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Abstract—Deep Neural Networks (DNNs) have achieved
tremendous success in various tasks. However, DNNs exhibit
uncertainty and unreliability when faced with well-designed ad-
versarial examples, leading to misclassification. To address this, a
variety of methods have been proposed to improve the robustness
of DNNs by detecting adversarial attacks. In this paper, we
combine model explanation techniques with adversarial models
to enhance adversarial detection in real-world scenarios. Specifi-
cally, we develop a novel adversary-resistant detection framework
called EXPLAINER, which utilizes explanation results extracted
from explainable learning models. The explanation model in
EXPLAINER generates an explanation map that identifies the
relevance of input variables to the model’s classification result.
Consequently, adversarial examples can be effectively detected
by comparing the explanation results of a given sample with
its denoised version, without relying on any prior knowledge
of attacks. The proposed framework is thoroughly evaluated
against different adversarial attacks, and experimental results
demonstrate that our approach achieves promising results in
white-box attack scenarios.

Index Terms—Adversarial detection,Model explanation, Noise
reduction.

I. INTRODUCTION

Deep Neural Networks (DNNs) have been widely used
in various applications and achieved tremendous success in
recent years. For instance, DNNs have played a critical
role in a variety of generative and discriminative learning
tasks, including image processing [Du et al.(2019)], mo-
tion capture [Yue et al.(2021)], [Xu et al.(2022)], clinical
research [Su et al.(2022)], [Guo et al.(2023)], and image
generation [Du et al.(2022)]. However, studies have shown
that outputs of DNNs can be easily altered by a small
perturbation of the input, or even a small perturbation of one
pixel [Zhou et al.(2022)]. This sensitivity to small changes in
the input makes DNNs vulnerable, limiting the applications of
DNNs in high-stake settings, such as self-driving cars [Deng
et al.(2020)] and malware detections [Sewak et al.(2018)].

Several approaches for defending against adversarial exam-
ples have been proposed. The use of adversarial training or
gradient masking to improve the robustness of neural networks
is one area of research. Existing research has shown, however,
that neural network architectures modified with adversarial
training and gradient masking can still be attacked [Carlini and
Wagner(2017)]. Another area of study is adversarial detection,
which aims to determine if a given input is adversarial or
normal.
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Fig. 1. Feature maps for normal, denoised normal, adversarial, and denoised
adversarial examples. After the noise reduction process, the feature map of the
normal example has almost no change, while the feature map of the adversarial
image has obvious changes on both the background and object.

However, there are critical questions remain unanswered
about what causes the misclassification of adversarial exam-
ples. To uncover the causes of adversarial attacks, efforts have
been tried to explore the feature differences between normal
inputs and adversarial inputs. One possible method is using
explanation techniques. Given an image, the result from an
explanation model encodes the relevance of pixels for the
prediction result, which is commonly referred to as an expla-
nation map. Fig 1 shows that there are human-understandable
differences between adversarial examples and normal inputs
with Integrated Gradient [Sundararajan et al.(2017)]. As we
can see, normal examples tend to have a more meaningful
and continuous explanation map, while adversarial examples
tend to have a more discrete explanation map. This difference
is more distinguishable while using a patch attack [Brown
et al.(2017)]. The model will be fooled and classify the image
only based on the adversarial patch part. As we could see
from the Fig 2, the explanation of the adversarial example
only shows the shape of the adversarial patch.

As aresult, the inconsistencies of extracted features between
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Fig. 2. Examples of the feature maps extracted from a normal example and
an adversarial example with patch attack.

adversarial examples and normal examples can be utilized in
detecting adversarial examples. Song et al. [Song et al.(2018)]
proposed an Ensemble approach for Explanation-based Ad-
versarial Detection, which uses an ensemble of explanation
models wherein each explanation technique provides an expla-
nation map for every classification decision made by a target
model. However, their framework requires additional training
after extracting the explanation maps.

In this work, we propose an unsupervised adversarial de-
tection method (EXPLAINER) with model explanation. We
extract feature maps from explanation models and use the
extracted features to determine if an example is normal or
adversarial. We evaluate EXPLAINER using five state-of-the-
art adversarial attacks on MNIST [LeCun et al.(1998)] dataset
and ImageNet [Deng et al.(2009)] dataset, under white-box
threat model. Our experimental results show that we can
effectively detect all attacks with fast responses.

We summarize our main contributions as follows.

e We develop a novel framework called EXPLAINER
based on model explanation techniques and noise reduc-
tion. EXPLAINER utilizes features from the explanation
results using normal examples and adversarial examples
without additional training tasks.

o We evaluate EXPLAINER on five state-of-the-art adver-
sarial attacks and two image datasets under white-box
attack. The results show that the proposed system can
consistently achieve high detection rates with a low false-
positive rate.

o We extensively evaluate EXPLAINER with different clus-
tering techniques. Our findings show that EXPLAINER
achieves promising results and high efficiency in different
scenarios.

II. RELATED WORK

a) Adversarial Attack: Adversarial examples can be
developed using gradient-based attacks [Carlini and Wag-
ner(2017)], [Goodfellow et al.(2014)], [Szegedy et al.(2013)]
or content-based attacks [Brown et al.(2017)], [Eykholt
et al.(2018)]. This paper focuses on five state-of-the-art
gradient-based attacks: Basic Iterative Method (BIM) [Kurakin

et al.(2018)], Momentum Iterative Method (MIM) [Dong
et al.(2018)], and Carlini and Wagner Attacks (CW) [Carlini
and Wagner(2017)] tailored to Lo, Lo, and L., norms.

b) Model Explanation: Model explanation techniques
provide insights into the features critical for DNN decision-
making [Lipton(2018)], including enhancing the transparency
of large language models (LLMs), which have been widely
applied in recent years [Guo et al.(2024)]. Local explain-
ability methods identify which regions in an input image
influence the prediction [Simonyan et al.(2013)], [Dombrowski
et al.(2019)]. Saliency maps and explanation maps are com-
monly used for this purpose.

c) Adversarial Detection: Adversarial detection aims
to classify inputs as normal or adversarial. Magnet [Meng
and Chen(2017)] uses autoencoders to approximate normal
example manifolds, while Feature Squeezing [Xu et al.(2017)]
reduces an adversary’s freedom by smoothing images or reduc-
ing color depth. Adaptive Noise Reduction [Liang et al.(2018)]
combines scalar quantization and spatial smoothing for high-
accuracy adversarial detection.

III. PROPOSED METHOD

EXPLAINER detects adversarial examples using model
explanation features. The hypothesis is that normal and ad-
versarial examples have inconsistent explanation robustness.
The steps are as follows: generate explanation maps for the
original and denoised images, then compute and compare
their Shannon entropy to classify the input. The key idea
is that normal images should exhibit minimal change in
their explanation maps after denoising, whereas adversarial
examples will show significant differences. By quantifying
this difference through Shannon entropy, we can effectively
distinguish between normal and adversarial inputs, leveraging
the inherent stability of normal images’ feature maps against
noise reduction.

A. Generation of Adversarial Attacks

The goal of an adversary is to craft a sample that appears
identical to a normal sample but is misclassified by the target
model. For a given input image x, the objective is to find a
minimal perturbation 7 such that the adversarial input £ =
x + n is misclassified. We consider the following adversarial
attacks to test our framework:

Basic Iterative Method (BIM) [Kurakin et al.(2018)]:
BIM is an iterative version of FGSM [Goodfellow
et al.(2014)]. Instead of applying adversarial noise 7 once,
it is applied iteratively with small €. The recursive formula is:
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Momentum Iterative Method (MIM) [Dong et al.(2018)]:
MIM accelerates gradient descent algorithms by accumulating
a velocity vector in the gradient direction. The optimization
problem is:

argmin J (z*,y), s.t|z* -z <e 2)



Algorithm 1 EXPLAINER Framework for Adversarial Detec-
tion
1: Input: Image =z, classifier f
Output: Adversarial detection result
Step 1: Generate Adversarial Examples
x* < BIM/MIM/CW(z, f, €)
Step 2: Generate Explanation Maps
h(z) < Explain(f, z)
Step 3: Apply Image Denoising
Z <+ Denoise(x)
Step 4: Generate Explanation Maps for Denoised
Image
10: h(Z) < Explain(f, %)
11: Step 5: Calculate Shannon Entropy
12 H(x) « — Y p(a) log p(z)
13: H(Z) < —>_p(¥)log p(2)
14: Step 6: Adversarial Detection
15: if H(Z) < H(x) then
16: Classify = as normal
17: else
18: Classify = as adversarial
19: end if
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where € is the size of the adversarial perturbation.

Carlini and Wagner Attacks (CW) [Carlini and Wag-
ner(2017)]: The CW L, attack finds a perturbation §* for the
following optimization problem:

min [|§]|3 + ¢ - f(z + )
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B. Generation of Explanation

Given a neural network classifier f(-) and an input x, the
explanation of the classification is represented as an explana-
tion map h : R — R We consider the following explanation
techniques, with generated explanation maps shown in Fig 3,
mainly generated through Captum [Kokhlikyan et al.(2020)].

DeepLift [Shrikumar et al.(2017)]: DeepLift attributes to
each input x; a value Caz, Ay representing the effect of that
input being set to a reference value. The ”summation-to-delta”
property is:

n
> Caz,a0 = Ao, )
i=1
where o = f(z) is the model output, Ao = f(z) — f(r), and
r is the reference input.
SHAP [Lundberg and Lee(2017)]: SHAP explains the
prediction of an instance x by computing the contribution of
each feature. The explanation model is:

M
g(2) =0+ _ 87 5)
j=1

GradSHAP is a variant of SHAP that combines integrated
gradients with SHAP values to estimate feature attributions
efficiently.

Grad-CAM and Guided CAM [Selvaraju et al.(2016)]:
Grad-CAM computes a coarse-grained feature-importance
map by associating feature maps in the final convolutional
layer with classes based on gradients. Guided Grad-CAM
refines this by performing an elementwise product between
Grad-CAM scores and Guided Backpropagation scores.

IG [Sundararajan et al.(2017)]: IG computes gradients
at all points along a linear path from a baseline z to x, and
averages them:

da (6)
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SmoothGrad [Smilkov et al.(2017)]: SmoothGrad sharp-
ens gradient-based sensitivity maps by creating noisy copies of
an input image and averaging gradients with respect to these
copies, removing irrelevant noisy regions.
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Fig. 3. Generation of Attacks and Explanation.

C. Image Noise Reduction and Shannon Entropy

Fig 1 and Fig 3 show that the explanation maps for normal,
adversarial, and denoised examples differ significantly. This
motivates us to detect adversarial samples by calculating the
change in Shannon entropy between the original and denoised
versions. Our two-step approach decouples image denoising
and Shannon entropy calculation. First, we use non-local
means denoising [Buades et al.(2011)] to obtain denoised
images. Second, we calculate Shannon entropy for both the
original and denoised images.

Non-local means denoising replaces the color of a pixel with
an average of similar pixels’ colors:

N Lu(p) = ﬁ / F(d(B(p). B(q)))ulg) da.

where d(B(p), B(q)) is the Euclidean distance between image
patches centered at p and ¢, f is a decreasing function, and
C(p) is the normalizing factor.

Shannon entropy, defined by Shannon’s H-theorem, mea-
sures the uncertainty in a discrete random variable X taking
values in X, distributed according to p : X — [0, 1] such that
p(z) =P[X =z

H(X) = E[[(X)] = E[-log p(X)].



IV. EXPERIMENT
A. Dataset

We evaluated the performance of our detection frame-
work on MNIST [LeCun et al.(1998)] and ImageNet [Deng
et al.(2009)]. For MNIST, we trained a CNN-based target
model with 60,000 training examples and 10,000 valida-
tion examples. For ImageNet, we used a pre-trained ResNet
model [He et al.(2016)] with 50,000 training images and
10,000 validation images, testing our framework on 50,000
images.

B. Implementation Details

We generated adversarial examples using five state-of-
the-art attacks: BIM [Kurakin et al.(2018)], MIM [Dong
et al.(2018)], and CW [Carlini and Wagner(2017)], tailored
to Lg, Lo, and L., norms. Explanation maps were generated
using Deeplift [Shrikumar et al.(2017)], SHAP [Lundberg
and Lee(2017)], Grad-CAM [Selvaraju et al.(2016)], IG [Sun-
dararajan et al.(2017)], and IG with SmoothGrad [Smilkov
et al.(2017)]. The key step is comparing the Shannon entropy
of the original and denoised images’ explanation maps. If the
entropy decreases after denoising, the image is classified as
normal; otherwise, it is classified as adversarial.

C. Model Evaluation

We thoroughly evaluated the effectiveness of EXPLAINER
in different scenarios and compared its performance with other
methods.
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Fig. 4. Shannon entropy comparison between the normal group and adver-
sarial group with different explanation methods.

1) Explanation Methods: We evaluated the Shannon en-
tropy values from different explanation techniques, as shown
in Fig 4. We compared three techniques: gradient, integrated
gradients, and Deeplift. Integrated gradients and Deeplift
demonstrated significant entropy differences between normal
and adversarial groups, indicating their effectiveness in cap-
turing noise information for adversarial detection.

2) Different Adversarial Attacks: We evaluated the distri-
bution of extracted features from different attack techniques
using integrated gradients. Fig 5 shows the entropy values,
revealing that all attacks exhibited significant differences com-
pared to the normal group.
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Fig. 5. Shannon entropy comparison between the normal group and adver-
sarial group with different attacks using the integrated gradient method.

3) Comparison of Detection Rate: Table I compares the
detection rate of EXPLAINER with Magnet and Feature
Squeezing(FS) on MNIST using five attack methods. EX-
PLAINER achieved around 99% detection rates on MNIST
and similar rates on ImageNet. Compared to other methods,
our framework is efficient and accurate without requiring
additional training or model retraining. The time efficiency of
EXPLAINER was also evaluated, showing that it can classify
images in approximately 1 second on MNIST and 50 seconds
on ImageNet using the ResNet-18 model.

TABLE I
DETECTION ACCURACY COMPARISON

Attack EXPLAINER MagNet Feature Squeezing (FS)
CWo 99.8% 86.2% 91.0%
CW, 99.9% 86.0% 99.4%
CWeo 99.5% 96.5% 99.1%
BIM 99.0% 99.8% 98.2%
MIM 98.8% 99.6% 98.5%

V. CONCLUSION

In this paper, we propose EXPLAINER, a framework
that combines explanation techniques with noise reduction
to detect adversarial examples. The motivation lies in the
distinguishability between normal and abnormal explanations
and their corresponding maps for any target class. Experiments
demonstrate that our approach is effective against white-
box attacks across different datasets and can help identify
attack types, such as patch attacks, with clear explainability.
We acknowledge the potential emergence of more sophisti-
cated attacks and hope our work inspires further research.
Our proposed defense can complement state-of-the-art de-
tection methods, enhancing adversarial detection. Moreover,
EXPLAINER’s adaptability to various explanation and de-
noising models indicates its potential for broader applications,
including real-time detection systems. Future work will fo-
cus on improving robustness and scalability against evolving
adversarial strategies, as well as exploring integration with
automated machine learning pipelines to streamline detection
processes.
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