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We study the global well-posedness of the supercritical dissipative surface quasi-geostrophic (SQG)
equation, a key model in geophysical fluid dynamics. While local well-posedness is known, achieving
global well-posedness for large initial data remains open. Motivated by enhanced decay in radial
solutions, we aim to establish global well-posedness for small perturbations of potentially large radial
data. Our main result shows that for small perturbations of radial data, the SQG equation admits a
unique global solution.

1 Introduction

Fix 0 < y < 1 and sets = s(y) := 2 — y. In this short note, we consider the supercritical dissipative
surface quasi-geostrophic (SQG) equation,

0 +RY6-VO+AY0 =0, (1)
posed on R?, where A := /—A, and R* is defined by
RY 60— (Ry6, —R16),

with R; := 8;A~1, 1 € {1, 2}, denoting the ith component of the vector-valued Riesz transform on R?.

The SQG equation (1) arises as a fundamental mathematical model in the study of rapidly rotating
geophysical fluid dynamics. From a mathematical perspective, it exhibits a qualitative similarity to
the Euler and Navier-Stokes systems. While the local well-posedness of the supercritical SQG in the
critical space H® and the small data global well-posedness were established long ago by Miura [14] and
Ju [11], the global-in-time well-posedness of the equation with arbitrary large initial data remains a
challenge. We refer readers to [5, 10] for conditional regularity results, [7, 15] for eventual regularity
of weak solutions, and [6, 8, 9, 16] for global well-posedness for equations with slightly supercritical
dissipations (see also [2] and [3] and the references cited therein for recent results on the forced SQG in
a variety of settings).
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We observe that when the initial data is radially symmetric, the solution remains radial, rendering the
nonlinear term in (1) vanishing. Consequently, the solution satisfies a linear fractional heat equation,
exhibiting global existence and explicit expression using the fractional heat kernel. Moreover, such a
solution instantaneously smoothens and decays in the time variable.

In this paper, our goal is to examine the extent to which the improved decay enjoyed by radial
solutions allows one to obtain a global well-posedness result for data that is a small perturbation (in
a suitably chosen norm) of the class of radial data. In particular, we establish the following result.

Theorem 1. Fix 0 < y < 1 and sets = 2 — y. If f € H(R?) is radially symmetric, then there exists
€ > 0 such that if g € H*(R?) satisfies

I9llms <€,
then the initial value problem

00 +u-Vo+ A6 =0
u =R 2)
8(0,%) =f(x) +g(x)

has a unique global solution in C([0, c0); H>™ (R?)).

The proof of Theorem 1 relies on a decomposition argument, splitting the solution ¢ into a radial part
6o, solving the fractional heat equation with initial data f, and a perturbation part 61, shown to be small
for all time. For the radial part, we utilize smoothing and decay estimates, while for the perturbation
part, we employ energy-type arguments akin to [11]. Finally, we leverage a continuity argument to close
the estimates.

Because of the importance of the dissipation effects in our arguments, we end this introduction by
recalling some decay estimates for the fractional heat equation on R?. In particular, for any r € [1,2]
and s > 0, we have

2.1
G

le ™l < PG f 3)
and

e ™ Flle < 7 If e 4)

The estimates (3) and (4) can be established by appealing to the convolution representation of solutions
and the decay properties of the heat kernel on R?, combined with Young's inequality; see, for instance,
[13, Lemma 3.1].

We conclude this introduction by briefly recalling a few papers from the literature, which treat decay
and stability results that are of note in the context of the statement and proof of Theorem 1. In the log-
supercritical SQG regime, [4] establishes a class of decay results for Holder norms, while in the fully
supercritical setting, [1] establishes decay in the scaling critical norm for solutions evolving from small
initial data. In the context of initial data of larger norm, in [12] the authors establish a supercritical
SQG global well-posedness result for perturbations of initial data having Fourier support away from the
origin; in this respect, the result of [12] is conceptually similar to the radial perturbation result presented
in Theorem 1, though the norms involved in [12] are not scaling critical.

2 Motivating Decomposition: Perturbation Lemma

Let f,g € H*(R?) be given such that f is radially symmetric. Our goal is to show that if g is sufficiently
small in H® norm, then solutions to the initial value problem (2) can be extended globally in time. For
this, we will use a class of a priori estimates motivated by a perturbation argument.
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In particular, letting K, (t) be the fractional heat kernel defined by m(f) = exp(—|&|”t) for t > 0 and
& € R?, we will view solutions to (2) as perturbations of
O t—>K, () xf, t>0,
that is, the solution to

0o + AV6y =0

60(0) = f.
Indeed, letting 6 solve (2) and writing
0 =61+ 6o,
the perturbation 6, solves
861 + A76; = —(RY6p) - VO, — (R161) - VO, — (R61) - V6, (5)

with 6;(0) = g.
We now introduce a lemma giving a priori bounds on solutions to the perturbed equation (5).
Lemma 2. Let f, 6, be as above, and suppose that 6; solves (5). Then, for all t > 0, we have

dr1 21 Ly sr o

Z[F18% 0% |+ 1A Fou,
SN LA 5 6%,

+ (16117 + A% 12 A 56012,

+ A% 2 A5 612

Proof. Letting ¢; be as in the statement of the lemma, we observe that for all t > 0 we have
d 1 s 2 s s €L €1
I EIIA Ol | = —/(A O1)AP[AY01 + (R76p) - VO1 + (RT61) - Vbp]dx
< - / A591As+y91dX

+ ‘/(Asel)(As[(Rleo) V6] — (R6p) - VA591)dx

+ ‘/(Asel)(AS[(Rial) V6] — (R6y) - VAsel)dx

+ ‘/(Asel)AS[(RLel) - V6o]dx|, (6)

where we used the identities
/(ASQl)((RLei) -VA®6)dx =0, ie{0,1},
which follow from integration by parts. Noting that integration by parts also gives
(A%01, A7 61) = [ A7 20, |7,
and

(A0, AS[(RY61) - VBo]) = (AST% 0y, ASTE[(R6,) - VE]),
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we obtain the bound

(6) < —IAF 201117 + 1 A%01 12 | AS[(R60) - VO1] — (R 60) - VASO |2
+ 1A% 2 [ AS[(RF61) - VO1] — (RM07) - VAS: |12

+IAS 2Ol | A5 2 [(R61) - Vo] 12
1
< =S IATEOLIE + IA%BL Il AR Bo) - V61] — (R*Bo) - VA6 |

+ IA%OL 1 [ AS[(R-61) - V6] — (R“61) - VA®Hy |12

+ CIASTE[RY60) - VEO)I%. 7)

We now invoke the procedure of commutator estimates as in [11]. In particular, recall that we have

IASTh - k] —h- AR

S AVl IAS RlLwen + I ARllLse Rl

for all h and k for which the right-hand side is finite. Applying this with h := R, and k := V#é;, we obtain
that the right-hand side of (7) is bounded by

1
- 5||AS+%91||%Z +C- (uAsel ll2 11 Aol | AS61 [l 41

+ 1A% Iz | A% o llsvan | AO1 [l
+ A6 [z | Ay Il | A%61 s

+ (1A% 12 | A6 [l | A (L

HINTE R0 - Va1 ) ®
The Sobolev embedding then gives

1 y v v
(8) < =5 IA* %012, + C- (uAselan IASE Gollgz | AT 561 1,2
+ IA%B 2 1A 7 61112,

+IASTZ[RY6)) - V90]|Ifz)
_1 s+% 2 sp. 12 s+% 2 s s+% 2
< =g 1A 26l + C- (NASOLIL IA™2 Oollz + 1A761 1214”2 61 I,

AT [RY) - veo]nfz).

To estimate the second term on the right-hand side of this bound, fixo > Owith1 -y <o <2 -y

as a parameter to be determined later in the argument, and set (q,1) = (ﬁﬂ), H%)' Then, by the

fractional product rule, the boundedness of Riesz transforms, and the Sobolev embeddings, we have
1A= 7 [(R*61) - V6o] |12
S IA% 261 lioen 1Al + 16 el A% 260 s

S A2 1A 2 Golli2 + 1 AT Oy ll12 | AST 612 )
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Now, by standard interpolation inequalities,
(9) S IA®6Lll2 1A Z 6o ls2

1— 1
+ 161 A1 7 I AT G2

Applying Young's inequality and collecting the above estimates, we obtain the desired bound. W

3 Proof of Theorem 1

We are now ready to give the proof of Theorem 1. The argument is based on a combination of the a
priori bounds expressed in Lemma 2 for the perturbed equation (5) with

Proof of Theorem 1. Let s = 2 — y be as in the statement. Fix € € (0, 1) to be determined later in the
argument, and suppose that f, g € H*(R?) are such that f is radially symmetric and ||g|lz: < e.

By the local well-posedness theory for the supercritical SQG equation (2), there exists T; > 0 such
that a unique smooth solution ¢ to the initial value problem (2) exists on the interval [0, T1]. Now, let
6 1t K, () % f be as in Section 2 and set

f1(t) = 0(t) — ()
for t € [0, T1]. An application of Lemma 2 then gives the bound
drl N 2 1 s+% 2
1A%l [+ Znatou
SNASOZNAT 2 0ol1Z, + (16117 + A0 1) AT 6017,
+ 1A%l [ AT 7 0112, (10)

Moreover, multiplying (5) by 61 and integrating gives

dr1 ;
Z[F10:0% ] + 18 F0u1E S ol ol (11)

Our goal is to find t, > 0 so that 6y(ty) + 61(t2) has small H® norm (yielding access to the small data
global well-posedness theory for 6). For this, note that by the local theory for (2), we can choose t; € (0, T1]
independent of € € (0, 1) so that

101 (t) llms < 2e.

Indeed, if 61 (0, -) = 0, then it remains to be zero at t;. Now if 6, (0, -) is sufficiently small in H¥, then 6(0, -)
is sufficiently close to 6o(0,-) in H®. By the continuity dependence of the solution with respect to the
initial data, 6(ty, -) is sufficiently close to 6y(t1, ) in H®, and thus the H® norm of 6;(t1, -) can be as small
as we want provided that 6, (0, -) is sufficiently small.

On the other hand, the smoothness of K, (t) for all t > 0 implies that one has 6y(t1) € C*(R?), so that
forall t > t; one has

180 lz < 180tz 18Dl < 10t g,
and
180 (D)l < 160 (t1) 1o

We now combine these estimates with the decay enjoyed by 6 as a result of (3) and (4) to establish the
global result, provided e is chosen sufficiently small. In particular, let g > 0 be chosen so that solutions
to (2) corresponding to data with H® norm less than ¢, are global. Now, choose t, > t; large enough so
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that

€
160 (t2) 11 < 3"

Returning to estimates for #;, we invoke a continuity argument on the H° norm, based on the
estimates (10) and (11). Note that we can find C; = Cy1(t1) > 0 such that

< C1l6lEs + Callfrllgg 16112, -

—= ity

drl  ,1 1.,
[0l |+ Z 08025 e

Now, choose a parameter ¢; < 1/(16Cy) and set I := {T € (t1,tz] : 101D < € forall t e [ty, T]}.
It follows from the local well-posedness theory for (5) that I is a nonempty closed subset of (ty, to].
Moreover, for all t € I with t < t, the local theory also implies that we can choose t, € (t,t,] such that
Sup; . 101(S)llms < 2¢1, and thus forall t; <o <t

2
< CallOr -

nests

drl. ,1. 1
Z[F10il ]+ S el

This in turn yields, for t; <o <t,,
161(0) ]l < exp(Calo — )01 (t)llws < 2exXp(Ci(ty — t1))e,

where we have recalled that our choice of t, gave t, < t5.
It now follows that if € is chosen sufficiently small to ensure

2 exp(C1 (tp —t1))e < €1,

we obtain o € I forall t; <o < t,. Thus Iis openin (ty, tz], so that I = (t, tz] and

1
sup 01Ollps < 7=~
t1<t32 PO =160

Repeating the above arguments, we obtain
161 (t2) s < 2exp(Ca(tz —t1))e,
so that if € is additionally chosen small enough to ensure
2exp(Cq(ty —t1))e < €/2,

the small-data global theory for the SQG equation (2) with data 6y(t2) + 61 (t2) at time t, applies, and we
obtain the desired global solution. |
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