r, K,T —S,L).

THEOREM F.4 (Corollary 2.6 of [10]). Invoke the assumptions of Theorem F.3
and drop the Hélder continuity assumption on a. Then, there exist constants

k=k(r)>0, B=0(r)>0, v =0%0)>0

such that if the condition (F.1) in Assumption F.1 (v.) holds, then for any u €
SN ((—00,T) x R%) and A >0,

[[ul SN ((—o00,T)xRE) <= N(S_ﬁ(”(at +p-Va)u— aijapipju +b-Vpu+cu

(F.3) —2
+ Al 1, (=00, 1) x&S) + N Ry |t 1. (=00, 1) xRS) )+

where N =N (r,K), and Ry € (0,1) is the constant in Assumption F.1 (v.).

LEMMA F.5 (see Lemma D.6 in [8]). Invoke the assumptions of Theorem F.3 and
let
- T>0,2>0, 1<qg<r be numbers,
~ ue SN(RT) be a function such that u(0,-) =0, and
hi= (0 +p Vo u— a0y, u+b-Vyu+ (c+ Nu€ L. (R]).

Then, u € SN (RL).
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LEMMA F.6. Let
- 6€(0,1), »2€(0,1], K >0, M >0,\>0 be numbers,
~u€ Ly((0,T) x RY) W3 (R),
— 0l¢|? < a¥(2)&&; <07 HEI? for any z € RY., € € R3,

(F.4) o IVpallp gy < K67

lallz ooz s
for some K > 1,

- he LQ(RE«),
— for any ¢ € C}([0,T] x R®) such that ¢(T,-) =0, one has

/(—(&(;5 +p-Vep)u+ (Vpd) aVu + Aug — he) dz = 0.

Then, the following assertions hold.
(i) One has u € SY (RY) and there exists 8= B(3) >0 such that

(F.5) lull sy gy < No~2(1hll ey + llul + 1 Vpulll @),

where N =N (5, K) > 0.
(ii) If, additionally, h,Vyu € L.(RY), for some r € (2,00), then u € S.(R%.), and

(F.6) [lu

SN(RT) < Na_ﬁ(‘thLr(R}) + [lJul + |vpu‘HL,«(R;))z

where = (r,) >0, N=N(r,s,K)>0.

Proof. In this proof, N is a constant independent of §.
(i) Step 1: ue SY(RL). For t <0 we set u and h to be 0, and a to be 13. Then,
for any smooth function ¢ with compact support in (—oo,T) x RS, we have

/ < — (0 +p - Ved)u+ (Vpd) aVyu — Aug — hd)) dz=0.

This implies that (8, +p- Vy)u € La((—o00,T) X Ri)W{l(Rf;). Next, by Theorem F.3,
the equation

(F.7) Owur +p-Vaug — aijapipj up +Aug =h— 8piaij8pju

has a unique solution u; € SY((—o00,T) x R®) such that ujly<g = 0. Then, for
U =u—uy, we have

U € Ly((—00,T) x R} )W3 (R}), (s +p-Va)U € Lo((—00,T) x RY)W;5 1 (R?),
and the identity
(O +p-Vo)U—=Vp,-(aV,U)+ AU =0

holds in Ly((—o00,T) x R3)W; ' (R3). Then, by “testing” the above identity with u
in the sense of the duality pairing between Ly((—o00,T) x R)WF(R?), k = +1, and
integrating by parts in p, we get for a.e. s€ (—o0,T),

/ U2(s,x,p)dxdp—|—/ (6|V,U|> + AU?)dz =0.
RS

(—o0,s)xR6
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We conclude U =0, and hence, u € S&¥ ((—o0,T) x RY).
Step 2: Sy estimate. By the assumption (F.4) and Remark F.2, for any ~, € (0,1),
the condition (F.1) in Assumption F.1 (v,) holds with

(F.8) Ry =K~ 1/»§1 /=17
Furthermore, let
>0, k>0, v =0(x)>0

be the numbers in Theorem F.4 with r = 2. Then, by the estimate (F.3) applied to
(F.7) and the assumption (F.4), we conclude that there exists N = N(3) such that

||u||sg(n§;) = HU1||S§(R;)
< N5_B|||h‘ + ‘8pial]8pju|||L2(R;) + NK2/%5_2N/%HUHL2(]R;)
SN P|hl pywey + NKS P\ Vyullpy@ey + NK>#6 25|l zi) -

(ii) Applying Lemma F.5 to (F.7), we conclude that u € SN(R%). The desired
estimate (F.6) is obtained via Theorem F.4 in the same way as (F.5). d

LEMMA F.7 (embedding for the steady SIY(R??) space). Let d > 1, p € (1,00),
and u € SéV(RQd) (see (2.12)). Then, the following assertions hold.
(i) For any p € (1,2d) and q > p satisfying

1 < 1 1
g p 2d’
we have
(F.9) lull L, m2a) Sd,p.q lullsy wea)-

(ii) For any p € (1,4d) and ¢ > 1 satisfying

1 - 1 1
g p 4d’
one has
(F.10) Voull L, gea) Sd,pq lullsy gea)-
(iii) For p> 2d,
(F.11) lull Lo r22) Sap llull sy wea)-

Furthermore, if p>4d and « € (0, 1— %),
(F'12) ”[uvvvu]”C;”{fﬂ(de) S,d,p,a ”uHSéV(RM)'
Proof. (1)—(ii) We denote
f=v -Vyu—Ayu+u.

Let T'(t,z,v;t',2’,v") be the fundamental solution of the operator (0; +v-V,) — A,.
It is well known that (see, for example, [30])

il o oI (4 I\ —2d fE—Qfl—(t—tl)U/ v—1
Lo, vt o, 0) = (= F) p( (t—t)3/2 (t—t)1/2 )
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where p is a certain Gaussian function. Then, we have

u(z,v) :/0 /R?d e 'T(t,z,v;0,2' v f(2,v") da’dv' dt

0o , ,
= 2=ty (T ZL VTV N F N de du
_/0 /Rut € p( $3/2 7 41/2 )f(957v)d£vdvdt7

where f(z,v) = f(z + tv,v).
Next, let » be the number defined by the relation
1 1 1
S+S=1+-.
r.p q

Then, by the Minkowski and Young inequalities,
- —ty—2d
[ull L, ®eay < ||f||Lp(]R2d)/O € ||P(t3/27 tl/g)HL (r2a) d.
Since 1 —1/r < 1/(2d), the second factor on the r.h.s. is bounded by
N(d)/ et 2401 gt < o0,
0

and hence, the estimate (F.9) is valid. The second assertion (F.10) is proved in the
same way.
(iii) A simple application of Holder’s inequality gives

(F.13) (2, 0)| Sa 1112, ey / UL <,
0

If”Lp(]RQd)v

and hence, (F.11) is true. The proof of (F.12) follows from the identity

Y o
LIT 1} / /RZd —tt_2d 1/2 (v p)(x ;/2 v ,Utl/;f )f(x/,v/)da?’dv’dt

and the argument in (F.13). We omit the technical details. d

Appendix G. Proof of Proposition 6.2.

LEMMA G.1. We invoke the assumptions of Proposition 5.13 and let f be the finite
energy solution to (3.7)~(3.8) f € C([0,T])La,p(2 x R*) N La((0,T) x Q)W; 4(R?). We
assume, additionally, that for some 0 <6, <80,

(G.1) 0419, Vp9,b,V, -b,c] € Loo (BT,
(G.2) Om € Ly((0,T) x W, 5 (R?),
and, for

fi(@,p) = —v(p) - Vafolz,p) + Vp - (0, (2,0)Vp fo(z,p))
- b(O,x,p) : fo()(xap) - C(va7p)f(]($7p) + 77(07%20)

(understood in the sense of distributions), one has

(G.3)

f1 € Lag, (2 xR?),

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/23/25 to 128.148.225.19 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

VML WITH THE SBC 6679

where oy, is given by (3.9) with g replaced with fo. In addition, we assume that
fo € La(Q)W4(R3) is a finite energy solution to the steady equation (G.3) with SRBC
(see Definition 3.1), where fy is viewed as the r.h.s. Then,

O f € C([0,T]) Loy, (2 x R?) N Lo ((0,T) x Q) Wy 4, (R?),
and, furthermore, uw=0f is a finite energy solution to

(G4) Yu—V, (04Vyu)+b-Vyutcu=mn, z€%7,
u(t,z,p) = u(t,z, Ryp), (t,z,p) € XL, w(0,2,p) = fi(z,p), (z,p) € D x R,

where
(G5) m = &577 — ( — Vp . ((8t0'g)vpf) + (atb) . fo + (8tC)f)

Proof of Lemma G.1. For the sake of clarity, we consider the case when 6,6, = 0.
The argument in the remaining case is the same as the one presented here. Let us
first consider (G.4). By the definition of n; (see (G.5)), the assumptions of the present
lemma, and the fact that f € Ly((0,T) x Q)W4 (R3), we conclude

m € La((0,T) x QW5 H(R?).

Then, by Proposition 5.13, the problem (G.4) has a unique finite energy solution (see
Definition 3.1). Furthermore, we denote

_ t
Fltep) = /0 u(s,2,p) ds + fol.p).

To prove the lemma, it suffices to show that fE f.
Next, by using a simple identity

t
0

(E6)(1) = (E:£)(0) + / €1(5)Ea(s) + E2()E5(s)] ds

with {1 = 0,,b,c and & = 1, fo, and (G.3)—(G.4), we formally conclude that fisa
finite energy solution to the equation

Yf(z) —Vp - (04(2)Vpf(2))+b(2) - Vpf(z) + c(z)f(z) —n(2)
= —77(0,13,1?) + ’U(p) . me()(l',p) - vp : (Jfo (xap)vpf()(xap))
+ b(O,x,p) : vpfO(xap) + C(O,:L',p)fo(:l?,p) + u(O,:C,p)

+ [ (=9 (@l TylT - Do)
+ (atb(57x7p)) : vp(f_ f)(S,:E,p) + (8tc(s7x7p))(f— f)(S,LL',p)) ds

with SRBC and the initial data f(0,-) = fo(-). We note that the sum of the nonintegral
terms on the r.h.s. of the above identity equals 0 due to (G.3). Hence, the function
w= f — f is a finite energy solution to
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(G-6) Yw(z) = V- (04(2)Vyw(z)) +b(2) - Vyw(z) + c(2)w(2)
~ [ (- % (@ (ssm)Tyuo(s.)
0
+ (04b(s,z,p)) - Vyw(s,z,p) + (5‘tc(s,x,p))w(s,x,p)) ds

with the SRBC and the initial data w(0,-) = 0. To make the above argument rigorous,
one needs to work with the weak formulations of (3.13) and (G.4) and use the fact
that fo is a finite energy solution to (G.3) with the SRBC.

Finally, by applying an “energy” type identity (5.107) to (G.6), using integration
by parts in p, and the Cauchy—Schwarz inequality, we get

lw(t, ML @xms) T IVpwlL, o SN WL, o + 1 Vpwlli,se):t €10,T],

where N is independent of t. Taking t < (2N)~! and using the Gronwall’s inequality,
we conclude that w =0 on X" where T} = min{(2N)~',T}. Similarly, we show that
w=0on X! for t € [Ty, min{T} + (2N)~1,T}] and so on. Thus, f = f. O

Proof of Proposition 6.2. The uniqueness follows from the estimate (6.42) with
vanishing “initial data” fo r, Eo 1, Bo -

To show the existence, we consider the iteration scheme [h(,), E(ny, B(n)],n >0,
such that [h(o), E(O); B(O)} = [f070, Eo0, BQQ], and given [h1,Eq,Bq] = [h(n), E(n),B(n)],
the next iteration [hg, E2, Bo] = [h(n41), E(ny1), B(nt1)] is defined as the strong solu-
tion to the system

3

(G.7) Yha + &(Eg +v(p) X Bg) - Vpha — 5(“(1‘7) Eg)hy — Ahy
=&, (v(p) - E1)JY? + Khy +(ha, g),

(GS) hQ(t,xvp):hQ(tvxaRmp)a ZGEZ, h?(oa')EfO,(),

(G.9) OBs = V. x Ba=— [v(p)I 2 0)n(p) - €dp,

(G].O) atBQ + Vr X E2 = 0,

(G.11) V.- Ey :/J1/2h1(p) &dp, V. By=0,

(G.12) (B2 X ng)joe =0, (B2-ng)00=0,

(G.13) E2(0,-) =Eoo(-), B2(0,-)=Bgpo(-).

We assume that [hi,Eq,B4] satisfies

(G.14) Ok ha € C([0, T]) La(9 x B®) N Lo((0,T) WA (2 x B), k < m,
(G.15) Of[E1,B1] € C([0,T]) L2(2), k <m,

(G.16) OFh1(0,-) = for(-) (see(3.16)), k <m,

(G.17) OF[E1,B1)(0,) = [Eo xBok)(-) (see(3.17)—(3.18)),k <m,

( ) Opr + Vz - jr = 0 (in the sense of distributions), k < m,

where pu(t,2) = [ 7V2(p)0 i (,2,p) - €,
R3

iettr) = [ TPk t0) - €
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m—1

(G.19) y(A)(hlvElvBﬁ < Ny, Z ||6_/\Taf[ElaBl]”%x((o,T))W;(Q)
k=0
+ > e O ELBAllF 0.1y <) < N1N2,

where N1, A > 1 are constants depending only on 71, ...,74,9,0, fo.r, Eor, Bor, k< m,
Ny = NQ(Q) > 1, and

(G.20)
T
yW(hl,El,Bl)=supI<A>(h17EhB1,T)+/ DN (hy, Er, By, 7)dr,
r<T 0

(G.21)
DN (hy, Ey, By, 7) =) <||e”(ﬁlaff(ﬂ N+ IVR0E F (DN axre)
k=0

. Ane“aﬂEl,Bmﬂ-nﬁm)

m—4
+ D e VN @+ V0 F (T DI, , L),
k=0

(G.22)
N (h, By, By =Y (e-”ak )2 sy + €Ok [Ex B (r ,->||iz<m)
k=0
m—4
+ Z Heﬂvaff(ﬂ')||2L2‘9/2k(ssz3)v
k=0
(G.23)
I(’\)(thhBl,T)25('\)(711,}31,131,7')
m—8
—l—Z(He_’\Tatkhl( W ws, o+ O |€_”D§8{“h1||2LS(ET)>.
k=0 se{2,ra}

We will show that the following assertions are true.

(i) OF[E2,By],k < m, is a weak solution to Maxwell’s equations (G.9)-(G.10)
formally differentiated k times with respect to ¢ with the perfect conductor
BC and 9} [Ez, B2](0,) = [Eo &, Bo k), ¥ <m. For k <m — 1, the same pair is
a strong solution. In addition, the identities in (G.11) formally differentiated
k times in ¢ are valid.

(ii) OFhg,k <m, is a finite energy solution to (G.7) differentiated formally k times
with respect to ¢ with the initial conditions 9Fhs(0,-) = fo (-) and with the
SRBC.

(iii) the assumptions (G.14)—(G.18) hold with [h2, E2, Bo] in place of [h1,Eq1,B4],

(iv)

m—l
(G24) YV (h2. B2, By) <Ny D e MO B, Boll] 0.y (o)
k=0
m—8
+ > lle O [Ba, Balll7_(0.m)x) < NiNa.
k=0
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The weight e~*" enables us to close the Loo’9/2k+9(ET) estimate via the unsteady
Sy a priori estimates (see (5.9), (5.11)—(5.15) in Propositions 5.4 and 5.6) by leveraging
the Lo, and Ly control in the estimates of the “free” terms K (0Fhy) and &, (v(p) -
OFE1)J'/2. See (G.31) and the paragraph below. Furthermore, the control of the last
term in (G.23) is needed to estimate the L,, norm of the free term K (0Fh;), which
appears in the unsteady S, estimate.

If the assertions (i)—(iv) are true, then, by using a limiting argument (cf. the proof
of Theorem 3.10 in section 7), we conclude that there exist [f, Ef,By] such that the
desired assertions (a)—(e) in Proposition 6.2 are valid.

Proof of (i)—(iv). We will prove assertions in the following order: (i), (iv), (ii),
and (iif).

(i) We use the standard existence/uniqueness results for weak/strong solutions to
Maxwell’s equations with the perfect conductor boundary conditions (see, for example,
Chapter VII, section 4, in [11]). In particular, the differentiated in ¢ equations in
(G.11) are satisfied due to the continuity equations for dFhi,k <m (see (G.18)) and
the compatibility conditions (3.21)—(3.22) on the initial data [Eq ,Bo ;] combined
with the fact that 9Fhy(0,-) = for (see (G.16)). Thus, the assertion (i) is valid.

(iv) In this argument, N = N(r1,...,74,0,Q,m,«). First, we prove the estimates
(G.24), assuming that (ii)—(iii) are true. We modify the proof of the estimate (3.38)
given in section 6.1.

Lo estimate of OF[Ea, Ba], k <m —8. We establish the second estimate in (G.24)
and specify the constant Np. In this argument, Ny = No(Q2) is a constant which
might change from line to line. By applying the W3 div-curl estimate in (3.15) to
Maxwell’s equations differentiated k times in ¢ and rewritten as div-curl systems (see
(4.3)—(4.4)), and using the first bound in (G.19), we have

(G.25)
m—1
D e 0B, Ba]ll?_ 0. myywie)
k=0
m m—1
<N Y [le O B, BalllF 0.0 mac) + N2 Y e 0 mall3 (0.0 Lacaxis)
k=0 k=0
< N2V,

(recall Ny > 1), which gives the bound of the first term in the second estimate in
(G.24). The first term on the right-hand side of (G.25) is estimated in (G.26).

Next, using the W{ div-curl estimate, the Sobolev embedding W4 C Lg, and
(G.25), and the LL*P bound of dFhy,k <m — 8, in (G.19), we conclude

m—8
le™ 7 OF (B2, BallI7 _ (o.ryyw (o)
k=0
m—T m—8
<Ny > e O [Ba, Balll7_omyyzec) + N2 Y, le > 0F [ _ ey < NaNy.
k=0 k=0

Finally, thanks to the embedding W{ C L, we obtain the desired estimate of the
second term in the second estimate in (G.24).

Total energy estimate. First, we derive an estimate of the total instant energy
and dissipation,
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T
(G.26) sup EN(hy, Eq, By, 7) + / DN (hy, Eq, By, 7) dr
<T 0

< NEoy™ (ha, Bz, By) + NATINI Ny + NEW (hy, Eg, By, 0),

where N; and Ny are the constants in (G.19). We follow the argument of Step 1 in
section 6.1 by making the following minor modifications:

e we add the weight e=2* to all the terms therein,

e we modify the integrals I; and Is.
In particular, in I; (see (6.35)), one needs to replace Lf with —Aho — Khy. We then
apply the estimate (B.13) in Lemma B.T:

(G.27) / / A(8Fhy), pa2* OF hy)e M dadt
> ke MV0FhalL, , (s = Nlle O hall7,s-)-

Furthermore, using the symmetry of the operator K and the bound (B.14), we get

(G.28) — / (K(0fh))(0F ho)e M dz
7
2 *(“/2)”67”@{6}12||%2(((),T)XQ)W21(R3) - NHeiMatkhl”Qsz(zf)-

We note that by the assumption (G.19) and the presence of the factor A\ in the
definition of DX (hy, E1, By, 7) (see (G.21)), the last term on the r.h.s. of (G.28) can
be replaced with —NN;A™!. Furthermore, in the term I5 in (6.35), we replace Ej
with E; and proceed as in (G.27).

Unsteady S, estimate. Here, we estimate the remaining term in (G.23), which is
the sum of squares of weighted L{*WL norms. This will be done via the unsteady S,
estimate. We first note that u = e *9Fhy, k <m — 8, formally satisfies the identities

(G29) Yu—Vp-(04+44-Vpu) +&(EBy+v(p) X By —ay) - Vyu

+ ()\Jng — gv(p) . Eg>u

3
= M <K(atkh1) +& (v(p) - OFE1) V2 + 1k>oz Z nil’lm),

Jj=1ki+ko=k,k12>1
u(th?p) = u(tvvaa:p)a AS ET» U(O, ) = f(),k(') (See (316))7

Moy ka = —€0F (Bg +v(p) x By) - V, (07 ha) + g(v(p) -0y E )0} ha,
’r]ftl,kg - (a 8k1 4

0, = OFal) (0,08 ha) + (9 Cp)Ol s,
771?51,1@2 - (afl ;J++g )(8pip_7’af2h2)'
For i <4 and k < m — 8, we apply the unsteady S, estimates in (5.9), (5.11), and
(5.15) with 6/2%"2" in place of 6 and k=1, and we get
(G.30)

— At qk 2 At ok
le08mal3,, upariacmry + Limalle ™02l omyeamn e

<N 3 (le s of G2, g/ﬁwgmﬂufmus SWM(MS))
se{2,r;}

+ Ne™of ha17

2.0/2k+2i (BT)
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We follow the argument in the proof of (6.14) in Proposition 6.3 with minor modifi-
cations:
e The loss of decay in the p variable is different from that in the LL_S, estimate
in (6.14) since the term 9 f is on the Lh.s. in the present argument (cf (b)
below formula (6.20)).
e The main difference is the estimate of the “free” terms e ** K9Fh; and v(p) -
OFE,J/? as the rest of the terms on the r.h.s. of (G.29) are handled in the
same way as in the proof of (6.14) (cf. (6.21) and (6.25)).
Let us consider the first two terms on the r.h.s. of (G.29). By interpolating between
Lo and L, exploiting the presence of the factor A in front of the Ly norm of E; in
DN (hy,Eq,By,7), and using the L4 bound of E; in (G.19), we get

(G:31)  lle™o(p) - OFELT2IT, (0.m)xe)

< ||€ /\takE1||4/Tz 7M8kE1H2 4/r; < N21_2/7)iN1)\*2/Ti'

((0,T)x) ||€ ((0,T)x)

Next, by (B.11) in Lemma B.5 and the interpolation inequality, we have (cf.
(6.31))
H6*>\tK(afh1)HL < oyakr2i (BT) = < Nlle~ At@’“iullL (0, T)x )W (R?)
<A ||€_MD;2yafh1 17, wry + NAYT e MR (-

Furthermore, since k£ < m — 8, by interpolating between L, and L., and using the
bounds of h; in (G.19) (cf. (G.31)), the last term is bounded by

NN AN/ = NN AT,

By the above argument, Holder’s inequality, and the fact that the last term on the
r.h.s. in (G.23) is bounded by N (see (G.19)), we get

(G.32) {Z }IIe‘”K Gl e
s€{2,r;

<AV N e M DRo |} ey + NNATY S NN
se{2,r;}

Thus, combining (G.30) with the estimates of the “free terms” (G.31)—(G.32) and
with the bounds of nonlinear terms (cf. (6.21)—(6.25)), we obtain

(G.33)
m—_8 4
—At gk At a9k
> (1 0bhal s e+ I IS, com)

< Negy™W (ha, Eg, Ba) + NNi NoATY™ 4 NAZS4(0),

where

o]

m—

9/2k+8(QXR3)'
k=0 se{2,r4}

Finally, gathering (G.26) and (G.33) gives

y M (ha, Ba, By) < N/egy™ (ha, B, By) + NA™/T Ny
+ NE#0) + NA2S4(0),
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where £7(0) is defined in (3.37). Choosing e < (2N)~2 gives
y N (h2, B2, By) < N(NIAH™ 4 £7(0) + A%55(0)).

Furthermore, choosing A > (4N)"* gives NyNA~/"+ < N, /4. Finally, choosing N; >
(4/3)N (£7(0) + A2Sf(0)), we obtain

y()‘)(h%Ez,Bz) < Ny,

as desired.

(ii) First, we note that by the estimates of the free terms (G.31)—(G.32), the
assumption on fp o in the statement of Theorem 3.10, and Propositions 5.4-5.6, the
problem (G.29) with k=0 has a unique strong solution hg, and, in addition,

(G.34) ha € C([0,T])La,p(2 x R?) N Lo ((0,T) x Q)W 4(R?)
NS, 0722041 (57) N Lo ((0,T) x QW /90 (R?),i=1,... 4.

o0
Next, we use an induction argument.
Claim 1. We assume that for some kg € {1,...,m — 8}, and all k¥ < kg — 1, one
has

(G.35) Ofha € C([0,T]) La,g 2+ (2 X R*) N La((0,T) x Q)W 5 10x (R?),
(C.36) OFhs € 5, gy (S7)

N Loo((0,T) x Q)WC}O)G/QHQ R3),i=1,...,4,
(G.37) u=e Mk fis a strong solution to (G.29).

Then, we claim that (G.35)—(G.37) hold for all k < kq.
Claim 2. Invoke the definition of 6 in (6.34). We assume that for some ko €
{m—17,...,m} and all k <ko— 1, one has

(G.38) O ha € C([0,T]) La,p, (2 x R?) N Ly((0,T) x Q)W3 4, (R?),
(G.39) u=e MO} fis a finite energy solution to (G.29).

Then, (G.38)—-(G.39) hold for all k < k.

Proof of Claim 1. To justify the differentiation with respect to ¢t and (G.35)
with kg in place of k, we use Lemma G.1 with 850_1h2 in place of f, and fy and f;
replaced with fox,—1 € Lg g 2801 (Q x R3) and fox, € Ly g/2r0 (2 x R3), respectively,
and

1
b==+(E; +v(p) xBy) —ag,c= (Cg F iv(p) ~Eg>,

(G.40) n=r.h.s. of (G.29) with k replaced with kg — 1.

We check the conditions of Lemma G.1. First, it follows from the argument of (G.26)
that

(G.41) neL2((o,T)xQ)W2j91/2k0,1(R3), atneLg((o,T)xQ)W;;/QkO(RS).

Finally, we check the condition V,, - b € Loo(E7) with b = a4, where a4 is defined in
(6.2). We note that
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O,y (t,,p) = 0, / ¥(P,Q (@) gt x.0) - (1,1)dg
40y, [ @9P.QU @, 9(t,.0) - (L1)dg =11+
By the estimate (B.7) with k=1,

(G.42) 1l Lo =7y S N9l 0.0y x )W (m3)-

Next, to handle I3, we will use the identity (B.8):
G13) 0, [#U(PQI W0, 90 da

=0, <I>ij<R@>J1/2<q>2%g<q> dg

. ~1/2
- 4/ ];OQ? ((P Rl 1) T2 (q)g(q) dg — x(p) T (P)g(p),

where £(p) = 27/%mpg [ (1 + |p|?sin®#)~3/2sin(f) df. By (B.7) with k = 1, the first
term on the r.h.s. of (G.43) is bounded by the r.h.s. of (G.42). The remaining terms are
handled similarly. Thus, ||V, - ayllz_(0,7)x0xr3) is bounded by the r.h.s. of (G.42).
Hence, by Lemma G.1, 9f°h, is a finite energy solution to (G.29), and (G.35) holds
with k replaced with kg, as claimed.

Next, to deduce that df°hy is a strong solution that satisfies the desired S,,
regularity in (G.36), we use Propositions 5.4-5.6 combined with the argument of
(G.33). Thus, Claim 1 is proved.

Proof of Claim 2. We repeat the proof of Claim 1 with one minor modification.
We note that to apply Lemma G.1, we need (G.41) to hold, where 7 is defined in
(G.40). This estimate was established in the proof of the energy bound (G.26). See
the argument of (6.41). In particular, to handle the cubic terms (cf. (6.38)-(6.39)),
we need to control certain weighted L5L%? norms of 0f[ha, Vphal, k <m/2, which was
done in Claim 1 (see (G.36)).

(iii) Since (ii) is valid, we only need to verify the continuity equation (G.18).
To this end, we note that the functions Hy = J + J'/2hy and [Eq,B;], satisfy the
identities

(G.44) YHy + (E, +v(p) x By) - V,Hy
=C(HS,GT+G7)+C(J,JV2(hf +hy —g" —g7))
—(E1 —E,)-V,J,
YHy, — (B +v(p) x Bg) -VpHy
(G.45) =C(Hy , G~ +G")+C(J,JV3(hf +hy —g"—g7))

+(E1 —Ey) -V, J.

Differentiating formally the above identities k times in ¢ and integrating over p € R3,
we obtain the continuity equation (G.18). d
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