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Abstract—Deep Neural Networks (DNNs) have achieved
tremendous success in various tasks. However, DNNs exhibit
uncertainty and unreliability when faced with well-designed ad-
versarial examples, leading to misclassification. To address this, a
variety of methods have been proposed to improve the robustness
of DNNs by detecting adversarial attacks. In this paper, we
combine model explanation techniques with adversarial models
to enhance adversarial detection in real-world scenarios. Specifi-
cally, we develop a novel adversary-resistant detection framework
called EXPLAINER, which utilizes explanation results extracted
from explainable learning models. The explanation model in
EXPLAINER generates an explanation map that identifies the
relevance of input variables to the model’s classification result.
Consequently, adversarial examples can be effectively detected
by comparing the explanation results of a given sample with
its denoised version, without relying on any prior knowledge
of attacks. The proposed framework is thoroughly evaluated
against different adversarial attacks, and experimental results
demonstrate that our approach achieves promising results in
white-box attack scenarios.

Index Terms—Adversarial detection,Model explanation, Noise
reduction.

I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely used

in various applications and achieved tremendous success in

recent years. For instance, DNNs have played a critical

role in a variety of generative and discriminative learning

tasks, including image processing [Du et al.(2019)], mo-

tion capture [Yue et al.(2021)], [Xu et al.(2022)], clinical

research [Su et al.(2022)], [Guo et al.(2023)], and image

generation [Du et al.(2022)]. However, studies have shown

that outputs of DNNs can be easily altered by a small

perturbation of the input, or even a small perturbation of one

pixel [Zhou et al.(2022)]. This sensitivity to small changes in

the input makes DNNs vulnerable, limiting the applications of

DNNs in high-stake settings, such as self-driving cars [Deng

et al.(2020)] and malware detections [Sewak et al.(2018)].

Several approaches for defending against adversarial exam-

ples have been proposed. The use of adversarial training or

gradient masking to improve the robustness of neural networks

is one area of research. Existing research has shown, however,

that neural network architectures modified with adversarial

training and gradient masking can still be attacked [Carlini and

Wagner(2017)]. Another area of study is adversarial detection,

which aims to determine if a given input is adversarial or

normal.

Fig. 1. Feature maps for normal, denoised normal, adversarial, and denoised
adversarial examples. After the noise reduction process, the feature map of the
normal example has almost no change, while the feature map of the adversarial
image has obvious changes on both the background and object.

However, there are critical questions remain unanswered

about what causes the misclassification of adversarial exam-

ples. To uncover the causes of adversarial attacks, efforts have

been tried to explore the feature differences between normal

inputs and adversarial inputs. One possible method is using

explanation techniques. Given an image, the result from an

explanation model encodes the relevance of pixels for the

prediction result, which is commonly referred to as an expla-

nation map. Fig 1 shows that there are human-understandable

differences between adversarial examples and normal inputs

with Integrated Gradient [Sundararajan et al.(2017)]. As we

can see, normal examples tend to have a more meaningful

and continuous explanation map, while adversarial examples

tend to have a more discrete explanation map. This difference

is more distinguishable while using a patch attack [Brown

et al.(2017)]. The model will be fooled and classify the image

only based on the adversarial patch part. As we could see

from the Fig 2, the explanation of the adversarial example

only shows the shape of the adversarial patch.

As a result, the inconsistencies of extracted features between



Fig. 2. Examples of the feature maps extracted from a normal example and
an adversarial example with patch attack.

adversarial examples and normal examples can be utilized in

detecting adversarial examples. Song et al. [Song et al.(2018)]

proposed an Ensemble approach for Explanation-based Ad-

versarial Detection, which uses an ensemble of explanation

models wherein each explanation technique provides an expla-

nation map for every classification decision made by a target

model. However, their framework requires additional training

after extracting the explanation maps.

In this work, we propose an unsupervised adversarial de-

tection method (EXPLAINER) with model explanation. We

extract feature maps from explanation models and use the

extracted features to determine if an example is normal or

adversarial. We evaluate EXPLAINER using five state-of-the-

art adversarial attacks on MNIST [LeCun et al.(1998)] dataset

and ImageNet [Deng et al.(2009)] dataset, under white-box

threat model. Our experimental results show that we can

effectively detect all attacks with fast responses.

We summarize our main contributions as follows.

• We develop a novel framework called EXPLAINER

based on model explanation techniques and noise reduc-

tion. EXPLAINER utilizes features from the explanation

results using normal examples and adversarial examples

without additional training tasks.

• We evaluate EXPLAINER on five state-of-the-art adver-

sarial attacks and two image datasets under white-box

attack. The results show that the proposed system can

consistently achieve high detection rates with a low false-

positive rate.

• We extensively evaluate EXPLAINER with different clus-

tering techniques. Our findings show that EXPLAINER

achieves promising results and high efficiency in different

scenarios.

II. RELATED WORK

a) Adversarial Attack: Adversarial examples can be

developed using gradient-based attacks [Carlini and Wag-

ner(2017)], [Goodfellow et al.(2014)], [Szegedy et al.(2013)]

or content-based attacks [Brown et al.(2017)], [Eykholt

et al.(2018)]. This paper focuses on five state-of-the-art

gradient-based attacks: Basic Iterative Method (BIM) [Kurakin

et al.(2018)], Momentum Iterative Method (MIM) [Dong

et al.(2018)], and Carlini and Wagner Attacks (CW) [Carlini

and Wagner(2017)] tailored to L0, L2, and L∞ norms.

b) Model Explanation: Model explanation techniques

provide insights into the features critical for DNN decision-

making [Lipton(2018)], including enhancing the transparency

of large language models (LLMs), which have been widely

applied in recent years [Guo et al.(2024)]. Local explain-

ability methods identify which regions in an input image

influence the prediction [Simonyan et al.(2013)], [Dombrowski

et al.(2019)]. Saliency maps and explanation maps are com-

monly used for this purpose.

c) Adversarial Detection: Adversarial detection aims

to classify inputs as normal or adversarial. Magnet [Meng

and Chen(2017)] uses autoencoders to approximate normal

example manifolds, while Feature Squeezing [Xu et al.(2017)]

reduces an adversary’s freedom by smoothing images or reduc-

ing color depth. Adaptive Noise Reduction [Liang et al.(2018)]

combines scalar quantization and spatial smoothing for high-

accuracy adversarial detection.

III. PROPOSED METHOD

EXPLAINER detects adversarial examples using model

explanation features. The hypothesis is that normal and ad-

versarial examples have inconsistent explanation robustness.

The steps are as follows: generate explanation maps for the

original and denoised images, then compute and compare

their Shannon entropy to classify the input. The key idea

is that normal images should exhibit minimal change in

their explanation maps after denoising, whereas adversarial

examples will show significant differences. By quantifying

this difference through Shannon entropy, we can effectively

distinguish between normal and adversarial inputs, leveraging

the inherent stability of normal images’ feature maps against

noise reduction.

A. Generation of Adversarial Attacks

The goal of an adversary is to craft a sample that appears

identical to a normal sample but is misclassified by the target

model. For a given input image x, the objective is to find a

minimal perturbation ¸ such that the adversarial input x̃ =
x + ¸ is misclassified. We consider the following adversarial

attacks to test our framework:

Basic Iterative Method (BIM) [Kurakin et al.(2018)]:

BIM is an iterative version of FGSM [Goodfellow

et al.(2014)]. Instead of applying adversarial noise ¸ once,

it is applied iteratively with small ϵ. The recursive formula is:

x∗

0 = x

x∗

i = clipx,ϵ

(

x∗

i−1 + ϵ sign
(

∇x∗

i−1
J
(

Θ, x∗

i−1, y
)

)) (1)

Momentum Iterative Method (MIM) [Dong et al.(2018)]:

MIM accelerates gradient descent algorithms by accumulating

a velocity vector in the gradient direction. The optimization

problem is:

argmin
x∗

J (x∗, y) , s.t. ∥x∗ − x∥
∞
f ϵ, (2)



Algorithm 1 EXPLAINER Framework for Adversarial Detec-

tion

1: Input: Image x, classifier f

2: Output: Adversarial detection result

3: Step 1: Generate Adversarial Examples

4: x∗ ← BIM/MIM/CW(x, f, ϵ)
5: Step 2: Generate Explanation Maps

6: h(x)← Explain(f, x)
7: Step 3: Apply Image Denoising

8: x̃← Denoise(x)
9: Step 4: Generate Explanation Maps for Denoised

Image

10: h(x̃)← Explain(f, x̃)
11: Step 5: Calculate Shannon Entropy

12: H(x)← −
∑

p(x) log p(x)
13: H(x̃)← −

∑

p(x̃) log p(x̃)
14: Step 6: Adversarial Detection

15: if H(x̃) < H(x) then

16: Classify x as normal

17: else

18: Classify x as adversarial

19: end if

where ϵ is the size of the adversarial perturbation.

Carlini and Wagner Attacks (CW) [Carlini and Wag-

ner(2017)]: The CW L2 attack finds a perturbation ¶∗ for the

following optimization problem:

min ∥¶∥22 + c · f(x+ ¶)

s.t. x+ ¶ ∈ [0, 1]n
(3)

B. Generation of Explanation

Given a neural network classifier f(·) and an input x, the

explanation of the classification is represented as an explana-

tion map h : Rd → R
d. We consider the following explanation

techniques, with generated explanation maps shown in Fig 3,

mainly generated through Captum [Kokhlikyan et al.(2020)].

DeepLift [Shrikumar et al.(2017)]: DeepLift attributes to

each input xi a value C∆xi∆y representing the effect of that

input being set to a reference value. The ”summation-to-delta”

property is:
n
∑

i=1

C∆xi∆o = ∆o, (4)

where o = f(x) is the model output, ∆o = f(x)− f(r), and

r is the reference input.

SHAP [Lundberg and Lee(2017)]: SHAP explains the

prediction of an instance x by computing the contribution of

each feature. The explanation model is:

g (z′) = ϕ0 +

M
∑

j=1

ϕjz
′

j (5)

GradSHAP is a variant of SHAP that combines integrated

gradients with SHAP values to estimate feature attributions

efficiently.

Grad-CAM and Guided CAM [Selvaraju et al.(2016)]:

Grad-CAM computes a coarse-grained feature-importance

map by associating feature maps in the final convolutional

layer with classes based on gradients. Guided Grad-CAM

refines this by performing an elementwise product between

Grad-CAM scores and Guided Backpropagation scores.

IG [Sundararajan et al.(2017)]: IG computes gradients

at all points along a linear path from a baseline x̄ to x, and

averages them:

h(x) = (x− x̄)»

∫ 1

³=0

∂f(x̄+ ³(x− x̄))

∂x
d³ (6)

SmoothGrad [Smilkov et al.(2017)]: SmoothGrad sharp-

ens gradient-based sensitivity maps by creating noisy copies of

an input image and averaging gradients with respect to these

copies, removing irrelevant noisy regions.
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Fig. 3. Generation of Attacks and Explanation.

C. Image Noise Reduction and Shannon Entropy

Fig 1 and Fig 3 show that the explanation maps for normal,

adversarial, and denoised examples differ significantly. This

motivates us to detect adversarial samples by calculating the

change in Shannon entropy between the original and denoised

versions. Our two-step approach decouples image denoising

and Shannon entropy calculation. First, we use non-local

means denoising [Buades et al.(2011)] to obtain denoised

images. Second, we calculate Shannon entropy for both the

original and denoised images.

Non-local means denoising replaces the color of a pixel with

an average of similar pixels’ colors:

NLu(p) =
1

C(p)

∫

f(d(B(p), B(q)))u(q) dq,

where d(B(p), B(q)) is the Euclidean distance between image

patches centered at p and q, f is a decreasing function, and

C(p) is the normalizing factor.

Shannon entropy, defined by Shannon’s H-theorem, mea-

sures the uncertainty in a discrete random variable X taking

values in X , distributed according to p : X → [0, 1] such that

p(x) = P[X = x]:

H(X) = E[I(X)] = E[− log p(X)].



IV. EXPERIMENT

A. Dataset

We evaluated the performance of our detection frame-

work on MNIST [LeCun et al.(1998)] and ImageNet [Deng

et al.(2009)]. For MNIST, we trained a CNN-based target

model with 60,000 training examples and 10,000 valida-

tion examples. For ImageNet, we used a pre-trained ResNet

model [He et al.(2016)] with 50,000 training images and

10,000 validation images, testing our framework on 50,000

images.

B. Implementation Details

We generated adversarial examples using five state-of-

the-art attacks: BIM [Kurakin et al.(2018)], MIM [Dong

et al.(2018)], and CW [Carlini and Wagner(2017)], tailored

to L0, L2, and L∞ norms. Explanation maps were generated

using Deeplift [Shrikumar et al.(2017)], SHAP [Lundberg

and Lee(2017)], Grad-CAM [Selvaraju et al.(2016)], IG [Sun-

dararajan et al.(2017)], and IG with SmoothGrad [Smilkov

et al.(2017)]. The key step is comparing the Shannon entropy

of the original and denoised images’ explanation maps. If the

entropy decreases after denoising, the image is classified as

normal; otherwise, it is classified as adversarial.

C. Model Evaluation

We thoroughly evaluated the effectiveness of EXPLAINER

in different scenarios and compared its performance with other

methods.

AdversarialNormal

Fig. 4. Shannon entropy comparison between the normal group and adver-
sarial group with different explanation methods.

1) Explanation Methods: We evaluated the Shannon en-

tropy values from different explanation techniques, as shown

in Fig 4. We compared three techniques: gradient, integrated

gradients, and Deeplift. Integrated gradients and Deeplift

demonstrated significant entropy differences between normal

and adversarial groups, indicating their effectiveness in cap-

turing noise information for adversarial detection.

2) Different Adversarial Attacks: We evaluated the distri-

bution of extracted features from different attack techniques

using integrated gradients. Fig 5 shows the entropy values,

revealing that all attacks exhibited significant differences com-

pared to the normal group.
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Fig. 5. Shannon entropy comparison between the normal group and adver-
sarial group with different attacks using the integrated gradient method.

3) Comparison of Detection Rate: Table I compares the

detection rate of EXPLAINER with Magnet and Feature

Squeezing(FS) on MNIST using five attack methods. EX-

PLAINER achieved around 99% detection rates on MNIST

and similar rates on ImageNet. Compared to other methods,

our framework is efficient and accurate without requiring

additional training or model retraining. The time efficiency of

EXPLAINER was also evaluated, showing that it can classify

images in approximately 1 second on MNIST and 50 seconds

on ImageNet using the ResNet-18 model.

TABLE I
DETECTION ACCURACY COMPARISON

Attack EXPLAINER MagNet Feature Squeezing (FS)

CW0

CW2

CW∞

BIM
MIM

99.8%
99.9%
99.5%
99.0%
98.8%

86.2%
86.0%
96.5%
99.8%
99.6%

91.0%
99.4%
99.1%
98.2%
98.5%

V. CONCLUSION

In this paper, we propose EXPLAINER, a framework

that combines explanation techniques with noise reduction

to detect adversarial examples. The motivation lies in the

distinguishability between normal and abnormal explanations

and their corresponding maps for any target class. Experiments

demonstrate that our approach is effective against white-

box attacks across different datasets and can help identify

attack types, such as patch attacks, with clear explainability.

We acknowledge the potential emergence of more sophisti-

cated attacks and hope our work inspires further research.

Our proposed defense can complement state-of-the-art de-

tection methods, enhancing adversarial detection. Moreover,

EXPLAINER’s adaptability to various explanation and de-

noising models indicates its potential for broader applications,

including real-time detection systems. Future work will fo-

cus on improving robustness and scalability against evolving

adversarial strategies, as well as exploring integration with

automated machine learning pipelines to streamline detection

processes.
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