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Abstract. We prove the local-in-time well-posedness of the relativistic Vlasov–Maxwell–Landau
system in a bounded domain Ω with the specular reflection condition. Our result covers the case
when Ω is a nonconvex domain, e.g., solid torus. To the best of our knowledge, this is the first
local well-posedness result for a nonlinear kinetic model with a self-consistent magnetic effect in a
three-dimensional bounded domain.
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1. Introduction. Let z = (t, x, p), where t ∈ R, x, p ∈ R
3 are the temporal,

spatial, and momentum variables, respectively. For a spatial domain Ω ⊂ R
3, we

denote the incoming/outgoing boundaries and the grazing sets, respectively, as follows:

γ− = {(x, p) : x∈ ∂Ω, nx · p < 0}, γ+ = {(x, p) : x∈ ∂Ω, nx · p > 0},

γ0 = {(x, p) : nx · p= 0},

where nx is an outward unit normal vector at x∈ ∂Ω. Furthermore, we denote

p0 = (1+ |p|2)1/2, v(p) =
p

p0
.

We study the relativistic Vlasov–Maxwell–Landau (RVML) system in a bounded
domain:

∂tF
+ + v(p) · ∇xF

+ + (E+ v(p)×B) · ∇pF
+ = C(F+, F+) + C(F+, F−),

∂tF
− + v(p) · ∇xF

− − (E+ v(p)×B) · ∇pF
− = C(F−, F−) + C(F−, F+),

∂tE−∇x ×B=−

∫

v(p)(F+ − F−)dp,

∂tB+∇x ×E= 0,

∇x ·E=

∫

(F+ − F−)dp, ∇x ·B= 0,

(E× nx)|∂Ω = 0, (B · nx)|∂Ω = 0

(1.1)

with the initial conditions
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6614 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

F±(0, ·) = F±

0 (·), E(0, ·) =E0(·), B(0, ·) =B0(·),

and the specular reflection boundary condition (SRBC)

F±(t, x, p) = F±(t, x,Rxp), Rxp= p− 2(p · nx)nx.

Here F+ and F− are the density functions of ions and electrons, respectively, and C
is the relativistic Landau collision operator given by

C(f, g)(p) =∇p ·

∫

R3

Φ(P,Q)
(

∇pf(p)g(q)− f(p)∇qg(q)
)

dq,(1.2)

where Φ(P,Q) is the Belyaev–Budker kernel defined in section 2 (see (2.7)). The
RVML is a fundamental model of a hot dilute collisional plasma with magnetic and rel-
ativistic effects. Such a model is relevant for plasma fusion in tokamaks, where plasma
particles may reach high velocities. For the formal derivation, see, for example, [27].

For the sake of simplicity, all the physical constants are set to 1 (cf. [32]) since
the exact relationships among them do not play any role in our analysis. Our goal
is to prove the local-in-time well-posedness of the RVML system near the relativistic
Maxwellian

J(p) = e−p0 ,(1.3)

which is called the Jüttner’s solution. The global well-posedness of the RVML system
was first established in [32] for the periodic boundary conditions, and later, this result
was extended to the whole space in [36]. For the related studies of this model, see
[28] and [35].

The presence of spatial boundaries is natural in kinetic models, and the study of
boundary value problems is one of the foci of contemporary kinetic PDE theory. In this
context, the investigation of hyperbolic kinetic models poses a formidable challenge
due to the nonuniformly characteristic nature of the grazing set γ0 associated with the
free streaming operator ∂t+p ·∇x. Near the grazing set, the regularity of a solution is
expected to deteriorate significantly, resulting in profound mathematical intricacies.
The standard energy techniques, which typically rely on differentiating with respect
to spatial and velocity variables, become inadequate in such a scenario.

Particularly noteworthy is the occurrence of singularities emanating from the
grazing set in nonconvex domains [24], where hyperbolic kinetic PDEs are expected
to yield solutions of, at best, bounded variation [19]. Furthermore, the introduction of
magnetic effects can trigger singularities even in a half-space domain. An illustrative
example is the one-dimensional relativistic Vlasov–Maxwell (RVM) system subject
to the perfect conductor boundary conditions [16] (see also [15] for an example in a
three-dimensional half-space). This specific case underscores the limited knowledge
we possess, as only the global existence of a weak solution is currently known for the
RVM system in a three-dimensional bounded domain [14].

In stark contrast, in convex domains and in the absence of magnetic effects, re-
cent papers have demonstrated global well-posedness for several important hyperbolic
plasma models such as the Vlasov–Poisson and Vlasov–Poisson–Boltzmann systems
[21], [22], [5].

Conversely, when velocity diffusion is introduced, a higher degree of regularity
near the grazing set is expected, owing to a hypoelliptic gain [31]. The nature of
this regularity depends on the specific boundary conditions imposed on the outgoing
boundary γ−. Notably, a linear kinetic Fokker–Planck (KFP) equation with the inflow
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VML WITH THE SBC 6615

(Dirichlet) boundary conditions is anticipated to exhibit at most Hölder regularity in
both spatial and velocity variables [23].

However, in the presence of the SRBC, a unique avenue opens. Employing a
flattening and extension strategy, one can extend the solution of the KFP equation
to the entire space and invoke the Sp theory of KFP equations, akin to the Calderon–
Zygmund theory for parabolic PDEs [20], [7], [8]. This approach yields Hölder regu-
larity not only for the solution but also for its velocity gradient. Such an extension
argument is unknown for other boundary conditions in kinetic theory.

In recent years, an L2 to L∞ framework has been developed for the Boltzmann
equation in bounded domains (see [18] and [12], [13], [25] for further developments).
The method is based on interpolating between the natural entropy or energy bound
and the interplay between characteristics and velocity averaging in the collision [17].
However, this approach is less applicable to the Landau equation due to the absence of
characteristic curves. We emphasize that a higher regularity of the velocity gradient
is required to establish the uniqueness for the Landau equation due to the nonlin-
ear diffusion term (see [25]). To handle the Landau and the Vlasov–Poisson–Landau
equations with the SRBC, the authors of [20] and [7] combined the aforementioned
mirror-extension method with the Sp estimate. Their results require merely C2 reg-
ularity of domains and, hence, allow a solid tori domain, which resembles a tokamak.

Adapting the aforementioned framework to the RVML system poses a formidable
challenge due to the anticipated low regularity of solutions to Maxwell’s equations.
The intricate nature of the relativistic Landau kernel, coupled with the presence of the
relativistic transport term, introduces additional mathematical complexities. Our in-
novative approach involves deducing the regularity of solutions to Maxwell’s equations
by treating them as an elliptic system of the Hodge type. This inspired the devel-
opment of a delicate iteration scheme, where we propagate temporal derivatives and
employ a descent argument, leveraging div-curl estimates and a relativistic adaptation
of the Sp estimates for KFP equations with the SRBC.

Our main result is, informally speaking, the following (see Theorem 3.10): if
F0−J , E0, B0 are of order ε in some sense, then the RVML system has a unique strong
solution [F,Ef ,Bf ] on [0, T ] for some T > 0 such that F± − J,Ef ,Bf are of order ε.
Due to the delicate behavior of kinetic PDEs near the boundary, there have been few
results on well-posedness for any kinetic models with a self-consistent magnetic effect
in three-dimensional domains (see [6] for the result on RVM in a half-space). To the
best of our knowledge, Theorem 3.10 provides the first well-posedness result for the
system with the Vlasov–Maxwell structure in a three-dimensional bounded domain. In
a separate paper [9], the first, second, and fourth authors established a global estimate
and asymptotic stability for the RVML system near a global Jüttner’s solution.

2. Notation and conventions. Before we state the main results, we introduce
some notation. Throughout the paper, T > 0 is a number.

• Geometric notation.

P = (p0, p), Q= (q0, q), P ·Q= p0q0 − p · q,(2.1)

Br(x0) = {x∈R
3 : |x− x0|< r}, Ωr(x0) = Ω∩Br(x0),(2.2)

R
3
± = {x∈R

3 :±x3 > 0}, H± = {(x, p)∈R
3
± ×R

3},(2.3)

H
T
± = {z ∈ (0, T )×H±}, R

7
T = {z ∈ (0, T )×R

6},
ΣT = (0, T )×Ω×R

3, ΣT± = (0, T )× γ±.
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6616 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

• Matrix notation.

13 =diag(1,1,1), R=diag(1,1,−1),

ξ=diag(1,−1), ξ0 =

[
1
1

]
, ξ1 =

[
1
−1

]
.(2.4)

• Relativistic kinetic transport operator.

Y = ∂t + v(p) · ∇x.

• Relativistic Belyaev–Budker kernel. We introduce

Λ(P,Q) = (P ·Q)2
(
(P ·Q)2 − 1

)−3/2
,(2.5)

S(P,Q) =
(
(P ·Q)2 − 1

)
13 − (p− q)⊗ (p− q)(2.6)

+ (P ·Q− 1)(p⊗ q+ q⊗ p),

Φ(P,Q) =
Λ(P,Q)

p0q0
S(P,Q).(2.7)

• Function spaces. Let G⊂R
7 be an open set.

– C(G) is the set of all bounded continuous functions on G, and Ck(G), k ∈
{1,2, . . .} is the subspace of C(G) functions with partial derivatives up to
order k belonging to C(G).

– C1
0 (G) (C0,1

0 (G)) is the subset of C1(G) (Lipschitz) functions on G that
vanish for large z. Similarly, one can define Ck0 (G), k ∈ {2,3, . . .}.

– C∞
0 (G) is the set of all infinitely differentiable functions with the support

contained in G.
– Anisotropic Hölder space. For an open set D ⊂ R

6 and α ∈ (0,1], by

C
α/3,α
x,p (D), we denote the set of all bounded functions f = f(x, p) such

that

[f ]
C

α/3,α
x,p (D)

:= sup
(xi,pi)∈D:(x1,p1) 6=(x2,p2)

|f(x1, p1)− f(x2, p2)|
(|x1 − x2|1/3 + |p1 − p2|)α

<∞.

Furthermore, the norm is given by

‖f‖
C

α/3,α
x,p (D)

:= ‖f‖L∞(D) + [f ]
C

α/3,α
x,p (D)

.(2.8)

– Weighted spaces on the kinetic boundary. For a weight ω≥ 0 on ∂Ω×R
3,

we set

‖f‖2L2(ΣT
±
,ω) =

∫

ΣT
±

f2ω dSxdp.(2.9)

– Traces. Let r ∈ [1,∞) and f ∈ Lr(Σ
T ) be a function such that Y f ∈

Lr(Σ
T ). Then, the traces of f can be defined (see the details in Appen-

dix D). In particular, there exist functions (fT , f0, f+, f−), which we call
traces of f , such that a variant of Green’s identity holds (see Proposi-
tion D.2).

– Weighted Lebesgue space. For θ ∈ R and r ∈ [1,∞], by Lr,θ(G) we denote
the set of all Lebesgue measurable functions u such that

‖u‖Lr,θ(G) := ‖pθ0u‖Lr(G) <∞.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VML WITH THE SBC 6617

– Weighted Sobolev spaces. For r ∈ [1,∞], byW 1
r,θ(R

3) we denote the Banach
space of functions u∈Lr,θ(R3) such that the norm

‖u‖W 1
r,θ(R

3) := ‖|u|+ |∇pu|‖Lr,θ(R3) <∞.

For θ= 0, we set W 1
r (R

3) :=W 1
r,0(R

3).

– Dual Sobolev space. Let W−1
2,θ (R

3) be the space of all distributions u such
that

u= ∂piηi + ξ(2.10)

for some ξ, ηi ∈ L2,θ(R
3), i = 1,2,3. Furthermore, for u ∈ W−1

2 (R3) and
f ∈W 1

2 (R
3), by

〈u, f〉=
∫

R3

(−ηi · ∂pif + ξf)dp,(2.11)

we denote the duality pairing between W−1
2 (R3) and W 1

2 (R
3), which is

independent of the choice of ηi and ξ.
– Nonrelativistic (Newtonian) kinetic Sobolev space.

SNr (G) = {f ∈Lr(G) : (∂t + p · ∇x)f,∇pf,D
2
pf ∈Lr(G)},

and the norm is defined as follows:

‖f‖SN
r (G) = ‖|f |+ |∇pf |+ |D2

pf |+ |(∂t + p · ∇x)f |‖Lr(G).(2.12)

– Mixed-norm spaces. For normed spaces X and Y , we write u = u(x, y) ∈
XY if for each x, ux := u(x, ·)∈ Y , and

‖u‖XY := ‖‖ux‖Y ‖X <∞.

– Weighted unsteady relativistic kinetic Sobolev spaces. Let Sr,θ(G) = {f ∈
Lr,θ(G) : Y f,∇pf,D

2
pf ∈Lr,θ(G)} be the Banach space with the norm

‖f‖Sr,θ(G) = ‖|f |+ |∇pf |+ |D2
pf |+ |Y f |‖Lr,θ(G).(2.13)

In the case when θ= 0, we set Sr(G) = Sr,0(G).
– Steady Sr spaces. For r ∈ [1,∞], by Sr,θ(Ω×R

3), we denote the set of all
functions u on Ω×R

3 such that

u, v(p) · ∇xu,∇pu,D
2
pu∈Lr,θ(Ω×R

3).(2.14)

The norm is given by

‖u‖Sr,θ(Ω×R3) = ‖|u|+ |v(p) · ∇xu|+ |∇pu|+ |D2
pu|‖Lr,θ(Ω×R3).

(2.15)

– Vector fields. We use boldface letters to denote vector fields. We write
u ∈ X, where X is some vector space if each component of u belongs to
X.

• Conventions.
– We assume the summation with respect to repeated indexes.
– If functions f and g are defined on D ⊂ R

3 and R
3, respectively, and g

vanishes outside D, then, for x 6∈D, we set (fg)(x) = 0.
– By N = N(· · · ), we denote a constant depending only on the parameters

inside the parentheses. The constants N might change from line to line.
Sometimes, when it is clear what parameters N depends on, we omit them.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3. Main results. Let f = (f+, f−) be perturbations of F± near the relativistic
Maxwellian given by

F± = J + J1/2f±

(see (1.3)). We denote

Lf =−Af −Kf,

A±f = 2J−1/2C(J1/2f±, J), Af = (A+f,A−f),

Kf = J−1/2C
(
J,J1/2(f+ + f−)

)
ξ0,

Γ±(f, g) = J−1/2C
(
J1/2f±, J1/2(g+ + g−)

)
,

Γ(f, g) = (Γ+(f, g),Γ−(f, g)),

(3.1)

where C is defined by (1.2) and (2.5)–(2.7). Then, the triple [f,E,B] satisfies the
following system (see p. 276 in [32]):

Y f =−ξ(E+ v(p)×B) · ∇pf +
ξ1
2
(v(p) ·E)f +Af(3.2)

+ ξ(v(p) ·E)J1/2 +Kf +Γ(f, f),

f(0, ·) = f0(·), f(t, x, p) = f(t, x,Rxp), z ∈ΣT−,

∂tE−∇x ×B=−jf :=−
∫
v(p)J1/2(p)f(p) · ξ dp,(3.3)

∂tB+∇x ×E= 0,(3.4)

∇x ·E= ρf :=

∫
J1/2f(p) · ξ dp, ∇x ·B= 0,(3.5)

(E× nx)|∂Ω = 0, (B · nx)|∂Ω = 0, E(0, ·) =E0(·), B(0, ·) =B0(·),(3.6)

where ξ and ξ1 are defined in (2.4). For the sake of convenience, we also call (3.2)–
(3.6) the RVML system.

Before we state the definition of the strong solution to the RVML system, we
introduce the notions of finite energy and strong solutions to the linear relativistic
Landau equation

Y f −∇p · (σg∇pf) + b · ∇pf + (c+ λ)f = η,(3.7)

f(t, x, p) = f(t, x,Rxp), z ∈ΣT−, f(0, ·) = f0(·),(3.8)

where

σg(t, x, p) =

∫

R3

Φ(P,Q)(2J + J1/2g(t, x, q))dq.(3.9)

Remark 3.1. The Landau equation (3.2) can be rewritten as (3.7) with g =
f+ + f− in (3.9), λ = 0, and b, c, η depending on f . See the details in the proof of
Proposition 6.3 (cf. (6.17)).

Definition 3.1 (finite energy solution). We say that

f ∈C([0, T ])L2(Ω×R
3)∩L2((0, T )×Ω)W 1

2 (R
3)

is a finite energy solution to (3.7)–(3.8) if for any test function φ satisfying

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VML WITH THE SBC 6619

φ∈L2((0, T )×Ω)W 1
2 (R

3), Y φ∈L2(Σ
T ),(3.10)

φ∈C([0, T ])L2(Ω×R
3),(3.11)

φ(t, x, p) = φ(t, x,Rxp), (t, x, p)∈ΣT− (in the trace sense),(3.12)

and all t∈ [0, T ], one has

∫

Ω×R3

(fφ)(t, x, p)− f0(x, p)φ(0, x, p)dxdp−
∫

(0,t)×Ω×R3

f(Y φ)dz(3.13)

+

∫

(0,t)×Ω×R3

(
(∇pφ)

Tσg∇pf + (b · ∇pf)φ+ (c+ λ)fφ

)
dz

=

∫

(0,t)×Ω

〈η(τ,x, ·), φ(τ,x, ·)〉dxdτ,

where 〈·, ·〉 is the duality pairing between W−1
2 (R3) and W 1

2 (R
3) (see (2.11)).

Furthermore, let g, b, c, f , and η be t-independent functions. Then, we say that
f ∈L2(Ω)W

1
2 (R

3) is a finite energy solution to the steady equation

v(p) · ∇xf −∇p · (σg∇pf) + b · ∇pf + (c+ λ)f = η,

f(x, p) = f(x,Rxp), z ∈ γ−,
(3.14)

if for any test function φ= φ(x, p) satisfying the conditions analogous to (3.10)–(3.12),
the “steady” counterpart of the identity (3.13) holds.

Remark 3.2. By Lemma D.5, if φ satisfies the conditions (3.10), (3.12), and
φ0 ∈L2(Ω×R

3) in the trace sense (see Definition D.4), then φ∈C([0, T ])L2(Ω×R
3).

Definition 3.2. We say that f ∈ S2(Σ
T ) is a strong solution to (3.7)–(3.8) if

• the identity (3.7) holds in the L2(Σ
T ) sense,

• the initial condition and the SRBC in (3.8) hold a.e. for the trace functions
f0 and f± (see Definition D.4).

Similarly, we define a strong solution to the steady counterpart of (3.7)–(3.8).

Remark 3.3. By using the Green’s identity in (D.4), one can show that any strong
solution is also a finite energy solution. Conversely, if f is a finite energy solution
such that f ∈ S2(Σ

T ), then f is a strong solution.

Definition 3.3. We say that the VML system (3.2)–(3.6) has a strong solution
[f,E,B] on the time interval [0, T ] if

– f is a strong solution to the Landau equation (3.2) (see Definition 3.2),
– E,B∈C1

(
[0, T ],L2(Ω)),

– for any t ∈ [0, T ], E(t, ·),B(t, ·) ∈W 1
2 (Ω), and (E(t, ·)× nx)|∂Ω ≡ 0, (B(t, ·) ·

nx)|∂Ω ≡ 0,
– the identities (3.3)–(3.5) hold in the L2((0, T )×Ω) sense.

Assumption 3.4. The domain Ω satisfies the following variant of the div-curl
estimate. For any r ∈ (1,∞) and any u∈Lr(Ω) such that

– ∇x ×u∈Lr(Ω), ∇x ·u∈Lr(Ω),
– either (u× nx)|∂Ω = 0 or (u · nx)|∂Ω = 0,

one has u∈W 1
r (Ω), and

‖u‖W 1
r (Ω) ≤N‖|∇x ×u|+ |∇x ·u|+ |u|‖Lr(Ω),(3.15)

where N =N(r,Ω).
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Remark 3.5. Loosely speaking, if Ω can be transformed into a simply connected
domain of class C1,1 by removing a finite number of “cuts,” then Ω satisfies Assump-
tion 3.4. See Hypothesis 1.1 and Theorems 3.2–3.3 in [1]. We point out that a solid
torus B1×S1 satisfies the aforementioned assumption since one needs to make a single
cut to obtain a simply connected C1,1 domain.

Remark 3.6. A reader might be familiar with a variant of (3.15) where the right-
hand side (r.h.s.) does not contain the term ‖u‖Lr(Ω) (see [34]). However, in the case
when the boundary condition (u · nx)|∂Ω = 0 is imposed, such an estimate might be
false if Ω is not simply connected. We refer the reader to a beautiful counterexample
in section 9 of [4].

We will construct the solution to the VML system via a Picard type iteration ar-
gument. It turns out that to close such an argument, one needs to control the temporal
derivatives up to order m ≥ 20 of the particle density functions and the electromag-
netic field (see (3.46)–(3.50)). To this end, one needs the initial data to satisfy certain
regularity and compatibility conditions. Loosely speaking, those are the conditions
on the temporal derivatives at t = 0. One can deduce the expression of such deriv-
atives from the RVML system as follows. Given [∂kt f(0, x, p), ∂

k
t E(0, x), ∂kt B(0, x)],

we formally apply the operator ∂kt to (3.2), (3.3)–(3.4), plug t = 0, and solve for
[∂k+1
t f(0, x, p), ∂k+1

t E(0, x), ∂k+1
t B(0, x)].

Definition 3.4. We set [f0,0,E0,0,B0,0] = [f0,E0,B0]. Furthermore, given
f0,j(x, p), E0,j(x), B0,j(x), j = 0, . . . , k, we set

f0,k+1 =−v(p) · ∇xf0,k + (A+K)f0,k + ξ1(v(p) ·E0,k)J
1/2 +

k∑

j=0

(
k

j

)
(3.16)

×
(
− ξ(E0,j + v(p) ·B0,j) · ∇pf0,k−j +

ξ1
2
(v(p) ·E0,j)f0,k−j +Γ(f0,j , f0,k−j)

)
,

E0,k+1(x) :=∇x ×B0,k(x)−
∫

R3

v(p)J1/2(p)f0,k(x, p) · ξ dp,
(3.17)

B0,k+1 =−∇x ×E0,k.
(3.18)

Assumption 3.7 (compatibility conditions). We assume

f0,k is a finite energy solution to (3.16) with the SRBC, k≤m− 1,(3.19)

f0,k(x, p) = f0,k(x,Rxp), (x, p)∈ γ− (in the trace sense), k≤m− 8,(3.20)

(E0,k × nx)|∂Ω ≡ 0, (B0,k · nx)∂Ω ≡ 0, k≤m− 1,(3.21)

∇ ·B0,k ≡ 0, ∇ ·E0,k(x) =

∫
J1/2(p)f0,k(x, p) · ξ dp, k≤m− 1,(3.22)

where in (3.20), we implicitly assume that f0,k,
p
p0

· ∇xf0,k ∈ L2(Ω×R
3), so that the

trace is well defined.

Remark 3.8. Here, we show that for k ≥ 1, (3.22) can be derived formally from
(3.22) with k = 0. The first identity in (3.22) follows directly from (3.18). Due to
(3.17), to prove the second one, it suffices to demonstrate that for k= 0, . . . ,m,
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VML WITH THE SBC 6621

∫

R3

J1/2f0,k+1 · ξ dp+∇x ·
∫

R3

v(p)J1/2f0,k · ξ dp= 0.(3.23)

To this end, we denote F0,k = J+J1/2f0,k and note that the function F0,k+1 satisfies

F+
0,k+1 =−v(p) · ∇xF

+
0,k +

k∑

j=0

(
k

j

)
(3.24)

×
(
(E0,j + v(p)×B0,j) · ∇pF

+
0,k−j + C(F+

0,j , F
+
0,k−j) + C(F+

0,j , F
−
0,k−j)

)
= 0,

F−
0,k+1 =−v(p) · ∇xF

−
0,k +

k∑

j=0

(
k

j

)
(3.25)

×
(
− (E0,j+v(p)×B0,j) · ∇pF

−
0,k−j+C(F−

0,j , F
−
0,k−j)+C(F−

0,j , F
+
0,k−j)

)
=0.

The above identities can be derived by using the definition of A,K,Γ (see (3.1)) and
the fact that C(J,J) = 0. One can also deduce (3.24)–(3.25) by differentiating formally
the first two equations in (1.1), plugging t= 0, and replacing ∂kt F with F0,k. Finally,
subtracting (3.25) from (3.24), integrating over p ∈ R

3, and using the definition of C
(see (1.2)), we obtain (3.23).

Remark 3.9. One can show that Assumption 3.7 is satisfied if f0,E0, and B0 are
smooth compactly supported functions away from ∂Ω, f0 decays fast for large p, and
(3.22) holds with k= 0.

We introduce the key functionals that will be controlled in the proof of the local
existence. Let θ, τ > 0 be numbers, and let f and [Ef ,Bf ] be sufficiently regular
functions on Στ and (0, τ)×Ω, respectively.

Instant energy functionals. We introduce the baseline instant energy

E||,f (τ) =
m∑

k=0

(
‖∂kt f(τ, ·)‖2L2(Ω×R3) + ‖∂kt [Ef ,Bf ](τ, ·)‖2L2(Ω)

)
, τ > 0,(3.26)

and the energy

Ef (τ) = E||,f (τ) +
m−4∑

k=0

‖∂kt f(τ, ·)‖2L
2,θ/2k

(Ω×R3).(3.27)

Higher regularity instant functional. Let ∆r ∈ (0, 1
42 ) and denote

r1 = 2,
1

ri
=

1

ri−1
−
(
1

6
−∆r

)
, i= 2,3,4,(3.28)

r2 ∈ (2,3), r3 ∈ (3,6), r4 > 14,(3.29)

Hf (τ) =

4∑

i=1

m−4−i∑

k=0

‖∂kt f(τ, ·)‖2S
ri,θ/2

k+2i (Ω×R3)(3.30)

+
m−1∑

k=0

‖∂kt [Ef ,Bf ](τ, ·)‖2W 1
2 (Ω) +

3∑

i=2

m−4−i∑

k=0

‖∂kt [Ef ,Bf ](τ, ·)‖2W 1
ri

(Ω).
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6622 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Total instant functional. The total instant functional is the sum of the total
instant energy and the higher regularity functional:

If (τ) = Ef (τ) +Hf (τ), τ > 0,(3.31)

If (0) is given by (3.31)with∂kt [f,Ef ,Bf ](τ, ·) replaced with [f0,k,E0,k,B0,k].(3.32)

Dissipation functionals. The baseline dissipation is defined by

D||,f (τ) =

m∑

k=0

‖∂kt f(τ, ·)‖2L2(Ω)W 1
2 (R

3)(3.33)

and the total dissipation is

Df (τ) =D||,f (τ) +

m−4∑

k=0

‖∂kt f(τ, ·)‖2L2(Ω)W 1

2,θ/2k
(R3).(3.34)

Total functional.

yf (τ) = sup
t≤τ

If (t) +
∫ τ

0

Df (t)dt.(3.35)

Here is the main result of the present paper.

Theorem 3.10. Let m ≥ 20 be an integer, r ∈ (14,∞) be a number, and Ω
be a C1,1 bounded domain satisfying Assumption 3.4. Then, there exists a constant
θ0 = θ0(r1, . . . , r4)> 1 such that for any θ≥ θ0 there exist constants

M =M(r1, . . . , r4,m, θ,Ω)> 1,

ε0 = ε0(θ, r1, . . . , r4,m,Ω)∈ (0,1), T = T (θ, r1, . . . , r4,m,Ω)∈ (0,1)
(3.36)

such that if If (0)<∞ (see (3.32)), and
–

Ef (0) :=
m∑

k=0

(
‖[E0,k,B0,k]‖2L2(Ω) + ‖f0,k‖2L2(Ω×R3)

)
(3.37)

+
m−4∑

k=0

‖f0,k‖2L
2,θ/2k

(Ω×R3) ≤ ε0/M

(see (3.16)–(3.18)),
– the compatibility conditions (3.19)–(3.22) in Assumption 3.7 hold,

then the following assertions hold.
(i) RVML system (3.2)–(3.6) has a strong solution [f,Ef ,Bf ] (see Definition 3.4)

on ΣT such that

yf (T )< ε0 (see (3.35)).(3.38)

(ii) For k≤m, ∂kt f is a finite energy solution (see Definition 3.1) to (3.2) differ-
entiated k times in t with the initial data ∂kt f(0, ·)≡ f0,k(·) and SRBC.

(iii) For k ≤ m− 1, ∂kt [Ef ,Bf ] ∈ C([0, T ])L2(Ω) ∩ L∞((0, T ))W 1
2 (Ω) is a strong

solution to Maxwell’s equations (3.3)–(3.4) differentiated k times with the
initial data [E0,k,B0,k] and the perfect conductor BC, whereas ∂mt [Ef ,Bf ] ∈
C([0, T ])L2(Ω) is a weak solution (see [11]).
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VML WITH THE SBC 6623

(iv) The identities ∇x·∂kt Ef = ∂kt ρf , ∇x·∂kt Bf = 0 hold thanks to the compatibility
conditions (3.22) and the continuity equation

∂t(∂
k
t ρf ) +∇x · ∂kt jf = 0, k≤m

(see (3.3), (3.5)).
(v) In addition, if [fi,Efi ,Bfi ], i= 1,2, are strong solutions to the RVML system

on ΣT satisfying the bound (3.38), then we have f1 = f2 on ΣT and Ef1 =Ef2 ,
Bf1 =Bf2 on (0, T )×Ω.

3.1. Iteration scheme. To prove the existence, we set up an iteration scheme
(cf. [32]). Let [f0,E0,B0] = [f0,E0,B0], and, given [fn,En, Bn], we set [fn+1,En+1,
Bn+1] to be the strong solution to the following linear system (see Proposition 6.2):

Y fn+1 + ξ(En + v(p)×Bn) · ∇pf
n+1 − ξ

2
(v(p) ·En)fn+1 +Lfn+1(3.39)

= ξ1(v(p) ·En+1)J1/2 +Γ(fn+1, fn),

fn+1(t, x, p) = fn+1(t, x,Rxp), z ∈ΣT−, fn+1(0, ·)≡ f0,0,(3.40)

∂tE
n+1 −∇x ×Bn+1 =−

∫
v(p)J1/2(p)fn+1(p) · ξ dp,(3.41)

∂tB
n+1 +∇x ×En+1 = 0,(3.42)

∇x ·En+1 =

∫
J1/2fn+1(p) · ξ dp, ∇x ·Bn+1 = 0,(3.43)

(En+1 × nx)|∂Ω = 0, (Bn+1 · nx)|∂Ω = 0,(3.44)

En+1(0, ·)≡E0,0(·), Bn+1(0, ·)≡B0,0(·),(3.45)

where L=−A−K is the linearized Landau operator (see (3.1)).
Setting f := fn+1, g := fn, Ef :=En+1, Eg :=En, Bf =Bn+1, Bg :=Bn gives

Y f + ξ(Eg + v(p)×Bg) · ∇pf − ξ

2
(v(p) ·Eg)f +Lf(3.46)

= ξ1(v(p) ·Ef )J1/2 +Γ(f, g),

f(0, ·) = f0,0, f(t, x, p) = f(t, x,Rxp), z ∈ΣT−,

∂tEf −∇x ×Bf =−
∫
v(p)J1/2(p)f(p) · ξ dp,(3.47)

∂tBf +∇x ×Ef = 0,(3.48)

∇x ·Ef = ρf =

∫
J1/2(p)f(p) · ξ dp, ∇x ·Bf = 0,(3.49)

(Ef × nx)|∂Ω = 0, (Bf · nx)|∂Ω = 0, Ef (0, ·)≡E0(·), Bf (0, ·)≡B0(·).(3.50)

The following proposition is the crux of the proof of the existence part in Theo-
rem 3.10.

Proposition 3.11 (propagation of smallness). Invoke the assumptions of Theo-
rem 3.10 and let θ,M,ε0, and T be the constants as in (3.36). Let g= (g+, g−),Eg,Bg

be a triple such that for each k ∈ {0, . . . ,m},
∂kt g ∈C([0, T ])L2(Ω×R

3), ∂kt [Eg,Bg]∈C([0, T ])L2(Ω), k≤m,(3.51)

g(t, x, p) = g(t, x,Rxp), (t, x, p)∈ΣT−,(3.52)

∂kt g(0, ·) = f0,k(·) (see (3.16)),(3.53)

∂kt [Eg,Bg](0, ·) = [E0,kB0,k](·) (see (3.17)−(3.18)).(3.54)
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6624 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Then, if θ and M are sufficiently large and ε0 is sufficiently small, and

yg(T )< ε0, (3.37) holds,(3.55)

then the linear RVML system (3.46)–(3.50) with the initial conditions [f0,E0,B0] has
a unique strong solution [f,Ef ,Bf ] (see Definition 3.4). Furthermore, we have

yf (T )< ε0,(3.56)

and in addition, the assertions analogous to (ii)–(v) hold for ∂kt [f,Ef ,Bf ]. Moreover,
the conditions (3.51)–(3.54) hold with [g,Eg,Bg] replaced with [f,Ef ,Bf ].

4. Method of the proof and organization of the paper. The goal of this
section is to highlight the key difficulties and to delineate the main ideas in the proof
of Theorems 3.10 and Proposition 3.11. For the sake of clarity, we will omit some
technical details.

4.1. Unique solvability and the velocity Hessian estimates for the linear
Landau equation. First, we need to show that for each n, the iteration scheme
(3.39)–(3.45) is well-posed. We will focus on the case when n = 0 and will only
consider (3.46) with g = f0. We want to show that it has a unique strong solution
f (see Definition 3.2), under the assumption that f0, E0, and B0 are sufficiently
regular functions. In addition, our argument will enable us to deduce that f and ∇pf
are bounded functions, which is important for proving both the existence and the
uniqueness parts of Theorem 3.10.

Uniqueness and S2 regularity. The basic difficulty in establishing the uniqueness
of the boundary value problems for the velocity diffusive kinetic equations lies in the
fact that for the natural solution class

f ∈L2((0, T )×Ω)W 1
2 (R

3), Y f ∈L2((0, T )×Ω)W−1
2 (R3),

it is unknown if the traces are well defined and if the energy identity for the transport
operator Y holds. On the other hand, if f,Y f ∈ L2(Σ

T ), then the traces are well
defined (see Appendix D), and if, additionally, f satisfies the SRBC, then a variant of
the energy identity does hold (see Lemma D.5). To summarize, we first construct a
solution to (3.46) in the natural energy class. We show the uniqueness by establishing
the S2 regularity, i.e.,

Y f,D2
pf ∈L2(Σ

T ).(4.1)

Mirror-extension argument and S2 regularity. To prove (4.1), we use an extension
argument, which first appeared in [20] and was later used in the studies of the Vlasov–
Poisson–Landau [7] and linear Landau [8] equations. First, we localize in the spatial
and momentum variables by deriving an equation for f multiplied by a suitable cutoff
function (see (5.25)–(5.26)). By using a flattening and extension argument (see the
proof of Lemma 5.10), near the boundary, we reduce (3.46) to a parabolic PDE on
the whole space (5.46) with discontinuous drift coefficients X (see (5.37), (5.43)). We
point out that such a drift term is absent when the boundary is flat. Thus, one needs
to use a Calderon–Zygmund type result to obtain (4.1). However, in contrast to [20],
[7], [8], our new equation (5.46) is quite different from the Newtonian KFP type equa-
tion (see (4.2)) since the coefficient in the transport term depends on both spatial and
momentum variables. We are not aware of any Calderon–Zygmund type result for such
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VML WITH THE SBC 6625

an equation. To overcome this difficulty, we make a change of variables in the momen-
tum variable, which enables us to reduce (5.46) to a Newtonian KFP equation on the
whole space (see (5.65)). Finally, we use the SN2 (see (2.12)) estimate of [10] to deduce
(4.1). We remark that for other prominent boundary conditions in kinetic theory, e.g.,
inflow and diffuse boundary conditions, such an extension argument does not work.

Higher regularity. Near the spatial boundary, we work with the Newtonian KFP
equation (5.65), which we derived from (3.46). By using the Sobolev embedding
theorem for SNr spaces (see [30]) and the SNr regularity theory developed in [10], we
conclude that

f,∇pf ∈L∞(ΣT ).

SNr theory on the whole space for a Newtonian KFP equation with rough coeffi-
cients. Here, we want to highlight one of the main ingredients of the present paper,
that is, the Calderon–Zygmund theory for nonrelativistic KFP equations established
in [10]. We explain the importance of this theory by considering the equation

∂tf + p · ∇xf −∆pf = η

in ΣT with the initial condition f0 ≡ 0 and the SRBC. Near the boundary, one can
use a flattening and an extension argument as in [20], [7], [8] to derive the following
equation for the “mirror extension” f on (0, T )×R

3
y ×R

3
w (see section 2.1 in [8]):

∂tf +w · ∇yf − aij(y)∂wiwjf −∇w · (Xf) = η in R
7
T ,

where X is the “geometric” term which is quadratic w, depends on the curvature of
Ω, and is discontinuous across the hyperplane {y3 = 0} × R

3
w. Before the work [10],

the unique solvability in the class of strong solutions and the global Lr estimate of
D2
wf, (∂t +w · ∇y)f was unknown for the equation

∂tu+w · ∇yu− aij(t, y,w)∂wiwj
u

+ bi∂wi
u+ cu= η in R

7
T , u(0, ·)≡ 0,

(4.2)

with a∈L∞((0, T ))C
α/3,α
y,w (R2d). In particular, in the papers [3] and [29], the authors

imposed the uniform continuity assumption with respect to the following “kinetic
distance”:

dkin ((t, y,w), (t
′, y′,w′)) =max{|t− t′|1/2, |y− y′ − (t− t′)w′|1/3, |w−w′|}.

It is easy to see that even in dimension 1, the function aij(t, y,w) = 2 + sin(y) is not
uniformly continuous on R

7 with respect to dkin. In contrast, the theory developed in
[10] covers (4.2) with more general leading coefficients aij including the ones satisfying
the uniform continuity with respect to the metric d((y,w), (y′,w′)) = |y−y′|1/3+ |w−
w′| uniformly in time. As we mentioned above, to show the uniqueness and higher
regularity of (3.46), we reduce it to the one of the form (4.2) (see (5.65)). It turns out
that for such an equation,

aij ∈L∞((0, T ))Cα/3,αy,w (R6),

and, hence, the results of [10] are applicable.
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4.2. Propagation of smallness. Here, we highlight the main difficulties in the
proof of Proposition 3.11 and describe the key features of the argument.

Issue 1: L∞ bound of the electromagnetic field. As usual, to control the “cubic”
terms involving [Ef ,Bf ] in the energy argument, we need an L∞ bound [Ef ,Bf ].
However, in contrast to the Vlasov–Poisson–Landau equation, we do not expect an
“instant” regularization of the electromagnetic field due to the hyperbolic nature of
Maxwell’s equations.

To overcome this issue, we rewrite the Maxwell system into two div-curl systems:





∇x ×Ef =−∂tBf ,

∇x ·Ef =
∫
J1/2(p)f(p) · ξ1 dp,

(Ef × nx)|∂Ω = 0,

(4.3)





∇x ×Bf = ∂tEf +
∫
v(p)J1/2(p)f(p) · ξ1 dp,

∇x ·Bf = 0,

(Bf · nx)|∂Ω = 0.

(4.4)

If we have the bound of the L∞((0, T ))L2(Ω) norm of ∂t[Ef ,Bf ], then, by using the
div-curl estimate (3.15) with r = 2, we can bound the L∞((0, T ))W 1

2 (Ω) norm of
[Ef ,Bf ]. This yields an L∞((0, T ))L6(Ω) estimate of [Ef ,Bf ] due to the Sobolev
embedding W 1

2 (Ω) ⊂ L6(Ω). To achieve this, we differentiate Maxwell’s equations
with respect to t and use the div-curl estimate. It is clear now that to close the iter-
ation argument, we need to control certain norms for ∂kt [Ef ,Bf ] and ∂

k
t f for k ≤m

for some m.
Issue 2: existence of the temporal derivatives of [f,Ef ,Bf ]. One needs to justify

that the higher-order temporal derivatives ∂kt [f,Ef ,Bf ], k≤m, are sufficiently regular
functions. Let us consider the case when k= 1. By differentiating formally the linear
VML system (3.46)–(3.50), we write down the initial boundary value problem for
∂t[f,Ef ,Bf ] with the initial data [f0,1,E0,1,B0,1] defined in (3.16)–(3.18). We then
use the well-posedness theory for the KFP equation in the finite energy solution class,
developed in section 5 of the present paper, and the well-known results for Maxwell’s
equations (see [11]). See the details in Proposition 6.2 and Appendix G. To apply
these theories, one needs to impose certain regularity and compatibility conditions on
the “initial data” [f0,1,E0,1,B0,1] (see (3.19)–(3.22)).

The scheme. The basic structure of the argument is similar to that in [7]. The
primary functional that needs to be controlled throughout the iteration argument is
the energy norm, while the L∞((0, T ))Sr(Ω × R

3) (see (2.14)–(2.15)) estimates are
needed for establishing higher regularity bounds of the lower-order t-derivatives for
the closure of the energy argument. Here, we explain the main steps of the argument
and the motivation for designing the functional yf (see (3.35)).

• First, we derive the energy bound of ∂kt f, k≤m, by using the estimates of the
terms A,K, and Γ(f, g) established in [32]. As usual, to close such estimates,
one needs to control the L∞ norms of ∂kt [f,Ef ,Bf ], k≤m/2.

• To gain the L∞ regularity of the lower-order derivatives of the electromagnetic
field via the W 1

r div-curl estimate, one needs to descend from the top-order
temporal derivatives to lower-order ones. As we descend, the electromagnetic
field gains integrability.

• To prove the L∞ estimates of ∂kt f, k ≤m/2, we use the weighted Lt∞Sr(Ω×
R

3) estimate. Due to the presence of the term (v(p) ·Ef )
√
Jξ1 in the linear

Landau equation (3.46) and the loss of t-derivatives in the higher regularity
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VML WITH THE SBC 6627

estimate of ∂kt [Ef ,Bf ], we combined the Lt∞Sr estimate with a descend ar-
gument.

• The specific gap between the unweighted energy control (up to k ≤m) and
the weighted energy one (up to k≤m−4) is motivated by the global estimate
for the RVML system established in the subsequent paper [9].

4.3. Organization of the paper. The rest of the paper is organized as fol-
lows. In section 5, we establish the results concerning the existence, uniqueness, and
higher regularity of the strong solution to the linear Landau equations (3.7)–(3.8) and
(3.14). Additionally, in this section, we present the well-posedness result for the KFP
equation in the class of finite energy solutions. In sections 6 and 7, we prove Propo-
sition 3.11 and Theorem 3.10, respectively. In Appendices A–G, we collect various
auxiliary results.

5. Regularity theory of the linear relativistic Landau equation with the
specular reflection boundary condition. The purpose of this section is to present
the results on the unique solvability and certain estimates for the linear equation (3.7)–
(3.8) and its “steady” counterpart (3.14). This section is organized as follows. First,
in section 5.1, we present the results on the strong solutions (see Definition 3.2) to
the unsteady linear Landau equations (3.7)–(3.8). Second, in section 5.2, we establish
the “steady” counterparts of the aforementioned results. Finally, in section 5.3, we
prove the well-posedness of the unsteady linear Landau equation in the class of finite
energy solutions (see Definition 3.1).

5.1. Strong solutions to the unsteady Landau equations.

Assumption 5.1. There exist κ ∈ (0,1] and K > 0 such that

‖g‖
L∞((0,T ))C

κ/3,κ
x,p (Ω×R3)

≤K,(5.1)

‖∇pg‖L∞(ΣT ) ≤K.(5.2)

Assumption 5.2. For a.e. (t, x, p)∈ΣT−,

g(t, x, p) = g(t, x,Rxp).(5.3)

We will use the fact that if g is sufficiently small (J +
√
Jg is near Maxwellian),

then the leading coefficients σg are uniformly nondegenerate.

Lemma 5.3. There exists ε? > 0 and δ0 ∈ (0,1) such that if for some T > 0, one
has

‖g‖L∞(ΣT ) ≤ ε?,(5.4)

and (5.2) holds, then

σg(z)ξiξj ≥ δ0|ξ|2, z ∈ΣT , ξ ∈R
3, ‖[σg,∇pσg]‖L∞(ΣT ) ≤ δ−1

0 .(5.5)

The constants ε? > 0 and δ0 ∈ (0,1) are independent of T .

Proposition 5.4 (unique solvability in weighted S2 spaces). Let
– λ≥ 0, κ∈ (0,1), κ ∈ (0,1],K > 0 be numbers,
– Ω be a C1,1 bounded domain,
– b = (b1, b2, b3)T and c be bounded measurable functions on R

7
T such that for

some K > 0,

‖b‖L∞(ΣT ) + ‖c‖L∞(ΣT ) ≤K,(5.6)
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6628 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

– g satisfy (5.1)–(5.3),
– the condition (5.4) hold.

Then, there exists θ= θ(κ,κ)> 0 such that if

η ∈L2,θ(Σ
T ), f0 ∈ S2,θ(Ω×R

3),(5.7)

then the following assertions hold.
(i) There exists a unique strong solution f to (3.7)–(3.8) (see Definition 3.2).
(ii) We have f ∈ S2,κθ(Σ

T ), and, furthermore,

‖f‖L2((0,T )×Ω)W 1
2,θ(R

3)(5.8)

≤N1‖η‖L2,θ(ΣT ) +N1‖f0‖L2,θ(Ω×R3),

‖f‖S2,κθ(ΣT ) + ‖f‖L14/5,κθ(ΣT ) + ‖∇pf‖L7/3,κθ(ΣT )(5.9)

≤N2‖η‖L2,θ(ΣT ) +N2(1 + λ)‖f0‖S2,θ(Ω×R3) +N2‖f‖L2,θ(ΣT ),

where N1 =N1(K,δ0, T ), N2 =N2(δ0,κ, κ,K, θ,Ω)> 0.

Remark 5.5. Invoke the assumptions of Proposition 5.4 and let f be the strong
solution to (3.7)–(3.8). Then, f satisfies the mirror-extension property, which is de-
fined (imprecisely) below. We will make this statement precise in the proof of the
present remark (below).

Let ξn, n ≥ 1, be a dyadic partition of unity in R
3 and let χk, k = 1, . . . ,m be a

partition of unity in Ω. A strong solution f satisfies the mirror-extension property if,

near the boundary, fk,n := fχkξn can be “extended” to a function ˜̃U satisfying the
identity

∂t
˜̃U + v · ∇y

˜̃U −∇v · (a(t, y, v)∇v
˜̃U)

+ bi∂vi
˜̃U + c ˜̃U =ψ in R

7
T

for certain a, b, c, and ψ, which are “under control.”

Proposition 5.6 (higher regularity of a strong solution). Invoke the assump-
tions of Proposition 5.4 and let r > 2 be a number. Then, there exists a constant
θ= θ(κ,κ, r)> 0 such that if, additionally,

η ∈L2,θ(Σ
T )∩Lr,θ(ΣT ), f0 ∈ S2,θ(Ω×R

3)∩ Sr,θ(Ω×R
3),

then for the strong solution to (3.7)–(3.8), one has

f ∈ S2,κθ(Σ
T )∩ Sr,κθ(ΣT ),(5.10)

‖f‖Sr,κθ(ΣT ) ≤N
∑

s∈{2,r}

(
‖η‖Ls,θ(ΣT ) + (1+ λ)‖f0‖Ss,θ(Ω×R3)

)
(5.11)

+N‖f‖L2,θ(ΣT ),

where N =N(δ0, κ,κ, r,K, θ,Ω). Furthermore,
– if r ∈ (2,7), we have

‖f‖Lr1,κθ(ΣT ) + ‖∇pf‖Lr2,κθ(ΣT ) ≤ r.h.s. of (5.11),(5.12)

where r1, r2 > 1 are numbers satisfying the relations

1

r1
=

1

r
− 1

7
,

1

r2
=

1

r
− 1

14
,(5.13)
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VML WITH THE SBC 6629

– if r ∈ (7,14),

‖f‖L∞,κθ(ΣT ) + ‖∇pf‖Lr2,κθ(ΣT ) ≤ r.h.s. of (5.11),(5.14)

where r2 is defined in (5.13),
– if r > 14, then, for any α∈ (0,1− 14/r), one has

∑

s∈{2,∞}

‖f‖L∞((0,T )×Ω)W 1
s,κθ(R

3)(5.15)

+ ‖[f,∇pf ]‖L∞((0,T ))C
α/3,α
x,p (Ω×R3)

≤ r.h.s. of (5.11).

In all the estimates (5.12), (5.14), and (5.15), one needs to take into account the
dependence of N on r1, r2, and α.

Remark 5.7. We point out that for the Newtonian KFP equation on the whole
space, there is no loss of the weight in the momentum variable in the SNr (see (2.12))
estimate (see [10]). Furthermore, in [8], the present authors have established an
SNr estimate with the loss of weight in the presence of a spatial boundary. In the
relativistic case, we, loosely speaking, lose weight due to the presence of the spatial
boundary and the relativistic transport term.

We will prove the assertions in the order we stated them.

Proof of Lemma 5.3. Denote

σ(p) = 2

∫

R3

Φ(P,Q)J(q)dq.(5.16)

It is well known that σ is a bounded uniformly nondegenerate symmetric matrix-
valued function (see Lemma B.2 (i)). The desired assertion follows from this and
Lemma B.3.

We will break down the proof of Proposition 5.4 into three significant steps. The
initial two will be explained in Lemmas 5.8–5.10. Our argument goes as follows.

• First, we construct a variational solution, which we call the “finite energy
weak solution” (see Lemma 5.8). It is a quadruple (f, f?+, f

?
−, f

?
T ), where f

?
±

and f?T are the functions that appear in the boundary terms in the inte-
gral formulation. We impose additional conditions f0 ∈ L∞(Ω × R

3) and
η ∈ L∞(ΣT ),∇pb ∈ L∞(ΣT ). The first two are needed to ensure that the
boundary terms in the integral formulation are well defined for any test func-
tion φ∈C0,1

0 (ΣT ).
• By using a mirror-extension argument as in [20], [7], [8], we show that if θ is

sufficiently large, then any “finite energy weak solution” is a strong solution
(see Definition 3.2). To implement the mirror-extension argument in the
integral formulation, one needs to work with general test functions that are
Lipshitz up to the grazing set. This explains the necessity of the additional
boundedness assumptions in the previous paragraph.

• We use a limiting argument to get rid of the boundedness conditions on f0,
η, and ∇pb. The resulting solution f satisfies Y f ∈ L2(Σ

T ), so that the
traces are well defined (see (D.2) in Lemma D.3), and they coincide with the
functions f?±, f

?
T , f0, and, in addition, the SRBC holds. We will also explain

why the limiting procedure preserves the energy identity and the “mirror-
extension property.”
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We first state a lemma concerning finite energy weak solutions to the general KFP
equation

Y f −∇p · (a∇pf) + b · ∇pf + (c+ λ)f = η,(5.17)

f(t, x, p) = f(t, x,Rxp), z ∈ΣT−, f(0, ·) = f0(·).(5.18)

The nonrelativistic counterpart of this result was established in [8].

Lemma 5.8. Let
– Ω be a C1,1 domain,
– a= a(z), z ∈R

7
T be a bounded measurable function satisfying

δ|ξ|2 ≤ aij(z)ξiξj ≤ δ−1|ξ|2 ∀z ∈ΣT , ξ ∈R
3(5.19)

for some δ ∈ (0,1),
– b and c satisfy (5.6),
– ∇pa,∇pb∈L∞(ΣT ),
– f0 ∈L2,θ(Ω×R

3)∩L∞(Ω×R
3),

– η ∈L2,θ(Σ
T )∩L∞(ΣT ).

Then, for any λ≥ 0, there exists a quadruple (f , f?+, f
?
−, f

?
T ) such that

(i) f,∇pf ∈L2,θ(Σ
T ), f?± ∈L∞(ΣT±), f

?
T ∈L2,θ(Ω×R

3)∩L∞(Ω×R
3),

(ii) f?−(t, x, p) = f?+(t, x,Rxp) a.e. on ΣT−,

(iii) for any φ∈C0,1
0 (ΣT ),

−
∫

ΣT

(Y φ)f dz

(5.20)

+

∫

Ω×R3

(
f?T (x, p)φ(T,x, v)− f0(x, p)φ(0, x, p)

)
dxdp

+

∫

ΣT
+

f?+φ |v(p) · nx|dSxdpdt−
∫

ΣT
−

f?−φ |v(p) · nx|dSxdpdt

+

∫

ΣT

(a∇pf) · ∇pφdz +

∫

ΣT

(c+ λ)fφdz +

∫

ΣT

(b · ∇pf)φdz =

∫

ΣT

ηφdz.

Furthermore, one has

‖f?T ‖L2,θ(Ω×R3) + ‖f‖L2((0,T )×Ω)W 1
2,θ(R

3)(5.21)

≤N‖η‖L2,θ(ΣT ) +N‖f0‖L2,θ(Ω×R3),

max{‖f?T ‖L∞(Ω×R3),‖f?±‖L∞(ΣT
±
),‖f‖L∞(ΣT )}(5.22)

≤ ‖η‖L∞(ΣT ) + ‖f0‖L∞(Ω×R3),

where N =N(δ, θ,K,T ).
We say that f is a finite energy weak solution to (5.17)–(5.18).

Remark 5.9. Here, we elaborate on various notions of weak solutions to the linear
Landau equation (3.7)–(3.8) that we use in the present paper.

• Finite energy solutions. These are functions of class C([0, T ])L2(Ω × R
3) ∩

L2((0, T )×Ω)W 1
2 (R

3) that satisfy the integral formulation of (3.7)–(3.8) with
the test functions satisfying the SRBC. See Definition 3.1.

• Finite energy weak solutions. In the proof of the existence part in Proposi-
tion 5.4, we need to construct a “weak solution” in the class f ∈ L2((0, T )×
Ω)W 1

2 (R
3) such that its integral formulation holds for test functions that
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VML WITH THE SBC 6631

are Lipschitz up to the kinetic boundary ∂Ω × R
3. This integral formula-

tion is necessary for the mirror-extension trick, requiring well-defined “ki-
netic boundary” terms. Lemma 5.8 provides a weak solution meeting these
requirements.

• Very weak solutions. We justify the uniqueness in the class of finite energy
solutions via a duality argument, which works for a class of weaker solutions,
which we call “very weak solutions.” These are L2(Σ

T ) functions satisfying
an integral formulation with all derivatives “transferred” onto a test function
satisfying the SRBC. See Definition 5.1.

• Intermediate finite energy solutions. In the proof of the existence of finite
energy solutions (see the argument of Proposition 5.13), we first construct a
solution in a slightly weaker class, where elements lack the temporal continu-
ity in L2(Ω×R

3) (see Definition 5.2).
We note that

finite energy solution =⇒ intermediate finite energy solution =⇒ very weak solution,

finite energy weak solution =⇒ intermediate finite energy solution.

The present authors also used the notion of the finite energy weak solution in the
construction of a strong solution to a linear nonrelativistic Landau equation (see [8]).

Proof of Lemma 5.8. We repeat almost word-for-word the argument of Theorem
1.5 in [8] (see section 3 therein). Here, we delineate the argument. The main idea is
to discretize the velocity diffusion to obtain a perturbed kinetic transport equation
in a bounded domain for which the well-posedness problem is well understood (see,
for example, [33] and [2]). We use the energy argument to derive uniform estimates
with respect to the parameters of our approximation scheme. The key difficulty is
to “preserve” the “boundary information” on (0, T )× γ± in the weak∗ compactness
argument. By designing a specific discretization of the velocity diffusion that respects
the maximum principle, we are able to obtain L∞ estimates of the solution and its
traces that are uniform throughout the approximation scheme.

We first prove the following lemma, which is Proposition 5.4 under more restrictive
assumptions mentioned at the beginning of the section.

Lemma 5.10. Invoke the assumptions of Proposition 5.4 and assume, additionally,

f0 = 0, η,∇pb∈L∞(ΣT ).(5.23)

Then, for sufficiently large θ= θ(κ,κ)> 0, the following assertions hold.
(i) Any finite energy weak solution f to (5.17)–(5.18) constructed in Lemma 5.8

must be a strong solution (see Definition 3.2).
(ii) The estimate (5.9) holds.

Proof of Lemma 5.10. The proof is split into six steps. First, we localize in
space and momentum variables and use a boundary flattening argument. Then, we
use a mirror-extension argument (see Step 3) to “erase” the boundary conditions and
reduce the equation to the one on the whole space. Then, we use a transformation
that reduces the equation to a Newtonian KFP equation, and we apply the SN2 (see
(2.12)) estimate of [10].

Step 1: Localization. Let χk = χk(x), k = 1, . . . ,m, be a standard partition of
unity in Ω such that supp χ1 ⊂Ω, 0≤ χk ≤ 1, k= 1, . . . ,m, and
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|∇xχk| ≤N/r0,

{
χk = 1 in Br0/4(xk),

χk = 0 in Bcr0/2(xk),
k= 2, . . . ,m,(5.24)

where xk ∈ ∂Ω, k= 2, . . . ,m.
Let ξn = ξn(p), n≥ 1, be sequence of functions such that

ξ0 ∈C∞(B1), ξ0 = 1 on {|p| ≤ 3/4},
ξn ∈C∞({2n−1 < |p|< 2n+3/2}), ξn = 1on {2n−1/2 ≤ |p| ≤ 2n+1},
|Dl

pξn| ≤N(l)2−nl, n, l ∈ {1,2, . . .}.

We will assume that n≥ 2 because the case n= 1 is handled in the same way.
We denote

fk,n(z) := f(z)χk(x)ξn(p)p
ωθ
0(5.25)

and note that fk,n satisfies the identity

Y fk,n −∇p · (σg∇pfk,n) + b · ∇pfk,n + (c+ λ)fk,n = ηk,n(5.26)

in the sense of the integral identity (5.20), where

ηk,n = (v(p) · ∇xχk)fp
ωθ
0 ξn + ηχkp

ωθ
0 ξn

+ χk

(
− (∂piσ

ij
g )(∂pj (ξnp

ωθ
0 ))f − 2σijg (∂pif)(∂pj (p

ωθ
0 ξn))− σijg ∂pipj (p

ωθ
0 ξn)f

+
(
b · ∇p(ξnp

ωθ
0 )

)
f

)
,

(5.27)

where ω ∈ (0,1). We will focus on the near boundary case when k≥ 2. At the end of
the proof, we discuss the case when k= 1. Our goal is to show that

‖|Y fk,n|+ |D2
p(fk,n)|‖L2(ΣT ) + ‖fk,n‖L14/5(ΣT ) + ‖∇pfk,n‖L7/3(ΣT )

≤N‖(|f |+ |∇pf |+ |η|)12n−1<|p|<2n+3/2‖L2,β+ωθ(ΣT )

(5.28)

for some number β = β(κ) > 0. When n= 0, the indicator function in (5.28) should
be replaced with 1|p|<1.

If (5.28) is true, we take ω1 ∈ (ω, 1+ω2 ) and θ large, so that β + ωθ < ω1θ, raise
(5.28) to the power 2, and sum with respect to n and k. We obtain

‖|Y (fpωθ0 )‖L2(ΣT ) + ‖D2
p(fp

ωθ
0 )|‖L2(ΣT ) ≤N‖|f |+ |∇pf |+ |η|‖L2,ω1θ(ΣT ).(5.29)

Integrating by parts and using the Cauchy–Schwarz inequality, we get for ε∈ (0,1),
∫

ΣT

|∇pf |2p2ω1θ
0 dz .θ,ω1

ε‖∇pf‖2L2,ω1θ(ΣT ) + ε−1‖f‖2L2,ω1θ(ΣT )

+ ε‖D2
pf‖2L2,ωθ(ΣT ) + ε−1‖f‖2L2,(2ω1−ω)θ(ΣT ).

Due to our choice of ω1, we have 2ω1−ω≤ 1. Hence, by choosing ε sufficiently small,
we can drop the norm involving ∇pf on the r.h.s. of (5.29) and replace ω1 with 1
therein, and obtain the desired estimate of the weighted S2 norm in (5.9). Similarly,
we conclude the validity of the estimates of the second and the third terms of the
l.h.s. of (5.9).
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VML WITH THE SBC 6633

For the sake of convenience, we denote

U = fk,n H = ηk,n.(5.30)

Without loss of generality, we may assume that ω= 1
2 .

Step 2: Boundary flattening. We fix a point xk ∈ ∂Ω, k= 2, . . . ,m, and relabel
it as x0. There exists a function ρ∈C1,1

b (R2) such that

∂Ω∩Br0(x0)⊂ {x : x3 = ρ(x1, x2)},
Ωr0(x0) := Ω∩Br0(x0)⊂ {x : x3 < ρ(x1, x2)}.

Let

Ψ : Ωr0(x0)×R
3 →H− =R

3
− ×R

3, (x, p)→ (y,w)(5.31)

be the transformation given by

y=ψ(x), w= (Dψ(x))p,(5.32)

where ψ is the inverse of

ψ−1(y) =




y1
y2

ρ(y1, y2)


+ y3



−ρ(y3)1

−ρ(y3)2

1


 ,

where ρi = ∂xi
ρ, i = 1,2, and ρε is a standard mollification of ρ. It follows from the

expression of the Jacobi matrix (∂x∂y ) (see (A.5)) that ψ is a local C1,1 diffeomorphism.
A similar diffeomorphism was used to study the Newtonian KFP and the Landau

equations in a bounded domain with the SRBC (see [20], [7], [8]). Ψ has two special
features:

• it preserves the form of the Newtonian KFP equation in the sense explained
in section 2.1 of [8];

• it preserves the SRBC, i.e.,

Û?−(t, y1, y2,w) = Û?+(t, y1, y2,Rw), wheneverw3 < 0,(5.33)

where

Û?±(t, y1, y2,w) =U?±(t, x(y1, y2,0), p(y1, y2,0,w)),(5.34)

and U?± were introduced in Lemma 5.8. The identity (5.33) follows from the
fact that whenever y3 = 0, one has

(Rxp)(y,w) = (p− 2(p · nx)nx)(y,w)

=




w1 + ρ1w3

w2 + ρ2w3

ρ1w1 + ρ2w2 −w3


=

(
∂x

∂y

)

|y3=0



w1

w2

−w3


 ,

where the Jacobi matrix is computed in (A.5).
The first property does not hold for the relativistic Fokker–Planck (see (5.39)). Nev-
ertheless, this equation can still be reduced to a Newtonian KFP type equation (see
Step 4 below).
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6634 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Next, denote

û(t, y,w) = u(t, x(y), p(y,w)), Jψ =

∣∣∣∣det
(
∂x

∂y

)∣∣∣∣
2

,(5.35)

W =
w

(
1 +

∣∣∂x
∂yw

∣∣2)1/2
, A=

(
∂y

∂x

)
σ̂g

(
∂y

∂x

)T
, B =

(
∂y

∂x

)
b̂,(5.36)

X = (X1,X2,X3)
T =

(
∂y

∂x

)(
∂p

∂y

)
W =

(
∂y

∂x

)
∂
(
∂x
∂yw

)

∂y
W.(5.37)

For a function Ξ on Ωr0(x0)×R
3, we denote

Ξ̃(y,w) = Ξ̂(y,w)Jψ(y).(5.38)

Changing variables in (5.20) (see section E.1), we conclude for any φ∈C0,1
0 ([0, T ]×

Ωr0(x0)×R
3) (see the definition below the formula (2.7)), we have

−
∫

H
T
−

(∂tφ̂+W · ∇yφ̂) Ũdydwdt+

∫

H−

Ũ∗(T, y,w)φ̂(T, y,w)dydw

(5.39)

+

∫

H
T
−

(
(∇wŨ)TA∇wφ̂+ ŨX · ∇wφ̂+

(
B · ∇wŨ

)
φ̂+ (ĉ+ λ)Ũ φ̂

)
dydwdt

+

∫ T

0

∫

R2×R
3
+

|w3|Ũ?+φ̂ dy1dy2dwdt−
∫ T

0

∫

R2×R
3
−

|w3|Ũ?−φ̂ dy1dy2dwdt

=

∫

H
T
−

φ̂ H̃ dydwdt,

where Ũ?+ = Û?+Jψ|y3=0.
Step 3: Mirror extension. For a function Ξ = Ξ(x, p) on Ωr0(x0) × R

3, we
denote

Ξ(y,w) :=

{
Ξ̃(y,w), (y,w)∈H−,

Ξ̃(Ry,Rw), (y,w)∈H+

(5.40)

(see (5.38)). We call Ξ the mirror extension of Ξ.
Next, let G ⊂ R

3 be the even extension of ψ(Ωr0(x0)) ⊂ R3
− across the plane

y3 = 0. We set

A(t, y,w) =

{
A(t, y,w), (t, y,w)∈ (0, T )×ψ(Br0(x0))×R

3,

RA(t,Ry,Rw)R, (t, y,w)∈ (0, T )× (G∩R
3
+)×R

3,
(5.41)

B(t, y,w) =
{
B(t, y,w), (t, y,w)∈HT−,

RB(t,Ry,Rw), (t, y,w)∈H
T
+,

(5.42)

X (y,w) =

{
X(y,w), (y,w)∈H−,

RX(Ry,Rw), (y,w)∈H+,
(5.43)

W(y,w) =





w
(
1 + |V1|2

)1/2 , (y,w)∈ψ(Br0(x0))×R
3,

w
(
1 + |V2|2

)1/2 , (y,w)∈ (G∩R
3
+)×R

3,
(5.44)
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VML WITH THE SBC 6635

where

V1 =

(
∂x

∂y

)
(y)w, V2 =

((
∂x

∂y

)
(Ry)

)
(Rw).

We also set C to be the even extension in y3 and w3 of ĉ.
We now find an equation satisfied by U . We fix a test function φ ∈C0,1([0, T )×

G× R
3) vanishing for large z. Replacing φ̂ with φ(t,Ry,Rw) in the identity (5.39)

and changing variables x→Rx,w→Rw give

−
∫

H
T
+

(∂tφ+W ·∇yφ)Udydwdt+

∫

H+

φ(T, y,w)U(y,w)dydw

(5.45)

+

∫

H
T
+

(
(∇wU)TA∇wφ+UX ·∇wφ+

(
B ·∇wU

)
φ+ (C + λ)U φ

)
dydwdt

+

∫ T

0

∫

R2×R
3
−

|w3|U
?

+(t, y1, y2,Rw)φdy1dy2dwdt

−
∫ T

0

∫

R2×R
3
+

|w3|U
?

−(t, y1, y2,Rw)φdy1dy2dwdt

=

∫

H
T
+

φH dydwdt.

Adding (5.45) to (5.39) with φ̂ replaced with φ and using (5.33), we cancel the integrals
over the incoming/outgoing boundaries and conclude that the mirror extension U
satisfies the identity

∂tU +W ·∇yU −∇w · (A∇wU) +B ·∇wU −∇w · (XU) + (C + λ)U =H(5.46)

in the weak sense on [0, T )×G×R
3, i.e., for any φ∈C0,1

0 ([0, T )×G×R
3),

−
∫

R
7
T

(∂tφ+W ·∇yφ)Udydwdt

+

∫

R
7
T

(
(∇wU)TA∇wφ+UX ·∇wφ+

(
B ·∇wU

)
φ+ (C + λ)U φ

)
dydwdt

=

∫

R
7
T

φH dydwdt.

(5.47)

Step 4: Reducing (5.47) to a Newtonian KFP equation. Recall that
U(t, ·) = fk,n(t, ·) is supported on Ωr0/2(x0)× {2n−1 < |w|< 2n+3/2}, and hence,

Û(t, ·, ·) vanishes outside B3r0/4(x0)× {2n−3/2 < |w|< 2n+2}(5.48)

for sufficiently small r0. For any y ∈G, we denote

Wy(w) =W(y,w)(5.49)

(see (5.44)). By the assertion (ii) in Lemma A.2, for any y ∈G, the mapping

Wy : {|w|< 2n+2}→R
3
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6636 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

is a diffeomorphism onto its image, and by (A.18)–(A.19), one has

sup
|w|<2n+2

|DjWy| ≤N2−jn, j = 0,1,2, sup
Wy({|w|<2n+2})

|D(Wy)
−1| ≤N23n,

sup
Wy({|w|<2n+2})

|D2(Wy)
−1| ≤N25n,

(5.50)

where N =N(Ω)> 0. We also introduce the mapping

Υn(y,w) = (y,W(y,w)) :G× {|w|< 2n+2}→R
6.(5.51)

Due to Lemma A.3 (i), Υn is a globally bi-Lipschitz map onto its image, so that, if
we change variables

v=Wyw(5.52)

in (5.47), then the new integral identity (5.55) will hold on a set of Lipschitz test
functions.

Next, for a function Ξ=Ξ(y,w) on G× {|w|< 2n+2}, we set

ˆ̂
Ξ(y, v) = Ξ(y, (Wy)

−1(v)), (y, v)∈Υn(G× {|w|< 2n+2}).(5.53)

For the sake of convenience, we change the notation as follows:

U :=U, H :=H.(5.54)

We fix a test function

φ∈C0,1
0 ([0, T ]×G× {|w| ≤ 2n+2})

and change variables

w= (Wy)
−1(v)

in the identity (5.47). Due to the identity (E.4) in section E.2, we obtain

−
∫

R
7
T

(∂t
ˆ̂
φ+ v · ∇y

ˆ̂
φ)

ˆ̂UJWdydvdt+

∫

R6

ˆ̂
φ(T, y, v)

ˆ̂U(T, y, v)JWdydv(5.55)

+

∫

R
7
T

(
(∇v

ˆ̂U)TA∇v
ˆ̂
φ+

(
(X+G) · ∇v

ˆ̂
φ
) ˆ̂U

+
(
B · ∇v

ˆ̂U
) ˆ̂
φ+ (C+ λ)

ˆ̂U ˆ̂
φ
)
JWdydvdt

=

∫

R
7
T

ˆ̂
φ

ˆ̂H JWdydvdt,

where

JW =

∣∣∣∣det
∂w

∂v

∣∣∣∣,(5.56)

A(t, y, v) =

(
∂v

∂w

)
ˆ̂A(t, y, v)

(
∂v

∂w

)T
,(5.57)

B(t, y, v) =

(
∂v

∂w

)
ˆ̂B(t, y, v), C(t, y, v) = (ĉ)(t, y,w(y, v)),(5.58)

X(t, y, v) =

(
∂v

∂w

)
ˆ̂X (t, y,w(y, v))1y∈G,|w(y,v)|<2n+2 ,(5.59)

G(t, y, v) =

(
∂v

∂w

)(
∂w

∂y

)
v 1y∈G,|w(y,v)|<2n+2 .(5.60)
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VML WITH THE SBC 6637

As we mentioned in the previous paragraph, thanks to Lemma A.3 (i), we may replace
ˆ̂
φ with any test function

φ∈C0,1
0

(
[0, T ]×Υn(G× {|w| ≤ 2n+2})

)

in the identity (5.55).

We now replace A with A as follows so that A=A on the support of
ˆ̂U contained

in Υn(G × {|w| < 2n+2}). Let ζn = ζn(y, v) be a smooth cutoff function such that
0≤ ζn ≤ 1 and

ζn = 1 on Υn(G× {|w|< 2n+2}),
|∇xζn|+ |∇vζn| ≤N(Ω).(5.61)

Introduce

A=Aζn + (1− ζn)13,(5.62)

˜̃U =
ˆ̂
UJW .(5.63)

We also extend B,X, and C by 0 outside [0, T ]×Υ(G×{|w| ≤ 2n+2}). It follows that
for any φ∈C0,1

0 ([0, T ]×R
6) such that φ(T, ·)≡ 0, we have

∫

R
7
T

(
− (∂tφ+ v · ∇yφ)

˜̃U + (∇v
˜̃U)TA∇vφ+ λ ˜̃Uφ

)
dydvdt

=

∫

R
7
T

(
− ˆ̂U (X+G) · ∇vφ−

(
B · ∇v

ˆ̂U
)
φ−C

ˆ̂U φ
)
JWdydvdt(5.64)

+

∫

R
7
T

φ
ˆ̂HJW + (∇vJW)TA(∇vφ)

ˆ̂U dydvdt.

In other words, the identity

∂t
˜̃U + v · ∇y

˜̃U −∇v · (A∇v
˜̃U) + λ ˜̃U

=

(
∇v ·

(
(X+G)

ˆ̂U)−B · ∇v
ˆ̂U −C

ˆ̂U +
ˆ̂H
)
JW

−∇v ·
(
A(∇vJW)

ˆ̂U
)
=: r.h.s.

(5.65)

holds in the weak sense. For the reader’s convenience, we briefly review the notation
introduced above.

– U = fk,n, H = ηk,n (see (5.30), (5.27)),

– Û is U in coordinates (t, y,w),
– Ũ is Û multiplied by the Jacobian determinant of the change of variables
(x, v)→ (y,w) (see (5.38)),

– U :=U is the mirror extension of Ũ (see (5.40)),

–
ˆ̂U is U in coordinates (t, y, v),

– ˜̃U is
ˆ̂U multiplied by the Jacobian determinant of the change of variables

w→ v,
– σg(z) (see (3.9)) is the matrix of the leading coefficients in the original equa-
tion,

– G is the even extension of ψ(Ωr0(x0)) across the plane {y3 = 0},
– A and B (see (5.36)) are the diffusion and drift coefficients on (0, T )×R

3
−×R

3

obtained after the change of variables (x, v)→ (y,w),
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6638 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

– A,B,C,X (see (5.41)) are the drift, diffusion, and discount, and “geometric”
coefficients “extended” across the boundary {y3 = 0} ×R

3,

–
ˆ̂A,

ˆ̂B, ˆ̂C, ˆ̂X (see (5.53)) are the coefficients A, B, C, X in the new coordinates
t, y, v,

– A,B,C, X are the drift, diffusion, discount, and “geometric” coefficients on
(0, T )×Υn(G×R

3) obtained after the change of variable w→ v,
– G (see (5.57)) is the second “geometric” coefficient due to the change of
variables w→ v,

– A (see (5.62)) is an extension of A to R
7
T .

Step 5: SN

2
estimate in the t, y, v coordinates. We now apply Lemma F.6.

We first check its conditions.
Estimates of the coefficientsA, A, B, X. In Lemma C.1, we show that the follow-

ing bounds are valid:

N0(Ω)2
−6n|ξ|2 ≤A(z)ξiξj ,(5.66)

|A|I(y,v)∈Υn(G×{|p|<2n+2}) + |A| ≤N(Ω,K),(5.67)

‖∇vA‖L∞((0,T )×Υn(G×{|w|<2n+2})) + ‖∇vA‖L∞(R7
T ) ≤N2n,(5.68)

‖A‖
L∞((0,T ))C

κ/3,κ
y,v (R6)

≤N(K,Ω,κ)2n,(5.69)

‖B‖L∞((0,T )×Υn(G×{|w|<2n+2})) ≤N(Ω,K)2−n,(5.70)

‖X‖L∞(Υn(G×{|w|<2n+2})) ≤N(Ω),(5.71)

‖∇vX‖L∞(Υn(G×{|w|<2n+2})) ≤N(Ω)23n,(5.72)

‖G‖L∞(Υn(G×{|w|<2n+2})) ≤N(Ω),(5.73)

‖∇vG‖L∞(Υn(G×{|w|<2n+2})) ≤N(Ω)24n.(5.74)

L2-integrability of the r.h.s. of (5.65). To show this, we need to first estimate JW ,
ˆ̂H,

ˆ̂U , ∇v
ˆ̂U .

First, we estimate JW (see (5.56)). By (5.50) and Lemma A.2 (ii) (see (A.19))
and (A.29) in Lemma A.3,

N1 ≤ |JW1y∈G,w(y,v)<2n+2 | ≤N29n,

|∇vJW1y∈G,w(y,v)<2n+2 | ≤N211n,

|∇yJW1y∈G,w(y,v)<2n+2 | ≤N211n,

|D2
vJW1y∈G,w(y,v)<2n+2 | ≤N213n,

(5.75)

where N1 =N1(Ω), N =N(Ω).

Second, we bound
ˆ̂H,

ˆ̂U , ∇v
ˆ̂U . By (5.75),

‖ ˆ̂HJW1y∈G,w(y,v)<2n+2‖L2(R7
T ) ≤N2(9n)/2‖| ˆ̂H|2JW1y∈G,w(y,v)<2n+2‖1/2

L1(R7
T )

=N2(9n)/2‖H‖L2((0,T )×G×{|w|<2n+2}) ≤N2(9n)/2‖H‖L2(ΣT ),
(5.76)

where N =N(Ω). Similarly, by (5.75),

‖(| ˆ̂U|+ |∇v
ˆ̂U|)JW1y∈G,w(y,v)<2n+2‖L2(R7

T ) ≤N(Ω)2(9n)/2‖|U |+ |∇pU |‖L2(ΣT ).

(5.77)

Next, combining (5.67)–(5.68), (5.70)–(5.74), and (5.75), we get

‖r.h.s. of (5.65)‖L2(R7
T ) ≤N2βn‖(| ˆ̂U|+ |∇v

ˆ̂U|+ | ˆ̂H|)JW1y∈G,w(y,v)<2n+2‖L2(R7
T ),

(5.78)
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VML WITH THE SBC 6639

where β > 0 is some constant independent of n, ε, c, and θ, which might change from
line to line. Furthermore, by (5.76)–(5.77), we get

‖r.h.s. of (5.65)‖L2(R7
T ) ≤N2βn‖|U |+ |∇pU |+ |H‖L2(ΣT ).(5.79)

SN2 -estimate in the t, y, v variables. An application of Lemma F.6 with

δ=N02
−6n (see (5.66)), K =N (see (5.69)),(5.80)

gives ˜̃U ∈ SN2 (R7
T ). Furthermore, by the same lemma (see (F.5)), one has

‖ ˜̃U‖SN
2 (R7

T ) ≤N2βn
(
‖|r.h.s.|+ | ˜̃U|+ |∇v

˜̃U|‖L2(R7
T )

)
.(5.81)

By the fact that ˜̃U =
ˆ̂UJW (see (5.63)) and the bounds (5.75) and (5.77), we have

‖| ˜̃U|+ |∇v
˜̃U|‖L2(R7

T ) ≤N2βn‖JW(| ˆ̂U|2 + |∇v
ˆ̂U|2)1y∈G,w(y,v)<2n+2‖1/2

L1(R7
T )

≤N2βn‖|U |+ |∇pU |‖L2(ΣT ).
(5.82)

Combining (5.81)–(5.82) with (5.79), we obtain

‖|(∂t + v · ∇y)
˜̃U|+ |D2

v
˜̃U|‖L2(R7

T ) ≤N2βn‖|U |+ |∇pU |+ |H|‖L2(ΣT ).(5.83)

Step 6: Going back to the original variables t, x, p. Estimate of D2
pU .

First, by the chain rule and change of variables,

‖D2
pU‖L2((0,T )×Ωr0

(x0)×R3) ≤N(Ω)‖|∇wÛ |+ |D2
wÛ |‖L2((0,T )×ψ(Ωr0

(x0))×R3).

(5.84)

Furthermore, recall
• U = U , where the latter is the even extension in the y3,w3 variables of the

function Û (see (5.40));

• the definition of ˜̃U in (5.63).
Then, by (5.50) and the estimates of JW and its derivatives (see (5.75)),

‖|∇wÛ |+ |D2
wÛ |‖L2((0,T )×ψ(Ωr0

(x0))×R3)

≤N2βn‖(|∇v
ˆ̂U|2 + |D2

v
ˆ̂U|2)JW1y∈G,|w(y,v)|<2n+2‖1/2

L1(R7
T )

≤N2βn‖| ˜̃U|+ |∇v
˜̃U|+ |D2

v
˜̃U|‖L2(R7

T ).

(5.85)

Next, combining (5.83)–(5.85), we obtain

‖D2
pU‖L2((0,T )×Ωr0 (x0)×R3) ≤N2βn‖|U |+ |∇pU |+ |H|‖L2(ΣT ).(5.86)

Since U(t, x, ·),H(t, x, ·) vanish outside {2n−1 < |p| < 2n+3/2}, we may replace the
r.h.s. of (5.86) with

‖|U |+ |∇pU |+ |H|‖L2,β((0,T )×Ω×R3).(5.87)

Recall that

U = fηkp
θ/2
0 , H = ηk,n,(5.88)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/2

3
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



6640 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

where ηk,n is defined in (5.27). We conclude that the expression in (5.87) is less than

N‖|f |+ |∇pf |+ |η|‖L2,θ/2+β((0,T )×Ω×{2n−1<|p|<2n+3/2}).

Thus, the estimate (5.28) for D2
pU is proved.

Estimate of the transport term. First, by the estimate (E.3) in Lemma E.1, we
have

‖Y U‖L2(ΣT ) ≤N‖(∂t +W · ∇y)Û‖L2(HT
−
) +N‖|U |+ |∇pU |‖L2,1(ΣT ).(5.89)

Similarly, by the identity (E.4) in section E.2,

‖(∂t +W · ∇y)Û‖L2(HT
−
) ≤N‖|

(
|∂t + v · ∇y)

ˆ̂U|2 + |G|2 |∇v
ˆ̂U|2

)
JW‖1/2

L1(R7
T )
,(5.90)

where G is defined in (5.60). Note that

(∂t + v · ∇y)
˜̃U =

(
(∂t + v · ∇y)

ˆ̂U
)
JW + (v · ∇yJW)

ˆ̂U .(5.91)

Then, by (5.90)–(5.91), the Jacobian estimate (5.75), and the estimate of G (5.73),
and (5.77), we get

‖(∂t +W · ∇y)Û‖L2(HT
−
) ≤N‖(∂t + v · ∇y)

ˆ̂U‖L2(R7
T ) +N2βn‖|Û |+ |∇pÛ |‖L2(R7

T ).

Combining (5.89) with (5.91) and (5.83) gives

‖Y U‖L2(ΣT ) ≤N2βn‖|U |+ |∇pU |+ |H|‖L2(ΣT ) +N‖∇pU‖L2,1(ΣT )

≤N‖(|f |+ |∇pf |+ |η|)‖L2,θ/2+β((0,T )×Ω×{2n−1/2<|p|<2n+3/2})

provided that β > 1, which we may certainly assume. Thus, the estimate (5.28) holds
for Y U . Finally, note that by the embedding theorem for the SN2 (R7

T ) space (see
Theorem 2.1 [30]), the norms

‖ ˜̃U‖L14/5(R
7
T ),‖∇v

˜̃U‖L7/3(R
7
T )

are bounded by the r.h.s. of (5.81). Then, repeating the above argument, we prove
the bound of the second and third terms on the r.h.s. of (5.28).

Proof of Proposition 5.4. We first impose the additional assumptions (5.23), which
will be removed at the end of the proof.

Existence. Let bn ∈ L∞((0, T ) × Ω)W 1
∞(R3), n ≥ 1, be a sequence of functions

such that bn→ b a.e., and ‖bn‖L∞(ΣT ) ≤N1 with N1 independent of n. We set fn to
be a finite energy weak solution (see Lemma 5.8) to the equation

Y fn −∇p · (σg∇pfn) + bn · ∇pfn + (c+ λ)fn = χn(η), fn(0, ·)≡ 0,(5.92)

with the SRBC, where χn(t) =−n∨ t∧ n. By (5.9) in Proposition 5.4, we have

‖fn‖S2,κθ(ΣT ) + ‖fn‖L14/5,κθ(ΣT ) + ‖∇pfn‖L7/3,κθ(ΣT ) ≤N‖η‖L2,θ(ΣT ).(5.93)

By this estimate, there exists a function f such that fn→ f in the weak* topology of
S2,κθ(Σ

T ), so that the bound (5.9) is true for the limiting function f . We now show
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VML WITH THE SBC 6641

that f satisfies the initial condition and the SRBC. By Ukai’s trace lemma (D.2) and
(5.93),

‖fn‖L2(ΣT
±
,w|v·nx|) ≤N‖η‖L2,θ(ΣT ).

Then, (fn)± → f?± in the weak* topology of L2(Σ
T
±,w|v · nx|), and f?± satisfy the

SRBC. Furthermore, since Y fn ∈ L2(Σ
T ), we have Green’s identity (D.1) with u

replaced with fn. Then, by using a limiting argument, we see that the integrals over
ΣT± converge to those with the integrand f?±. Hence, the latter are the traces of f on
ΣT±, and 0 is the trace on {t = 0} × Ω× R

3. Testing (5.93) and passing to the limit
in (5.92), we conclude that the identity (3.7) holds in the L2(Σ

T ) sense, and, thus, f
is a strong solution to (3.7)–(3.8) (see Definition 3.2). Finally, the “energy” estimate
(5.8) is obtained via the same limiting argument.

To show the existence with the initial condition f0 ∈ S2,θ(Ω × R
3) satisfying

the SRBC, we reduce the problem to the case when f0 ≡ 0 by replacing f(z) with
f(z) = f(z) − φ(t)f0(x, p), where φ ∈ C∞

0 (R) such that φ(0) = 1. We note that f

satisfies the identities

∂tf + v(p) · ∇xf −∇p · (σg∇pf) + b · ∇pf + (c+ λ)f = η̃,

f
∗
−(t, x, p) = f

∗
+(t, x,Rxp), z ∈ΣT−, f(0, ·)≡ 0,

where

η̃= η+ φ′f0 + φ
(
v(p) · ∇xf0)−∇p · (σg∇pf0) + b · ∇pf0 + (c+ λ)f0

)
.

Since the L∞ norms of σg,∇pσg, b, c are bounded by N (see (5.5) and (5.6)), we have

‖η̃‖L2,θ(ΣT ) ≤N‖η‖L2,θ(ΣT ) +N(1 + λ)‖f0‖S2,θ(ΣT ).

This concludes the proof of the existence part.
Uniqueness. Let f be a strong solution to (3.7) with η≡ 0, f0 ≡ 0. Then, we may

use a variant of the energy identity for functions satisfying the SRBC (see (D.4) in
Lemma D.5) with u = f and φ = fe−2λ′t. Integrating by parts in p and using the
Cauchy–Schwarz inequality, we get

∫

ΣT

(
δ0
2
|∇pf |2 + (λ+ λ′ −N)|f |2

)
dz ≤ 0,(5.94)

where N =N(K)> 0 and δ0 is the ellipticity constant of σg (see Lemma 5.3). Hence,
taking λ′ >N gives f ≡ 0. The uniqueness is proved.

Proof of Remark 5.5. Invoke all the notation in the proof of Lemma 5.10. We say
that f satisfies the mirror-extension property if

the identity (5.65) holds for ˜̃U onR7.(5.95)

To show this, we regularize f by using an approximation scheme fn defined as

in the proof of Proposition 5.4 (see (5.92)). Then we construct ˜̃U for such fn and
ηn. Since fn → f in the weak* topology of S2,κθ(Σ

T ), by passing to the limit in the
integral formulation of (5.65) as n→∞, we conclude that (5.95) is true.

Proof of Proposition 5.6. We inspect the proof of Proposition 5.4. We use a

bootstrap method to show that ˜̃U (see (5.63)) is of class SNr (R7
T ) and to estimate
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6642 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

‖ ˜̃U‖SN
r (R7

T ). In particular, one needs to use an induction argument with “the base” at

SN2 (R7
T ). In the induction step, one uses the embedding theorem for SNr spaces (see

Theorem 2.1 in [30]) combined with the SNr -estimate (F.6) in Lemma F.6 (ii). Refer
to the proof of Theorem 1.7 in [8] on pp. 493–494. We point out that the embedding
theorem in [30] is stated for SN2 (R7

T ) with T =∞. Nevertheless, it is easily seen that
the case T < ∞ is treated by the same method, which involves using the explicit
fundamental solution to ∂t + v · ∇x −∆v (cf. Lemma F.7).

5.2. Strong solutions to steady linear Landau equations. In this section,
we establish the results analogous to those in Propositions 5.4 and 5.6 for the steady
KFP equation (3.14).

Proposition 5.11 (steady Sr estimate in the presence of SRBC). Invoke the
assumptions of Proposition 5.4. In addition, assume that g, b, c, and η are independent
of t. Let r ∈ [2,∞). Then, there exists a constant θ = θ(r,κ, κ) > 0 such that if,
additionally,

η ∈L2,θ(Ω×R
3)∩Lr,θ(Ω×R

3),(5.96)

then the following assertions hold.
(i) There exists a unique strong solution f to (3.14). In addition, f ∈ L2(Ω)

W 1
2,θ(R

3).
(ii) For the strong solution f to (3.14) satisfying f ∈L2(Ω)W

1
2,θ(R

3), one has

f ∈ S2,κθ(Ω×R
3)∩ Sr,κθ(Ω×R

3),(5.97)

and

‖f‖S2,κθ(Ω×R3) + ‖f‖Sr,κθ(Ω×R3)(5.98)

≤N

(
‖η‖L2,θ(Ω×R3) + ‖η‖Lr,θ(Ω×R3) + ‖f‖L2,θ(Ω×R3)

)
,

where N =N(κ, κ, r, δ0, θ,K,Ω).
Furthermore, in the case when r < 6, we have

‖f‖Lr1,κθ(Ω×R3) + ‖∇pf‖Lr2,κθ(Ω×R3) ≤ r.h.s. of (5.98),(5.99)

where r1, r2 > 1 are the numbers satisfying the relations

1

r1
>

1

r
− 1

6
,

1

r2
>

1

r
− 1

12
.(5.100)

In the case when r ∈ (6,12),

‖f‖L∞,κθ(Ω×R3) + ‖∇pf‖Lr2,κθ(Ω×R3) ≤ r.h.s. of (5.98),(5.101)

where r2 satisfies (5.100). Finally, in the case when r > 12,

‖[f,∇pf ]‖L∞,κθ(Ω×R3) + ‖[f,∇pf ]‖Cα/3,α
x,p (Ω×R3)

≤ r.h.s. of (5.98),(5.102)

where α ∈ (0,1 − 12
r ). In (5.99), (5.101), and (5.102), one needs to take

into account the dependence of N on the additional parameters such as r1, r2,
and α.
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VML WITH THE SBC 6643

Proof of Proposition 5.11. We repeat the argument of Propositions 5.4–5.6 with
the following modifications:

– One needs to use the steady counterparts of Theorem 2.6 and Corollary 2.8
in [10] (see Remark 2.11 therein).

– The estimates (5.99) and (5.101)–(5.102) are proved by using the embedding
results in Lemma F.7.

Corollary 5.12. For any κ ∈ (0,1), there exists θ = θ(κ, r) > 0 such that for
any f ∈ Sr,θ(Ω×R

3) satisfying the SRBC, the following assertions hold.
(i) If r ∈ [2,7), we have

‖f‖Lr1,κθ(Ω×R3) + ‖∇pf‖Lr2,κθ(Ω×R3) .θ,κ,r,r1,r2,Ω ‖f‖Sr,θ(Ω×R3),(5.103)

where r1 and r2 are numbers satisfying (5.100).
(ii) If r ∈ (6,12),

‖f‖L∞,κθ(Ω×R3) + ‖∇pf‖Lr2,κθ(Ω×R3) .θ,κ,r,r2,Ω ‖f‖Sr,θ(Ω×R3),(5.104)

where r2 satisfies (5.100).
(iii) If r > 12, then, for any α∈ (0,1− 12/r), we have

‖[f,∇pf ]‖Cα/3,α
x,p (Ω×R3)

.θ,κ,r,α,Ω ‖f‖Sr(Ω×R3).(5.105)

Proof of Corollary 5.12. Let

η :=
p

p0
· ∇xf −∇p · (σg∇pf)

and note that η ∈ Lr,θ(Ω × R
3). Since f has the mirror-extension property (see

Remark 5.5), the function ˜̃U satisfies (cf. (5.65))

v · ∇y
˜̃U −∇v · (A∇v

˜̃U)
=
(
∇v · ((X+G)

ˆ̂U) + ˆ̂H
)
JW

−∇v ·
(
A(∇vJW)

ˆ̂U
)
−
(
v · ∇yJW

) ˆ̂U .

Then, applying the steady SNr estimate in Proposition 5.11 to the above equation and
using the embedding theorem for the steady SNr spaces (see Lemma F.7), and going
back to the original variables as in the proof of Lemma 5.10, we obtain the desired
estimates (5.103)–(5.105).

5.3. Finite energy solutions to unsteady KFP equations. The goal of
this section is to establish the existence and uniqueness result for the unsteady linear
Landau equation (3.7)–(3.8) in the class of finite energy solutions (Definition 3.1).
In particular, we employ a duality argument to prove the uniqueness and utilize an
approximation argument to establish existence. The well-posedness result is used to
prove Lemma G.1 about differentiating finite energy solutions in t. This lemma plays
a crucial role in demonstrating the temporal differentiability of the nonlinear RVML
system (see assertion (ii) in Theorem 3.10 and (a)–(b) in Proposition 6.2).

Proposition 5.13. We invoke the assumptions of Proposition 5.4 and assume,
additionally, that

‖∇p · b‖L∞(ΣT ) ≤K.(5.106)
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Then, for any θ≥ 0 and

f0 ∈L2,θ(Σ
T ), η ∈L2((0, T )×Ω)W−1

2,θ (R
3),

there exists a unique finite energy solution to (3.7)–(3.8) (see Definition 3.1). In
addition, for any t∈ (0, T ), f satisfies the energy identity

∫

Ω×R3

(
f2(t, x, p)− f20 (x, p)

)
p2θ0 dxdp

(5.107)

+

∫

Σt

(
∇p(p

2θ
0 f)

)T
σg∇pf +

(
(b · ∇pf)f + (c+ λ)f2

)
p2θ0 dz =

∫

(0,t)×Ω

〈η, fp2θ0 〉dxdτ,

where 〈·, ·〉 is defined in (2.11). A similar result holds for the steady equation (3.14).

Before we prove Proposition 5.13, we first establish the uniqueness in the class of
very weak solutions defined below.

Definition 5.1 (very weak solution). We say that f is a very weak solution to
(3.7)–(3.8) if

f ∈L2(Σ
T ),

and for any test function φ∈ S2(Σ
T ) satisfying SRBC and φ(T, ·)≡ 0, we have

−
∫

Ω×R3

f0(x, p)φ(0, x, p)dxdp

(5.108)

+

∫

ΣT

f

(
− Y φ−∇p · (σg∇pφ)− f∇p · (bφ) + (c+ λ)φ

)
dz =

∫

(0,T )×Ω

〈η,φ〉dxdτ.

Remark 5.14. We note that due to Lemma D.5, any test function φ in Def-
inition 5.1 belongs to C([0, T ])L2(Ω × R

3). Hence, any finite energy solution (see
Definition 3.1) is a very weak solution provided that b is sufficiently regular. See also
Remark 5.9 for a comparison with other notions of weak solutions used in this paper.

Lemma 5.15 (uniqueness of very weak solutions). We invoke the assumptions of
Proposition 5.4 and assume, additionally, that ∇p ·b∈L∞(ΣT ). Then, the uniqueness
holds for the problem (3.7)–(3.8) in the class of very weak solutions.

Proof. Assume that u(j), j = 1,2, are very weak solutions to (3.7)–(3.8) and denote
u= u(1)−u(2). Then, for any function φ∈ S2(Σ

T ) satisfying SRBC and the condition
φ(T, ·)≡ 0, we have

∫

ΣT

u (−Y φ−∇p · (σg∇pφ)− (∇p · b)φ− b · ∇pφ+ (c+ λ)φ) dz = 0.

Let ζ ∈ C∞
0 (R3) be a nonnegative function such that ζ = 1 on B1(0) and denote

ζn(·) = ζ(·/n), n > 0. We consider the equation

− Y φn −∇p · (σg∇pφn)− b · ∇pφn + (c+ λ−∇p · b)φn = uζn,

φn(T, ·)≡ 0, φn(t, x, p) = φn(t, x,Rxp), z ∈ΣT−.
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VML WITH THE SBC 6645

Since uζn ∈ L2,θ(Σ
T ) for any θ > 0, by Proposition 5.4 the above equation has a

unique strong solution φn ∈ S2(Σ
T ). Then, we have
∫

ΣT

u2ζn dz = 0,

and by nonnegativity of ζ, we have u2ζn = 0 a.e. Since n is arbitrary, we conclude
u≡ 0, as desired.

Proof of Proposition 5.13. The uniqueness follows from Remark 5.14 and Lemma
5.15.

Existence. For the sake of clarity, we will only consider the case when θ = 0, as
the case when θ > 0 is handled by the same argument. The proof is split into two
steps.

We will need an auxiliary notion of finite energy solutions, which we call inter-
mediate finite energy solutions.

Step 1: Construction of an intermediate finite energy solution.

Definition 5.2. We say that f is an intermediate finite energy solution if

f ∈L∞((0, T ))L2(Ω×R
3)∩L2((0, T )×Ω)W 1

2 (R
3),

and for any test function φ satisfying the conditions (3.10)–(3.12), and φ(T,x, p)≡ 0
(see Remark 3.2), one has

−
∫

ΣT

f(Y φ)dz −
∫

Ω×R3

f0(x, p)φ(0, x, p)dxdp(5.109)

+

∫

ΣT

(
(∇pφ)

Tσg∇pf + (b · ∇pf)φ+ (c+ λ)φ

)
dz =

∫

ΣT

〈η,φ〉dxdτ

(see (2.11)).

We refer to Remark 5.9 for a review of various definitions of weak solutions em-
ployed throughout this paper.

Proof by approximations and weak* compactness. Let f0,n, n≥ 1, be a sequence
of functions such that

f0,n ∈ S2,2θ(Ω×R
3), f0,n satisfies SRBC,(5.110)

f0,n → f0 in L2(Ω×R
3),

where θ is large. For example, one can choose f0,n ∈C∞
0 (Ω×R

3) such that f0,n→ f0
in L2(Ω×R

3), so that both conditions in (5.110) are satisfied.
Furthermore, let ζ, ξ ∈ C∞

0 (R3) be functions such that
∫
R3 ζ dp = 1 and ξ = 1 on

B1(0). We set

ζn(p) = n−3ζ(p/n), ξn(p) = ξ(p/n).

For any function h∈L1,loc(R
7
T ), we denote

h(n)(t, x, p) = (h ∗p ζn)(t, x, p).

Next, let η0,η1 be any L2(Σ
T ) functions such that

η= η0 +∇p · η1.(5.111)
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6646 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Since (5.110) is valid and one has

ξnη0, ∇p · (ξnη1)(n) ∈L2,θ(Σ
T ) ∀θ > 0,

by Proposition 5.4 (i) there exists a unique strong solution fn ∈ S2(Σ
T ) to the equation

Y fn −∇p · (σg∇pfn) + b · ∇pfn + (c+ λ)fn = ξnη0 +∇p · (ξnη1)(n),(5.112)

fn(t, x, p) = fn(t, x,Rxp), z ∈ΣT−, fn(0, ·) = f0,n(·).

By using the energy identity (D.4), integration by parts, and the Cauchy–Schwarz
inequality, we get

‖fn‖L∞((0,T ))L2(Ω×R3) + ‖fn‖L2((0,T )×Ω)W 1
2 (R

3)(5.113)

≤N‖fn(0, ·)‖L2(Ω×R3) +N‖|η0|+ |η1|‖L2(ΣT ),

where N =N(δ0,K,T )> 0.
By the weak* compactness argument, there exists a function f and a subsequence

n′ such that

f ∈L∞((0, T ))L2(Ω×R
3)∩L2((0, T )×Ω)W 1

2 (R
3),

fn′ → f in the weak* topology of L∞((0, T ))L2(Ω×R
3),

fn′ → f in the weak topology of L2((0, T )×Ω)W 1
2 (R

3).

Hence, by passing to the limit in the integral formulation (5.109) of (5.112), we con-
clude that f satisfies the integral formulation (5.109). Thus, f is an intermediate
finite energy solution to (3.7)–(3.8). The uniqueness follows from Lemma 5.15. Tak-
ing liminf in (5.113) and then infimum over all η0,η1 ∈L2(Σ

T ) satisfying (5.111), we
obtain the estimate

‖f‖L∞((0,T ))L2(Ω×R3) + ‖f‖L2((0,T )×Ω)W 1
2 (R

3)(5.114)

≤N‖f(0, ·)‖L2(Ω×R3) +N‖η‖L2((0,T )×Ω)W−1
2 (R3),

where N =N(δ0,K,T ).
Step 2: Existence of a finite energy solution. We first show that

fn→ f strongly inL∞((0, T ))L2(Ω×R
3) and inL2((0, T )×Ω)W 1

2 (R
3).(5.115)

We note that wn = fn − f is an intermediate finite energy solution to

Y wn −∇p · (σg∇pwn) + b · ∇pwn + (c+ λ)wn(5.116)

= (ξn − 1)η0 +∇p ·
(
(ξnη1)(n) − η1

)
,

wn(t, x, p) =wn(t, x,Rxp), z ∈ΣT−, wn(0, ·) = f0,n(·)− f0(·).

By the estimate (5.114) obtained in Step 1, we have

‖wn‖L∞((0,T ))L2(Ω×R3) + ‖wn‖L2((0,T )×Ω)W 1
2 (R

3)

≤N‖f0,n − f0‖L2(Ω×R3)

+N‖|η0 − ξnη0|+ |η1 − (ξnη1)(n)|‖L2(ΣT ).

Passing to the limit, we prove (5.115). Since fn ∈ S2(Σ
T ), f0,n ∈L2(Ω×R

3), and fn
satisfies SRBC, by Lemma D.5, we have fn ∈C([0, T ])L2(Ω×R

3). Then, due to the
convergence (5.115), we conclude f ∈C([0, T ])L2(Ω×R

3).
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VML WITH THE SBC 6647

Finally, we prove the validity of the weak formulation (3.13). We fix arbitrary
t∈ [0, T ]. By the energy identity (D.4) with t in place of T applied to (5.112), we get

−
∫

Σt

fnY φdz +

∫

Ω×R3

(fnφ)(t, x, p)− f0,n(x, p)φ(0, x, p)dxdp

+

∫

Σt

(
(∇pφ)

Tσg∇pfn + b · ∇pfnφ+ (c+ λ)φ

)
dz

=

∫

(0,t)×Ω

η0ξnφ− (∇pφ) · (ξnη1)(n) dxdτ.

Passing to the limit as n→∞, we obtain the desired identity (3.13). Thus, f is the
finite energy solution to (3.7)–(3.8), as desired.

6. Proof of Proposition 3.11. The section is organized as follows. First, in
section 6.1 we prove the desired estimate (3.56) given that the linear RVML system
(3.46)–(3.50) is well-posed and the triple [f,Ef ,Bf ] is sufficiently regular. See the
details in Proposition 6.2. We justify the existence, uniqueness, and higher regularity
in the proof of Proposition 6.2 in Appendix G. Denote

σg++g− = 2

∫

R3

Φ(P,Q)J(q)dq

︸ ︷︷ ︸
=σ(p)

+

∫

R3

Φ(P,Q)J1/2(q)g(t, x, q) · ξ0 dq,(6.1)

aig(z) =−
∫

Φij(P,Q)J1/2(q)

(
pi
2p0

g(t, x, q) + ∂qjg(t, x, q)

)
· ξ0 dq,(6.2)

Cg(z) =−1

2
σij

pi
p0

pj
p0

+ ∂pi

(
σij

pj
p0

)
(6.3)

−
∫ (

∂pi −
pi
2p0

)
Φij(P,Q)J1/2(q)∂qjg(t, x, q) · ξ0 dq,

Kg=−J−1/2(p)∂pi

(
J(p)

∫
Φij(P,Q)J1/2(q)

(
∂qjg(t, x, q)(6.4)

+
qj
2q0

g(t, x, q)
)
· ξ0 dq

)
ξ0.

The following lemma will be used many times in the paper.

Lemma 6.1. Under the assumptions of Proposition 3.11, we have

‖∂kt g‖L∞((0,T )×Ω)W 1

r,θ/2k+9 (R
3)(6.5)

≤N0 sup
τ≤T

√
Ig(τ)≤N0

√
ε0, r ∈ {2,∞}, k= 0,1, . . . ,m− 8,

‖∂kt g‖L∞((0,T ))C
α/3,α
x,p (Ω×R3)

≤N0 sup
τ≤T

√
Ig(τ)≤N0

√
ε0, k= 0,1, . . . ,m− 8,(6.6)

‖∂kt [Eg,Bg]‖L∞((0,T )×Ω) ≤N0
√
ε0, k= 0,1, . . . ,m− 7,(6.7)

‖∂kt ag‖L∞(ΣT ) ≤N0
√
ε0, k= 0,1, . . . ,m− 8,(6.8)

‖|σg++g− |+ |∇pσg++g− |+ |Cg|‖L∞(ΣT ) ≤N0,(6.9)

‖∂kt σg++g− |+ |∂kt∇pσg++g− |+ |∂kt Cg|‖L∞(ΣT ) ≤N0
√
ε0, k= 1, . . . ,m− 8,(6.10)

where α ∈ (0,1 − 12/r4). Furthermore, for h = [σg++g− ,∇pσg++g− ,Cg, ag], and i ∈
{1, . . . ,4},
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6648 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

‖∂kt h‖L∞((0,T ))Lri
(Ω)L∞(R3) ≤N0

√
ε0, k≤m− 4− i,(6.11)

where ri, i= 1, . . . ,4, are given by (3.28), and N0 =N0(r1, . . . , r4, θ,Ω, α,m).

Proof. In this proof N0 =N0(r1, . . . , r4, θ,Ω, α,m) might change from line to line.
We note that by the definition of Hg(T ) in (3.30) and the assumption yg(T )< ε0 (see
(3.55)), the fact that r4 > 12, and the embedding theorem for steady Sp spaces (see
(5.105)), we have for k≤ m− 8 and r ∈ {2,∞},

‖∂kt g‖L∞((0,T )×Ω)W 1

r,θ/2k+9 (R
3) .r4,θ,k,Ω ‖∂kt g‖L∞((0,T ))S

r4,θ/2k+8 (Ω×R3)(6.12)

≤N0‖Hg‖1/2L∞((0,T )) ≤N0
√
ε0.

By the same embedding result, we obtain (6.6). The estimate of the L∞ norm
∂kt [Eg,Bg] follows from the fact that r3 > 3 (see (3.29)), the Sobolev embedding
theorem, the definition of Hg(T ) (see (3.30)), and the smallness assumption (3.55).
Furthermore, using the identities (6.2)–(6.4), the estimate (B.7) with r = ∞ in
Lemma B.3, and the bound (6.5) with r =∞, we obtain the estimate of σg in (6.9)–
(6.10). By (B.9)–(B.10), we obtain the estimate of ag and Cg in (6.8)–(6.10).

Finally, using the bound (B.7) again, we get for fixed t, x,

‖∂kt h(t, x, ·)‖L∞(R3) ≤N0|∂kt [Eg,Bg](t, x)|+N0‖∂kt [g,∇pg](t, x, ·)‖Lri
(R3).

Taking the L∞((0, T ))Lri(Ω) norm and invoking the definition of Hg in (3.30), we get
for k≤m− 4− i (cf. (6.12)),

l.h.s. of (6.11)

≤N0‖∂kt [Eg,Bg]‖L∞((0,T ))Lri
(Ω) +N0‖∂kt [g,∇pg]‖L∞((0,T ))Lri

(Ω×R3) ≤N0
√
ε0.

The next lemma asserts the well-posedness of the linear RVML system. We will
prove it in Appendix G.

Proposition 6.2. Under the assumptions of Proposition 3.11, there exists a
triple [f,Ef ,Bf ] such that

(a) ∂kt f, k ≤ m − 5, is a strong solution (see Definition 3.2) to the linear Lan-
dau equation (3.46) differentiated k times with respect to t with the initial
condition ∂kt f = f0,k (see (3.16)),

(b) ∂kt f,m− 4 ≤ k ≤m, is a finite energy solution to (3.46) (see Definition 3.1)
differentiated k times with respect to t with the initial condition f0,k,

(c) ∂kt [Ef ,Bf ], k ≤ m − 1, is a strong solution to Maxwell’s equations (3.47)–
(3.48) differentiated k times with respect to t with the perfect conductor BC
and the initial condition [E0,k,B0,k] (see (3.17)–(3.18)), whereas ∂mt f is a
weak solution to differentiated Maxwell’s equations,

(d) for any k≤m, we have ∂kt [∇x ·Ef ,∇x ·Bf ] = ∂kt [ρf ,0] (cf. (3.49)),
(e)

∂kt f(t, ·)∈L∞(Ω)W 1
∞,θ/2k+9(R

3), k≤m− 8, for any t∈ (0, T ],(6.13)

Furthermore, any two triples [f (j),E
(j)
f ,B

(j)
f ], j = 1,2, satisfying (a)–(e) must coincide.

The next result shows that given the energy-dissipation control (see (3.27) and
(3.34)), one can establish the higher-regularity control by estimating Hf (T ) (see
(6.14)).
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VML WITH THE SBC 6649

Proposition 6.3. Assuming that Proposition 6.2 is valid, we have for τ ≤ T ,

Hf (τ) =
4∑

i=1

m−4−i∑

k=0

‖∂kt f(τ, ·)‖2S
ri,θ/2

k+2i (Ω×R3)

+
m−1∑

k=0

‖∂kt [Ef ,Bf ](τ, ·)‖2W 1
2 (Ω) +

3∑

i=2

m−4−i∑

k=0

‖∂kt [Ef ,Bf ](τ, ·)‖2W 1
ri

(Ω)(6.14)

≤Nε0 sup
τ≤T

If (τ)

+N
m−1∑

k=0

‖∂kt f‖2L∞((0,T ))L2(Ω×R3) +N
m∑

k=0

‖∂kt [Ef ,Bf ]‖2L∞((0,T ))L2(Ω)

+N
m−4∑

k=0

‖∂kt f‖2L∞((0,T ))L
2,θ/2k

(Ω×R3),

where N =N(r1, . . . , r4, α,Ω, θ,m).

Proof. Here we estimate the functional Hf (τ) (see (3.30)). For the sake of clarity,
we assume, additionally,

Hf (τ)<∞, τ ≤ T,(6.15)

which is used to perform the descent argument (see section 4). This assumption will
be removed at the end of this step.

First, we differentiate Maxwell’s equations formally k times in the t variable and
rewrite them as two systems of div-curl type as in (4.3)–(4.4). By the W 1

ri div-curl
estimate (see (3.15)), we have

‖∂kt [Ef ,Bf ]‖L∞((0,T ))W 1
ri

(Ω)(6.16)

.Ω

k+1∑

l=k

‖∂lt[Ef ,Bf ]‖L∞((0,T ))Lri
(Ω) + ‖∂kt f‖L∞((0,T ))Lri

(Ω×R3),

where k≤m−1 if i= 1 (r1 = 2), and k≤m−4− i if i∈ {2,3}. This gives the desired
estimate of the second term on the l.h.s. of (6.14).

Next, differentiating (3.46) formally and using the expressions of A and Γ(f, g)
in (B.1) and (B.3), and those of σg++g− , ag, and Cg (see (6.1)–(6.3)), we conclude
that for each t, the function u(t, ·) = ∂kt f(t, ·), k ≤m− 5, is a strong solution to the
“steady” equation

p

p0
· ∇xu−∇p · (σg++g−∇pu) + ξ(Eg + v(p)×Bg − ag) · ∇pu(6.17)

+

(
Cg −

ξ

2
v(p) ·Eg

)
u

=−∂k+1
t f + ξ1(v(p) · ∂kt Ef )J1/2 +K(∂kt f) + 1k>0

3∑

j=1

∑

k1+k2=k,k1≥1

ηjk1,k2 ,

u(t, x, p) = u(t, x,Rxp), (x, p)∈ γ−,(6.18)

η1k1,k2 =−ξ∂k1t (Eg + v(p)×Bg) · ∇p(∂
k2
t f) +

ξ

2
(v(p) · ∂k1t Eg)∂

k2
t f,

η2k1,k2 =
(
∂pj∂

k1
t σ

ij
g++g− − ∂k1t a

i
g

)
(∂pi∂

k2
t f) + (∂k1t Cg)∂

k2
t f,

η3k1,k2 = (∂k1t σ
ij
g++g−)(∂pipj∂

k2
t f).
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We apply Proposition 5.11 (see (5.98)) to ∂kt f
±(t, ·) for each t with

b=±(Eg + v(p)×Bg)− ag, c=Cg −
ξ

2
v(p) ·Eg.

We first check its assumptions (5.1)–(5.2), (5.3), (5.6).
We note that (5.1)–(5.2) in Assumption 5.1 hold with K = 1 due to (6.5)–(6.6) in

Lemma 6.1 provided that ε0 is sufficiently small. Similarly, (5.6) with K = 1 follow
directly from (6.9) in Lemma 6.1. Finally, (5.3) is valid due to (3.52).

We fix i= 1, . . . ,4 and 0≤ k≤m−4−i. Then, by the estimates (5.98)–(5.99) and
(5.101)–(5.102) with θ/2k+2i−1 in place of θ and κ = 1/2 applied for each t ∈ [0, T ],
we get

‖∂kt f‖2L∞((0,T ))S
ri,θ/2

k+2i (Ω×R3) + 1i<4‖∂kt f‖2L∞((0,T ))L
ri+1,θ/2k+2i (Ω×R3)(6.19)

≤N
∑

s∈{2,ri}

‖r.h.s. of (6.17)‖2L∞((0,T ))L
s,θ/2k+2i−1 (Ω×R3)

+N‖∂kt f‖2L∞((0,T ))L
2,θ/2k+2i−1 (Ω×R3).

Furthermore,

∑

s∈{2,ri}

‖r.h.s. of (6.17)‖2L∞((0,T ))L
s,θ/2k+2i−1 (Ω×R3) ≤

4∑

j=1

Ij,k,(6.20)

Ij,k = 1k>0

∑

s∈{2,ri}

∑

k1+k2=k,k1≥1

‖ηjk1,k2‖
2
L∞((0,T ))L

s,θ/2k+2i−1 (Ω×R3), j = 1,2,3,

I4,k =
∑

s∈{2,ri}

‖∂k+1
t f‖2L∞((0,T ))L

s,θ/2k+2i−1 (Ω×R3),

I5,k = ‖∂kt Ef‖2L∞((0,T ))Lri
(Ω),

I6,k =
∑

s∈{2,ri}

‖K(∂kt f)‖2L∞((0,T ))L
s,θ/2k+2i−1 (Ω×R3).

We chose weights θ/2k+2i because for each i= 1, . . . ,4, and k≤m− 4− i, we need to
compensate for

(a) the “natural” weight loss in the steady Sp estimate with κ= 1/2 (see (5.98)–
(5.99) in Proposition 5.11),

(b) the presence of the term ∂k+1
t f ∈L2,θ/2k+1(ΣT ) on the r.h.s. of (6.17), which

has a worse decay than ∂kt f .
Loosely speaking, due to (a)–(b), for each i, the loss factor in the weight parameter
is 1

4 , which leads to the factor 2−2i in the “hierarchy of weights.”
Estimates of I1,k and I2,k. We will show that

I1,k + I2,k ≤Nε0
∑

s∈{2,ri}

k−1∑

k2=0

‖∂k2t [f,∇pf ]‖2L∞((0,T ))L
s,θ/2k2+2i (Ω×R3)(6.21)

+Nε01k≥m−7

2∑

k2=0

‖∂k2t [f,∇pf ]‖2L∞((0,T ))L
∞,θ/2k2+9 (Ω×R3).

Recall that k ≤ m − 4 − i. We will consider the case when k ≥ m − 7 since the
remaining case is easier to handle due to (6.5)–(6.10). Furthermore, splitting the sum
into k1 ≤m− 8 and k1 ≥m− 7 gives
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VML WITH THE SBC 6651

I1,k + I2,k ≤
∑

k1+k2=k:1≤k1≤m−8

‖∂k1t h‖2L∞(ΣT )

(6.22)

×
∑

s∈{2,ri}

‖∂k2t [f,∇pf ]‖2L∞((0,T ))L
s,θ/2k+2i−1 (Ω×R3)

+ 1m−7≤k≤m−4−i

∑

k1+k2=k:k1≥m−7

∑

s∈{2,ri}

‖(∂k1t h)p−2
0 ‖2L∞((0,T ))Ls(Ω×R3)

× ‖∂k2t [f,∇pf ]‖2L
∞,2+θ/2k+2i−1 (ΣT ),

where h = [Eg,Bg, ag,Cg, σg++g− ,∇pσg++g− ]. Due to (6.5)–(6.8) and (6.10) in
Lemma 6.1,

11≤k1≤m−8‖∂k1t h‖2L∞(ΣT ) ≤Nε0,(6.23)

and by (6.11) in the same lemma, and by the fact that Hg(τ)≤ ε0, we get

1k1≤m−4−i

∑

s∈{2,ri}

‖(∂k1t h)p−2
0 ‖2L∞((0,T ))Ls(Ω×R3) ≤Nε0.

Next, since k1 ≥ 1, we have k2 ≤ k− 1, so that the second factor in the first term
on the r.h.s. of (6.22) is bounded by

∑

s∈{2,ri}

‖∂k2t [f,∇pf ]‖2L∞((0,T ))L
s,θ/2k2+2i (Ω×R3),

as desired. Furthermore, if k1 ≥m− 7, one has k2 ≤ 2 (recall that k ≤m− 5), and
hence, k2 + 9≤ 11<m− 6≤ k+ 2i− 1, which gives

2 + θ/2k+2i−1 ≤ θ/2k2+9(6.24)

for large θ. Then, for sufficiently large θ, the second factor in the second term on the
r.h.s. of (6.22) is bounded by

‖∂k2t [f,∇pf ]‖2L
∞,θ/2k2+9 (ΣT ).

Thus, the inequality in (6.21) is true.
Estimate of I3,k. We will show that

I3,k ≤Nε0
∑

s∈{2,ri}

k−1∑

k2=0

‖∂k2t D2
pf‖2L∞((0,T ))L

s,θ/2k2+2i (Ω×R3)(6.25)

+Nε01k≥m−7

∑

s∈{2,r4}

2∑

k2=0

‖∂k2t f‖2L∞((0,T ))S
s,θ/2k2+8 (Ω×R3).

Inspecting the proof of (6.21) and using (6.23), we conclude

∑

s∈{2,ri}

∑

k1+k2=k,1≤k1≤m−8

‖η3k1,k2‖
2
L∞((0,T ))L

s,θ/2k2+2i−1 (Ω×R3) ≤ r.h.s. of (6.25).

(6.26)

Hence, we may assume that k1 ≥m− 7, k2 ≤ 2.
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6652 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

We denote

p
θ/2k+2i−1

0 = p−2
0 p

2+θ/2k+2i−1

0 =:w1(p)w2(p).

By using Hölder’s inequality in the x, p variables with the exponents ri+1/ri and ηi/ri,
where ηi := (r−1

i − r−1
i+1)

−1, we get

I3,k = sup
τ≤T

(∫

Ω×R3

|∂k1t σg++g− |ri(τ,x, p) |D2
p∂

k2
t f(τ,x, p)|ri p

ri(θ/2
k+2i−1)

0 dxdp

)2/ri

(6.27)

≤ sup
τ≤T

I3,1,k(τ)I3,2,k(τ),

I3,1,k(τ) =
(∫

Ω×R3

|∂k1t σg++g−(τ,x, p)|ri+1w
ri+1

1 (p)dxdp

)2/ri+1

,

I3,2,k(τ) =
(∫

Ω×R3

|D2
p∂

k2
t f(τ,x, p)|ηi wηi2 (p)dxdp

)2/ηi

.

We estimate I3,1,k first. Recalling the definition of ri+1 in (3.28) and using the
embedding result in (5.103) in Corollary 5.12 with ri in place of r, and invoking the
definition of Hg(τ) in (3.30), and the fact that k1 ≤m− 4− i, we find

‖∂k1t g(τ, ·)‖2Lri+1
(Ω×R3) ≤N‖∂k1t g(τ, ·)‖2S

ri,θ/2
k1+2i (Ω×R3) ≤NHg(τ)≤Nε0.

Furthermore, differentiating the identity (6.1) and using the pointwise bound (B.7)
in Lemma B.3, we find

I3,1,k(τ) = ‖p−2
0 ∂k1t σg++g−(τ, ·)‖2Lri+1

(Ω×R3) ≤N‖∂k1t g(τ, ·)‖2Lri+1
(Ω×R3) ≤Nε0.

(6.28)

We move to I3,2,k. We first note that since k2 ≤ 2, (6.24) is valid, and hence, we may

replace w2(p) with p
θ/2k2+8

0 . Furthermore, by the definition of r1, . . . r4 in (3.28) and
the fact that ∆r < 1

42 , we have

1

ηi
=

1

ri
− 1

ri+1
=

1

6
−∆r≥ 1

6
− 1

42
≥ 1

7
.

Hence, by interpolating between L2 and Lr4 (r4 > 14), we obtain

I3,2,k(τ)≤N
∑

s∈{2,r4}

‖∂k2t f(τ, ·)‖2S
s,θ/2k2+8 (Ω×R3).(6.29)

Combining (6.26)–(6.29), we conclude that (6.25) holds.
Estimate of I5,k. In the case when i = 1 and ri = 2, we keep I5,k as is. In the

remaining case i > 1, we first note that by Sobolev embedding and the fact that

1− 6

ri−1
>− 6

ri
,

which follows from (3.28), we have

‖∂kt [Ef ,Bf ](τ, ·)‖Lri
(Ω) .Ω ‖∂kt [Ef ,Bf ](τ, ·)‖W 1

ri−1
(Ω).
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VML WITH THE SBC 6653

Hence, by (6.16) with i replaced with i− 1, we obtain

I5,k = ‖∂kt [Ef ,Bf ]‖2L∞((0,T ))Lri
(Ω)(6.30)

≤N‖∂kt f‖2L∞((0,T ))Lri−1
(Ω×R3) +N

k+1∑

l=k

‖∂lt[Ef ,Bf ]‖2L∞((0,T ))Lri−1
(Ω).

Estimate of I6,k. By (B.11) in Lemma B.5 and interpolation and Hölder’s in-
equalities, for any ε1 ∈ (0,1) and sufficiently large θ, we have

I6,k =
∑

s∈{2,ri}

‖K(∂kt f)‖2L∞((0,T ))L
s,θ/2k+2i−1 (Ω×R3)

(6.31)

≤N
∑

s∈{2,ri}

‖∂kt f‖2L∞((0,T ))Ls(Ω)W 1
s (R

3)

≤ ε1‖D2
p∂

k
t f‖2L∞((0,T ))L

ri,θ/2
k+2i (Ω×R3) +Nε−1

1 ‖∂kt f‖2L∞((0,T ))L
ri,θ/2

k+2(i−1) (Ω×R3).

Finally, gathering all the estimates (6.20)–(6.21), (6.25), (6.30)–(6.31) gives

∑

s∈{2,ri}

‖r.h.s. of (6.17)‖2L
s,θ/2k+2i−1 (ΣT )

(6.32)

≤Nε−1
1

k+1∑

l=k

‖∂ltf‖2L∞((0,T ))L
ri,θ/2

l+2(i−1) (Ω×R3)+ε1‖∂ktD2
pf‖2L∞((0,T ))L

ri,θ/2
k+2i (Ω×R3)

+ ‖∂k+1
t f‖2L∞((0,T ))L

2,θ/2k+2i−1 (Ω×R3) +N1i=1‖∂kt Ef‖2L∞((0,T ))L2(Ω×R3)

+N1i>1

(
‖∂kt f‖2L∞((0,T ))Lri−1

(Ω×R3) +

k+1∑

l=k

‖∂lt[Ef ,Bf ]‖2L∞((0,T ))Lri−1
(Ω)

)

+ 1k>0Nε0
∑

s∈{2,ri}

k−1∑

k2=0

‖∂k2t f‖2L∞((0,T ))S
s,θ/2k2+2i (ΣT )

+Nε01k≥m−7

2∑

k2=0

(
‖∂k2t [f,∇pf ]‖2L

∞,θ/2k2+9 (ΣT )

+
∑

s∈{2,ri}

‖∂k2t f‖2L∞((0,T ))S
s,θ/2k2+8 (Ω×R3)

)
.

We note that the first term involving weighted Lt,x,p∞ norm on the r.h.s. is bounded by

ε01k≥m−7

2∑

k2=0

‖∂k2t [f,∇pf ]‖2L
∞,θ/2k2+9 (ΣT ) ≤Nε0 sup

τ≤T
If (τ)

due to the first inequality in (6.5).
Combining (6.16), (6.19), and (6.32), and summing up over k ≤ m− 4− i, and

invoking the definition of If in (3.31), we get

m−4−i∑

k=0

‖∂kt f‖2L∞((0,T ))S
ri,θ/2

k+2i (Ω×R3) + 1i<4

m−4−i∑

k=0

‖∂kt f‖2L∞((0,T ))L
ri+1,θ/2k+2i (Ω×R3)

+ 1i=1

m−i∑

k=0

‖∂kt [Ef ,Bf ]‖2L∞((0,T ))W 1
ri

(Ω)
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6654 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

+ 1i>1

m−4−i∑

k=0

‖∂kt [Ef ,Bf ]‖2L∞((0,T ))W 1
ri

(Ω)

+ 1i>1

m−4−i∑

k=0

‖∂kt [Ef ,Bf ]‖2L∞((0,T ))Lri+1
(Ω)

≤ ε1

m−4−i∑

k=0

‖∂kt f‖2L∞((0,T ))S
ri,θ/2

k+2i (Ω×R3) +Nε0 sup
τ≤T

If (τ)

+Nε−1
1

m−3−i∑

k=0

‖∂kt f‖2L∞((0,T ))L
ri,θ/2

k+2(i−1) (Ω×R3)

+N1i>1

m−4−i∑

k=0

‖∂kt f‖2L∞((0,T ))Lri−1
(Ω×R3)

+N1i>1

m−3−i∑

k=0

‖∂kt [Ef ,Bf ]‖2L∞((0,T ))Lri−1
(Ω)

+N
m−3−i∑

k=0

‖∂kt f‖2L∞((0,T ))L
2,θ/2k

(Ω×R3).

We point out that
• by choosing ε1 sufficiently small, we may absorb the first term on the r.h.s.

into the l.h.s.,
• the fourth term on the r.h.s. is bounded by the third one due to Hölder’s

inequality provided that θ is sufficiently large,
• if we replace i with i− 1 in the second term on the l.h.s., we obtain the third

one on the r.h.s.,
• if we replace i with i − 1 in the fifth term on the l.h.s., the resulting term

dominates the fifth term on the r.h.s.
Then, by using induction on i, we obtain the desired estimate (6.14) for the first

and the third terms on the l.h.s. therein.
We note that the assumption (6.15) is actually not necessary, as one can use an

induction argument by ascending from k = 0 to k =m− 4− i and using the bounds
(6.19) and (6.32). At each step of the induction argument, one needs to use the
existence and uniqueness results

(a) for finite energy and strong solutions to the steady KFP equation (3.14) (see
Propositions 5.11 and 5.13),

(b) for strong solutions to Maxwell’s equation (see Chapter VII in [11]).

6.1. Proof of the bound (3.56). In this proof, N = N(r1, . . . , r4, α,Ω, θ,m).
We will do some formal calculations below assuming that Proposition 6.2 is valid. We
first prove the energy-dissipation estimate. Combining this inequality with Lt∞Sp and
Lt∞W

1
2 (Ω) bounds in (6.14), we are able to close the estimate of yf (T ).

Step 1: Energy-dissipation bound. Here, we estimate the total energy and
dissipation, that is, Ef (τ) +

∫ τ
0
D dt (see (3.27) and (3.34)). First, applying the stan-

dard energy identity for the weak solution to Maxwell’s equations differentiated k
times with respect to t and using the Cauchy–Schwarz inequality, we have

1

2
‖∂kt [Ef ,Bf ]‖2L∞((0,T ))L2(Ω) ≤

1

2
‖E0,k,B0,k‖2L2(Ω) +N‖∂kt f‖2L2(ΣT )(6.33)

+ ‖∂kt Ef‖2L2((0,T )×Ω).
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VML WITH THE SBC 6655

Next, for the sake of convenience, we introduce

θk =

{
θ/2k, k= 0,1, . . . ,m− 4,

0, k=m− 3, . . . ,m.
(6.34)

Differentiating the linear Landau equation (3.46) formally k times in the t variable
and using a variant of the energy identity (5.107), we get for each τ > 0,

1

2

(
‖∂kt f(τ, ·)‖2L2,θk

(Ω×R3) − ‖f0,k‖2L2,θk
(Ω×R3)

)
(6.35)

+

∫ τ

0

∫

Ω

〈L∂kt f, ∂kt f p2θk0 〉dxdt
︸ ︷︷ ︸

=I1

− ξ1

∫

Στ

(v(p) · ∂kt Ef )(∂kt f)
√
Jp2θk0 dz

︸ ︷︷ ︸
=I2

=

∫ τ

0

∫

Ω

〈(∂kt Γ(f, g)), (∂kt f)p2θk0 〉dxdt
︸ ︷︷ ︸

I4

+
ξ

2

∑

k1+k2=k

(
k

k1

)∫

Στ

v(p) · (∂k1t Eg)(∂
k2
t f)(∂

k
t f)p

2θk
0 dz

︸ ︷︷ ︸
I5

− ξ
∑

k1+k2=k

(
k

k1

)∫

Στ

(
∂k1t Eg + v(p)× (∂k1t Bg)

)
· (∇p∂

k2
t f)(∂

k
t f)p

2θk
0 dz

︸ ︷︷ ︸
I6

,

where f0,k is defined in (3.16).
Estimate of “quadratic terms.” Using the fact that L = −A−K (see (3.1)) and

combining the coercivity estimate of A in (B.13) in Lemma B.7 with the estimate of
K in (B.14), we have

I1 ≥ κ‖∇p∂
k
t f‖2L2,θk

(Στ ) −N1(θ, k)‖∂kt f‖2L2(Στ ).(6.36)

Next, by the Cauchy–Schwarz inequality, we get

I2 ≤ ‖∂kt Ef‖2L2((0,τ)×Ω) +N‖∂kt f‖2L2(Στ ).(6.37)

Estimate of “cubic terms.” To estimate I4 − I6, we need to prove the following
claim: for any nonnegative integers k1, k2 such that k1 + k2 = k, one has

(i)

∣∣∣∣
∫ T

0

∫

Ω

〈(∂kt Γ(f, g)), (∂kt f)p2θk0 〉dxdt
∣∣∣∣≤N

√
ε0yf (T ),(6.38)

(ii)

∣∣∣∣
∫

ΣT

(|∂k1t f |+ |∇p∂
k1
t f |)|∂k2t [Eg,Bg]||∂kt f |p2θk0 dz

∣∣∣∣≤N
√
ε0 yf (T ).(6.39)

Then, applying (i)–(ii), we get

I4 + I5 + I6 ≤N
√
ε0yf (T ).(6.40)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/2

3
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



6656 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

First, we consider the case when k≤m− 4, so that θk = θ/2k. We start with (i).
It suffices to consider the case when m− 7 ≤ k ≤ m− 4 since the remaining case is
simpler thanks to (6.5). By the estimate (B.15) in Lemma B.8 with r = 2 in and
Lt,x∞ −Lt,x2 −Lt,x2 Hölder’s inequality, the integral on the l.h.s. of (6.38) is bounded by

N(θ)J 1
k

(
1k1≤m−8J 1

k2J
2
k1 + 1m−7≤k1,k2≤3J 3

k2J
4
k1

)
,

J 1
l = ‖∂ltf‖L2((0,τ)×Ω)W 1

2,θ/2k
(R3),

J 2
l = ‖∂ltg‖L∞((0,τ)×Ω)W 1

2 (R
3),

J 3
l = ‖∂ltf‖L∞((0,τ)×Ω)W 1

2,θ/2k
(R3),

J 4
l = ‖∂ltg‖L2((0,τ)×Ω)W 1

2 (R
3).

By the definition of Df in (3.34), for l≤m− 4,

J 1
l ≤

(∫ T

0

Df (τ)dτ
)1/2

,

and similarly, by the smallness assumption on yg(T ) (see (3.55)), we get for l≤m

J 4
l ≤

(∫ T

0

Dg(τ)dτ
)1/2

≤√
ε0.

Next, due to the bound (6.5) in Lemma 6.1, we have

1k1≤m−8J 2
k1 ≤N

√
ε0.

Furthermore, observe that for k2 ≤ 3 and k≥m− 7, one has k2 + 9≤ 12<m− 7≤ k
(recall that m ≥ 20), so that 1k2≤3,k≥m−7 θ/2

k < θ/2k2+9. By this and the first
inequality in (6.5), we conclude

1k2≤3,k≥m−7J 3
k2 ≤ ‖∂k2t f‖L∞((0,T )×Ω)W 1

2,θ/2k2+9 (R
3) ≤N‖Hf‖1/2L∞((0,T )).

Combining the above estimates, we obtain (6.38).
The assertion (ii) is proved in a similar way. We note that in the case when k ≥

m−3, we have θk = 0, and the same argument gives the desired bounds (6.38)–(6.39).
Finally, gathering the estimates (6.35)–(6.37) and (6.40) and summing up over k,

and invoking definitions of Ef and Df in (3.27) and (3.34), respectively, we obtain

sup
τ≤T

Ef (τ) +
∫ T

0

Df (τ)dτ

(6.41)

=

m∑

k=0

(
‖∂kt f‖2L∞((0,T ))L2(Ω×R3) + ‖∂kt f‖2L2((0,T )×Ω)W 1

2 (R
3)

+ ‖∂kt [Ef ,Bf ]‖2L∞((0,T ))L2(Ω)

)

+

m−4∑

k=0

(
‖∂kt f‖2L∞((0,T ))L

2,θ/2k
(Ω×R3) + ‖∂kt f‖2L2((0,T )×Ω)W 1

2,θ/2k
(R3)

)

≤N
m∑

k=0

(
‖f0,k‖2L2(Ω×R3)+‖[E0,k,B0,k]‖2L2(Ω)+‖∂kt f‖2L2(ΣT )+‖∂kt Ef‖2L2((0,T )×Ω)

)

+N

m−4∑

k=0

‖f0,k‖2L
2,θ/2k

(Ω×R3) +N
√
ε0 yf (T ).
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VML WITH THE SBC 6657

Step 2: Closing the estimate of yf . Finally, combining (6.41) with (6.14),
and using the smallness assumption on [f0,k,E0,k,B0,k] in (3.37), we obtain

yf (T )≤N
√
ε0yf (T ) +N

m∑

k=0

(
‖f0,k‖2L2(Ω×R3) + ‖[E0,k,B0,k]‖2L2(Ω)

)
(6.42)

+N

m−4∑

k=0

‖f0,k‖2L
2,θ/2k

(Ω×R3) +N

m∑

k=0

(
‖∂kt f‖2L2(ΣT ) + ‖∂kt Ef‖2L2((0,T )×Ω)

)

≤N(
√
ε0 + T )yf (T ) +Nε0/M.

By choosing ε0 < (4N)−2, T < (4N)−1, M > 4N , we obtain the desired estimate
yf (T )< ε0.

7. Proof of Theorem 3.10. We first state an auxiliary result that is useful
for establishing both the existence and the uniqueness of the solution to the RVML
system. See also the proof of Lemma 8.2 in [25].

Lemma 7.1. Invoke the assumptions of Theorem 3.10 and let ε0, θ, M , and
T be the constants introduced in the statements of that theorem (see (3.36)). Fur-
thermore, let [g(j),Eg(j) ,Bg(j) ], j = 1,2, be functions satisfying (3.51)–(3.55) and let

[f (j),Ef(j) ,Bf(j) ], j = 1,2, be two strong solutions to the linear RVML system (3.46)–

(3.50) with [g,Eg,Bg] replaced with [g(j),Eg(j) ,Bg(j) ], j = 1,2, such that [f (j),Ef(j) ,
Bf(j) ], j = 1,2, satisfy the conditions analogous to (i)–(iv) in Theorem 3.10. We also

denote f1,2 = f (1) − f (2), E1,2
f = Ef(1) −Ef(2) and define B1,2

f , g1,2,E1,2
g ,B1,2

g in the
same way. Then, we have

m−8∑

k=0

(
‖∂kt f1,2‖2L∞((0,T ))L2(Ω×R3) + ‖∂kt f1,2‖2L2((0,T )×Ω)W 1

2 (R
3)(7.1)

+ ‖∂kt [E1,2
f ,B1,2

f ]‖2L∞((0,T ))L2(Ω)

)
≤ 1

2

m−8∑

k=0

((
‖∂kt g1,2‖2L∞((0,T ))L2(Ω×R3)

+ ‖∂kt g1,2‖2L2((0,T )×Ω)W 1
2 (R

3) + ‖∂kt [E1,2
g ,B1,2

g ]‖2L∞((0,T ))L2(Ω)

))
.

Proof of Lemma 7.1. We inspect the argument we used to establish the energy-
dissipation bound (6.41). In particular, we write down the equation satisfied by
∂kt f

1,2 and use a variant of the energy identity in (5.107). The “quadratic” terms in
the energy identity are estimated in the same way as in (6.36)–(6.37). On the other
hand, we need to slightly modify the estimates of the “cubic” terms. For the sake of
clarity, we focus on the integral

I4 =

∫

(0,T )×Ω

〈∂kt
(
Γ(f (1), g(1))− Γ(f (2), g(2))

)
, ∂kt f

1,2〉dxdτ

=

∫

(0,T )×Ω

〈∂kt
(
Γ(f1,2, g(1))

)
, ∂kt f

1,2〉
︸ ︷︷ ︸

=I4,1

dxdτ +

∫

(0,T )×Ω

〈∂kt
(
Γ(f (2), g1,2)

)
, ∂kt f

1,2〉dxdτ
︸ ︷︷ ︸

=I4,2

.

Inspecting the proof of (6.38), using the bounds yg(1) < ε0, yf(2) < ε0 combined with
Lemma 6.1, and employing the Cauchy–Schwarz inequality, we conclude

I4,1 ≤N
√
ε0

m−8∑

k=0

(
‖∂kt f1,2‖2L∞((0,T ))L2(Ω×R3) + ‖∂kt f1,2‖2L2((0,T )×Ω)W 1

2 (R
3)

)
,
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6658 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

I4,2 ≤N
√
ε0

m−8∑

k=0

(
‖∂kt g1,2‖2L∞((0,T ))L2(Ω×R3) + ‖∂kt g1,2‖2L2((0,T )×Ω)W 1

2 (R
3)

)

+
1

2
‖∂kt f1,2‖2L2((0,T )×Ω)W 1

2 (R
3),

where N = N(r1, . . . , r4, θ,Ω, α,m). For the closure, one needs to take ε0 and T
sufficiently small.

Proof of Theorem 3.10. We note that the uniqueness follows directly from the
above lemma.

The existence is proved by passing to the limit in the iteration scheme (3.39)–
(3.45). Since the argument is standard (see, for example, [25]), we will not present it
here but point out major steps.

(1) By Proposition 6.2, the sequence [fn,En,Bn], n ≥ 1, is well defined, and
by (3.56) in Proposition 3.11, one has yfn(T ) < ε0 for each n. By (7.1) in
Lemma 7.1, the sequence ∂kt f

n, k≤m−8, is Cauchy in Lt∞L
x,p
2 ∩Lt,x2 W 1

2 (R
3),

and [En,Bn], n ≥ 1, is a Cauchy sequence in the space Lt∞L
x
2 , and hence,

[fn,En,Bn] converge to some [f,E,B]. In addition, using (7.1) again and
(3.56), we conclude that all the temporal derivatives up to order m also
converge in the weak∗ topology of the same space.

(2) By using Green’s identity (D.4), we write down the weak formulation of the
system with a test function φ satisfying (3.10)–(3.12). Due to the uniform
in n estimates in Proposition 3.11 and the fact that fn converges to f , we
may pass to the limit in the weak formulation. In particular, one needs to
use Lemma 7.1 and (3.56) to pass to the limit in the integrals involving the
Lorentz and collisional terms.

(3) Due to the convergence in (2), ∂kt f ∈ L∞((0, T ))L2(Ω × R
3) ∩ L2((0, T ) ×

Ω)W 1
2 (R

3), k≤m, is an intermediate finite energy solution (see Definition 5.2
in the proof of Proposition 5.13) to (3.2) formally differentiated k times in
t with the SRBC and ∂kt f(0, ·) ≡ f0,k(·). We point out that in the proof
of the aforementioned proposition, we showed that any intermediate finite
energy solution is a finite energy solution in the sense of Definition 3.1, and
hence, ∂kt f ∈ C([0, T ])L2(Ω × R

3), k ≤ m, as desired. Furthermore, since
∂kt f ∈ S2(Σ

T ), k≤m− 5, by Remark 3.3, we conclude that ∂kt f, k≤m− 5, is
a strong solution to the k times differentiated Landau equation.

(4) By using a limiting argument, we conclude that ∂kt [Ef ,Bf ]∈C([0, T ])L2(Ω)∩
L∞((0, T ))W 1

2 (Ω), k ≤ m − 1, is a strong solution to Maxwell’s equations
(3.3)–(3.4) with the perfect conductor BC, initial data [E0,k,B0,k], whereas
∂mt [Ef ,Bf ] ∈ L∞((0, T ))L2(Ω) is a weak solution. In addition, the iden-
tities in (3.5) formally differentiated k times in t are valid. The fact that
∂mt [Ef ,Bf ]∈C([0, T ])L2(Ω) can be proved by a mollification argument as in
the proof of Theorem 4.1 in Chapter VII in [11].

Appendix A.

Lemma A.1. Let Ψ : Ωr0(x0) × R
3 → H− be a local diffeomorphism given by

(5.31)–(5.32). Then, the following assertions hold.
(i) For

C(y) =

(
∂x

∂y

)T(
∂x

∂y

)
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/2

3
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



VML WITH THE SBC 6659

one has

Ci3(y) = 0, i∈ {1,2}, if y3 = 0.(A.1)

(ii) For any y ∈ψ(Ωr0)∩ {y3 = 0} and any w,
∣∣∣∣
(
∂x

∂y

)
w

∣∣∣∣=
∣∣∣∣
(
∂x

∂y

)
Rw

∣∣∣∣.(A.2)

(iii) Let u be a function on Ωr0(x0)×R
3 satisfying

u(x, p) = u(x,Rxp), (x, p)∈ γ−(A.3)

and denote

U(x, p) =

∫

R3

Φ(P,Q)u(x, q)dq, Û(y,w) =U(x(y), p(y,w)),

U(y,w) =

(
∂y

∂x

)
Û(y,w)

(
∂y

∂x

)T
.

Then, one has

Ui3(y,w) =−Ui3(y,Rw), i∈ {1,2}, if y3 = 0.(A.4)

Proof. (i) We assume that ρ(ε) is a mollification of ρ with a standard mollifier ι
and let ρ(ε),j be the mollification of ρ with the mollifier yjι, j = 1,2. The assertion
follows from the identities

(
∂x

∂y

)
=



1− y3ρ

(y3)
11 −y3ρ(y3)12 −ρ(y3)1 + y3(ρ

(y3),1
11 + ρ

(y3),2
12 )

−y3ρ(y3)12 1− y3ρ
(y3)
22 −ρ(y3)2 + y3(ρ

(y3),1
12 + ρ

(y3),2
22 )

ρ1 ρ2 1


 ,(A.5)

C(y1, y2,0) =




1 0 ρ1
0 1 ρ2

−ρ1 −ρ2 1







1 0 −ρ1
0 1 −ρ2
ρ1 ρ2 1




=



1 + ρ21 ρ1ρ2 0
ρ1ρ2 1 + ρ22 0
0 0 1 + ρ21 + ρ22


 ,

where ρij = ∂yiyjρ.
(ii) The desired identity follows from the equality

∣∣∣∣
(
∂x

∂y

)
Rw

∣∣∣∣
2

=Cij(y)(Rw)i(Rw)j

and (A.1).
(iii) We denote q0 = (1+ |q|2)1/2,

w′ =

(
∂y

∂x

)
q, p̂0 = p0(p(y,w)), q̂0 = q0(q(y,w

′)),

P̂ (y,w) = (p̂0, p(y,w)), Q̂(y,w′) = (q̂0, q(y,w)).

Furthermore, changing variables q=
(
∂x
∂y

)
w′ gives
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6660 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Û(y,w) =

∫

R3

Φ(P̂ ,Q)u(x(y), q)dq

=

∣∣∣∣det
(
∂x

∂y

)∣∣∣∣
︸ ︷︷ ︸

=J

∫

R3

Φ(P̂ , Q̂)û(y,w′)dw′,(A.6)

U(y,w) =J
∫

R3

Ξ(y,w,w′)û(y,w′)dw′,(A.7)

where û(y,w′) = u(x(y), q(y,w′)) (cf. (5.35)), and

Ξ(y,w,w′) =

(
∂y

∂x

)
Φ(P̂ , Q̂)

(
∂y

∂x

)T
.(A.8)

Furthermore, by the change of variables w′ →Rw′,

U(y,Rw) =J
∫

R3

Ξ(y,Rw,Rw′)û(y,Rw′)dw′.(A.9)

Since u satisfies the SRBC (see (A.3)), we have

û(y,Rw) = û(y,w) if y3 = 0,(A.10)

Thus, due to (A.6)–(A.10), to prove (A.4), it suffices to demonstrate that

Ξi3(y,w,w′) =−Ξi3(y,Rw,Rw′), i∈ {1,2}, whenever y3 = 0.(A.11)

Verification of (A.11). First, by the definition of Φ in (2.5)–(2.7),

Ξ =
Λ(P̂ , Q̂)

p̂0q̂0

(
∂y

∂x

)
S(P̂ , Q̂)

(
∂y

∂x

)T
.(A.12)

We will need the following identities:

p̂0 =

(
1 +

∣∣∣∣
(
∂x

∂y

)
w

∣∣∣∣
2)1/2

, q̂=

(
1 +

∣∣∣∣
(
∂x

∂y

)
w′

∣∣∣∣
2)1/2

,(A.13)

P̂ · Q̂= p̂0q̂0 −wT
(
∂x

∂y

)T(
∂x

∂y

)
w′,(A.14)

p(y,w)⊗ q(y,w′) =

(
∂x

∂y

)
w(w′)T

(
∂x

∂y

)T
,

(
∂y

∂x

)
p(y,w)⊗ q(y,w′)

(
∂y

∂x

)T
=w(w′)T ,

(
∂y

∂x

)
S(P̂ , Q̂)

(
∂y

∂x

)T
(A.15)

=
(
(P̂ · Q̂)2 − 1

)(∂y
∂x

)(
∂y

∂x

)T

− (w−w′)⊗ (w−w′)

+ (P̂ · Q̂− 1)(w⊗w′ +w′ ⊗w).
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VML WITH THE SBC 6661

We first handle the factor Λ(P̂ , Q̂) (see (2.5)). By (A.1) in assertion (i), we have

f(y,w,w′) = f(y,Rw,Rw′), for f = p̂0, q̂0, P̂ · Q̂, if y3 = 0,(A.16)

and, hence, (A.16) is also true for f =Λ(P̂ , Q̂).
We consider the remaining factor on the r.h.s. of (A.12). By (A.1) in the assertion

(i), we conclude that (A.11) holds with Ξ replaced with the l.h.s. of (A.15). Thus,
(A.11) holds, and the desired identity (A.4) is valid.

Lemma A.2. Let M be a nondegenerate 3 by 3 matrix, and denote

W(w) =
w

(1 + |Mw|2)1/2 =: v.(A.17)

Then, the following assertions hold.
(i)

|DjW|︸ ︷︷ ︸
=Dj

wv

≤N(M)(1 + |w|2)−j/2, j = 1,2.(A.18)

(ii) Let m≥ 1 be a number. Then, W : {|w|<m}→R
3 is a diffeomorphism onto

its image, and

sup
W({|w|<m})

|DjW−1
︸ ︷︷ ︸
=Dj

vw

|<Nm2j+1, j = 1,2,3,(A.19)

sup
W({|w|<m})

|D
(
(DW) ◦W−1

)
︸ ︷︷ ︸
=Dv

(
(Dwv)(w(v))

)
| ≤Nm,(A.20)

where N =N(|M |).
Proof. (i) Let cik be the ik-th entry of the matrix MTM . Then, by direct com-

putations,

∂vi
∂wj

=
δij

(1 + |Mw|2)1/2 − cjlwlwi
(1 + |Mw|2)3/2 ,(A.21)

∂2vi
∂wj∂wk

=− δijcklwl
(1 + |Mw|2)3/2 − cjkwi + δkicjlwl

(1 + |Mw|2)3/2 +
3cjlckl′wiwlwl′

(1 + |Mw|2)5/2 .

Combining the above identities with the fact that

|Mw|2 ≥N(M)|w|2,

we prove the first assertion.
(ii) Multiplying both sides of (A.17) by M gives

|Mv|2 = |Mw|2
1 + |Mw|2 , 1− |Mv|2 = 1

1+ |Mw|2 ,(A.22)

|Mw|2 = |Mv|2
1− |Mv|2 , w=

v

(1− |Mv|2)1/2 .(A.23)

Note that 1− |Mv|2 is bounded away from 0 on W({|w|<m}), and hence W : {|w|<
m}→R

3 is a diffeomorphism.
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Next, differentiating the second identity in (A.23), we get

∂wi
∂vj

=
δij

(1− |Mv|2)1/2 +
cjlvlvi

(1− |Mv|2)3/2 ,(A.24)

∂2wi
∂vj∂vk

=
P3(v)

(1− |Mv|2)5/2 ,
∂3wi

∂vj∂vk∂vr
=

P5(v)

(1− |Mv|2)7/2 ,

where P3(v) and P5(v) are certain polynomials of orders 3 and 5 with coefficients
bounded by N(|M |). Then, by (A.22) and (A.24), and the fact that

|v|= |W(w)| ≤N(M),(A.25)

for v ∈W({|w|<m}), we have

∣∣∣∣
∂wi
∂vj

∣∣∣∣≤N(1 + |Mw|2)3/2 ≤Nm3,

where N = N(M). Similarly, we prove the estimates of the second- and third-order
derivatives.

Finally, to prove the bound (A.20), we note that by (A.21) and (A.22)–(A.23),

∂vi
∂wj

= (1− |Mv|2)1/2(δij − cjlvivl).

Differentiating the above expression and using (A.25), we conclude

∣∣∣∣Dv
∂vi
∂wj

∣∣∣∣≤N(1− |Mv|2)−1/2 ≤Nm,

so that (A.20) is true.

Lemma A.3. Let n ≥ 0, G ⊂ R
3 be the even extension of ψ(Ωr0(x0)) across the

plane y3 = 0 (see Step 3 in the proof of Lemma 5.10). Let W and Υn be the mappings
given by (5.44) and (5.51), respectively. Then, the following assertions hold.

(i) The mapping Υn : G × {|w| < 2n+2} is a bi-Lipschitz homeomorphism onto
its image, and

Υ−1
n (y, v) = (y,W(y, v)),(A.26)

where

W(y, v) =





v(
1−

∣∣
M(y)v

∣∣2)1/2 , (y, v)∈Υn
(
ψ(Ωr0(x0))× {|w|< 2n+2}

)
,

v(
1−

∣∣[M(Ry)]Rv
∣∣2)1/2 , (y, v)∈Υn

(
G∩R

3
+ × {|w|< 2n+2}

)
,

and

M(y) =

(
∂x

∂y

)
(y).

Furthermore, for the sake of convenience, we denote

v=W(y,w), w=W(y, v).
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VML WITH THE SBC 6663

(ii) One has

‖∇yW︸ ︷︷ ︸
=
∂w

∂y

‖
L∞

(
(0,T )×Υn(G×{|w|<2n+2})

) ≤N2n,(A.27)

‖∇y∇wW︸ ︷︷ ︸

=
∂2v

∂y∂w

‖L∞((0,T )×G×{|w|<2n+2}) ≤N2−n,(A.28)

‖|∇y∇vW︸ ︷︷ ︸

=
∂2w

∂y∂v

|+ |∇v∇vW︸ ︷︷ ︸

=
∂2w

∂v2

|‖
L∞

(
(0,T )×Υn(G×{|w|<2n+2})

) ≤N25n,(A.29)

where N =N(Ω).

Proof. (i) First, note that (A.26) follows from (A.23). We now show that Υn
is bi-Lipschitz. Since Ω is a C1,1 domain, we only need to show that the functions
W,W are continuous across the boundary {y3 = 0} × R

3. To this end, it suffices to
demonstrate that

∣∣∣∣
(
∂x

∂y

)
w

∣∣∣∣=
∣∣∣∣
(
∂x

∂y

)
Rw

∣∣∣∣ whenever y3 = 0.

The latter is true thanks to (A.2) in Lemma A.1 (ii).
(ii) Invoke the notation of Lemma A.2. Let M(y) be either

(
∂x

∂y

)
(y) or

((
∂x

∂y

)
(Ry)

)
R,

and C(y) = (cij , i, j = 1,2,3) :=MTM , and

v(y,w) =
w

(1 + |Mw|2)1/2 .

First, we claim that the functions

(
∂v

∂w

)
,

(
∂w

∂v

)

are continuous across the set {y3 = 0} ×R
3. This assertion follows from the explicit

expressions of these functions (see (A.21) and (A.24)) and the identity (A.2). Hence,
we only need to prove (A.28)–(A.29) away from {y3 = 0} ×R

3.
Next, by (A.23) and (A.22), whenever y3 6= 0, we have

∂wi
∂yr

=
(∂yrcll′)vlvl′vi
(1− |Mv|2)1/2 = (∂yrcll′)vlvl′vi(1 + |Mw|2)1/2,

and this implies (A.27). Furthermore, by (A.21) and (A.24), away from {y3 = 0}, the
following identities hold:
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6664 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

∂2vi
∂wj∂yr

= (∂yrcll′)wlwl′

(
− 1

2

δij
(1 + |Mw|2)3/2 +

3

2

cjlwlwi
(1 + |Mw|2)5/2

)

− (∂yrcjl)wlwi
(1 + |Mw|2)3/2 ,

∂2wi
∂vj∂yr

= (∂yrcll′vlvl′)

(
1

2

δij
(1− |Mv|2)3/2 − 3

2

cjkvkvi
(1− |Mv|2)5/2

)

+
(∂yrcjl)vlvi

(1− |Mv|2)3/2 .

The first identity implies (A.28). Furthermore, the second identity combined with
(A.22), and (A.25) yield

∣∣∣∣
∂2wi
∂vj∂yr

∣∣∣∣≤N(1 + |Mw|2)5/2 ≤N(Ω)25n.

The bound of ∇v∇vW follows from (A.19) with j = 2. The assertion (ii) is proved.

Lemma A.4. Let G be an bounded domain and ψ : G→ R
3 be a diffeomorphism

such that

‖Dψ‖C(G) ≤N0, ‖D(ψ)−1‖C(ψ(G)) ≤N1.

Let a be a bounded matrix-valued function such that

δ1|ξ|2 ≤ aij(v)ξiξj ≤ δ2|ξ|2 ∀v ∈G,ξ ∈R
3.

Denote

ã= (Dψ)(a ◦ψ−1)(Dψ)T .

Then, ã satisfies

δ̃1|ξ|2 ≤ ãij(w)ξiξj ≤ δ̃2|ξ|2, w ∈ψ(G), ξ ∈R
3(A.30)

with

δ̃1 = c δ1N
−2
1 , δ̃2 = c−1δ2N

2
0 ,

where c∈ (0,1).

Proof. To prove the lower bound, note that

ξT ãξ = ((Dψ)T ξ)T (a ◦ψ−1)((Dψ)T ξ)≥ δ1|(Dψ)T ξ|2 ≥ cδ1N
−2
1 .

The upper bound follows from the same argument.

Appendix B. Auxiliary results about the relativistic Landau equation
near Jüttner’s solution.

Lemma B.1 (Lemma 6 in [32]). For sufficiently regular functions f = (f+, f−),
g= (g+, g−), h= (h+, h−) on R

3, the following formulas hold:
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VML WITH THE SBC 6665

Af = 2∇p · (σ∇pf)−
1

2
(v(p))Tσv(p)f +∇p ·

(
σv(p)

)
f,(B.1)

Kf =−J−1/2(p)∂pi

(
J(p)

∫
Φij(P,Q)J1/2(q)

(
∂qjf(q) +

qj
2q0

f(q)
)
· ξ0 dq

)
ξ0,(B.2)

Γ±(g,h) =

(
∂pi −

pi
2p0

)
∂pjg±(p)

∫
Φij(P,Q)J1/2(q)h(q) · ξ0 dq

(B.3)

−
(
∂pi −

pi
2p0

)
g±(p)

∫
Φij(P,Q)J1/2(q)∂qjh(q) · ξ0 dq,

where σ is defined in (5.16).

Lemma B.2 (Corollary 4.5 with α=−3 in [26]). Let σ be the function defined in
(5.16). Then, the following assertions hold.

(i) There exist constants N1,N2 > 0 such that for any ξ ∈R
3

N1|ξ|2 ≤ σij(p)ξiξj ≤N2|ξ|2.(B.4)

(ii) For any multi-index β,

|Dβ
pσ(p)| ≤N(β)p

−|β|
0 .(B.5)

Lemma B.3. Let k≥ 0 be an integer, r ∈ (3/2,∞], and g ∈W k
r (R

3). Then, for

I(p) =

∫
Φij(P,Q)J1/2(q)g(q)dq,(B.6)

we have

‖Dk
pI‖L∞(R3) . ‖g‖Wk

r (R3).(B.7)

Proof. By Theorem 3 in [32] (see p. 281 therein), for any multi-index β =
(β1, β2, β3),

Dβ
p

∫
Φij(P,Q)J1/2(q)g(q)dq

=
∑

β1+β2≤β

∫
Θβ1(p, q)Φ

ij(P,Q)J1/2(q)∂β2g(q)φ
β
β1,β2

(p, q)dq,

where

Θβ1(p, q) =

(
∂p1 +

q0
p0
∂q1

)β1
1
(
∂p2 +

q0
p0
∂q2

)β1
2
(
∂p3 +

q0
p0
∂q3

)β1
3

,

and φββ1,β2
is a smooth function satisfying the bound

|φββ1,β2,β3
(p, q)|. q

|β|
0 p

|β1|−|β|
0 .

By using the above identity, the estimate

|Θβ1
(p, q)Φ(P,Q)| ≤Np

−|β1|
0 q70(1 + |p− q|−1)

(see Lemma 2 on p. 277 in [32]), and Hölder’s inequality with r ∈ (3/2,∞] and
r′ = r/(r− 1)∈ [1,3), we obtain (B.7).

The following lemma follows directly from Lemma 4 on p. 287 in [32].
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Lemma B.4. For r ∈ (3/2,∞], g ∈ W 1
r (R

3), the following identity holds in the
sense of distributions:

∂pi

∫
Φij(P,Q)J1/2(q)∂qjg(q)dq(B.8)

= ∂pi

∫
Φij(P,Q)J1/2(q)

qj
2q0

g(q)dq

− 4

∫
P ·Q
p0q0

(
(P ·Q)2 − 1

)−1/2

J1/2(q)g(q)dq− κ(p)J1/2(p)g(p),

where κ(p) = 27/2πp0
∫ π
0
(1 + |p|2 sin2 θ)−3/2 sin(θ)dθ.

Lemma B.5. Let r ∈ (3/2,∞], g = (g+, g−) ∈ W 1
r (R

3) and ag, Cg, and Kg be
given by (6.2)–(6.4), respectively. Then, one has

‖ag‖L∞(R3) ≤ ‖g‖W 1
r (R

3),(B.9)

‖Cg‖L∞(R3) ≤N +N‖g‖W 1
r (R

3),(B.10)

|Kg|(p)≤NJ1/4(p)‖g‖W 1
r (R

3),(B.11)

where N =N(r).

Proof. Estimate of ag. The estimate follows from the definition of ag (see (6.2))
and (B.7) with k= 0,1 (see Lemma B.3).

Estimate of Cg. By the estimates of σ in (B.5), we only need to handle the integral
term in (6.3), which we decompose as follows:

∂pi

∫
Φij(P,Q)J1/2(q)∂qjg(q) · ξ0 dq

− pi
2p0

∫
Φij(P,Q)J1/2(q)∂qjg(q) · ξ0 dq=:Cg,1 +Cg,2.

Next, by the identity (B.8),

Cg,1 = ∂pi

∫
Φij(P,Q)J1/2(q)

qj
2q0

g(q) · ξ0 dq

− 4

∫
P ·Q
p0q0

(
(P ·Q)2 − 1

)−1/2

J1/2(q)g(q) · ξ0 dq

− κ(p)J1/2(p)g(p) · ξ0 =:Cg,1,1 +Cg,1,2 +Cg,1,3.

Applying the estimate (B.7) with k= 0,1 to the terms Cg,1,1 and Cg,2, we get

|Cg,1,1|+ |Cg,2| ≤N‖g‖W 1
r (R

3).

By a simple bound (see the formula (32) in [32])

P ·Q− 1≥N1

( |p− q|2
q20

1|p−q|<(|p|+1)/2 +
p0
q0

1|p−q|≥(|p|+1)/2

)

and Hölder’s inequality,

|Cg,1,2| ≤N‖g‖Lr(R3).

Finally, we note that the last inequality also holds for Cg,1,3 since κ is a bounded
function. Thus, (B.10) is valid.
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VML WITH THE SBC 6667

Estimate of Kg. First, we split the integral in (B.2) as follows:

Kg= (∂pip0)J
1/2(p)

∫
Φij(P,Q)J1/2(q)

(
∂qjg(q) +

qj
2
g(q)

)
· ξ0 dq ξ0

− J1/2(p)∂pi

∫
Φij(P,Q)J1/2(q)

qj
2q0

g(q) · ξ0 dq ξ0

− J1/2(p)∂pi

∫
Φij(P,Q)J1/2(q)∂qjg(q) · ξ0 dq ξ0 =:K1 +K2 +K3.

We observe that the following terms are similar:
– K1 and Cg,2,
– K2 and Cg,1,1,
– K3 and Cg,1.

Hence, the estimate (B.11) is proved by repeating the above argument.

Lemma B.6. Let g be a function satisfying Assumption 5.1 (see (5.1)–(5.2)).
Then, for σg defined in (3.9), one has

‖∇pσg‖L∞(ΣT ) + ‖σg‖L∞((0,T ))C
κ/3,κ
x,p (Ω×R3)

≤N(K).(B.12)

Proof. First, note that the estimate of ∇pσg follows directly from (B.7) with k= 1
and the assumption (5.2). Furthermore, for any t≥ 0 and x1, x2 ∈Ω, p∈R

3,

σg(t, x1, p)− σg(t, x2, p) =

∫
Φ(P,Q)J1/2

(
g(t, x1, q)− g(t, x2, q)

)
dq.

Then, by (B.7) with k= 0 and the assumption (5.1),

|σg(t, x1, p)− σg(t, x2, p)| ≤N sup
p∈R3

|g(t, x1, p)− g(t, x2, p)|

≤N |x1 − x2|κ/3.

Now the assertion follows from the above inequality, the L∞ estimate of |∇pσg|, and
the interpolation inequality for Hölder spaces.

Lemma B.7 (cf. Lemma 7 of [32]). For any θ≥ 0, there exists κ> 0 such that for
any g= (g+, g−)∈W 1

2,θ(R
3), h= (h+, h−)∈L2,θ(R

3),

−〈Ag, g p2θ0 〉 ≥ κ‖∇pg‖2L2,θ(R3) −N(θ)‖g‖2L2(R3).(B.13)

Furthermore, for any ε∈ (0,1),
∣∣∣∣
∫

R3

(Kg) · hp2θ0 dp
∣∣∣∣≤ ε‖g‖2W 1

2 (R
3) +N(θ)ε−1‖h‖2L2(R3).(B.14)

Proof. In the case when θ= 0, the estimate (B.13) is proved in Lemma 7 in [32].
The case θ > 0 is handled by the same argument, and hence, we omit the proof. The
bound (B.14) follows from (B.11) in Lemma B.5.

Lemma B.8. For sufficiently regular functions fj = (f+j , f
−
j ), j = 1,2,3, on R

3

and any r ∈ (3/2,∞] and θ≥ 0, we have

∣∣〈Γ(f1, f2), f3p2θ0 〉
∣∣.θ ‖∇pf1‖L2,θ(R3)‖f2‖Lr(R3)‖f3‖W 1

2,θ(R
3)(B.15)

+ ‖f1‖L2,θ(R3)‖∇pf2‖Lr(R3)‖f3‖W 1
2,θ(R

3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/2

3
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



6668 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Proof. Invoke the explicit expression of Γ(f1, f2) in (B.3). For the sake of sim-
plicity, we assume that f1 and f2 are scalar functions, and we estimate a simplified
integral given by (cf. (B.15))

I =

〈(
∂pi −

pi
2p0

)∫
Φij(P,Q)J1/2(q)∂pjf1(p)f2(q)dq, f3p

2θ
0

〉

−
〈(

∂pi −
pi
2p0

)∫
Φij(P,Q)J1/2(q)f1(p)∂qjf2(q)dq, f3p

2θ
0

〉
.

Integrating by parts in p gives

I =

〈
∂pjf1

∫
Φij(P,Q)J1/2(q)f2(q)dq,

(
− ∂pi −

pi
2p0

)
(f3p

2θ
0 )

〉

+

〈
f1

∫
Φij(P,Q)J1/2(q)∂qjf2(q)dq,

(
∂pi +

pi
2p0

)
(f3p

2θ
0 )

〉
=: I1 + I2.

Finally, applying the L2 − L∞ − L2 Hölder’s inequality to I1 and I2 and using the
bound (B.7) with k= 0, we obtain (B.15).

Appendix C. Verification of estimates (5.66)–(5.74).

Lemma C.1. Estimates (5.66)–(5.74) are true.

Proof. Ellipticity and boundedness of the leading coefficients.
(1) Bounds of A (see (5.41)). By Lemma 5.3 and (A.30), for sufficiently small r0,

(δ0/4)|ξ|2 ≤Aij(z)ξiξj ≤ (4δ−1
0 )|ξ|2 ∀z ∈R

7
T , ξ ∈R

3,

where A is defined in (5.36), and hence, the same estimate also holds for A.
(2) Bounds of A (see (5.62)). First, we estimate A via Lemma A.4 with ψ=Wy.

By (A.18)–(A.19) with m= 2n+2, the assumptions of Lemma A.4 hold with
N0 =N ′

02
−n, N1 =N ′

12
3n, and δ1 = δ0/4. Then, by (A.30), we conclude that

for any ξ ∈R
3 and z ∈ (0, T )×Υn(G× {|p|< 2n+2}),

N ′2−6n ≤A
ij(z)ξiξj ≤N ′′,(C.1)

and hence, the same bounds (with, perhaps, different constants N ′ and N ′′)
are true for A.

Boundedness of ∇vA.
(1) Estimate of ∇wA. By (B.12) in Lemma B.6 and the construction of the

coefficients A (see (5.36)),

‖∇wA‖L∞((0,T )×ψ(Ωr0 (x0))×R3) ≤N(K,Ω).

Then, by (5.41) we have

‖∇wA‖L∞((0,T )×G×R3) ≤N(K,Ω).(C.2)

(2) Estimate of A. First, we estimate
ˆ̂A, which is given (5.53). By (A.20) with

m= 2n+2,
∥∥∥∥∇v

(
∂v

∂w

)
(y,w(y, v))

∥∥∥∥
L∞(Υ(G×{|w|<2n+2}))

≤N2n.(C.3)
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VML WITH THE SBC 6669

By the chain rule and (C.2) and (A.19), one has

‖∇v
ˆ̂A‖L∞((0,T )×Υ(G×{|w|<2n+2})) ≤N23n.

Next, recall that A is defined in (5.57). Combining (5.50) (with j = 1) and
(C.3) with the last inequality, we get

‖∇vA‖L∞((0,T )×Υ(G×{|w|<2n+2})) ≤N2n.

Then, the definition of A (see (5.62)) and the last inequality give the desired
bound (5.68), that is,

‖∇vA‖L∞((0,T )×R6) ≤N2n.

Hölder continuity of the leading coefficients. Here we verify (5.69).
(1) Estimate of A (see (5.41)). First, by the definition of A in (5.36) and (B.12)

in Lemma B.6, we have

‖A‖
L∞((0,T ))C

κ/3,κ
x,p (ψ(Ωr0

(x0))×R3)
≤N(K,Ω,κ).

To show that A is Hölder continuous, that is,

‖A‖
L∞((0,T ))C

κ/3,κ
x,p (G×R3)

≤N(K,Ω,κ),(C.4)

it suffices to check that

A is continuous across {y3 = 0} ×R
3.(C.5)

Note that for any arbitrary 3 by 3 symmetric matrix M = (mij , i, j = 1,2,3),

RMR=



m11 m12 −m13

m12 m22 −m23

−m13 −m23 m33


 .

Then, by the definition of A (see (5.41)), if the identity

Ai3(t, y1, y2,0,w) =−Ai3(t, y1, y2,0,Rw), i∈ {1,2},(C.6)

is valid, then (C.5) is also true. The identity (C.6) follows from Lemma A.1
because Assumption 5.2 is valid as g satisfies the SRBC (see (5.3)).

(2) Estimate of A. First, we estimate
ˆ̂A (see (5.53)). By (A.19) with m = 2n+2

and (A.27), we have

∥∥∥∥
∂w

∂v

∥∥∥∥
L∞(Υ(G×{|w|<2n+2}))

≤N(Ω)23n,

∥∥∥∥
∂w

∂y

∥∥∥∥
L∞(Υ(G×{|w|<2n+2}))

≤N(Ω)2n.

(C.7)

By the definition of
ˆ̂A in (5.53) and (C.4), and (C.7), we have

‖ ˆ̂A‖
L∞((0,T ))C

κ/3,κ
y,v (Υ(G×{|w|<2n+2}))

≤N(K,Ω,κ)23n.(C.8)
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6670 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Next, we estimate the Hölder norm of A. First, we need to bound the Hölder
norm of

(
∂v

∂w

)
(y,w(y, v)).

By the chain rule, for any (y, v)∈Υ(G× {|w|< 2n+2}),
∣∣∣∣∇y

(
∂v

∂w

)
(y,w(y, v))

∣∣∣∣≤
∥∥∥∥∇y

∂v

∂w

∥∥∥∥
L∞(G×{|w|<2n+2})

+

∥∥∥∥∇w
∂v

∂w

∥∥∥∥
L∞(G×{|w|<2n+2})

∥∥∥∥
∂w

∂y

∥∥∥∥
L∞(Υn(G×{|w|<2n+2}))

.

(C.9)

Hence, by (A.28) in Lemma A.3 (ii), the first term on the l.h.s. of (C.9) is
bounded by N(Ω)2−n. Furthermore, by (A.18) and (A.27), we conclude that
the second term on the r.h.s. of (C.9) is also bounded by N2−n, and hence,

∥∥∥∥∇y

(
∂v

∂w

)
(y,w(y, v))

∥∥∥∥
L∞(Υ(G×{|w|<2n+2}))

≤N(Ω)2−n.(C.10)

Furthermore, by the definition of A in (5.57), (C.8), and (C.3) and (C.10),
we obtain

‖A‖
L∞((0,T ))C

κ/3,κ
y,v (Υ(R3×{|w|<2n+2}))

≤N(K,Ω,κ)2n.(C.11)

Finally, by the definition of A (see (5.62)), the bound (C.11), and our choice
of the cutoff function ζn (see (5.61)), we obtain

‖A‖
L∞((0,T ))C

κ/3,κ
y,v (R6)

≤N(K,Ω,κ)2n

(see (5.69)).
Estimates of the lower-order terms. Invoke the definition B (see (5.36), (5.42),
(5.53), (5.58)). By the assumption (5.6) and (5.36), and (5.42), we have

‖B‖L∞((0,T )×G×R3) ≤N,

and then, by the first inequality in (5.50), we obtain (5.70).
Next, recall the definition of X (see (5.37), (5.43), (5.53), (5.59)). Note that
by (5.37), for any (y,w)∈ψ(Ω3r0/4)× {|w|< 2n+2},

|X(y,w)|+ |∇wX(y,w)|
≤N(Ω)(1 + |w|2)1/2 ≤N2n.

(C.12)

Hence, by (5.43), the same bound is true for X . Furthermore, by the definition
of X (see (5.59)) and the first inequality in (5.50), we get

‖X‖L∞(Υ(G×{|w|<2n+2})) ≤N(Ω).

Next, recall the definition of
ˆ̂X (see (5.53)). By the chain rule, (C.12), and

(C.7) (cf. (C.8)), we get

‖∇v
ˆ̂X‖L∞(Υ(G×{|w|<2n+2})) ≤N24n.(C.13)
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VML WITH THE SBC 6671

Finally, by the definition of X (see (5.59)), (C.13) and (C.3), and the first
inequality in (5.50), we conclude that the bound (5.72) is valid, that is,

‖∇vX‖L∞(Υ(G×{|w|<2n+2})) ≤N23n.

Finally, we estimate the second “geometric” coefficient G (see (5.60)). By
(C.7) and the first inequality in (5.50),

‖G‖L∞(Υ(G×{|w|<2n+2})) ≤N.

Furthermore, by differentiating (5.60) and using the estimates (C.3) and
(C.7), and (A.29) combined with the first inequality in (5.50), we conclude

‖∇vG‖L∞(Υ(G×{|w|<2n+2})) ≤N24n.

Appendix D. Relativistic kinetic transport equation in a domain. All
the assertions here are either contained in [2] or [33], or can be easily proved by
adapting the arguments therein. We start by introducing the relativistic counterpart
of the set of test functions in [2] (see Definition D.2).

Definition D.1. We say that G ⊂ ΣT ∪ ΣT± is a good set if there is a positive
lower bound of the length of the characteristic lines (t+s,x+v(p)s, p) inside ΣT ∪ΣT±
that intersect G.

Definition D.2. Let Φ be the set of functions φ on ΣT such that
– φ is continuously differentiable along the characteristic lines (t+s,x+v(p)s, p),
– φ, Y φ are bounded functions on ΣT ,
– the support of φ is a bounded good set.

Remark D.1. By following the argument of Lemma 2.1 in [14], one can show that

C1
0

(
ΣT \

(
((0, T )× γ0)∪ ({0} × ∂Ω×R

3)∪ ({T} × ∂Ω×R
3)
))

⊂Φ.

Definition D.3. For r ∈ [1,∞), we say that ξ ∈ Lr,θ, loc (ΣT±) if for any good set
G, one has ξ1G ∈Lr,θ(ΣT±).

To define the traces of functions on ΣT , we need the following assertion, which is
similar to Proposition 1 in [2].

Proposition D.2. Let r ∈ [1,∞), θ ≥ 0 be numbers, and let u ∈ Lr,θ(ΣT ) be a
function such that Y u ∈ Lr,θ(Σ

T ). Then, there exist unique functions u±, uT , u0 on
ΣT± and Ω×R

3, respectively, such that
– u± ∈Lr,θ, loc (ΣT ), uT , u0 ∈Lr,θ(Ω×R

3),
– the following Green’s identity holds for any φ∈Φ:

∫

ΣT

(Y u)φ+ (Y φ)udz

=

∫

Ω×R3

uT (x, p)φ(T,x, p)dxdp−
∫

Ω×R3

u0(x, p)φ(0, x, p)dxdp

+

∫

ΣT
+

u+φ |v(p) · nx|dSxdpdt−
∫

ΣT
−

u−φ |v(p) · nx|dSxdpdt.

(D.1)
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6672 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Definition D.4. Such functions u±, uT , u0 are called the traces of a function u.

The next lemma shows that u± belongs to a certain weighted Lebesgue space (see
[33]).

Lemma D.3 (Ukai’s trace lemma). Let r≥ 1 and u be such that u,Y u∈Lr(ΣT ).
Then, we have u± ∈ Lr(ΣT±,w|v(p) · nx|), where w(z) = min{1, l(z)}, and l(z) is the
length of the characteristic line (t+ s,x+ v(p)s, p) inside ΣT ∪ΣT±, and, in addition,

‖u‖Lr(ΣT
±
,w|v(p)·nx|) ≤N‖Y u‖Lr(ΣT ) +N‖u‖Lr(ΣT ),(D.2)

where N =N(r,T ), and the weighted Lebesgue space on the l.h.s. is defined in (2.9).

Proposition D.4 (see Theorem 5.1.2 in [33]). Let r ∈ [1,∞), θ ≥ 0 be numbers
and u and φ be the functions in the following class:

• u,Y u∈Lr,θ(ΣT ),
• either u0 or uT belongs to L2,θ(Ω×R

3),
• either u+ or u− belongs to L2,θ(Σ

T
±, |v(p) · nx|).

Then, we have
∫

Ω×R3

(uTφT (x, p)− u0φ0(x, p))p
θr
0 dxdp

+

∫

ΣT
+

u+φ+p
θr
0 |v(p) · nx|dSxdpdt−

∫

ΣT
−

u−φ−p
θr
0 |v(p) · nx|dSxdpdt

=

∫

ΣT

(
(Y f)φ+ (Y φ)f

)
pθr0 dz.

(D.3)

The following lemma shows that one can drop the “strong” integrability conditions
on the traces u and φ on ΣT± in Proposition D.4 if u and φ satisfy the SRBC.

Lemma D.5. We assume that
– u,φ,Y u,Y φ∈L2,θ(Σ

T ),
– either u0, φ0 ∈L2,θ(Ω×R

3) or the same holds for uT , φT ,
– u and φ satisfy the SRBC.

Then, the following variant of the energy identity holds:
∫

Ω×R3

(
(uφ)(T,x, p)− (uφ)(0, x, p)

)
pθr0 dxdp=

∫

ΣT

(
u(Y φ) + φ(Y u)

)
pθr0 dz.(D.4)

In addition, u,φ∈C([0, T ])L2(Ω×R
3).

Proof. We repeat the argument of Lemma 3.7 in [8]. The key idea is to cut off
away from the grazing set so that the traces on ΣT± of the regularized function φε
are of class L2(Σ

T , p2θ0 |v ·nx|) and they satisfy the SRBC. Then, the Green’s identity
(D.3) is applicable. We list below a few minor modifications in the argument of the
aforementioned lemma.

– We note that the integrals over ΣT± cancel out thanks to the SRBC.
– One needs to modify integrals I2 and I3:

I2 = I2,1 + I2,2 :=

∫

H
T
−

(W · ∇yφ̂)ξε(y,w)ξ

(
t

ε

)
ξ

(
T − t

ε

)
û dydwdt

+ 2

∫

H
T
−
:ε2<y23+w

2
3<2ε2

ûφ̂ξ

(
t

ε

)
ξ

(
T − t

ε

)
W3y3
ε2

ξ′
(
y23 +w2

3

ε2

)
dydwdt,
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VML WITH THE SBC 6673

I3 = I3,1 + I3,2 :=−
∫

H
T
−

(X · ∇wφ̂)ξε(y,w)ξ

(
t

ε

)
ξ

(
T − t

ε

)
û dydwdt

− 2

∫

H
T
−
:ε2<y23+w

2
3<2ε2

ûφ̂ξ

(
t

ε

)
ξ

(
T − t

ε

)
X3w3

ε2
ξ′
(
y23 +w2

3

ε2

)
dydwdt,

where W and X are defined by (E.1). Repeating the argument on p. 489 in
[8], we conclude

lim
ε→0

(I2,2 + I3,2) = 0.

The rest of the proof is the same as in Lemma 3.7 in [8].

Appendix E. Verification of the identities 5.39 and 5.55.

E.1. Identity 5.39. Let Ω be a C1,1 bounded domain, and let

ψ : Ωr0(x0)→R
3

be a local C1,1 diffeomorphism and Ψ : (x, p)→ (y,w) be a mapping given by

y=ψ(x), w= (Dψ)p.

For a function f vanishing outside (0, T )×Ωr0(x0)∩R
3, we set

f̂(y,w) = f(Ψ−1(y,w)) = f(x(y), p(y,w)).

We compute the transport term Y in the (t, y,w) variables. We repeat the calcu-
lations of Appendix A in [8] with minor modifications.

Let f ∈ L1,loc(R
7
T ), φ ∈ C0,1

0 (R7
T ) be functions such that f(·, x, ·), φ(·, x, ·) = 0 for

x 6∈Ωr0 . Using the chain rule gives

(∇pφ)(t, x(y), p(y,w)) =

(
∂y

∂x

)T
∇wφ̂(t, y,w),

(
∇xφ

)
(t, x(y), p(y,w))

=

(
∂y

∂x

)T [
∇yφ̂(t, y,w)−

(
∂p

∂y

)T
(∇pφ)(t, x(y), p(y,w))

]

=

(
∂y

∂x

)T
∇yφ̂(t, y,w)−

(
∂y

∂x

)T(
∂p

∂y

)T(
∂y

∂x

)T
∇wφ̂(t, y,w).

Therefore,
(

pT√
1 + |p|2

)
(y,w)

(
∇xφ

)
(t, x(y), p(y,w))

=
wT√

1 + |∂x∂yw|2
∇yφ̂(t, y,w)−

wT√
1 + |∂x∂yw|2

(
∂p

∂y

)T(
∂y

∂x

)T
∇wφ̂(t, y,w)

=W · ∇yφ̂(t, y,w)−X · ∇wφ̂(t, y,w),

where

W =
w√

1 + |∂x∂yw|2
, X =

(
∂y

∂x

)(
∂p

∂y

)
W =

(
∂y

∂x

)(
∂(∂x∂yw)

∂y

)
W.(E.1)
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6674 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Thus, by the above computation, we have
∫

ΣT

(Y φ)f dz

=

∫

H
T
−

(∂tφ̂+W · ∇yφ̂)f̂ Jdydwdt−
∫

H
T
−

(X · ∇wφ̂)f̂Jdydwdt,
(E.2)

where H
T
− is defined in (2.3), and

J=

(
det

(
∂x

∂y

))2

.

The following lemma is a consequence of (E.2).

Lemma E.1. Let Ψ be the local diffeomorphism given by (5.31)–(5.32), r > 1 be a
number, and u∈Lr(ΣT ) be a function such that

– ∇pu∈L2,1(Σ
T ), Y u∈L2(Σ

T ),
– u(t, ·, p) = 0 for x 6∈Ωr(x0).

Then, one has

‖Y u‖Lr(ΣT ) ≤N‖(∂t +W · ∇y)û‖Lr(HT
−
) +N‖∇pu‖Lr,1(ΣT ),(E.3)

where N =N(Ω, r).

Proof. The estimate follows from (E.2) and the fact that for any y ∈ ψ(Ωr0(x0))
and w ∈R

3,

|W (y,w)| ≤N(Ω)max{|w|,1}.

E.2. Identity 5.55. Invoke the notation of Step 4 in the proof of Lemma 5.10.
Proceeding as in section E.1, for any test function φ, we have

(∇wφ)(t, y,w(y, v)) =

(
∂v

∂w

)T
∇v

ˆ̂
φ(t, y, v),

(∇yφ)(t, y,w(y, v)) =∇y
ˆ̂
φ(t, y, v)−

(
∂w

∂y

)T(
∂v

∂w

)T
∇v

ˆ̂
φ(t, y, v).

By this computation, we conclude
∫

R
7
T

(W ·∇yφ)U dydwdt=
∫

R
7
T

(v · ∇y
ˆ̂
φ)

ˆ̂U dydvdt−
∫

R
7
T

(G · ∇v
ˆ̂
φ)

ˆ̂U dydvdt,(E.4)

where

G=

(
∂v

∂w

)(
∂w

∂y

)
v.

Appendix F. Sr theory for the KFP equation on the whole space.

Assumption F.1. (γ?) There exists R0 > 0 such that for any z0 = (t0, x0, v0)
satisfying t0 <T and r ∈ (0,R0],

oscx,p(a,Qr(z0))≤ γ?,(F.1)
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VML WITH THE SBC 6675

where

oscx,p(a,Qr(z0))(F.2)

= r−14

∫ t0

t0−r2

∫

Dr(z0,t)×Dr(z0,t)

|a(t, x1, p1)− a(t, x2, p2)|dx1dp1dx2dp2 dt,

and

Dr(z0, t) = {(x, p) : |x− x0 − (t− t0)p0|1/3 < r, |p− p0|< r}.

Remark F.2. Note that if a ∈ L∞((−∞, T ))C
κ/3,κ
x,v (R6) for some κ ∈ (0,1], then,

for any γ?∈(0,1), Assumption F.1 (γ?) holds with R0=([a]−1

L∞((−∞,T ))C
κ/3,κ
x,v (R6)

γ?)
1/κ .

The following theorem is a simplified version of Theorem 2.4 of [10].

Theorem F.3. Let
– r > 1, K > 0, λ≥ 0, −∞<S <T <∞ be numbers,
– a, b, c satisfy the assumptions (5.19) and (5.6) with R

7
T in place of ΣT,

– [a]
L∞((S,T ))C

κ/3,κ
x,p (R6)

≤L for some κ ∈ (0,1] and L> 0.

Then, for any f ∈Lr((S,T )×R
6), the equation

(∂t + p · ∇x)u− aij∂pipju+ b · ∇pu+ cu+ λu= f, u(0, ·) = 0,

has a unique solution u∈ SNr ((S,T )×R
6) (see (2.12)). In addition,

‖u‖+ ‖∇pu‖+ ‖D2
pu‖+ ‖(∂t + p · ∇x)u‖

+ ‖(−∆x)
1/3u‖+ ‖∇p(−∆x)

1/6u‖ ≤N‖f‖,

where ‖ · ‖= ‖ · ‖Lr((S,T )×R6) and N =N(δ,κ, r,K,T − S,L).

Theorem F.4 (Corollary 2.6 of [10]). Invoke the assumptions of Theorem F.3
and drop the Hölder continuity assumption on a. Then, there exist constants

κ= κ(r)> 0, β = β(r)> 0, γ? = δκγ̃?(r)> 0

such that if the condition (F.1) in Assumption F.1 (γ?) holds, then for any u ∈
SNr ((−∞, T )×R

6) and λ≥ 0,

‖u‖SN
r ((−∞,T )×R6) ≤Nδ−β(‖(∂t + p · ∇x)u− aij∂pipju+ b · ∇pu+ cu

+ λu‖Lr((−∞,T )×R6) +NR−2
0 ‖u‖Lr((−∞,T )×R6)),

(F.3)

where N =N(r,K), and R0 ∈ (0,1) is the constant in Assumption F.1 (γ?).

Lemma F.5 (see Lemma D.6 in [8]). Invoke the assumptions of Theorem F.3 and
let

– T > 0, λ≥ 0, 1< q < r be numbers,
– u∈ SNq (R7

T ) be a function such that u(0, ·)≡ 0, and

h := (∂t + p · ∇x)u− aij∂pipju+ b · ∇pu+ (c+ λ)u∈Lr(R7
T ).

Then, u∈ SNr (R7
T ).
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6676 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Lemma F.6. Let
– δ ∈ (0,1), κ ∈ (0,1], K > 0, M > 0, λ≥ 0 be numbers,
– u∈L2((0, T )×R

3
x)W

1
2 (R

3
p),

– δ|ξ|2 <aij(z)ξiξj < δ−1|ξ|2 for any z ∈R
7
T , ξ ∈R

3,
–

‖a‖
L∞((0,T ))C

κ/3,κ
x,v (R6)

,‖∇pa‖L∞(R7
T ) ≤Kδ−1(F.4)

for some K > 1,
– h∈L2(R

7
T ),

– for any φ∈C1
0 ([0, T ]×R

6) such that φ(T, ·)≡ 0, one has
∫
(−(∂tφ+ p · ∇xφ)u+ (∇pφ)

Ta∇pu+ λuφ− hφ)dz = 0.

Then, the following assertions hold.
(i) One has u∈ SN2 (R7

T ) and there exists β = β(κ)> 0 such that

‖u‖SN
2 (R7

T ) ≤Nδ−β
(
‖h‖L2(R7

T ) + ‖|u|+ |∇pu|‖L2(R7
T )

)
,(F.5)

where N =N(κ,K)> 0.
(ii) If, additionally, h,∇pu∈Lr(R7

T ), for some r ∈ (2,∞), then u∈ Sr(R7
T ), and

‖u‖SN
r (R7

T ) ≤Nδ−β
(
‖h‖Lr(R7

T ) + ‖|u|+ |∇pu|‖Lr(R7
T )

)
,(F.6)

where β = β(r,κ)> 0, N =N(r,κ,K)> 0.

Proof. In this proof, N is a constant independent of δ.
(i) Step 1: u ∈ SN2 (R7

T ). For t < 0 we set u and h to be 0, and a to be 13. Then,
for any smooth function φ with compact support in (−∞, T )×R

6, we have

∫ (
− (∂tφ+ p · ∇xφ)u+ (∇pφ)

Ta∇pu− λuφ− hφ

)
dz = 0.

This implies that (∂t+p ·∇x)u∈L2((−∞, T )×R
3
x)W

−1
2 (R3

p). Next, by Theorem F.3,
the equation

∂tu1 + p · ∇xu1 − aij∂pipju1 + λu1 = h− ∂pia
ij∂pju(F.7)

has a unique solution u1 ∈ SN2 ((−∞, T ) × R
6) such that u11t≤0 ≡ 0. Then, for

U = u− u1, we have

U ∈L2((−∞, T )×R
3
x)W

1
2 (R

3
p), (∂t + p · ∇x)U ∈L2((−∞, T )×R

3
x)W

−1
2 (R3

p),

and the identity

(∂t + p · ∇x)U −∇p · (a∇pU) + λU = 0

holds in L2((−∞, T )× R
3
x)W

−1
2 (R3

p). Then, by “testing” the above identity with u
in the sense of the duality pairing between L2((−∞, T )× R

3)W k
2 (R

3), k = ±1, and
integrating by parts in p, we get for a.e. s∈ (−∞, T ),

∫

R6

U2(s,x, p)dxdp+

∫

(−∞,s)×R6

(δ|∇pU |2 + λU2)dz = 0.
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VML WITH THE SBC 6677

We conclude U ≡ 0, and hence, u∈ SN2 ((−∞, T )×R
6).

Step 2: S2 estimate. By the assumption (F.4) and Remark F.2, for any γ? ∈ (0,1),
the condition (F.1) in Assumption F.1 (γ?) holds with

R0 =K−1/κδ1/κγ
1/κ
? .(F.8)

Furthermore, let

β > 0, κ > 0, γ? = δκγ̃?(κ)> 0

be the numbers in Theorem F.4 with r = 2. Then, by the estimate (F.3) applied to
(F.7) and the assumption (F.4), we conclude that there exists N =N(κ) such that

‖u‖SN
2 (R7

T ) = ‖u1‖SN
2 (R7

T )

≤Nδ−β‖|h|+ |∂piaij∂pju|‖L2(R7
T ) +NK2/κδ−2κ/κ‖u‖L2(R7

T )

≤Nδ−β‖h‖L2(R7
T ) +NKδ−β‖∇pu‖L2(R7

T ) +NK2/κδ−2κ/κ‖u‖L2(R7
T ).

(ii) Applying Lemma F.5 to (F.7), we conclude that u ∈ SNr (R7
T ). The desired

estimate (F.6) is obtained via Theorem F.4 in the same way as (F.5).

Lemma F.7 (embedding for the steady SNp (R2d) space). Let d ≥ 1, p ∈ (1,∞),
and u∈ SNp (R2d) (see (2.12)). Then, the following assertions hold.

(i) For any p∈ (1,2d) and q > p satisfying

1

q
>

1

p
− 1

2d
,

we have

‖u‖Lq(R2d) .d,p,q ‖u‖SN
p (R2d).(F.9)

(ii) For any p∈ (1,4d) and q > 1 satisfying

1

q
>

1

p
− 1

4d
,

one has

‖∇vu‖Lq(R2d) .d,p,q ‖u‖SN
p (R2d).(F.10)

(iii) For p > 2d,

‖u‖L∞(R2d) .d,p ‖u‖SN
p (R2d).(F.11)

Furthermore, if p > 4d and α∈
(
0,1− 4d

p

)
,

‖[u,∇vu]‖Cα/3,α
x,v (R2d)

.d,p,α ‖u‖SN
p (R2d).(F.12)

Proof. (i)–(ii) We denote

f = v · ∇xu−∆vu+ u.

Let Γ(t, x, v; t′, x′, v′) be the fundamental solution of the operator (∂t + v · ∇x)−∆v.
It is well known that (see, for example, [30])

Γ(t, x, v; t′, x′, v′) = (t− t′)−2dp

(
x− x′ − (t− t′)v′

(t− t′)3/2
,

v− v′

(t− t′)1/2

)
,
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6678 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

where p is a certain Gaussian function. Then, we have

u(x, v) =

∫ ∞

0

∫

R2d

e−t Γ(t, x, v; 0, x′, v′)f(x′, v′)dx′dv′dt

=

∫ ∞

0

∫

R2d

t−2de−t p

(
x− x′

t3/2
,
v− v′

t1/2

)
f̃(x′, v′)dx′dv′dt,

where f̃(x, v) = f(x+ tv, v).
Next, let r be the number defined by the relation

1

r
+

1

p
= 1+

1

q
.

Then, by the Minkowski and Young inequalities,

‖u‖Lq(R2d) ≤ ‖f‖Lp(R2d)

∫ ∞

0

e−tt−2d‖p
( ·
t3/2

,
·

t1/2
)
‖Lr(R2d) dt.

Since 1− 1/r < 1/(2d), the second factor on the r.h.s. is bounded by

N(d)

∫ ∞

0

e−tt−2d(1−1/r) dt <∞,

and hence, the estimate (F.9) is valid. The second assertion (F.10) is proved in the
same way.

(iii) A simple application of Hölder’s inequality gives

|u(x, v)|.d ‖f‖Lp(R2d)

∫ ∞

0

e−tt−2d/p dt.d,p ‖f‖Lp(R2d),(F.13)

and hence, (F.11) is true. The proof of (F.12) follows from the identity

∇vu(x, v) =

∫ ∞

0

∫

R2d

e−tt−2d−1/2 (∇vp)

(
x− x′ − tv′

t3/2
,
v− v′

t1/2

)
f(x′, v′)dx′dv′dt

and the argument in (F.13). We omit the technical details.

Appendix G. Proof of Proposition 6.2.

Lemma G.1. We invoke the assumptions of Proposition 5.13 and let f be the finite
energy solution to (3.7)–(3.8) f ∈C([0, T ])L2,θ(Ω×R

3)∩L2((0, T )×Ω)W 1
2,θ(R

3). We
assume, additionally, that for some 0≤ θ1 ≤ θ,

∂t[g,∇pg, b,∇p · b, c]∈L∞(ΣT ),(G.1)

∂tη ∈L2((0, T )×Ω)W−1
2,θ1

(R3),(G.2)

and, for

f1(x, p) :=−v(p) · ∇xf0(x, p) +∇p · (σf0(x, p)∇pf0(x, p))

− b(0, x, p) · ∇pf0(x, p)− c(0, x, p)f0(x, p) + η(0, x, p)
(G.3)

(understood in the sense of distributions), one has

f1 ∈L2,θ1(Ω×R
3),
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VML WITH THE SBC 6679

where σf0 is given by (3.9) with g replaced with f0. In addition, we assume that
f0 ∈L2(Ω)W

1
2 (R

3) is a finite energy solution to the steady equation (G.3) with SRBC
(see Definition 3.1), where f1 is viewed as the r.h.s. Then,

∂tf ∈C([0, T ])L2,θ1(Ω×R
3)∩L2((0, T )×Ω)W 1

2,θ1(R
3),

and, furthermore, u= ∂tf is a finite energy solution to

Y u−∇p · (σg∇pu) + b · ∇pu+ cu= η1, z ∈ΣT ,(G.4)

u(t, x, p) = u(t, x,Rxp), (t, x, p)∈ΣT−, u(0, x, p) = f1(x, p), (x, p)∈Ω×R
3,

where

η1 = ∂tη−
(
−∇p · ((∂tσg)∇pf) + (∂tb) · ∇pf + (∂tc)f

)
.(G.5)

Proof of Lemma G.1. For the sake of clarity, we consider the case when θ, θ1 = 0.
The argument in the remaining case is the same as the one presented here. Let us
first consider (G.4). By the definition of η1 (see (G.5)), the assumptions of the present
lemma, and the fact that f ∈L2((0, T )×Ω)W 1

2 (R
3), we conclude

η1 ∈L2((0, T )×Ω)W−1
2 (R3).

Then, by Proposition 5.13, the problem (G.4) has a unique finite energy solution (see
Definition 3.1). Furthermore, we denote

f̃(t, x, p) =

∫ t

0

u(s,x, p)ds+ f0(x, p).

To prove the lemma, it suffices to show that f̃ ≡ f .
Next, by using a simple identity

(ξ1ξ2)(t) = (ξ1ξ2)(0) +

∫ t

0

[ξ′1(s)ξ2(s) + ξ1(s)ξ
′
2(s)]ds

with ξ1 = σg, b, c and ξ2 = f̃ ,∇pf̃ , and (G.3)–(G.4), we formally conclude that f̃ is a
finite energy solution to the equation

Y f̃(z)−∇p · (σg(z)∇pf̃(z)) + b(z) · ∇pf̃(z) + c(z)f̃(z)− η(z)

=−η(0, x, p) + v(p) · ∇xf0(x, p)−∇p · (σf0(x, p)∇pf0(x, p))

+ b(0, x, p) · ∇pf0(x, p) + c(0, x, p)f0(x, p) + u(0, x, p)

+

∫ t

0

(
−∇p ·

(
(∂tσg(s,x, p))∇p(f̃ − f)(s,x, p)

)

+ (∂tb(s,x, p)) · ∇p(f̃ − f)(s,x, p) + (∂tc(s,x, p))(f̃ − f)(s,x, p)

)
ds

with SRBC and the initial data f̃(0, ·)≡ f0(·). We note that the sum of the nonintegral
terms on the r.h.s. of the above identity equals 0 due to (G.3). Hence, the function
w= f̃ − f is a finite energy solution to
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6680 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

Y w(z)−∇p · (σg(z)∇pw(z)) + b(z) · ∇pw(z) + c(z)w(z)(G.6)

=

∫ t

0

(
−∇p ·

(
(∂tσg(s,x, p))∇pw(s,x, p)

)

+ (∂tb(s,x, p)) · ∇pw(s,x, p) + (∂tc(s,x, p))w(s,x, p)

)
ds

with the SRBC and the initial data w(0, ·)≡ 0. To make the above argument rigorous,
one needs to work with the weak formulations of (3.13) and (G.4) and use the fact
that f0 is a finite energy solution to (G.3) with the SRBC.

Finally, by applying an “energy” type identity (5.107) to (G.6), using integration
by parts in p, and the Cauchy–Schwarz inequality, we get

‖w(t, ·)‖2L2(Ω×R3) + ‖∇pw‖2L2(Σt) ≤N t(‖w‖2L2(Σt) + ‖∇pw‖2L2(Σt)), t∈ [0, T ],

where N is independent of t. Taking t≤ (2N)−1 and using the Gronwall’s inequality,
we conclude that w= 0 on ΣT1 where T1 =min{(2N)−1, T}. Similarly, we show that
w= 0 on Σt for t∈ [T1,min{T1 + (2N)−1, T}] and so on. Thus, f ≡ f̃ .

Proof of Proposition 6.2. The uniqueness follows from the estimate (6.42) with
vanishing “initial data” f0,k,E0,k,B0,k.

To show the existence, we consider the iteration scheme [h(n),E(n),B(n)], n ≥ 0,
such that [h(0),E(0),B(0)] = [f0,0,E0,0,B0,0], and given [h1,E1,B1] = [h(n),E(n),B(n)],
the next iteration [h2,E2,B2] = [h(n+1),E(n+1),B(n+1)] is defined as the strong solu-
tion to the system

Y h2 + ξ(Eg + v(p)×Bg) · ∇ph2 −
ξ

2
(v(p) ·Eg)h2 −Ah2(G.7)

= ξ1(v(p) ·E1)J
1/2 +Kh1 +Γ(h2, g),

h2(t, x, p) = h2(t, x,Rxp), z ∈ΣT−, h2(0, ·)≡ f0,0,(G.8)

∂tE2 −∇x ×B2 =−
∫
v(p)J1/2(p)h1(p) · ξ dp,(G.9)

∂tB2 +∇x ×E2 = 0,(G.10)

∇x ·E2 =

∫
J1/2h1(p) · ξ dp, ∇x ·B2 = 0,(G.11)

(E2 × nx)|∂Ω = 0, (B2 · nx)|∂Ω = 0,(G.12)

E2(0, ·)≡E0,0(·), B2(0, ·)≡B0,0(·).(G.13)

We assume that [h1,E1,B1] satisfies

∂kt h1 ∈C([0, T ])L2(Ω×R
3)∩L2((0, T ))W

1
2 (Ω×R

3), k≤m,(G.14)

∂kt [E1,B1]∈C([0, T ])L2(Ω), k≤m,(G.15)

∂kt h1(0, ·) = f0,k(·) (see (3.16)), k≤m,(G.16)

∂kt [E1,B1](0, ·) = [E0,kB0,k](·) (see (3.17)−(3.18)), k≤m,(G.17)

∂tρk +∇x · jk = 0(in the sense of distributions), k≤m,(G.18)

whereρk(t, x) =

∫

R3

J1/2(p)∂kt h1(t, x, p) · ξ dp,

jk(t, x) =

∫

R3

J1/2(p)v(p)∂kt h1(t, x, p) · ξ dp,
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VML WITH THE SBC 6681

y(λ)(h1,E1,B1)≤N1,

m−1∑

k=0

‖e−λτ∂kt [E1,B1]‖2L∞((0,T ))W 1
2 (Ω)(G.19)

+

m−8∑

k=0

‖e−λτ∂kt [E1,B1]‖2L∞((0,T )×Ω) ≤N1N2,

where N1, λ > 1 are constants depending only on r1, . . . , r4,Ω, θ, f0,k,E0,k,B0,k, k≤m,
N2 =N2(Ω)> 1, and

y(λ)(h1,E1,B1) = sup
τ≤T

I(λ)(h1,E1,B1, τ) +

∫ T

0

D(λ)(h1,E1,B1, τ)dτ,

(G.20)

D(λ)(h1,E1,B1, τ) =

m∑

k=0

(
‖e−λτ (

√
λ|∂kt f(τ, ·)|+ |∇p∂

k
t f(τ, ·)|)‖2L2(Ω×R3)

(G.21)

+ λ‖e−λτ∂kt [E1,B1](τ, ·)‖2L2(Ω)

)

+

m−4∑

k=0

‖e−λτ (
√
λ|∂kt f(τ, ·)|+ |∇p∂

k
t f(τ, ·)|)‖2L

2,θ/2k
(Ω×R3),

E(λ)(h1,E1,B1, τ) =

m∑

k=0

(
‖e−λτ∂kt f(τ, ·)‖2L2(Ω×R3) + ‖e−λτ∂kt [E1,B1](τ, ·)‖2L2(Ω)

)(G.22)

+
m−4∑

k=0

‖e−λτ∂kt f(τ, ·)‖2L
2,θ/2k

(Ω×R3),

I(λ)(h1,E1,B1, τ) = E(λ)(h1,E1,B1, τ)

(G.23)

+

m−8∑

k=0

(
‖e−λτ∂kt h1(τ, ·)‖2L∞(Ω)W 1

∞,θ/2k+9 (R
3) +

∑

s∈{2,r4}

‖e−λτD2
p∂

k
t h1‖2Ls(Στ )

)
.

We will show that the following assertions are true.
(i) ∂kt [E2,B2], k ≤ m, is a weak solution to Maxwell’s equations (G.9)–(G.10)

formally differentiated k times with respect to t with the perfect conductor
BC and ∂kt [E2,B2](0, ·) = [E0,k,B0,k], k≤m. For k≤m− 1, the same pair is
a strong solution. In addition, the identities in (G.11) formally differentiated
k times in t are valid.

(ii) ∂kt h2, k≤m, is a finite energy solution to (G.7) differentiated formally k times
with respect to t with the initial conditions ∂kt h2(0, ·) = f0,k(·) and with the
SRBC.

(iii) the assumptions (G.14)–(G.18) hold with [h2,E2,B2] in place of [h1,E1,B1],
(iv)

y(λ)(h2,E2,B2)≤N1,

m−1∑

k=0

‖e−λτ∂kt [E2,B2]‖2L∞((0,T ))W 1
2 (Ω)(G.24)

+

m−8∑

k=0

‖e−λτ∂kt [E2,B2]‖2L∞((0,T )×Ω) ≤N1N2.
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6682 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

The weight e−λτ enables us to close the L∞,θ/2k+9(ΣT ) estimate via the unsteady
Sp a priori estimates (see (5.9), (5.11)–(5.15) in Propositions 5.4 and 5.6) by leveraging
the L∞ and L2 control in the estimates of the “free” terms K(∂kt h1) and ξ1(v(p) ·
∂kt E1)J

1/2. See (G.31) and the paragraph below. Furthermore, the control of the last
term in (G.23) is needed to estimate the Lri norm of the free term K(∂kt h1), which
appears in the unsteady Sp estimate.

If the assertions (i)–(iv) are true, then, by using a limiting argument (cf. the proof
of Theorem 3.10 in section 7), we conclude that there exist [f,Ef ,Bf ] such that the
desired assertions (a)–(e) in Proposition 6.2 are valid.

Proof of (i)–(iv). We will prove assertions in the following order: (i), (iv), (ii),
and (iii).

(i) We use the standard existence/uniqueness results for weak/strong solutions to
Maxwell’s equations with the perfect conductor boundary conditions (see, for example,
Chapter VII, section 4, in [11]). In particular, the differentiated in t equations in
(G.11) are satisfied due to the continuity equations for ∂kt h1, k ≤m (see (G.18)) and
the compatibility conditions (3.21)–(3.22) on the initial data [E0,k,B0,k] combined
with the fact that ∂kt h1(0, ·)≡ f0,k (see (G.16)). Thus, the assertion (i) is valid.

(iv) In this argument, N =N(r1, . . . , r4, θ,Ω,m,α). First, we prove the estimates
(G.24), assuming that (ii)–(iii) are true. We modify the proof of the estimate (3.38)
given in section 6.1.

L∞ estimate of ∂kt [E2,B2], k≤m−8. We establish the second estimate in (G.24)
and specify the constant N2. In this argument, N2 = N2(Ω) is a constant which
might change from line to line. By applying the W 1

2 div-curl estimate in (3.15) to
Maxwell’s equations differentiated k times in t and rewritten as div-curl systems (see
(4.3)–(4.4)), and using the first bound in (G.19), we have

m−1∑

k=0

‖e−λτ∂kt [E2,B2]‖2L∞((0,T ))W 1
2 (Ω)

(G.25)

≤N2

m∑

k=0

‖e−λτ∂kt [E2,B2]‖2L∞((0,T ))L2(Ω) +N2

m−1∑

k=0

‖e−λτ∂kt h1‖2L∞((0,T ))L2(Ω×R3)

≤N2N1

(recall N1 > 1), which gives the bound of the first term in the second estimate in
(G.24). The first term on the right-hand side of (G.25) is estimated in (G.26).

Next, using the W 1
6 div-curl estimate, the Sobolev embedding W 1

2 ⊂ L6, and
(G.25), and the Lt,x,p∞ bound of ∂kt h1, k≤m− 8, in (G.19), we conclude

m−8∑

k=0

‖e−λτ∂kt [E2,B2]‖2L∞((0,T ))W 1
6 (Ω)

≤N2

m−7∑

k=0

‖e−λτ∂kt [E2,B2]‖2L∞((0,T ))L6(Ω) +N2

m−8∑

k=0

‖e−λτ∂kt h1‖2L∞(ΣT ) ≤N2N1.

Finally, thanks to the embedding W 1
6 ⊂ L∞, we obtain the desired estimate of the

second term in the second estimate in (G.24).
Total energy estimate. First, we derive an estimate of the total instant energy

and dissipation,
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VML WITH THE SBC 6683

sup
τ≤T

E(λ)(h2,E2,B2, τ) +

∫ T

0

D(λ)(h2,E2,B2, τ)dτ(G.26)

≤N
√
ε0y

(λ)(h2,E2,B2) +Nλ−1N1N2 +NE(λ)(h2,E2,B2,0),

where N1 and N2 are the constants in (G.19). We follow the argument of Step 1 in
section 6.1 by making the following minor modifications:

• we add the weight e−2λt to all the terms therein,
• we modify the integrals I1 and I2.

In particular, in I1 (see (6.35)), one needs to replace Lf with −Ah2 −Kh1. We then
apply the estimate (B.13) in Lemma B.7:

∫ τ

0

∫

Ω

〈−A(∂kt h2), p2θk0 ∂kt h2〉e−2λt dxdt(G.27)

≥ κ‖e−λt∇p∂
k
t h2‖2L2,θk

(Στ ) −N‖e−λt∂kt h2‖2L2(Στ ).

Furthermore, using the symmetry of the operator K and the bound (B.14), we get

−
∫

Στ

(
K(∂kt h1))(∂

k
t h2)e

−2λt dz(G.28)

≥−(κ/2)‖e−λt∂kt h2‖2L2((0,τ)×Ω)W 1
2 (R

3) −N‖e−λt∂kt h1‖2L2(Στ ).

We note that by the assumption (G.19) and the presence of the factor λ in the
definition of D(λ)(h1,E1,B1, τ) (see (G.21)), the last term on the r.h.s. of (G.28) can
be replaced with −NN1λ

−1. Furthermore, in the term I2 in (6.35), we replace Ef
with E1 and proceed as in (G.27).

Unsteady Sp estimate. Here, we estimate the remaining term in (G.23), which is
the sum of squares of weighted Lt,x∞W 1

∞ norms. This will be done via the unsteady Sp
estimate. We first note that u= e−λt∂kt h2, k≤m− 8, formally satisfies the identities

Y u−∇p · (σg++g−∇pu) + ξ(Eg + v(p)×Bg − ag) · ∇pu(G.29)

+

(
λ+Cg −

ξ

2
v(p) ·Eg

)
u

= e−λt
(
K(∂kt h1) + ξ1(v(p) · ∂kt E1)J

1/2 + 1k>0

3∑

j=1

∑

k1+k2=k,k1≥1

ηjk1,k2

)
,

u(t, x, p) = u(t, x,Rxp), z ∈ΣT−, u(0, ·) = f0,k(·) (see (3.16)),

η1k1,k2 =−ξ∂k1t (Eg + v(p)×Bg) · ∇p(∂
k2
t h2) +

ξ

2
(v(p) · ∂k1t Eg)∂

k2
t h2,

η2k1,k2 =
(
∂pj∂

k1
t σ

ij
g++g− − ∂k1t a

i
g

)
(∂pi∂

k2
t h2) + (∂k1t Cg)∂

k2
t h2,

η3k1,k2 = (∂k1t σ
ij
g++g−)(∂pipj∂

k2
t h2).

For i ≤ 4 and k ≤ m − 8, we apply the unsteady Sp estimates in (5.9), (5.11), and
(5.15) with θ/2k+2i in place of θ and κ= 1

2 , and we get

‖e−λt∂kt h2‖2S
ri,θ/2

k+2i+1 (ΣT ) + 1i=4‖e−λt∂kt h2‖2L∞((0,T )×Ω)W 1

∞,θ/2k+2i+1 (R
3)

(G.30)

≤N
∑

s∈{2,ri}

(
‖e−λt(r.h.s of (G.29))‖2L

s,θ/2k+2i (ΣT ) + λ2‖f0,k‖2S
s,θ/2k+2i (Ω×R3)

)

+N‖e−λt∂kt h2‖2L
2,θ/2k+2i (ΣT ).
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6684 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

We follow the argument in the proof of (6.14) in Proposition 6.3 with minor modifi-
cations:

• The loss of decay in the p variable is different from that in the Lt∞Sp estimate
in (6.14) since the term ∂k+1

t f is on the l.h.s. in the present argument (cf (b)
below formula (6.20)).

• The main difference is the estimate of the “free” terms e−λtK∂kt h1 and v(p) ·
∂kt E1J

1/2, as the rest of the terms on the r.h.s. of (G.29) are handled in the
same way as in the proof of (6.14) (cf. (6.21) and (6.25)).

Let us consider the first two terms on the r.h.s. of (G.29). By interpolating between
L2 and L∞, exploiting the presence of the factor λ in front of the L2 norm of E1 in
D(λ)(h1,E1,B1, τ), and using the Lt,x∞ bound of E1 in (G.19), we get

‖e−λtv(p) · ∂kt E1J
1/2‖2Lri

((0,T )×Ω)(G.31)

≤ ‖e−λt∂kt E1‖4/riL2((0,T )×Ω)‖e
−λt∂kt E1‖2−4/ri

L∞((0,T )×Ω) ≤N
1−2/ri
2 N1λ

−2/ri .

Next, by (B.11) in Lemma B.5 and the interpolation inequality, we have (cf.
(6.31))

‖e−λtK(∂kt h1)‖2L
ri,θ/2

k+2i (ΣT ) ≤N‖e−λt∂kt h1‖2Lri
((0,T )×Ω)W 1

ri
(R3)

≤ λ−1/ri‖e−λtD2
p∂

k
t h1‖2Lri

(ΣT ) +Nλ1/ri‖e−λt∂kt h1‖2Lri
(ΣT ).

Furthermore, since k ≤ m − 8, by interpolating between L2 and L∞ and using the
bounds of h1 in (G.19) (cf. (G.31)), the last term is bounded by

NN1λ
1/riλ−2/ri =NN1λ

−1/ri .

By the above argument, Hölder’s inequality, and the fact that the last term on the
r.h.s. in (G.23) is bounded by N1 (see (G.19)), we get

∑

s∈{2,ri}

‖e−λtK(∂kt h1)‖2L
s,θ/2k+2i (ΣT )(G.32)

≤ 2λ−1/ri
∑

s∈{2,ri}

‖e−λtD2
p∂

k
t h1‖2Ls(ΣT ) +NN1λ

−1/ri ≤NN1λ
−1/ri .

Thus, combining (G.30) with the estimates of the “free terms” (G.31)–(G.32) and
with the bounds of nonlinear terms (cf. (6.21)–(6.25)), we obtain

m−8∑

k=0

(
‖e−λt∂kt h2‖2L∞((0,T )×Ω)W 1

∞,θ/2k+9 (R
3) +

4∑

i=1

‖e−λt∂kt h2‖2S
ri,θ/2

k+2i+1 (ΣT )

)
(G.33)

≤Nε0y
(λ)(h2,E2,B2) +NN1N2λ

−1/r4 +Nλ2Sf (0),

where

Sf (0) :=
m−8∑

k=0

∑

s∈{2,r4}

‖f0,k‖2S
s,θ/2k+8 (Ω×R3).

Finally, gathering (G.26) and (G.33) gives

y(λ)(h2,E2,B2)≤N
√
ε0y

(λ)(h2,E2,B2) +Nλ−1/r4N1

+NEf (0) +Nλ2Sf (0),
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VML WITH THE SBC 6685

where Ef (0) is defined in (3.37). Choosing ε0 < (2N)−2 gives

y(λ)(h2,E2,B2)≤N(N1λ
−1/r4 + Ef (0) + λ2Sf (0)).

Furthermore, choosing λ > (4N)r4 gives N1Nλ
−1/r4 <N1/4. Finally, choosing N1 >

(4/3)N
(
Ef (0) + λ2Sf (0)

)
, we obtain

y(λ)(h2,E2,B2)≤N1,

as desired.
(ii) First, we note that by the estimates of the free terms (G.31)–(G.32), the

assumption on f0,0 in the statement of Theorem 3.10, and Propositions 5.4–5.6, the
problem (G.29) with k= 0 has a unique strong solution h2, and, in addition,

h2 ∈C([0, T ])L2,θ(Ω×R
3)∩L2((0, T )×Ω)W 1

2,θ(R
3)(G.34)

∩ Sri,θ/22i+1(ΣT )∩L∞((0, T )×Ω)W 1
∞,θ/29(R

3), i= 1, . . . ,4.

Next, we use an induction argument.
Claim 1. We assume that for some k0 ∈ {1, . . . ,m− 8}, and all k ≤ k0 − 1, one

has

∂kt h2 ∈C([0, T ])L2,θ/2k(Ω×R
3)∩L2((0, T )×Ω)W 1

2,θ/2k(R
3),(G.35)

∂kt h2 ∈ Sri,θ/2k+2i+1(ΣT )(G.36)

∩L∞((0, T )×Ω)W 1
∞,θ/2k+9(R

3), i= 1, . . . ,4,

u= e−λt∂kt f is a strong solution to (G.29).(G.37)

Then, we claim that (G.35)–(G.37) hold for all k≤ k0.
Claim 2. Invoke the definition of θk in (6.34). We assume that for some k0 ∈

{m− 7, . . . ,m} and all k≤ k0 − 1, one has

∂kt h2 ∈C([0, T ])L2,θk(Ω×R
3)∩L2((0, T )×Ω)W 1

2,θk
(R3),(G.38)

u= e−λt∂kt f is a finite energy solution to (G.29).(G.39)

Then, (G.38)–(G.39) hold for all k≤ k0.
Proof of Claim 1. To justify the differentiation with respect to t and (G.35)

with k0 in place of k, we use Lemma G.1 with ∂k0−1
t h2 in place of f , and f0 and f1

replaced with f0,k0−1 ∈ L2,θ/2k0−1(Ω×R
3) and f0,k0 ∈ L2,θ/2k0 (Ω×R

3), respectively,
and

b=±(Eg + v(p)×Bg)− ag, c=

(
Cg ∓

1

2
v(p) ·Eg

)
,

η= r.h.s. of (G.29) with k replaced with k0 − 1.(G.40)

We check the conditions of Lemma G.1. First, it follows from the argument of (G.26)
that

η ∈L2((0, T )×Ω)W−1
2,θ/2k0−1(R

3), ∂tη ∈L2((0, T )×Ω)W−1
2,θ/2k0

(R3).(G.41)

Finally, we check the condition ∇p · b ∈ L∞(ΣT ) with b = ag, where ag is defined in
(6.2). We note that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
6
/2

3
/2

5
 t

o
 1

2
8
.1

4
8
.2

2
5
.1

9
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



6686 H. DONG, Y. GUO, Z. OUYANG, AND T. YASTRZHEMBSKIY

∂pia
i
g(t, x, p) =−∂pi

∫
Φij(P,Q)J1/2(q)

pi
2p0

g(t, x, q) · (1,1)dq

+ ∂pi

∫
Φij(P,Q)J1/2(q)∂qjg(t, x, q) · (1,1)dq= I1 + I2.

By the estimate (B.7) with k= 1,

‖I1‖L∞(ΣT ) ≤N‖g‖L∞((0,T )×Ω)W 1
2 (R

3).(G.42)

Next, to handle I2, we will use the identity (B.8):

∂pi

∫
Φij(P,Q)J1/2(q)∂qjg(q)dq(G.43)

= ∂pi

∫
Φij(P,Q)J1/2(q)

qj
2q0

g(q)dq

− 4

∫
P ·Q
p0q0

(
(P ·Q)2 − 1

)−1/2

J1/2(q)g(q)dq− κ(p)J1/2(p)g(p),

where κ(p) = 27/2πp0
∫ π
0
(1 + |p|2 sin2 θ)−3/2 sin(θ)dθ. By (B.7) with k = 1, the first

term on the r.h.s. of (G.43) is bounded by the r.h.s. of (G.42). The remaining terms are
handled similarly. Thus, ‖∇p · ag‖L∞((0,T )×Ω×R3) is bounded by the r.h.s. of (G.42).

Hence, by Lemma G.1, ∂k0t h2 is a finite energy solution to (G.29), and (G.35) holds
with k replaced with k0, as claimed.

Next, to deduce that ∂k0t h2 is a strong solution that satisfies the desired Sri
regularity in (G.36), we use Propositions 5.4–5.6 combined with the argument of
(G.33). Thus, Claim 1 is proved.

Proof of Claim 2. We repeat the proof of Claim 1 with one minor modification.
We note that to apply Lemma G.1, we need (G.41) to hold, where η is defined in
(G.40). This estimate was established in the proof of the energy bound (G.26). See
the argument of (6.41). In particular, to handle the cubic terms (cf. (6.38)–(6.39)),
we need to control certain weighted Lt,x,p∞ norms of ∂kt [h2,∇ph2], k≤m/2, which was
done in Claim 1 (see (G.36)).

(iii) Since (ii) is valid, we only need to verify the continuity equation (G.18).
To this end, we note that the functions H2 = J + J1/2h2 and [E1,B1], satisfy the
identities

Y H+
2 + (Eg + v(p)×Bg) · ∇pH

+
2(G.44)

= C(H+
2 ,G

+ +G−) + C
(
J,J1/2(h+2 + h−2 − g+ − g−)

)

− (E1 −Eg) · ∇pJ,

Y H−
2 − (Eg + v(p)×Bg) · ∇pH

−
2

= C(H−
2 ,G

− +G+) + C
(
J,J1/2(h+2 + h−2 − g+ − g−)

)
(G.45)

+ (E1 −Eg) · ∇pJ.

Differentiating formally the above identities k times in t and integrating over p∈R
3,

we obtain the continuity equation (G.18).
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