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We study the global well-posedness of the supercritical dissipative surface quasi-geostrophic (SQG)
equation, a key model in geophysical fluid dynamics. While local well-posedness is known, achieving
global well-posedness for large initial data remains open. Motivated by enhanced decay in radial
solutions, we aim to establish global well-posedness for small perturbations of potentially large radial
data. Our main result shows that for small perturbations of radial data, the SQG equation admits a
unique global solution.

1 Introduction

Fix 0 < γ < 1 and set s = s(γ ) := 2 − γ . In this short note, we consider the supercritical dissipative

surface quasi-geostrophic (SQG) equation,

∂tθ + R⊥θ · ∇θ + �γ θ = 0, (1)

posed on R2, where � :=
√

−�, and R⊥ is defined by

R⊥ : θ �→ (R2θ ,−R1θ),

with Ri := ∂i�
−1, i ∈ {1, 2}, denoting the ith component of the vector-valued Riesz transform on R2.

The SQG equation (1) arises as a fundamental mathematical model in the study of rapidly rotating

geophysical fluid dynamics. From a mathematical perspective, it exhibits a qualitative similarity to

the Euler and Navier–Stokes systems. While the local well-posedness of the supercritical SQG in the

critical space Hs and the small data global well-posedness were established long ago by Miura [14] and

Ju [11], the global-in-time well-posedness of the equation with arbitrary large initial data remains a

challenge. We refer readers to [5, 10] for conditional regularity results, [7, 15] for eventual regularity

of weak solutions, and [6, 8, 9, 16] for global well-posedness for equations with slightly supercritical

dissipations (see also [2] and [3] and the references cited therein for recent results on the forced SQG in

a variety of settings).
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Weobserve thatwhen the initial data is radially symmetric, the solution remains radial, rendering the

nonlinear term in (1) vanishing. Consequently, the solution satisfies a linear fractional heat equation,

exhibiting global existence and explicit expression using the fractional heat kernel. Moreover, such a

solution instantaneously smoothens and decays in the time variable.

In this paper, our goal is to examine the extent to which the improved decay enjoyed by radial

solutions allows one to obtain a global well-posedness result for data that is a small perturbation (in

a suitably chosen norm) of the class of radial data. In particular, we establish the following result.

Theorem 1. Fix 0 < γ < 1 and set s = 2 − γ . If f ∈ Hs(R2) is radially symmetric, then there exists

ε > 0 such that if g ∈ Hs(R2) satisfies

‖g‖Hs ≤ ε,

then the initial value problem

⎧

⎪

«

⎪

¬

∂tθ + u · ∇θ + �γ θ = 0

u = R⊥θ

θ(0, x) = f (x) + g(x)

(2)

has a unique global solution in C([0,∞);H2−γ (R2)).

The proof of Theorem 1 relies on a decomposition argument, splitting the solution θ into a radial part

θ0, solving the fractional heat equation with initial data f , and a perturbation part θ1, shown to be small

for all time. For the radial part, we utilize smoothing and decay estimates, while for the perturbation

part, we employ energy-type arguments akin to [11]. Finally, we leverage a continuity argument to close

the estimates.

Because of the importance of the dissipation effects in our arguments, we end this introduction by

recalling some decay estimates for the fractional heat equation on R2. In particular, for any r ∈ [1, 2]

and s ≥ 0, we have

‖e−|∇|γ tf‖L2 � t−
2
γ

( 1
r − 1

2 )‖f‖Lr (3)

and

‖e−|∇|γ tf‖Ḣs � t−
s
γ ‖f‖L2 . (4)

The estimates (3) and (4) can be established by appealing to the convolution representation of solutions

and the decay properties of the heat kernel on R2, combined with Young’s inequality; see, for instance,

[13, Lemma 3.1].

We conclude this introduction by briefly recalling a few papers from the literature, which treat decay

and stability results that are of note in the context of the statement and proof of Theorem 1. In the log-

supercritical SQG regime, [4] establishes a class of decay results for Hölder norms, while in the fully

supercritical setting, [1] establishes decay in the scaling critical norm for solutions evolving from small

initial data. In the context of initial data of larger norm, in [12] the authors establish a supercritical

SQG global well-posedness result for perturbations of initial data having Fourier support away from the

origin; in this respect, the result of [12] is conceptually similar to the radial perturbation result presented

in Theorem 1, though the norms involved in [12] are not scaling critical.

2 Motivating Decomposition: Perturbation Lemma

Let f , g ∈ Hs(R2) be given such that f is radially symmetric. Our goal is to show that if g is sufficiently

small in Hs norm, then solutions to the initial value problem (2) can be extended globally in time. For

this, we will use a class of a priori estimates motivated by a perturbation argument.
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In particular, letting Kγ (t) be the fractional heat kernel defined by K̂γ (t)(ξ) = exp(−|ξ |γ t) for t > 0 and

ξ ∈ R2, we will view solutions to (2) as perturbations of

θ0 : t �→ Kγ (t) ∗ f , t > 0,

that is, the solution to

{

∂tθ0 + �γ θ0 = 0

θ0(0) = f .

Indeed, letting θ solve (2) and writing

θ = θ1 + θ0,

the perturbation θ1 solves

∂tθ1 + �γ θ1 = −(R⊥θ0) · ∇θ1 − (R⊥θ1) · ∇θ1 − (R⊥θ1) · ∇θ0, (5)

with θ1(0) = g.

We now introduce a lemma giving a priori bounds on solutions to the perturbed equation (5).

Lemma 2. Let f , θ0 be as above, and suppose that θ1 solves (5). Then, for all t > 0, we have

d

dt

[1

2
‖�sθ1‖2L2

]

+
1

4
‖�s+ γ

2 θ1‖2L2

� ‖�sθ1‖2L2‖�
s+ γ

2 θ0‖2L2

+ (‖θ1‖2L2 + ‖�sθ1‖2L2 )‖�
s+ γ

2 +σ θ0‖2L2

+ ‖�sθ1‖L2‖�s+ γ

2 θ1‖2L2 .

Proof. Letting θ1 be as in the statement of the lemma, we observe that for all t > 0 we have

d

dt

[

1

2
‖�sθ1‖2L2

]

= −
∫

(�sθ1)�
s[�γ θ1 + (R⊥θ0) · ∇θ1 + (R⊥θ1) · ∇θ0]dx

≤ −
∫

�sθ1�
s+γ θ1dx

+
∣

∣

∣

∣

∫

(�sθ1)
(

�s[(R⊥θ0) · ∇θ1] − (R⊥θ0) · ∇�sθ1

)

dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

(�sθ1)
(

�s[(R⊥θ1) · ∇θ1] − (R⊥θ1) · ∇�sθ1

)

dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

(�sθ1)�
s[(R⊥θ1) · ∇θ0]dx

∣

∣

∣

∣

, (6)

where we used the identities

∫

(�sθ1)((R
⊥θi) · ∇�sθ1)dx = 0, i ∈ {0, 1},

which follow from integration by parts. Noting that integration by parts also gives

〈�sθ1,�
s+γ θ1〉 = ‖�s+γ /2θ1‖2L2

and

〈�sθ1,�
s[(R⊥θ1) · ∇θ0]〉 = 〈�s− γ

2 θ1,�
s+ γ

2 [(R⊥θ1) · ∇θ0]〉,
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we obtain the bound

(6) ≤ −‖�s+ γ

2 θ1‖2L2 + ‖�sθ1‖L2‖�s[(R⊥θ0) · ∇θ1] − (R⊥θ0) · ∇�sθ1‖L2

+ ‖�sθ1‖L2‖�s[(R⊥θ1) · ∇θ1] − (R⊥θ1) · ∇�sθ1‖L2

+ ‖�s+ γ

2 θ1‖L2‖�s− γ

2 [(R⊥θ1) · ∇θ0]‖L2

≤ −
1

2
‖�s+ γ

2 θ1‖2L2 + ‖�sθ1‖L2‖�s[(R⊥θ0) · ∇θ1] − (R⊥θ0) · ∇�sθ1‖L2

+ ‖�sθ1‖L2‖�s[(R⊥θ1) · ∇θ1] − (R⊥θ1) · ∇�sθ1‖L2

+ C‖�s− γ

2 [(R⊥θ1) · ∇θ0]‖2L2 . (7)

We now invoke the procedure of commutator estimates as in [11]. In particular, recall that we have

‖�s[h · k] − h · �sk‖L2

� ‖∇h‖L4/γ ‖�s−1k‖L4/(2−γ ) + ‖�sh‖L4/(2−γ ) ‖k‖L4/γ

for all h and k for which the right-hand side is finite. Applying this with h := R⊥θ0 and k := ∇θ1, we obtain

that the right-hand side of (7) is bounded by

−
1

2
‖�s+ γ

2 θ1‖2L2 + C ·
(

‖�sθ1‖L2‖�θ0‖L4/γ ‖�sθ1‖L4/(2−γ )

+ ‖�sθ1‖L2‖�sθ0‖L4/(2−γ ) ‖�θ1‖L4/γ

+ ‖�sθ1‖L2‖�θ1‖L4/γ ‖�sθ1‖L4/(2−γ )

+ ‖�sθ1‖L2‖�sθ1‖L4/(2−γ ) ‖�θ1‖L4/γ

+ ‖�s− γ

2 [(R⊥θ1) · ∇θ0]‖2L2
)

. (8)

The Sobolev embedding then gives

(8) ≤ −
1

2
‖�s+ γ

2 θ1‖2L2 + C ·
(

‖�sθ1‖L2‖�s+ γ

2 θ0‖L2‖�s+ γ

2 θ1‖L2

+ ‖�sθ1‖L2‖�s+ γ

2 θ1‖2L2

+ ‖�s− γ

2 [(R⊥θ1) · ∇θ0]‖2L2
)

≤ −
1

4
‖�s+ γ

2 θ1‖2L2 + C ·
(

‖�sθ1‖2L2‖�
s+ γ

2 θ0‖2L2 + ‖�sθ1‖L2‖�s+ γ

2 θ1‖2L2

+ ‖�s− γ

2 [(R⊥θ1) · ∇θ0]‖2L2
)

.

To estimate the second term on the right-hand side of this bound, fix σ > 0 with 1 − γ < σ < 2 − γ

as a parameter to be determined later in the argument, and set (q, r) = ( 2
σ−(1−γ )

, 2
2−γ−σ

). Then, by the

fractional product rule, the boundedness of Riesz transforms, and the Sobolev embeddings, we have

‖�s− γ

2 [(R⊥θ1) · ∇θ0]‖L2

� ‖�s− γ

2 θ1‖L4/(2−γ ) ‖�θ0‖L4/γ + ‖θ1‖Lq‖�s− γ

2 +1θ0‖Lr

� ‖�sθ1‖L2‖�s+ γ

2 θ0‖L2 + ‖�s−σ θ1‖L2‖�s+ γ

2 +σ θ0‖L2 . (9)



Global Well-Posedness for Supercritical SQG | 14659

Now, by standard interpolation inequalities,

(9) � ‖�sθ1‖L2‖�s+ γ

2 θ0‖L2

+ ‖θ1‖σ/s
L2

‖�sθ1‖1−(σ/s)
L2

‖�s+ γ

2 +σ θ0‖L2 .

Applying Young’s inequality and collecting the above estimates, we obtain the desired bound. �

3 Proof of Theorem 1

We are now ready to give the proof of Theorem 1. The argument is based on a combination of the a

priori bounds expressed in Lemma 2 for the perturbed equation (5) with

Proof of Theorem 1. Let s = 2 − γ be as in the statement. Fix ε ∈ (0, 1) to be determined later in the

argument, and suppose that f , g ∈ Hs(R2) are such that f is radially symmetric and ‖g‖Hs ≤ ε.

By the local well-posedness theory for the supercritical SQG equation (2), there exists T1 > 0 such

that a unique smooth solution θ to the initial value problem (2) exists on the interval [0,T1]. Now, let

θ0 : t �→ Kγ (t) ∗ f be as in Section 2 and set

θ1(t) := θ(t) − θ0(t)

for t ∈ [0,T1]. An application of Lemma 2 then gives the bound

d

dt

[1

2
‖�sθ1‖2L2

]

+
1

4
‖�s+ γ

2 θ1‖2L2

� ‖�sθ1‖2L2‖�
s+ γ

2 θ0‖2L2 + (‖θ1‖2L2 + ‖�sθ1‖2L2 )‖�
s+ γ

2 +σ θ0‖2L2

+ ‖�sθ1‖L2‖�s+ γ

2 θ1‖2L2 . (10)

Moreover, multiplying (5) by θ1 and integrating gives

d

dt

[1

2
‖θ1‖2L2

]

+ ‖�
γ

2 θ1‖2L2 � ‖θ1‖2L2‖θ0‖L∞ . (11)

Our goal is to find t2 > 0 so that θ0(t2) + θ1(t2) has small Ḣs norm (yielding access to the small data

global well-posedness theory for θ ). For this, note that by the local theory for (2),we can choose t1 ∈ (0,T1]

independent of ε ∈ (0, 1) so that

‖θ1(t1)‖Hs ≤ 2ε.

Indeed, if θ1(0, ·) ≡ 0, then it remains to be zero at t1. Now if θ1(0, ·) is sufficiently small in Hs, then θ(0, ·)
is sufficiently close to θ0(0, ·) in Hs. By the continuity dependence of the solution with respect to the

initial data, θ(t1, ·) is sufficiently close to θ0(t1, ·) in Hs, and thus the Hs norm of θ1(t1, ·) can be as small

as we want provided that θ1(0, ·) is sufficiently small.

On the other hand, the smoothness of Kγ (t) for all t > 0 implies that one has θ0(t1) ∈ C∞(R2), so that

for all t > t1 one has

‖θ0(t)‖L2 ≤ ‖θ0(t1)‖L2 , ‖θ0(t)‖Ḣs ≤ ‖θ0(t1)‖Ḣs ,

and

‖θ0(t)‖L∞ ≤ ‖θ0(t1)‖L∞ .

We now combine these estimates with the decay enjoyed by θ0 as a result of (3) and (4) to establish the

global result, provided ε is chosen sufficiently small. In particular, let ε0 > 0 be chosen so that solutions

to (2) corresponding to data with Hs norm less than ε0 are global. Now, choose t2 > t1 large enough so
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that

‖θ0(t2)‖Hs <
ε0

2
.

Returning to estimates for θ1, we invoke a continuity argument on the Hs norm, based on the

estimates (10) and (11). Note that we can find C1 = C1(t1) > 0 such that

d

dt

[1

2
‖θ1‖2Hs

]

+
1

4
‖θ1‖2

Ḣ
γ
2 ∩Ḣs+ γ

2
≤ C1‖θ1‖2Hs + C1‖θ1‖Ḣs‖θ1‖2

Ḣs+ γ
2
.

Now, choose a parameter ε1 < 1/(16C1) and set I := {T ∈ (t1, t2] : ‖θ1(t)‖Hs ≤ ε1 forall t ∈ [t1,T]}.
It follows from the local well-posedness theory for (5) that I is a nonempty closed subset of (t1, t2].

Moreover, for all t ∈ I with t < t2 the local theory also implies that we can choose t∗ ∈ (t, t2] such that

supt<s<t∗
‖θ1(s)‖Hs ≤ 2ε1, and thus for all t1 < σ < t∗

d

dt

[1

2
‖θ1‖2Hs

]

+
1

8
‖θ1‖2

Ḣ
γ
2 ∩Ḣs+ γ

2
≤ C1‖θ1‖2Hs .

This in turn yields, for t1 < σ < t∗,

‖θ1(σ )‖Hs ≤ exp(C1(σ − t1))‖θ1(t1)‖Hs ≤ 2exp(C1(t2 − t1))ε,

where we have recalled that our choice of t∗ gave t∗ < t2.

It now follows that if ε is chosen sufficiently small to ensure

2exp(C1(t2 − t1))ε < ε1,

we obtain σ ∈ I for all t1 < σ < t∗. Thus I is open in (t1, t2], so that I = (t1, t2] and

sup
t1<t<t2

‖θ1(t)‖Hs ≤
1

16C1
.

Repeating the above arguments, we obtain

‖θ1(t2)‖Hs ≤ 2exp(C1(t2 − t1))ε,

so that if ε is additionally chosen small enough to ensure

2exp(C1(t2 − t1))ε < ε0/2,

the small-data global theory for the SQG equation (2) with data θ0(t2) + θ1(t2) at time t2 applies, and we

obtain the desired global solution. �
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