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Abstract

In this paper, we study degenerate or singular elliptic equations in divergence form

− div(xα
n A∇u) = div(xα

n g) in B1 ∩ {xn > 0}.
When α > −1, we establish boundary Schauder type estimates under the conormal boundary

condition on the flat boundary, provided that the coefficients satisfy Dini mean oscillation

(DMO) type conditions. Additionally, as an application, we derive higher-order boundary

Harnack principles for uniformly elliptic equations in divergence form with DMO coeffi-

cients.

Mathematics Subject Classification 35B45 · 35B65 · 35J70 · 35J75

1 Introduction andmain results

1.1 Degenerate or singular equations

For a fixed number α ∈ (−1,∞), we consider a second-order elliptic equation in divergence

form with conormal boundary condition
{

− div(xα
n A∇u) = div(xα

n g)

limxn→0 xα
n 〈A∇u + g, �en〉 = 0

in B+
1 . (1.1)
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Here, the coefficient matrix A = (ai j )
n
i, j=1 : B+

1 → R
n×n satisfies the following conditions

for some constant λ > 0
{

the uniform ellipticity: λ|ξ |2 f 〈A(x)ξ, ξ 〉, ξ ∈ R
n, x ∈ B+

1 ,

the uniform boundedness: |A(x)| f 1
λ
, x ∈ B+

1 .
(1.2)

We say that a function u ∈ H1,α(B+
1 ) = H1(B+

1 , xα
n dx) is a weak solution of (1.1) if it

satisfies
∫

B+
1

xα
n 〈A∇u + g,∇φ〉 = 0,

for all φ ∈ C∞
c (B1). Note that by using a suitable cutoff function and the Cauchy-Schwarz

inequality, when α g 1 it is sufficient to test the equation with φ ∈ C∞
c (B+

1 ).

The main objective of this paper is to establish boundary Schauder type estimates for

solutions of (1.1) under Dini mean oscillation (DMO) type conditions on coefficients and

data. When α = 0, it was shown in [9] that weak solutions of (1.1) are continuously differen-

tiable up to the boundary when coefficients have DMO. Our paper can be primarily viewed

as a generalization of [9] from “uniformly elliptic” equations to “degenerate or singular”

equations. We refer the reader to Theorem 1.4 for our main result.

The above class of equations has been studied extensively in the literature. We refer the

reader to recent work [24–26] for Hölder and Schauder estimates and [11–14] for Sobolev

type estimates, as well as the references therein.

In the rest of this subsection, we provide the precise definitions of spaces of DMO functions

and Ck,DMO domains.

Definition 1.1 (Lq(dμ)-DMO function) Let � ⊆ R
n be a domain and f : � → R a

measurable function. Let μ be a Radon measure, q ∈ [1,+∞), r ∈ (0, 1), and

η
q,μ

f (r) := sup
x0∈�

(

−
∫

�(x0,r)

| f (x) − 〈 f 〉μ
�(x0,r)

|q dμ(x)

)1/q

,

where �(x0, r) := Br (x0) ∩ � and 〈 f 〉μ
�(x0,r)

= −
∫

�(x0,r)
f (x) dμ(x). We say that f is of

Lq(dμ) Dini mean oscillations in �, briefly Lq(dμ)-DMO in �, if η
q,μ

f (r) is a Dini function,

i.e.,

∫ 1

0

η
q,μ

f (r)

r
dr < +∞.

Moreover, the case q = ∞ corresponds to uniform Dini continuity; that is, given

η∞
f (r) := sup

x0∈�

sup
y,z∈�(x0,r)

| f (y) − f (z)|,

we say that f is Dini continuous in � if η∞
f (r) is a Dini function. Recall the following

example given in [8]. Let ai j (0) = δi j and for 0 < |x | f 1/2,

ai j (x) = δi j

(

1 + (− log |x |)−γ
)

,

where 0 < γ f 1. Then A does not satisfies the L∞-DMO condition (with respect to the

Lebesgue measure) or the Hölder continuity condition. However, a simple calculation reveals

that for any q ∈ [1,∞),

η
q
A(r) ∼ (− log r)−γ−1,
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Schauder type estimates for degenerate or singular equations Page 3 of 42 239

which implies that A satisfies the Lq -DMO condition in Definition 1.1 for any q ∈ [1,∞).

In this paper, our primary focus is on L1-DMO type conditions. However, there are sit-

uations where we also consider L2-DMO type conditions. Let us remark that any time we

work with L2-DMO type conditions, we could work with Lq -DMO type conditions for any

other q ∈ (1,+∞) instead. We decided to choose q = 2 as the representative of the range

(1,+∞) for the sake of simplicity and clarity.

Definition 1.2 (Ck,DMO spaces) Let k ∈ N ∪ {0}, μ be a Radon measure, q ∈ {1, 2}, and ω

a Dini function. We say that f ∈ C
k,ω
q,μ(�) if f ∈ Ck(�) and Dβ f is of Lq(dμ)-DMO in �

with DMO modulus η
q,μ

Dβ f
f Cω for any multiindex β ∈ (N∪{0})n with |β| = ∑n

i=1 βi = k

for some constant C > 0. Defining the norm

‖ f ‖
C

k,ω
q,μ(�)

:= ‖ f ‖Ck (�) +
∑

|β|=k

[Dβ f ]
C

0,ω
q,μ(�)

,

where

[g]
C

0,ω
q,μ(�)

:= sup
y∈�,r>0

(

−
∫

�∩Br (y)
|g(x) − 〈g〉μ

�∩Br (y)
|q dμ(x)

)1/q

ω(r)
,

then C
k,ω
q,μ(�) consists of measurable functions with the finite C

k,ω
q,μ-norm.

Sometimes, we will refer to Ck,DMO functions briefly to indicate functions satisfying the

previous definition for certain q ∈ {1, 2}, ω, and μ. We use Ck,q−DMO as well if we want

to indicate the choice of q ∈ {1, 2}. Given k ∈ N, the k-th derivative Dk f stands for a

generic derivative of order k of the function f , i.e., Dβ f for some |β| = k. Any time we

omit the dependence on the measure, we mean that μ is the Lebesgue measure of the relevant

dimension.

We would like to remark here that Ck uniform Dini spaces embed into Ck spaces with

Dini mean oscillation. Moreover, if a radon measure μ satisfies the doubling property in �,

then we have

Ck,Dini(�) ⊂ Ck,2−DMO(�) ⊂ Ck,1−DMO(�) ⊂ Ck(�).

In other words, fixed a Dini function ω(r) there exists a modulus of continuity σ(r) compa-

rable with
∫ r

0
ω(s)

s
ds such that

Ck,ω(�) ⊂ C
k,ω
2,μ(�) ⊂ C

k,ω
1,μ(�) ⊂ Ck,σ (�). (1.3)

The definition of Ck uniform spaces is standard. In fact, in order to define Ck,ω(�) with

ω(0) = 0 the reader may just consider the previous Definition 1.2 and replace the Lq(dμ)-

DMO seminorm with

[g]C0,ω(�) := sup
x,y∈�, x �=y

|g(x) − g(y)|
ω(|x − y|) .

The first inclusion in (1.3) holds if μ is locally finite, the second one follows from the

Cauchy-Schwarz inequality, and the last one needs the Lebesgue differentiation theorem and

the doubling property; that is, the existence of a positive constant C > 0 such that

μ(�(x0, 2r)) f Cμ(�(x0, r)) ∀x0 ∈ �, 0 < r < diam �.

We refer to the example below Definition 1.1 for an Lq -DMO function for any q ∈ [1,+∞)

which is not Dini continuous. We remark that it is still not known whether the second inclusion

in (1.3) is strict.
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Definition 1.3 (Ck,DMO domains) Let n g 2, k ∈ N, and q ∈ {1, 2}. A set � ⊆ R
n is a Ck

domain with Lq Dini mean oscillations (briefly � is Ck,q−DMO) if it can be locally described

as the epigraph of C
k,ω
q functions; that is, given 0 ∈ ∂�, up to rotations and dilations we can

parametrize

� ∩ B1 = {xn > γ (x ′)}, ∂� ∩ B1 = {xn = γ (x ′)}

with γ (0) = 0, ∇x ′γ (0) = 0, γ ∈ C
k,ω
q (B ′

1) for some Dini function ω (i.e. η
q

Dk
x ′γ

f Cω).

This DMO type condition on the domain is strictly weaker than the usual Dini type

condition on the domain. For example, in two dimensions, consider a domain whose boundary

is locally given by

γ (x) = x

(− log |x |)1/2
, |x | f 1/2.

In this case, the domain is C1,DMO, but not C1,Dini.

Although the definition of Ck boundaries with DMO is new in literature, we will show that

it is natural and somehow sharp in order to guarantee “Ck qualitative properties" of solutions,

i.e., Schauder type estimates, the Hopf-Oleinik lemma (or boundary point principle), and

higher-order boundary Harnack principles.

1.2 The higher-order boundary Harnack principle

In this subsection, we present the applications of Schauder type estimates for (1.1), Theo-

rem 1.4, to higher-order boundary Harnack principles, both on a fixed boundary and across

the “regular" part of the nodal set.

For a bounded domain � ⊂ R
n , n g 2, we assume that a variable coefficient matrix

A = (ai j )
n
i, j=1 is symmetric A = AT and satisfies (1.2) in � ∩ B1. Then, the higher-order

boundary Harnack principle concerns regularity of the ratio of two solutions which vanish

on the same fixed boundary, more precisely, two functions u, v weakly solving

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

− div (A∇v) = f in � ∩ B1,

− div (A∇u) = g in � ∩ B1,

u > 0 in � ∩ B1,

u = v = 0, ∂νu < 0 on ∂� ∩ B1,

(1.4)

where 0 ∈ ∂� and ν stands for the outward unit normal vector on ∂�.

The Schauder Ck,β regularity of the ratio was first established in [5] in the case of

Ck,β boundaries, Ck−1,β coefficients and right-hand sides, and both in divergence and non-

divergence form. See also [3, 18] for the parabolic counterpart in non-divergence form. Later

in [26] a second proof was proposed, based on the following observation: the ratio w = v/u,

after composing with a straightening diffeomorphism, solves the degenerate equation

− div(x2
n Ã∇w) = u f − gv, where Ã = (u/xn)2 A. (1.5)

Then, the regularity of the ratio follows from that of solutions to the degenerate equation

(1.5) with the new coefficient Ã. Finally, using this approach, the work in [16] was a first

attempt in providing the Ck regularity of the ratio lowering the requirement on boundaries,

coefficients, and free terms up to uniform Dini ones.
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By following this approach and applying Theorem 1.4, we achieve the regularity of the

ratio under the DMO type conditions imposed on boundaries, coefficients, and data. See

Theorem 1.5.

Next, we introduce the boundary Harnack principle across the regular part of the nodal

set. Suppose two functions u, v ∈ H1(B1) solve div(A∇u) = div(A∇v) = 0 in B1 and

share their zero sets, i.e., Z(u) ⊆ Z(v), where Z(u) := u−1{0}. From now on, we will refer

to solutions to div(A∇u) = 0 as A-harmonic functions. The study of local regularity of the

ratio w = v/u across Z(u) is called boundary Harnack principle on nodal domains [20–22,

26].

Let us assume that the variable coefficients A are symmetric, satisfy (1.2), and belong to

C
k−1,ω
2 (B1) for some k ∈ N, ω a Dini function. Then, by utilizing Theorem 1.4, we establish

Schauder type estimates for the ratio w = v/u across the regular set R(u) := {x ∈ Z(u) :
|∇u(x)| �= 0}. See Theorem 1.6 for the precise statement.

1.3 The Hopf-Oleinik boundary point principle

The Hopf-Oleinik lemma or boundary point principle (BPP) can be extended to elliptic

equations in domains with C1,1−DMO boundary. The BPP follows from [23], where the result

was proved in case of flat boundaries and L1-DMO coefficients, which is preserved after

a standard straightening diffeomorphism (4.16) of the C1,1−DMO boundary. Consequently,

under these DMO conditions on (1.4), whenever g g 0, the condition ∂νu < 0 holds on ∂�.

Let us remark here that this is not in contradiction with [1], where counterexamples to BPP

are constructed on boundaries which fail our C1,1−DMO definition. See Proposition 3.1.

1.4 Main results

We precisely state the main results of this paper.

Our central result is as follows.

Theorem 1.4 (Schauder type estimates in the L1(xα
n dx)-DMO setting) Let α > −1, k ∈ N,

and ω be a Dini function. Let u ∈ H1(B+
1 , xα

n dx) be a weak solution to (1.1) with A

satisfying (1.2) in B+
1 . Assume that g, A ∈ Ck−1(B+

1 ) and Dk−1
x ′ g, Dk−1

x ′ A ∈ C
0,ω
1,μ(B+

1 ) with

dμ(x) = xα
n dx. Then, u ∈ Ck

loc(B+
1 ∪ B ′

1) and satisfies

〈A∇u + g, �en〉 = 0 on B ′
1. (1.6)

Moreover, if ‖A‖Ck−1(B+
1 ) +

∑

|β|=k−1[D
β

x ′ A]
C

0,ω
1,μ (B+

1 )
f L, then there exist a modulus σ and

a constant C > 0, depending on n, λ, ω, k, α and L, such that

‖u‖Ck,σ (B+
1/2) f C

⎛

¿‖u‖L2(B+
1 ,xα

n dx) + ‖g‖Ck−1(B+
1 ) +

∑

|β|=k−1

[D
β

x ′g]
C

0,ω
1,μ (B+

1 )

À

⎠ .

A similar result was attained in [26] when coefficients belong to the Hölder space Ck−1,α .

However, as the argument in [26] is specialized for the homogeneous power-type moduli, it

is not applicable to our setting. Instead, we adopt Campanato’s approach and utilize the weak

type-(1,1) estimate presented in [9], following the original idea in [7, 8]. [9] deals with the

specific case of Theorem 1.4 with α = 0 and k = 1, and its crucial step involves the growth
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estimate of

ϕ(x0, r) := inf
q∈Rn

(

−
∫

Br (x0)∩B+
1

|∇u − q|p

)1/p

, 0 < r < 1/2, x0 ∈ B+
1/2, 0 < p < 1.

However, it turns out that in our weighted context, we have to work with

ψ(x0, r) :=

⎧

⎪

«

⎪

¬

infq∈Rn

(

−
∫

Br (x0)
|〈∇x ′u, U x0〉 − q|pdμ

)1/p

, 0 < r f (x0)n/2,

infq′∈Rn−1

(

−
∫

Br (x0)∩B+
4

|〈∇x ′u − q′, U 〉|pdμ
)1/p

, (x0)n/2 < r < 1/2,

where U := 〈A∇u + g, �en〉 and U x0 := (xn/(x0)n)α〈A∇u + g, �en〉. This is where our

proof substantially differs from [9], requiring careful handling of the discontinuity of ψ at

r = (x0)n/2.

Next, we present higher-order boundary Harnack principle on a fixed boundary.

Theorem 1.5 (Higher-order boundary Harnack principle) Let k ∈ N, and ω a Dini function.

Consider two functions u, v ∈ H1(� ∩ B1) solving (1.4) with A symmetric and satisfying

(1.2). Assume that A, f , g ∈ C
k−1,ω
1 (� ∩ B1) and γ ∈ C

k,ω
1 (B ′

1). Then, w = v/u belongs

to Ck
loc(� ∩ B1) and satisfies the following boundary condition

2〈∇u, ν〉〈A∇w, ν〉 + f − gw = 0 on ∂� ∩ B1.

Moreover, if ‖A‖
C

k−1,ω
1 (�∩B1)

+ ‖γ ‖
C

k,ω
1 (B′

1)
+ ‖g‖

C
k−1,ω
1 (�∩B1)

f L1, ‖u‖L2(�∩B1)
f L2,

and inf∂�∩B3/4 |∂νu| g L3 > 0, then the following estimate holds true

∥

∥

∥

v

u

∥

∥

∥

Ck,σ (�∩B1/2)
f C

(

‖v‖L2(�∩B1)
+ ‖ f ‖

C
k−1,ω
1 (�∩B1)

)

with a modulus of continuity σ and a positive constant C depending on n, λ, ω, k, L1, L2,

and L3. Finally, if u(�en/2) = 1 and v > 0 in � ∩ B1, then
∥

∥

∥

v

u

∥

∥

∥

Ck,σ (�∩B1/2)
f C

(∣

∣

∣

v

u
(�en/2)

∣

∣

∣
+ ‖ f ‖

C
k−1,ω
1 (�∩B1)

)

with σ and a positive constant C depending only on n, λ, ω, k, L1, and L3.

Similar to the approaches in Hölder and uniform Dini settings [16, 26], we establish

Theorem 1.5 by reducing it to the Schauder type estimate for the degenerate equation (1.5).

As u/xn is absorbed into the new coefficient Ã, the regularity property of u/xn is crucial for

applying the Schauder type estimate, Theorem 1.4. While this is rather immediate in [16,

26], in our DMO context, it is highly nontrivial to verify that u/xn is in the DMO-space. We

prove this by employing Campanato’s approach in a clever manner; see Proposition 4.1.

Lastly, we state the boundary Harnack principle across the regular zero set, subject to the

L2-DMO type condition on the coefficient. We recall the regular set R(u) = {x ∈ Z(u) :
|∇u(x)| �= 0} and denote the singular set by S(u) = {x ∈ Z(u) : |∇u(x)| = 0}.

Theorem 1.6 (Schauder type estimates for the ratio across regular zero sets) Let k ∈ N and

ω a Dini function. Consider two A-harmonic functions u, v ∈ H1(B1) with A symmetric

and satisfying (1.2) in B1, A ∈ C
k−1,ω
2 (B1). Assume that S(u) ∩ B1 = ∅ and Z(u) ⊆ Z(v).

Then, w = v/u belongs to Ck
loc(B1) and satisfies the following boundary condition

〈A∇w, ν〉 = 0 on R(u) ∩ B1,
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where ν is the unit normal vector on R(u). Moreover, if ‖A‖
C

k−1,ω
2 (B1)

f L1 then

∥

∥

∥

v

u

∥

∥

∥

Ck,σ (B1/2)
f C ‖v‖L2(B1)

,

with modulus σ and a positive constant C depending on n, λ, ω, L1, u, and its nodal set

Z(u).

For the proof, we first show that the solution u belongs to the DMO-space C
k,ω̂
2 under

the L2-DMO assumption on the coefficient. Then, we flatten the zero-set of u and reduce

the problem to the degenerate equation with a DMO-type coefficient. Finally, we apply

Theorem 1.4 on both sides of R(u) together with a gluing lemma.

It is noteworthy that the standard straightening diffeomorphism (4.16) does not ensure

that the new coefficient retains the DMO property, as it is not preserved when restricting to

lower-dimensional subsets, unlike the Hölder condition. To address this issue, we employ a

different type of diffeomorphism to flatten the level set; see (4.17).

1.5 Notation and structure of the paper

We use the following notation in this paper.

• R
n stands for the n-dimensional Euclidean space. We indicate the points in R

n by x =
(x ′, xn), where x ′ = (x1, . . . , xn−1) ∈ R

n−1, and identify R
n−1 with R

n−1 × {0}.
For x ∈ R

n and r > 0, we let

Br (x) = {y ∈ R
n : |x − y| < r}, ball in R

n,

B±
r (x ′) = Br (x ′, 0) ∩ {±yn > 0}, half-ball,

B ′
r (x ′) = Br (x ′, 0) ∩ {yn = 0}, thin ball.

When the center is the origin, we simply write Br = Br (0), B±
r = B±

r (0), and B ′
r =

B ′
r (0).

• The notation 〈·, ·〉 stands for the scalar product of two vectors; that is, for x = (x1, . . . , xn)

and y = (y1, . . . , yn), then 〈x, y〉 = ∑n
i=1 xi yi . The orthonormal basis of R

n is denoted

by �ei , i = 1, . . . , n.

• We denote the set of positive integers by N = {1, 2, 3, . . .}.
• Let β = (β1, . . . , βn) ∈ (N ∪ {0})n be a multiindex. Given |β| = ∑n

i=1 βi and ∂xβ =
∏n

i=1 ∂x
βi

i , the β partial derivative of order |β| is given by

Dβu = ∂ |β|u
∂xβ

.

When we write Dku for some k ∈ N, we mean a generic partial derivative Dβu with

|β| = k. By Dk
(xi1

,xi2
,...,xik

)
u, we mean we consider only derivatives of u of order k with

respect to some chosen directions �ei j
with i j ∈ {i1, . . . , ik} ⊂ {1, . . . , n}.

The rest of the paper is organized as follows: Sect. 2 is devoted to the proof of Theorem 1.4,

i.e., Schauder type estimates for degenerate or singular equations as in (1.1) for general powers

α > −1. In Sect. 3, we discuss the validity of the boundary point principle on C1,1−DMO

boundaries. In Sect. 4, we prove Theorems 1.5 and 1.6, i.e., the boundary Harnack principle

on a fixed Ck,1−DMO boundary and the boundary Harnack principle across regular zero sets

of solutions to elliptic equations with Ck−1,2−DMO variable coefficients. Finally, we prove

some properties of DMO-functions in Appendix A.
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2 Schauder type estimates for degenerate or singular equations

This section is devoted to the proof of our main result, Theorem 1.4. Throughout this section,

we fix

dμ = xα
n dx, α > −1.

2.1 Weak type-(1, 1) estimates

In this subsection, we prove the following version of weak type-(1, 1) estimates for the

solution of degenerate or singular equations, which will play a significant role in the proof

of the C1-estimate in Theorem 2.4.

Lemma 2.1 Let Ā be a constant matrix satisfying

λ|ξ |2 f 〈 Āξ, ξ 〉, ξ ∈ R
n, and | Ā| f 1/λ

for some constant λ > 0. Let D and D̃ be smooth and convex domains in R
n
+ with B+

1 ⊂
D ⊂ B+

4/3 and B+
3/2 ⊂ D̃ ⊂ B+

2 . For f ∈ H1,α(D̃), let u ∈ H1,α(D̃) be a weak solution of

− div(xα
n Ā∇u) = div(xα

n fχD) in D̃,

with the conormal boundary condition

xα
n 〈 Ā∇u + fχD, ν〉 = 0 on ∂D̃.

Then there exists a constant C = C(n, λ, α) > 0 such that for any t > 0

μ({x ∈ D : |∇u(x)| > t}) f C

t

∫

D

|f|dμ.

The proof of Lemma 2.1 relies on the following auxiliary results.

Lemma 2.2 Let Ā, D and D̃ be as in Lemma 2.1. Given x0 ∈ D and 0 < r < 1
2

diam D,

suppose that b ∈ L2(D; R
n, dμ) is supported in Br (x0)∩D and satisfies

∫

Br (x0)∩D
b dμ = 0.

If ũ is a solution of

− div(xα
n Ā∇ũ) = div(xα

n b) in D̃, xα
n 〈 Ā∇ũ + b, ν〉 = 0 on ∂D̃, (2.1)

then there exists a constant C > 0, depending only on n, α, λ, such that
∫

D\B2r (x0)

|∇ũ|dμ f C

∫

Br (x0)∩D

|b|dμ.

Proof Since the proof of this lemma follows a portion of the proof in [9, Lemma 2.12] with

straightforward modifications, we shall provide the outline of the proofs instead of going into

the details.

For any R g 2r such that D\BR(x0) �= ∅ and a function g ∈ C∞
c ((B2R(x0)\BR(x0)) ∩

D; R
n), let ṽ ∈ H1,α(D̃) be a solution to

− div(xα
n ĀT ∇ṽ) = div(xα

n g) in D̃, xα
n 〈 ĀT ∇ṽ + g, ν〉 = 0 on ∂D̃. (2.2)

By testing (2.2) with ũ and (2.1) with ṽ and using the assumptions on b, we obtain
∫

D

〈∇ũ, g〉dμ =
∫

D

〈∇ṽ, b〉dμ =
∫

Br (x0)∩D

〈∇ṽ − 〈∇ṽ〉μBr (x0)∩D
, b〉dμ.
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This gives
∣

∣

∣

∣

∫

(B2R(x0)\BR(x0))∩D

〈∇ũ, g〉dμ

∣

∣

∣

∣

f 2r‖D2ṽ‖L∞(Br (x0)∩D)

∫

Br (x0)∩D

|b|dμ.

Since ṽ solves the homogeneous equation div(xα
n ĀT ∇ṽ) = 0 in BR(x0) ∩ D with the

homogeneous boundary condition and r f R/2, we have by [13, Proposition 4.4]

‖D2ṽ‖2
L∞(Br (x0)∩D) f C

R2
−
∫

BR(x0)∩D̃

|∇ṽ|2dμ f C

R2μ(BR(x0) ∩ D̃)

∫

D̃

|g|2dμ.

Combining the previous two estimates yields
∣

∣

∣

∣

∫

(B2R(x0)\BR(x0))∩D

〈∇ũ, g〉dμ

∣

∣

∣

∣

f Cr

R[μ(BR(x0) ∩ D̃)]1/2

∫

Br (x0)∩D

|b|dμ · ‖g‖L2((B2R(x0)\BR(x0))∩D,dμ).

By using the duality and applying Hölder’s inequality, we deduce

‖∇ũ‖L1((B2R(x0)\BR(x0))∩D,dμ) f Cr

R

∫

Br (x0)∩D

|b|dμ.

Taking the smallest positive integer K such that D ⊂ B2K+1r (x0) and applying the above

inequality with R = 2r , 22r , . . . , 2K r , we conclude

∫

D\B2r (x0)

|∇ũ|dμ f Cr

∫

Br (x0)∩D

|b|dμ

K
∑

k=1

1

2kr
f C

∫

Br (x0)∩D

|b|dμ.

��
Lemma 2.3 Let D ⊂ B+

1 be a smooth convex domain and T be a bounded linear operator

from L2(D; R
n, dμ) to L2(D; R

n, dμ). Suppose that there exists a constant C0 > 0 such

that for any x0 ∈ D and 0 < r < 1
2

diam D,
∫

D\B2r (x0)

|T b| f C0

∫

Br (x0)∩D

|b|

whenever b ∈ L2(D; R
n, dμ) is supported in Br (x0) ∩ D and satisfies

∫

D
b dμ = 0. Then

for f ∈ L2(D; R
n, dμ) and any t > 0, it holds that

μ ({x ∈ D : |T f(x)| > t}) f C

t

∫

D

|f|dμ,

where C > 0 is a constant, depending only on n, α, λ, D, C0.

Proof In view of Lemma A.1, D equipped with the standard Euclidean metric and the

weighted measureμ (restricted to D) is a space of homogeneous type. Moreover, the Lebesgue

differentiation theorem is available in our situation. With these properties at hand, we can

follow the proof of [7, Lemma 4.1], making obvious adjustments as needed to conclude the

lemma. ��
Now, Lemma 2.1 can be directly derived from the preceding two lemmas.

Proof of Lemma 2.1 Given any f ∈ H1,α(D̃), we solve for u. As u is unique up to a constant,

the map T : f �−→ ∇u is well defined, and it is a bounded linear operator on L2(D, dμ).

Thus, Lemma 2.1 follows by combining Lemmas 2.2 and 2.3. ��
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2.2 C
1 estimates

In this subsection, we establish Theorem 1.4 for the case k = 1. We will subsequently

generalize this result to the cases k g 1 by employing an induction argument in the next

subsection.

Theorem 2.4 For α > −1, let u ∈ H1,α(B+
4 ) be a weak solution of

− div(xα
n A∇u) = div(xα

n g) in B+
4 , (2.3)

satisfying the conormal boundary condition on B ′
4

lim
xn→0+

xα
n 〈A∇u + g, �en〉 = 0.

Suppose A = [ai j ]n×n satisfies (1.2) in B+
4 . If A and g are of L1(dμ)-DMO in B+

4 , then

u ∈ C1(B+
1 ).

Note that the case α = 0 was achieved in [9, Proposition 3.2]. A similar result can be

found in [7, Proposition 2.7], where the zero Dirichlet boundary condition on B ′
4 was imposed

instead of the conormal boundary condition. In our proof of Theorem 2.4, we follow the lines

in these two papers. However, our case involving α > −1 requires significantly more intricate

technical considerations due to the degenerate or singular nature of the problem.

As in [7, 9], we will establish an a priori estimate of the modulus of continuity of ∇u under

the assumption u ∈ C1(B+
3 ). The general case can be obtained by a standard approximation

argument (see e.g. pages 134-135 in [6]).

Given x0 = (x ′
0, (x0)n) ∈ B+

3 , we put dx0 := dist(x0, B ′
3) = (x0)n g 0. We set

U := 〈A∇u + g, �en〉, and U x0 := (xn/dx0)
α〈A∇u + g, �en〉 when dx0 > 0.

We fix 0 < p < 1 and consider

ψ(x0, r) :=

⎧

⎪

«

⎪

¬

infq∈Rn

(

−
∫

Br (x0)
|〈∇x ′u, U x0〉 − q|pdμ

)1/p

, 0 < r f dx0/2,

infq′∈Rn−1

(

−
∫

Br (x0)∩B+
4

|〈∇x ′u − q′, U 〉|pdμ
)1/p

, dx0/2 < r < 1/2.

We would like to mention that for the latter case dx0/2 < r < 1/2, the infimum can be taken

over q ∈ R
n instead of q′ ∈ R

n−1. However, we opt for this formulation of ψ as it readily

yields the boundary condition U = 0 (equation (1.6)), which is a significant ingredient in

the boundary Harnack Principe across the regular set; see Sect. 4.3.

Next, we introduce several Dini functions derived from η
1,μ
• to be used in this section,

where • represents either A or g. We remark that r �−→ η
1,μ
• (r) is not necessarily nonde-

creasing. Instead, there are constants C > c > 0, depending only on n and α, such that

cη1,μ
• (r) f η1,μ

• (s) f Cη1,μ
• (r) (2.4)

whenever r/2 f s f r < 1. See [19].

Given a constant 0 < κ < 1, we define

η̃1,μ
• (r) :=

∞
∑

i=0

κ i/2
(

η1,μ
• (κ−ir)[κ−ir f 1] + η1,μ

• (1)[κ−ir > 1]
)

, 0 < r < 1, (2.5)
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where [·] is Iverson’s bracket notation (i.e., [P] = 1 when P is true, while [P] = 0 otherwise).

We note that η̃
1,μ
• g η

1,μ
• and η̃

1,μ
• is a Dini function satisfying (2.4). See e.g., [6]. Given

0 < β < 1, we also set

η̂1,μ
• (r) := sup

ρ∈[r ,1)

(r/ρ)β η̃1,μ
• (ρ), 0 < r < 1. (2.6)

Note that η̃
1,μ
• is a Dini function satisfying (2.4) and that η̂

1,μ
• g η̃

1,μ
• and r �−→ η̂

1,μ
• (r)

rβ is

nonincreasing. See e.g., [6, 16].

Now, we start the proof of Theorem 2.4 by first addressing the case when the center of

the ball lies on B ′
3.

In this subsection u is a solution of (2.3), where both A and g are of L1(dμ)-DMO, as in

Theorem 2.4. We write for simplicity ‖g‖∞ = ‖g‖L∞(B+
4 ).

Lemma 2.5 Let x̄0 ∈ B ′
3, 0 < β < 1 and 0 < p < 1. Then, for any 0 < ρ < r < 1/2, it

holds that

ψ(x̄0, ρ) f C(ρ/r)βψ(x̄0, r) + C‖∇u‖L∞(B+
2r (x̄0))η̃

1,μ
A (2ρ) + C η̃1,μ

g (2ρ), (2.7)

where C = C(n, λ, α, p, β) > 0 are constants and η̃
1,μ
• is as in (2.5).

Proof Without loss of generality, we may assume x̄0 = 0. We fix 0 < r < 1/2 and write for

simplicity Ā = 〈A〉μ
B+

2r

and ḡ = 〈g〉μ
B+

2r

. Note that u satisfies the following equation

− div(xα
n Ā∇u) = div(xα

n g) + div(xα
n (A − Ā)∇u).

We set

û(x) := u(x) + ā−1
nn ḡn xn,

and observe that it solves
{

− div(xα
n Ā∇û) = div(xα

n ((A − Ā)∇u + g − ḡ)) in B+
2r ,

limxn→0+ xα
n 〈 Ā∇û + (A − Ā)∇u + g − ḡ, �en〉 = 0 on B ′

2r .

We take a smooth and convex domains Dr and D̃r such that B+
r ⊂ Dr ⊂ B+

4
3 r

and B+
3
2 r

⊂

D̃r ⊂ B+
2r , and write D

′
r = Dr ∩ B ′

4 and D̃
′
r = D̃r ∩ B ′

4. We decompose û = v̂ + ŵ, where

ŵ is a solution of

− div(xα
n Ā∇ŵ) = div

(

xα
n

(

(A − Ā)∇u + g − ḡ
)

χDr

)

in D̃r

with the boundary condition

xα
n 〈 Ā∇ŵ + ((A − Ā)∇u + g − ḡ)χDr , ν〉 = 0 on ∂D̃r .

For any t > 0, we have by applying Lemma 2.1 with scaling

μ({x ∈ B+
r : |∇ŵ(x)| > t}) f C(n, λ, α)

t

∫

B+
2r

|(A − Ā)∇u + g − ḡ|dμ.

This inequality implies that for any τ ∈ (0,+∞)

∫

B+
r

|∇ŵ|pdμ =
∫ +∞

0

pt p−1μ({x ∈ B+
r : |∇ŵ(x)| > t}) dt

123



239 Page 12 of 42 H. Dong et al.

f
∫ τ

0

pt p−1μ(B+
r ) dt +

∫ +∞

τ

pt p−1

(

C

t

∫

B+
2r

|(A − Ā)∇u + g − ḡ|dμ

)

dt

f Cμ(B+
r )τ p + C

(

∫

B+
2r

|(A − Ā)∇u + g − ḡ|dμ

)

τ p−1.

Taking τ =
∫

B
+
2r

|(A− Ā)∇u+g−ḡ|dμ

μ(B+
r )

, we get

∫

B+
r

|∇ŵ|pdμ f Cμ(B+
r )1−p

(

∫

B+
2r

|(A − Ā)∇u + g − ḡ|dμ

)p

.

It follows that
(

−
∫

B+
r

|∇ŵ|pdμ

)1/p

f Cμ(B+
r )−1

∫

B+
2r

|(A − Ā)∇u + g − ḡ|dμ

f C‖∇u‖L∞(B+
2r )

η
1,μ
A (2r) + Cη1,μ

g (2r).

(2.8)

Next, we observe that v̂ = û − ŵ satisfies
{

div(xα
n Ā∇v̂) = 0 in Dr ,

limxn→0+ xα
n 〈 Ā∇v̂, �en〉 = 0 on D

′
r .

(2.9)

Since Di v̂ satisfies the same equation for 1 f i f n−1, we have by applying [13, Lemma 4.2,

Proposition 4.4] with a standard iteration

‖DDi v̂‖L∞(B+
r/2) f C

r

(

−
∫

B+
r

|Di v̂|pdμ

)1/p

f C

r

(

−
∫

B+
r

|∇x ′ v̂|pdμ

)1/p

, (2.10)

where ∇x ′ v̂ = (∂x1 v̂, . . . , ∂xn−1 v̂). To obtain the similar estimate for Dnn v̂, we use an idea

in [13]. Denote

V̂ := 〈 Ā∇v̂, �en〉 =
n

∑

j=1

ānj D j v̂.

From the equation div(xα
n Ā∇v̂) = 0 in Dr , we infer

∂n

(

xα
n V̂

)

= −xα
n

n−1
∑

i=1

n
∑

j=1

āi j Di j v̂.

By combining this with limxn→0+ xα
n V̂ (x) = 0 and (2.10), we deduce that for any x ∈ B+

r/2

∣

∣

∣
xα

n V̂ (x)

∣

∣

∣
=

∣

∣

∣

∣

∫ xn

0

∂s(s
α V̂ (x ′, s))ds

∣

∣

∣

∣

f
∫ xn

0

sα

n−1
∑

i=1

n
∑

j=1

|āi j Di j v̂(x ′, s)|ds

f C

r

(

−
∫

B+
r

|∇x ′ v̂|pdμ

)1/p ∫ xn

0

sα ds f Cxα+1
n

r

(

−
∫

B+
r

|∇x ′ v̂|pdμ

)1/p

.

(2.11)

This gives

|V̂ (x)| f Cxn

r

(

−
∫

B+
r

|∇x ′ v̂|pdμ

)1/p

, x ∈ B+
r/2.
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Combining this with (2.10) gives that for small κ ∈ (0, 1/2) to be chosen later

(

−
∫

B+
κr

(

|∇x ′ v̂ − 〈∇x ′ v̂〉B+
κr

|p + |V̂ |p
)

dμ

)1/p

f Cκ

(

−
∫

B+
r

|∇v̂|pdμ

)1/p

f Cκ

(

−
∫

B+
r

(

|∇x ′ v̂|p + |V̂ |p
)

dμ

)1/p

.

(2.12)

For any constant vector q′ = (q1, . . . qn−1) ∈ R
n−1, we set

ṽ(X) := v̂(X) − 〈q′, x ′〉 +
∫ xn

0

[ānn(yn)]−1

(

n−1
∑

i=1

āni (yn)qi

)

dyn

and

Ṽ := 〈 Ā∇ṽ, �en〉.

It is easily seen that ṽ satisfies (2.9) and Ṽ = V̂ in B+
r . This enables us to replace v̂ and V̂

with ṽ and Ṽ in (2.12), respectively, to have

(

−
∫

B+
κr

(

|∇x ′ v̂ − 〈∇x ′ v̂〉B+
κr

|p + |V̂ |p
)

dμ

)1/p

f Cκ

(

−
∫

B+
r

(

|∇x ′ v̂ − q′|p + |V̂ |p
)

dμ

)1/p

.

(2.13)

Let Û := 〈 Ā∇û, �en〉. By using Û = V̂ + 〈 Ā∇ŵ, �en〉 and (2.13), we get

(

−
∫

B+
κr

(

|∇x ′ û − 〈∇x ′ v̂〉B+
κr

|p + |Û |p
)

dμ

)1/p

f C

(

−
∫

B+
κr

(

|∇x ′ v̂ − 〈∇x ′ v̂〉B+
κr

|p + |V̂ |p
)

dμ

)1/p

+ C

(

−
∫

B+
κr

|∇ŵ|pdμ

)1/p

f Cκ

(

−
∫

B+
r

(

|∇x ′ v̂ − q′|p + |V̂ |p
)

dμ

)1/p

+ C

(

−
∫

B+
κr

|∇ŵ|pdμ

)1/p

f Cκ

(

−
∫

B+
r

(

|∇x ′ û − q′|p + |Û |p
)

dμ

)1/p

+ Cκ
− n+α

p

(

−
∫

B+
r

|∇ŵ|pdμ

)1/p

.

(2.14)

From u = û − ā−1
nn ḡn xn , we find ∇x ′u = ∇x ′ û and

U = 〈 Ā∇u + ḡ, �en〉 + 〈(A − Ā)∇u + g − ḡ, �en〉 = Û + 〈(A − Ā)∇u + g − ḡ, �en〉.

Combining this with (2.14) and (2.8) produces

(

−
∫

B+
κr

(

|∇x ′u − 〈∇x ′ v̂〉B+
κr

|p + |U |p
)

dμ

)1/p

f C

(

−
∫

B+
κr

(

|∇x ′ û − 〈∇x ′ v̂〉B+
κr

|p + |Û |p
)

dμ

)1/p

+ C

(

−
∫

B+
κr

|〈(A − Ā)∇u + g − ḡ, �en〉|pdμ

)1/p
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f Cκ

(

−
∫

B+
r

(

|∇x ′ û − q′|p + |Û |p
)

dμ

)1/p

+ Cκ
− n+α

p

(

−
∫

B+
r

|∇ŵ|pdμ

)1/p

+ C

(

−
∫

B+
κr

|〈(A − Ā)∇u + g − ḡ, �en〉|pdμ

)1/p

f Cκ

(

−
∫

B+
r

(

|∇x ′u − q′|p + |U |p
)

dμ

)1/p

+ Cκ
− n+α

p

(

−
∫

B+
r

|∇ŵ|pdμ

)1/p

+ Cκ
− n+α

p

(

−
∫

B+
2r

|〈(A − Ā)∇u + g − ḡ, �en〉|pdμ

)1/p

f Cκ

(

−
∫

B+
r

(

|∇x ′u − q′|p + |U |p
)

dμ

)1/p

+ Cκ
− n+α

p

(

‖∇u‖L∞(B+
2r )

η
1,μ
A (2r) + η1,μ

g (2r)
)

.

Since q′ ∈ R
n−1 is arbitrary, we get

ψ(0, κr) f Cκψ(0, r) + Cκ
− n+α

p

(

‖∇u‖L∞(B+
2r )

η
1,μ
A (2r) + η1,μ

g (2r)
)

.

By taking κ small so that Cκ f κβ and using a standard iteration, we obtain (2.7). ��

Next, we consider the interior case when the ball Br (x0) is away from the boundary B ′
4.

It should be noted that when r < (x0)n/2, u solves an uniformly elliptic equation

− div(Ax0∇u) = div(gx0) in Br (x0),

where Ax0 := (xn/(x0)n)α A and gx0 := (xn/(x0)n)αg. It may seem tempting to directly

apply the result from [8] to obtain estimates involving ϕ. However, this approach leads to

the mean-oscillations of Ax0 and gx0 . When bounding them by those of A and g, we cannot

avoid extra terms that depend on (x0)n . Handling these terms becomes challenging as the

center x0 approaches to the boundary B ′
4.

To rectify this issue, we utilize the concept of partially Dini mean oscillation (partially

DMO). A function f ∈ L1(B+
1 , dx) is said to be of L1(dx)-partially DMO with respect to

x ′ in B+
1 if

ηx ′
f (r) := sup

x0∈B+
1

−
∫

Br (x0)∩B+
1

∣

∣

∣

∣

∣

f (x) − −
∫

B′
r (x ′

0)∩B′
1

f (y′, xn)dy′
∣

∣

∣

∣

∣

dx, 0 < r < 1,

is Dini. This partially DMO requirement is weaker than the standard DMO, and it holds that

ηx ′
f (r) f Cη f (r). For further understanding of the regularity results under the partially DMO

condition, one can refer to [6, 10].

Now we instead view new data Ax0 and gx0 as being of partially DMO with respect to

x ′-variable, and apply a result in [10]. As we will see in the proof of Lemma 2.6, this approach

allows us to avoid the additional term containing (x0)n , as (xn/(x0)n)α remains constant with

respect to x ′.
When x0 = (x ′

0, (x0)n) ∈ B+
3 is away from the thin ball B ′

4 and there is no confusion, we

write for simplicity

d := (x0)n = dist(x0, B ′
4) > 0.
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Lemma 2.6 Let x0 ∈ B+
3 and 0 < β < 1. For any 0 < ρ < r f d/2,

ψ(x0, ρ) f C(ρ/r)βψ(x0, r) + C‖∇u‖L∞(Br (x0))η̃
1,μ
A (ρ) + C η̃1,μ

g (ρ), (2.15)

where C = C(n, λ, α, p, β) > 0 are constants and η̃
1,μ
• is as in (2.5).

Proof As mentioned above, u solves

− div(Ax0∇u) = div(gx0) in Br (x0),

where Ax0 = (xn/d)α A and gx0 = (xn/d)αg are partially DMO with respect to x ′. Then, it

can be deduced from the proof of [10, Lemma 3.3] (see also [4, Lemma 2.5]) that for any

0 < κ < 1/2 and 0 < r f d/2,

ψ0(x0, κr) f Cκψ0(x0, r)

+ Cκ−n/p

(

‖∇u‖L∞(Br (x0))−
∫

Br (x0)

∣

∣

∣

∣

∣

Ax0(x) − −
∫

B′
r (x ′

0)

Ax0(y′, xn)dy′
∣

∣

∣

∣

∣

dx

+ −
∫

Br (x0)

∣

∣

∣

∣

∣

gx0(x) − −
∫

B′
r (x ′

0)

gx0(y′, xn)dy′
∣

∣

∣

∣

∣

dx

)

,

where C = C(n, α, λ, p) > 0 and

ψ0(x0, r) = inf
q∈Rn

(

−
∫

Br (x0)

|〈∇x ′u, 〈Ax0∇u + gx0 , �en〉〉 − q|pdx

)1/p

.

From the identity 〈Ax0∇u + gx0 , �en〉 = U x0 and the fact that d/2 < xn < 3d/2 for every

x ∈ Br (x0), we have

ψ(x0, ρ) f Cψ0(x0, ρ), ψ0(x0, r) f Cψ(x0, r).

Moreover,

−
∫

Br (x0)

∣

∣

∣

∣

∣

Ax0(x) − −
∫

B′
r (x ′

0)

Ax0(y′, xn)dy′
∣

∣

∣

∣

∣

dx

f C−
∫

Br (x0)

∣

∣

∣

∣

∣

A(x) − −
∫

B′
r (x ′

0)

A(y′, xn)dy′
∣

∣

∣

∣

∣

dμ(x)

f Cη
1,μ
A (r).

Clearly, a similar estimate holds for g. Thus, we obtain

ψ(x0, κr) f Cκψ(x0, r) + Cκ−n/p
(

‖∇u‖L∞(Br (x0))η
1,μ
A (r) + η1,μ

g (r)
)

.

Taking κ ∈ (0, 1/2) small and performing a standard iteration as before, we conclude (2.15).

��

We now combine the previous two lemmas to establish the following uniform decay

estimate of ψ .
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Lemma 2.7 Suppose 0 < β < 1. Then, for any x0 ∈ B+
3 and 0 < ρ f r < 1

14
, we have

ψ(x0, ρ) f
C(ρ/r)β

(

−
∫

B8r (x0)∩B+
4

|∇u|dμ + ‖g‖∞

)

+C‖∇u‖L∞(B14r (x0)∩B+
4 )η̂

1,μ
A (ρ) + C η̂1,μ

g (ρ),

(2.16)

where C = C(n, α, λ, p, β) > 0 and η̂
1,μ
• is defined as in (2.6).

Proof We divide the proof into the three cases:

ρ < r < d/2, d/2 < ρ < r , or ρ f d/2 f r .

Case 1. We first consider the case ρ < r < d/2. By Lemma 2.6

ψ(x0, ρ) f C(ρ/r)βψ(x0, r) + C
(

‖∇u‖L∞(Br (x0))η̃
1,μ
A (ρ) + η̃1,μ

g (ρ)
)

. (2.17)

Using |U x0 | f C |A∇u + g| in Br (x0), we get

ψ(x0, r) f
(

−
∫

Br (x0)

|〈∇x ′u, U x0〉|pdμ

)1/p

f C

(

−
∫

Br (x0)

|∇u|dμ + ‖g‖∞

)

. (2.18)

This, along with (2.17) and the doubling property of μ (Lemma A.1), implies (2.16).

Case 2. Suppose d/2 < ρ < r . For x̄0 := (x ′
0, 0) ∈ B ′

3, the doubling and Lemma 2.5 yield

ψ(x0, ρ) f Cψ(x̄0, 3ρ)

f C(ρ/r)βψ(x̄0, 3r) + C
(

‖∇u‖L∞(B+
6r (x̄0))η̃

1,μ
A (6ρ) + η̃1,μ

g (6ρ)
)

.

Moreover, we have

ψ(x̄0, 3r) f
(

−
∫

B+
3r (x̄0)

|〈∇x ′u, U 〉|pdμ

)1/p

f C

(

−
∫

B5r (x0)∩B+
4

|∇u|dμ + ‖g‖∞

)

.

(2.19)

Thus,

ψ(x0, ρ) f C(ρ/r)β

(

−
∫

B5r (x0)∩B+
4

|∇u|dμ + ‖g‖∞

)

+ C
(

‖∇u‖L∞(B8r (x0)∩B+
4 )η̃

1,μ
A (6ρ) + η̃1,μ

g (6ρ)
)

.

From the fact that η̃
1,μ
• f η̂

1,μ
• and t �−→ η̂

1,μ
• (t)

tβ
is nonincreasing, we infer

η̃1,μ
• (6ρ) f η̂1,μ

• (6ρ) f 6β η̂1,μ
• (ρ).

This concludes (2.16).

Case 3. It remains to deal with the case ρ f d/2 f r . We observe that

(

−
∫

Bd/2(x0)

|U x0 |pdμ

)1/p

f C

(

−
∫

Bd/2(x0)

|U |pdμ

)1/p

f C

(

−
∫

B3d/2(x̄0)

|U |pdμ

)1/p

f Cψ(x̄0, 3d/2),
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which gives

ψ(x0, d/2) f C inf
q′∈Rn−1

(

−
∫

Bd/2(x0)

|∇x ′u − q′|pdμ

)1/p

+ C

(

−
∫

Bd/2(x0)

|U x0 |pdμ

)1/p

f Cψ(x̄0, 3d/2).

By using this and Lemmas 2.5 and 2.6, we derive

ψ(x0, ρ) f C(ρ/d)βψ(x0, d/2) + C
(

‖∇u‖L∞(Bd/2(x0))η̃
1,μ
A (ρ) + η̃1,μ

g (ρ)
)

f C(ρ/d)βψ(x̄0, 3d/2) + C
(

‖∇u‖L∞(Bd/2(x0))η̃
1,μ
A (ρ) + η̃1,μ

g (ρ)
)

f C(ρ/r)βψ(x̄0, 3r) + C
(

‖∇u‖L∞(Bd/2(x0))η̃
1,μ
A (ρ) + η̃1,μ

g (ρ)
)

+ C(ρ/d)β
(

‖∇u‖L∞(B+
6r (x̄0))η̃

1,μ
A (3d) + η̃1,μ

g (3d)
)

f C(ρ/r)β

(

−
∫

B5r (x0)∩B+
4

|∇u|dμ + ‖g‖∞

)

+ C
(

‖∇u‖L∞(B8r (x0)∩B+
4 )η̂

1,μ
A (ρ) + η̂1,μ

g (ρ)
)

,

where in the last step we used η̃
1,μ
• f η̂

1,μ
• and the monotonicity of s �−→ η̂

1,μ
• (s)

sβ . This

completes the proof. ��

Our next objective is the L∞-estimate of ∇u, which enables us to remove the C1 assumption

on u by a standard approximation argument. For this purpose, we follow the idea in [7,

Lemma 2.11]. For x0 ∈ B+
3 and 0 < r < 1/14, we take a vector qx0,r ∈ R

n such that

ψ(x0, r) =

⎧

⎪

«

⎪

¬

(

−
∫

Br (x0)
|〈∇x ′u, U x0〉 − qx0,r |pdμ

)1/p

, 0 < r f d/2,
(

−
∫

Br (x0)∩B+
4

|〈∇x ′u, U 〉 − qx0,r |pdμ
)1/p

, d/2 < r < 1/14.

(2.20)

Note that the last component of qx0,r is zero when d/2 < r < 1/14.

Lemma 2.8 It holds that

‖∇u‖L∞(B+
2 ) f C

∫

B+
4

|∇u|dμ + C

∫ 1

0

η̂
1,μ
g (t)

t
dt + C‖g‖L∞(B+

4 ), (2.21)

for some constant C > 0 depending only on n, λ, α, p.

Proof We split the proof of this lemma into two steps.

Step 1. We claim that for any x0 ∈ B+
3 and 0 < r f 1/18,

|∇u(x0)| f C−
∫

B10r (x0)∩B+
4

|∇u|dμ + C‖g‖∞

+ C‖∇u‖L∞(B18r (x0)∩B+
4 )

∫ r

0

η̂
1,μ
A (t)

t
dt + C

∫ r

0

η̂
1,μ
g (t)

t
dt . (2.22)
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To prove the claim (2.22), we consider two cases:

0 < r f d/2 or d/2 < r f 1/18.

Case 1. Suppose r f d/2. We take average of the trivial inequality

|qx0,r − qx0,r/2|p f |〈∇x ′u(x), U x0(x)〉 − qx0,r |p + |〈∇x ′u(x), U x0(x)〉 − qx0,r/2|p

over x ∈ Br/2(x0) with respect to dμ and take the p-th root to get

|qx0,r − qx0,r/2| f C (ψ(x0, r) + ψ(x0, r/2)) .

By iterating, we further have

|qx0,2−kr − qx0,r | f C

k
∑

j=0

ψ(x0, 2− jr). (2.23)

Note that by (2.16)

lim
k→+∞

ψ(x0, 2−kr) = 0,

which along with the assumption u ∈ C1(B+
3 ) implies

lim
k→+∞

qx0,2−kr = 〈∇x ′u(x0), U x0(x0)〉 = 〈∇x ′u(x0), U (x0)〉.

Thus, by taking k → +∞ in (2.23) and using (2.16), we obtain

|〈∇x ′u(x0), U (x0)〉 − qx0,r |

f C−
∫

B8r (x0)∩B+
4

|∇u|dμ + C‖g‖∞

+ C‖∇u‖L∞(B14r (x0)∩B+
4 )

∫ r

0

η̂
1,μ
A (t)

t
dt + C

∫ r

0

η̂
1,μ
g (t)

t
dt .

(2.24)

On the other hand, we have for any x ∈ Br (x0),

|qx0,r |p f |〈∇x ′u(x), U x0(x)〉 − qx0,r |p + |〈∇x ′u(x), U x0(x)〉|p

f |〈∇x ′u(x), U x0(x)〉 − qx0,r |p + C
(

|∇u(x)|p + |g(x)|p
)

.

Taking average of this over x ∈ Br (x0) with respect to dμ and taking the p-th root yield

|qx0,r | f Cψ(x0, r) + C

(

−
∫

Br (x0)

|∇u|pdμ

)1/p

+ C‖g‖∞.

Due to (2.18), we further have

|qx0,r | f C−
∫

Br (x0)

|∇u|dμ + C‖g‖∞.

Combining this with (2.24), we infer

|∇u(x0)| f C (|〈∇x ′u(x0), U (x0)〉| + ‖g‖∞)

f C−
∫

B8r (x0)∩B+
4

|∇u|dμ + C‖g‖∞
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+ C‖∇u‖L∞(B14r (x0)∩B+
4 )

∫ r

0

η̂
1,μ
A (t)

t
dt + C

∫ r

0

η̂
1,μ
g (t)

t
dt .

Case 2. Next, we consider the case d/2 < r < 1/18. We take a nonnegative integer j0 such

that 2−( j0+1)r f d/2 < 2− j0r . By using the idea at the beginning of Case 1, we can easily

obtain that for every j g 0 with j �= j0

|qx0,2− j r − qx0,2−( j+1)r | f C
(

ψ(x0, 2− jr) + ψ(x0, 2−( j+1)r)
)

.

However, the bound is nontrivial when j = j0 due to the discrepancy between U x0 and U .

By iteration, we have that for any k g j0 + 1

|qx0,r − qx0,2−kr | f C

+∞
∑

j=0

ψ(x0, 2− jr) + |qx0,2− j0 r − qx0,2−( j0+1)r |. (2.25)

We can use (2.16) to estimate the first term in the right-hand side of (2.25):

+∞
∑

j=0

ψ(x0, 2− jr) f C−
∫

B8r (x0)∩B+
4

|∇u|dμ + C‖g‖∞

+ C‖∇u‖L∞(B14r (x0)∩B+
4 )

∫ r

0

η̂
1,μ
A (t)

t
dt + C

∫ r

0

η̂
1,μ
g (t)

t
dt . (2.26)

To treat the second term, we observe that for x ∈ B2−( j0+1)r (x0)

|qx0,2− j0 r − qx0,2−( j0+1)r |p

f |〈∇x ′u, U x0〉 − qx0,2−( j0+1)r |p + |〈∇x ′u, U 〉 − qx0,2− j0 r |p + |U x0 − U |p.

Arguing as before, we can deduce from this inequality

|qx0,2− j0 r − qx0,2−( j0+1)r |

f Cψ(x0, 2−( j0+1)r) + Cψ(x0, 2− j0r) + C

(

−
∫

B
2−( j0+1)r

(x0)

|U x0 − U |pdμ

)1/p

.

We recall 2−( j0+1)r f d/2 < 2− j0r and apply Lemma 2.5 to obtain

(

−
∫

B
2−( j0+1)r

(x0)

|U x0 − U |pdμ

)1/p

f C

(

−
∫

Bd/2(x0)

|U |pdμ

)1/p

f C

(

−
∫

B
22− j0 r

(x̄0)

|U |pdμ

)1/p

f Cψ(x̄0, 23− j0r) + C‖∇u‖L∞(B+
16r (x̄0))η

1,μ
A (24− j0r) + Cη1,μ

g (24− j0r)

f Cψ(x̄0, 8r) + C‖∇u‖L∞(B+
16r (x̄0))η̃

1,μ
A (24− j0r) + C η̃1,μ

g (24− j0r).

By combining the preceding two estimates, we get

|qx0,2− j0 r − qx0,2−( j0+1)r |
f Cψ(x0, 2−( j0+1)r) + Cψ(x0, 2− j0r) + Cψ(x̄0, 8r)

+ C‖∇u‖L∞(B18r (x0)∩B+
4 )η̃

1,μ
A (24− j0r) + C η̃1,μ

g (24− j0r).

(2.27)
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We can argue as in (2.19) to get

ψ(x̄0, 8r) f C−
∫

B10r (x0)∩B+
4

|∇u|dμ + ‖g‖∞,

which combined with (2.27) implies

|qx0,2− j0 r − qx0,2−( j0+1)r |

f Cψ(x0, 2−( j0+1)r) + Cψ(x0, 2− j0r) + C−
∫

B10r (x0)∩B+
4

|∇u|dμ

+ C‖∇u‖L∞(B18r (x0)∩B+
4 )η̃

1,μ
A (24− j0r) + C η̃1,μ

g (24− j0r) + ‖g‖∞.

(2.28)

In addition, by using that η̂
1,μ
• satisfies (2.4), one can easily show that

η̃1,μ
• (24− j0r) f C

∫ r

0

η̂
1,μ
• (t)

t
dt .

Combining this with (2.25), (2.26) and (2.28) and taking k → ∞ yield

|〈∇x ′u(x0), U (x0)〉 − qx0,r |

f C−
∫

B10r (x0)∩B+
4

|∇u|dμ + C‖g‖∞

+ C‖∇u‖L∞(B18r (x0)∩B+
4 )

∫ r

0

η̂
1,μ
A (t)

t
dt + C

∫ r

0

η̂
1,μ
g (t)

t
dt .

On the other hand, we can obtain the following estimate by arguing as in Case 1

|qx0,r | f C−
∫

Br (x0)∩B+
4

|∇u|dμ + C‖g‖∞.

The previous two estimates imply (2.22).

Step 2. We are now ready to prove (2.21). For k ∈ N, we denote sk := 3 − 21−k , so that

sk+1 − sk = 2−k , s1 = 2 and sk ↗ 3. We note that for every x0 ∈ B+
sk

and r = 2−k−5,

B18r (x0) ∩ B+
4 ⊂ B+

sk+1
. For C > 0 as in (2.22) and α+ = max{α, 0}, we fix 0 < r0 < 1/4

small so that

C

∫ r0

0

η̂1
A, μ

(t)
tdt < 3−(n+α+),

and take k0 ∈ N such that 2−k0−5 < r0. It is easily seen that μ(Br (x0)∩ B+
4 ) g c(n, α)rn+α+

whenever x0 ∈ B+
3 and 0 < r < 1. Then, we have by (2.22) that for every k g k0

‖∇u‖L∞(B+
sk

) f C2k(n+α+)

∫

B+
4

|∇u|dμ + C‖g‖∞ + 3−(n+α+)‖∇u‖L∞(B+
sk+1

)

+ C

∫ 1

0

η̂
1,μ
g

(t)
tdt .

We multiply this by 3−k(n+α+) and take summation over k g k0 to get

+∞
∑

k=k0

3−k(n+α+)‖∇u‖L∞(B+
sk

) f C

∫

B+
4

|∇u|dμ + C

∫ 1

0

η̂
1,μ
g

(t)
tdt + C‖g‖L∞(B+

4 )
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+
+∞
∑

k=k0

3−(k+1)(n+α+)‖∇u‖L∞(B+
sk+1

).

Due to our assumption u ∈ C1(B+
3 ), the sum

∑+∞
k=k0

3−k(n+α+)‖∇u‖L∞(B+
sk

) converges, and

hence (2.21) follows. ��

To proceed, given 0 < β < 1, we consider a modulus of continuity ω : [0, 1) → [0,+∞)

defined by

ω(r) =
(

∫

B+
4

|∇u|dμ + ‖g‖L∞(B+
4 )

)

rβ +
∫ r

0

η̂
1,μ
g

(t)
tdt

+
(

∫

B+
4

|∇u|dμ + ‖g‖L∞(B+
4 ) +

∫ 1

0

η̂
1,μ
g

(t)
tdt

)

∫ r

0

η̂
1,μ
A

(t)
tdt .

(2.29)

Lemma 2.9 For any x0 ∈ B+
1 and 0 < r < 1/18, we have

|〈∇x ′u(x0), U (x0)〉 − qx0,r | f Cω(r) (2.30)

for some constant C > 0 depending only on n, λ, α, p, β.

Proof Recall the identity limk→+∞ qx0,2−kr = 〈∇x ′u(x0), U (x0)〉, and, as before, consider

two cases: either 0 < r f d/2 or d/2 < r < 1/18.

Case 1. If 0 < r f d/2, then we have

|〈∇x ′u(x0), U (x0)〉 − qx0,r | f
+∞
∑

j=0

|qx0,2− j r − qx0,2−( j+1)r | f C

+∞
∑

j=0

ψ(x0, 2− jr).

By using (2.16), we obtain

+∞
∑

j=0

ψ(x0, 2− jr) f C

(

∫

B+
4

|∇u|dμ + ‖g‖L∞(B+
4 )

)

rβ

+ C‖∇u‖L∞(B+
2 )

∫ r

0

η̂
1,μ
A

(t)
tdt + C

∫ r

0

η̂
1,μ
g

(t)
tdt, (2.31)

and hence (2.30) follows from Lemma 2.8.

Case 2. Suppose d/2 < r < 1/18. Take j0 g 0 such that 2−( j0+1)r f d/2 < 2− j0r . By first

sending k → +∞ in (2.25) and then applying (2.27) and (2.7) sequentially, we get

|〈∇x ′u(x0), U (x0)〉 − qx0,r |

f C

+∞
∑

j=0

ψ(x0, 2− jr) + |qx0,2− j0 r − qx0,2−( j0+1)r |

f C

+∞
∑

j=0

ψ(x0, 2− jr) + Cϕ(x̄0, 8r) + C‖∇u‖L∞(B+
2 )η̃

1,μ
A (24− j0r) + C η̃1,μ

g (24− j0r)

f C

+∞
∑

j=0

ψ(x0, 2− jr) + Crβ

∫

B+
4

|∇u|dμ + C
(

η̃1,μ
g (16r) + η̃1,μ

g (24− j0r)
)
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+ C‖∇u‖L∞(B+
2 )

(

η̃
1,μ
A (16r) + η̃

1,μ
A (24− j0r)

)

.

This, together with (2.21) and (2.31), implies (2.30). ��

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4 Our goal is to show that for any x0, y0 ∈ B+
1 with r := |x0 − y0| > 0,

|∇u(x0) − ∇u(y0)| f Cω(r), (2.32)

where C > 0 is a constant, depending only on n, λ, α, p, β, and ω is a modulus of continuity

as in (2.29).

If r g 1/18, then we can simply use |∇u(x0) − ∇u(y0)| f 2‖∇u‖L∞(B+
1 ) f

36‖∇u‖L∞(B+
1 )r and apply (2.21) to get (2.32). Thus, we may assume 0 < r < 1/18.

We consider two cases either r g (x0)n/8 or r < (x0)n/8.

Case 1. Suppose r g (x0)n/8. Since the monotonicity of t �−→ η̂
1,μ
• (t)

tβ
implies that of

t �−→ ω(t)

tβ
, we have ω(5r) f Cω(r). This, along with (2.30), gives

|〈∇x ′u(x0), U (x0)〉 − 〈∇x ′u(y0), U (y0)〉|
f |〈∇x ′u(x0), U (x0)〉 − qx0,5r | + |〈∇x ′u(y0) − U (y0)〉 − qy0,5r |

+ |qx0,5r − qy0,5r |
f Cω(r) + |qx0,5r − qy0,5r |. (2.33)

To treat the last term |qx0,5r − qy0,5r |, we observe that the assumption r g (x0)n/8 gives
(y0)n

2
f (x0)n+r

2
< 5r . We then take average of the inequality

|qx0,5r − qy0,5r |p f |qx0,5r − 〈∇x ′u(x), U (x)〉|p + |qy0,5r − 〈∇x ′u(x), U (x)〉|p

over x ∈ Br (x0) ∩ B+
4 and take the p-th root to obtain

|qx0,5r − qy0,5r | f C

(

−
∫

B5r (x0)∩B+
4

|〈∇x ′u, U 〉 − qx0,5r |pdμ

)1/p

+ C

(

−
∫

B5r (y0)∩B+
4

|〈∇x ′u, U 〉 − qy0,5r |pdμ

)1/p

f Cψ(x0, 5r) + Cψ(y0, 5r)

f Cω(r),

where we applied (2.16) in the last step. By combining this with (2.33) and using the definition

of U , we get (2.32).

Case 2. Now we suppose r < (x0)n/8. We argue as in (2.33) to get

|〈∇x ′u(x0), U (x0)〉 − 〈∇x ′u(y0), U (y0)〉| f Cω(r) + |qx0,2r − qy0,2r |.

To estimate the last term, we note that (y0)n > (x0)n − r > 7r , which implies 2r <

min{(x0)n/2, (y0)n/2}. We then use the trivial inequality

|qx0,2r − qy0,2r |p f |qx0,2r − 〈∇x ′u(x), U x0(x)〉|p + |qy0,2r − 〈∇x ′u(x), U y0(x)〉|p

+ |U x0(x) − U y0(x)|p
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for x ∈ Br (x0) to deduce

|qx0,2r − qy0,2r |

f C

(

−
∫

B2r (x0)

|〈∇x ′u, U x0〉 − qx0,2r |pdμ

)1/p

+ C

(

−
∫

B2r (y0)

|〈∇x ′u, U y0〉 − qy0,2r |pdμ

)1/p

+ C

(

−
∫

Br (x0)

|U x0 − U y0 |pdμ

)1/p

f Cψ(x0, 2r) + Cψ(y0, 2r) + C

(

−
∫

Br (x0)

|U x0 − U y0 |pdμ

)1/p

f Cω(r) + C

(

−
∫

Br (x0)

|U x0 − U y0 |pdμ

)1/p

.

Thus, it is sufficient to show that
(

−
∫

Br (x0)
|U x0 − U y0 |pdμ

)1/p

f Cω(r). To this end, we

observe that in Br (x0),

|U x0 − U y0 | =
∣

∣

∣

∣

1 −
(

(x0)n

(y0)n

)α∣

∣

∣

∣

|U x0 | f Cr

(x0)n

|U x0 |,

which gives

(

−
∫

Br (x0)

|U x0 − U y0 |pdμ

)1/p

f Cr

(x0)n

(

−
∫

Br (x0)

|U x0 |pdμ

)1/p

. (2.34)

To estimate the right-hand side, we denote d := (x0)n and take k ∈ N such that

d/8 < 2kr f d/4. For each 0 f j f k − 1, notice that 2 j+1r f d/4 and let

qx0,2 j+1r = (q′
x0,2 j+1r

, (qx0,2 j+1r )n) ∈ R
n be as in (2.20). Then

−
∫

B
2 j r

(x0)

|U x0 |pdμ

= −
∫

B
2 j r

(x0)

−
∫

B
2 j+1r

(x0)

|U x0(y) + (U x0(x) − U x0(y))|pdμ(y)dμ(x)

f −
∫

B
2 j r

(x0)

−
∫

B
2 j+1r

(x0)

|U x0(y)|pdμ(y)dμ(x)

+ C−
∫

B
2 j+1r

(x0)

−
∫

B
2 j+1r

(x0)

|U x0(x) − U x0(y)|pdμ(y)dμ(x)

f −
∫

B
2 j+1r

(x0)

|U x0 |pdμ + C−
∫

B
2 j+1r

(x0)

|U x0 − (qx0,2 j+1r )n |pdμ

f −
∫

B
2 j+1r

(x0)

|U x0 |pdμ + C
(

ω(2 j+1r)
)p

,

where we applied Lemma 2.7 in the last step. By summing up the previous estimate over

0 f j f k − 1, we attain

−
∫

Br (x0)

|U x0 |pdμ f −
∫

B
2k r

(x0)

|U x0 |pdμ + C

k
∑

j=1

(

ω(2 jr)
)p

,
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and hence by applying Hölder’s inequality

(

−
∫

Br (x0)

|U x0 |pdμ

)1/p

f C

(

−
∫

B
2k r

(x0)

|U x0 |pdμ

)1/p

+ Ck
1−p

p

k
∑

j=1

ω(2 jr).

To bound the first term in the right-hand side, we denote x̄0 := (x ′
0, 0) ∈ B ′

1 and exploit

Lemma 2.5 and the monotonicity of t �−→ ω(t)

tβ
to get

(

−
∫

B
2k r

(x0)

|U x0 |pdμ

)1/p

f C

(

−
∫

Bd/4(x0)

|U x0 |pdμ

)1/p

f C

(

−
∫

Bd/4(x0)

|〈A∇u + g, �en〉|pdμ

)1/p

f C

(

−
∫

B+
2d (x̄0)

|〈A∇u + g, �en〉|pdμ

)1/p

f Cω(2d) f Cω(2kr).

Combining the preceding two estimates gives

(

−
∫

Br (x0)

|U x0 |pdμ

)1/p

f Ck
1−p

p

k
∑

j=1

ω(2 jr) f Ck
1−p

p

k
∑

j=1

(2 jβω(r))

f Ck
1−p

p 2kβω(r) f C2kω(r) f Cd

r
ω(r).

This, together with (2.34), concludes

(

−
∫

Br (x0)

|U x0 − U y0 |pdμ

)1/p

f Cω(r).

This completes the proof. ��

2.3 C
k estimates

In this subsection, we establish Theorem 1.4 by employing the case k = 1 (Theorem 2.4)

and the induction argument.

In the statement of Theorem 1.4, we assume Dk−1
x ′ g ∈ C

0,ω
1,μ(B+

1 ) (same for A), which is a

weaker requirement than Dk−1g ∈ C
0,ω
1,μ(B+

1 ). While this may not be a significant improve-

ment, this formulation of the theorem is crucial for facilitating the induction argument.

In addition, one can infer that the modulus σ(r) of the latter result in Theorem 1.4 is

comparable with
∫ r

0
ω̂(s)

s
ds + rβ for any chosen β ∈ (0, 1). This implies that our result

recovers the classical Ck,γ estimates in [26] when the data belong to the Hölder space.

Proof of Theorem 1.4 As (1.6) follows by taking ρ → 0 in (2.7), it is sufficient to establish

the Ck estimates of the solution u.

We argue by induction on k ∈ N. The case k = 1 follows from Theorem 2.4. We now

assume the theorem is true for k and prove it for k + 1. We observe that the tangential

derivatives ui := ∂i u for i = 1, . . . , n − 1, solve

− div(xα
n A∇ui ) = div(xα

n (∂i g + ∂i A∇u)) in B+
1 ,
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with the conormal boundary condition on B ′
1

lim
xn→0+

xα
n 〈A∇ui + ∂i g + ∂i A∇u, �en〉 = 0.

As A, g ∈ Ck ⊂ Ck−1,1, the Schauder estimates in [26, Theorem 2.6] give u ∈ Ck,β for any

0 < β < 1. This implies that the field g := ∂i g+∂i A∇u belongs to Ck−1 with Dk−1
x ′ g ∈ C

0,ω
1,μ .

Thus we have by the inductive hypothesis

ui ∈ Ck
loc(B+

1 ∪ B ′
1), ∀ i = 1, . . . , n − 1. (2.35)

For the Ck+1-regularity of u, it is sufficient to show unn := ∂nnu ∈ Ck−1
loc (B+

1 ∪ B ′
1). To this

aim, we rewrite the equation (1.1) as

− div(A∇u) = α〈A∇u + g, �en〉
xn

+ div g.

It follows that for U = 〈A∇u + g, �en〉,

x−α
n ∂n(xα

n U ) = h := − div g + ∂ngn −
n−1
∑

i=1

∂i (〈A∇u, �ei 〉).

Notice that h ∈ Ck−1. Since xα
n U = 0 on B ′

1, this equation gives

U (x ′, xn) = 1

xα
n

∫ xn

0

tαh(x ′, t)dt,

and thus

∂nU (x ′, xn) = h(x ′, xn) − α

xα+1
n

∫ xn

0

tαh(x ′, t)dt = h(x ′, xn) − α

∫ 1

0

sαh(x ′, sxn)ds.

Therefore, ∂nU belongs to Ck−1, with its modulus of continuity dominated by that of h. The

definition of U , along with (2.35), readily implies unn ∈ Ck−1. ��

3 The Hopf-Oleinik boundary point principle

In this short section, we discuss the validity of the boundary point principle, which holds

true under the same conditions stated in [23] but with a weaker requirement on the boundary

regularity of the domain �; that is, � ∈ C1,1−DMO. This is just a remark once one observes

that the flattening of such a boundary (4.16) leads to the same situation as in [23].

Recall that [1] provides counterexamples to the boundary point principle, where the bound-

aries of the domains are parametrized by convex functions which do not satisfy satisfies the

interior C1,Dini-paraboloid condition. However this kind of counterexamples fails the C1,DMO

regularity since one can prove the following fact: if � is convex and C1,1−DMO, then � sat-

isfies the interior C1,Dini-paraboloid condition [2]; that is, the following result holds true.

Proposition 3.1 Let ϕ be a convex function in B1 such that ϕ(0) = 0 and ∇ϕ(0) = 0. If ∇ϕ

is of L1-DMO in B1, then

ω(r) = sup
|x |fr

ϕ(x)

|x |
is a Dini function.
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Proof Let us consider the ball Br and select a direction, without loss of generality �en . Taking

0 < s f r , by convexity

ϕ(s�en)

s
f ϕ(r �en)

r
f 1

r
−
∫

Br (r �en)∩{xn=r}
ϕ(y, r) dy, (3.1)

where y = (y1, . . . , yn−1). Then, for any y ∈ Br (r �en) ∩ {xn = r} we have

ϕ(y, r) = ϕ(λy, λr)|10 =
∫ 1

0

(y, r) · ∇ϕ(λy, λr) dλ =
√

|y|2 + r2

∫ 1

0

∇�vϕ(λy, λr) dλ,

where �v = (y,r)√
|y|2+r2

. By the convexity of ϕ, D�vϕ(λy, λr) is nonnegative whenever λ > 0

and nonpositive whenever λ < 0. Thus,

ϕ(y, r)

r
f C

∫ 1

0

|∇�vϕ(λy, λr)| dλ f C

∫ 1

0

|∇�vϕ(λy, λr) − ∇�vϕ(−λy,−λr)| dλ

f C

∫ 1

0

|∇ϕ(λy, λr) − ∇ϕ(−λy,−λr)| dλ.

Then, considering (3.1)

ϕ(s�en)

s
f 1

r
−
∫

Br (r �en)∩{xn=r}
ϕ(y, r) dy

f C−
∫

Br (�en)∩{xn=r}

∫ 1

0

|∇ϕ(λy, λr) − ∇ϕ(−λy,−λr)| dy dλ

f C−
∫

Dr

|∇ϕ(x) − ∇ϕ(−x)| dx

f C−
∫

Dr

−
∫

Dr

|∇ϕ(x) − ∇ϕ(z)| + |∇ϕ(z) − ∇ϕ(−x)| dx dz

f Cη1
∇ϕ(r).

The domain Dr above stands for a portion of a cone

Dr = {λy λ ∈ (0, 1), y ∈ Br (�en) ∩ {xn = r}}.

The latter bound is uniform in the choice of the direction, then

sup
|x |fr

ϕ(x)

|x | f Cη1
∇ϕ(r).

��

4 Higher-order boundary Harnack principle

The Schauder type estimates derived in Sect. 2, particularly the case α = 2, can be utilized to

establish higher-order boundary Harnack principles, as shown in [26] within the framework

of Hölder condition. Recently, [16] demonstrated the applicability of this technique under

the uniform Dini condition. However, as previously mentioned, the situation becomes more

complicated within our DMO framework.
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4.1 Dini mean oscillation of u/xn

The purpose of this section is to establish the following result.

Proposition 4.1 Let u ∈ H1(B+
1 ) be a weak solution of

{

− div(A∇u) = div g in B+
1 ,

u = 0 on B ′
1.

(4.1)

If A and g are of L1(dx)-DMO in B+
1 , then u/xn is of L1(xndx)-DMO in B+

1/2.

In the subsequent subsection, we will utilize Proposition 4.1 to obtain the higher regularity

of u/xn , Corollary 4.7, which will play a significant role in establishing the higher-order

boundary Harnack principle. Notice that the equation (4.1) differs from the one (4.15) in

Corollary 4.7. We start with (4.1) to facilitate the induction process in Proposition 4.6.

In the remaining of this subsection, we fix

dμ = xndx

and define

φ(x0, r) := −
∫

Br (x0)∩B+
1

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

Br (x0)∩B+
1

∣

∣

∣

∣

∣

dμ, x0 ∈ B+
1/2, r > 0.

We first prove the following auxiliary results.

Lemma 4.2 Let u, A, g be as in Proposition 4.1. Then for any x̄0 ∈ B ′
1/2 and 0 < ρ < r f

1/4,

φ(x̄0, ρ) f C(ρ/r)1/2φ(x̄0, r) + C‖∇u‖L∞(B+
1 )η̃

1
A(ρ) + C η̃1

g(ρ), (4.2)

where C = C(n, λ) > 0 are constants, and η̃1
• is a Dini function derived from η1

•.

Proof We may assume without loss of generality that x̄0 = 0. We fix r ∈ (0, 1/2), and write

for simplicity Ā = 〈A〉B+
r

and ḡ = 〈g〉B+
r

. Let w ∈ W
1,2
0 (B+

r ) be a solution of

− div( Ā∇w) = div((A − Ā)∇u + (g − ḡ)) in B+
r .

By using the estimate of Green’s functions, we have
∫

B+
r

|w(x)| dx f Cr

∫

B+
r

|(A − Ā)∇u + (g − ḡ)| dx

f Crn+1
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

.

(4.3)

This estimate implies that for a small constant κ ∈ (0, 1/2) to be chosen later

−
∫

B+
κr

∣

∣

∣

∣

∣

w

xn

−
〈

w

xn

〉μ

B+
κr

∣

∣

∣

∣

∣

dμ f 2−
∫

B+
κr

∣

∣

∣

∣

w

xn

∣

∣

∣

∣

dμ f
2
∫

B+
r

|w(x)|dx

μ(B+
κr )

f Cκ−(n+1)
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

.

(4.4)

On the other hand, v := u − w solves
{

div( Ā∇v) = 0 in B+
r ,

v = u on ∂ B+
r .
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Note that v = u = 0 on B ′
r . From v(x) =

∫ xn

0 ∂nv(x ′, t)dt = xn

∫ 1
0 ∂nv(x ′, xns)ds, we infer

by using the boundary elliptic estimate

[

v

xn

]

Lip(B+
r/2)

f [∇v]Lip(B+
r/2) = ‖D2v‖L∞(B+

r/2) f C

r2
−
∫

B+
r

|v(x)|dx

f C

r
·
∫

B+
r

∣

∣

∣

v(x)
xn

∣

∣

∣
xn dx

μ(B+
r )

= C

r
−
∫

B+
r

∣

∣

∣

∣

v

xn

∣

∣

∣

∣

dμ.

For every constant c ∈ R, as the function ṽ(x) = v(x) − cxn is a solution of div( Ā∇ṽ) = 0

in B+
r with ṽ = v = 0 on B ′

r , repeating the above process with ṽ in the place of v yields

[

v

xn

]

Lip(B+
r/2)

f C

r
−
∫

B+
r

∣

∣

∣

∣

v

xn

− c

∣

∣

∣

∣

dμ.

This inequality implies by setting c =
〈

v
xn

〉μ

B+
r

,

−
∫

B+
κr

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

B+
κr

∣

∣

∣

∣

∣

dμ f Cκr

[

v

xn

]

Lip(B+
r/2)

f Cκ−
∫

B+
r

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

B+
r

∣

∣

∣

∣

∣

dμ.

(4.5)

This, together with (4.3), gives

−
∫

B+
κr

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

B+
κr

∣

∣

∣

∣

∣

dμ

f Cκ−
∫

B+
r

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

B+
r

∣

∣

∣

∣

∣

dμ + Cκ−
∫

B+
r

∣

∣

∣

∣

∣

w

xn

−
〈

w

xn

〉μ

B+
r

∣

∣

∣

∣

∣

dμ

f Cκ−
∫

B+
r

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

B+
r

∣

∣

∣

∣

∣

dμ + Cκ−
∫

B+
r

∣

∣

∣

∣

w

xn

∣

∣

∣

∣

dμ

f Cκ−
∫

B+
r

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

B+
r

∣

∣

∣

∣

∣

dμ + Cκ
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

.

By combining this estimate with (4.4), we obtain that

φ(0, κr) f −
∫

B+
κr

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

B+
κr

∣

∣

∣

∣

∣

dμ + −
∫

B+
κr

∣

∣

∣

∣

∣

w

xn

−
〈

w

xn

〉μ

B+
κr

∣

∣

∣

∣

∣

dμ

f Cκφ(0, r) + Cκ−(n+1)
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

,

where constants C > 0 depend only on n and λ. As before, we can choose κ small so that

Cκ f κ1/2 and use iteration argument to deduce (4.2). ��

Lemma 4.3 Let u, A, g be as in Proposition 4.1. For any x0 = (x ′
0, (x0)n) ∈ B+

1/2 and

0 < ρ < r < 1
2
(x0)n , the estimate (4.2) holds true.
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Proof We follow the argument in Lemma 4.2. To begin with, we decompose u = w + v in

Br (x0) ⊂ B+
1 , where w ∈ W

1,2
0 (Br (x0)) is a solution of

− div(〈A〉Br (x0)∇w) = div((A − 〈A〉Br (x0))∇u + (g − 〈g〉Br (x0))) in Br (x0),

and v is a solution to

div(〈A〉Br (x0)∇v) = 0 in Br (x0) (4.6)

with v − u ∈ W
1,2
0 (Br (x0)). For d := (x0)n , the condition r < d/2 implies that d/2 < xn <

3d/2 whenever x ∈ Br (x0), which yields for small κ ∈ (0, 1/2)

μ(Br (x0)) f Crnd and μ(Bκr (x0)) g c(κr)nd g cκnrn+1.

By arguing as in Lemma 4.2, we can get
∫

Br (x0)

|w(x)|dx f Crn+1
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

,

which implies an analogue of (4.4):

−
∫

Bκr (x0)

∣

∣

∣

∣

∣

w

xn

−
〈

w

xn

〉μ

Bκr (x0)

∣

∣

∣

∣

∣

dμ f
2
∫

Br (x0)
|w(x)|dx

μ(Bκr (x0))

f Cκ−n
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

.

(4.7)

Concerning v
xn

, we can exploit L∞-estimates for v and ∇v to deduce

[

v

xn

]

Lip(Br/2(x0))

=
[

∇
(

v

xn

)]

L∞(Br/2(x0))

f C

(‖∇v‖L∞(Br/2(x0))

d
+

‖v‖L∞(Br/2(x0))

d2

)

f C

rn+1d

∫

Br (x0)

|v(x)| dx f C

r
−
∫

Br (x0)

∣

∣

∣

∣

v

xn

∣

∣

∣

∣

dμ.

Replacing v with ṽ(x) := v(x) −
〈

v
xn

〉μ

Br (x0)
xn , which also satisfies (4.6), gives

[

v

xn

]

Lip(Br/2(x0))

f C

r
−
∫

Br (x0)

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

Br (x0)

∣

∣

∣

∣

∣

dμ.

Thus

−
∫

Bκr (x0)

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

Bκr (x0)

∣

∣

∣

∣

∣

dμ f Cκ−
∫

Br (x0)

∣

∣

∣

∣

∣

v

xn

−
〈

v

xn

〉μ

Br (x0)

∣

∣

∣

∣

∣

dμ. (4.8)

This is an analogue of (4.5). As we have seen in the proof of Lemma 4.2, the estimates (4.7)

and (4.8) imply

φ(x0, κr) f Cκφ(x0, r) + Cκ−n
(

‖∇u‖L∞(B+
1 )η

1
A(r) + η1

g(r)
)

.

This concludes the lemma by choosing κ sufficiently small and using the iteration argument.

��

We now provide the proof of Proposition 4.1 with the help of Lemmas 4.2 and 4.3.
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Proof of Proposition 4.1 We consider

ω(r) := ‖∇u‖L∞(B+
1 ) sup

s∈[r ,1]

[

(r/s)1/2η̃1
A(s)

]

+ sup
s∈[r ,1]

[

(r/s)1/2η̃1
g(s)

]

, 0 < r < 1.

Note that ω(r) g ‖∇u‖L∞(B+
1 )η̃

1
A(r) + η̃1

g(r) and r �−→ ω(r)

r1/2 in nonincreasing. We claim

that for any x0 ∈ B+
1/2 and 0 < ρ < r f 1/4

φ(x0, ρ) f C(ρ/r)1/2φ(x0, r) + Cω(ρ) (4.9)

for some constant C = C(n, λ) > 0. As u
xn

is bounded, (4.9) readily implies Proposition 4.1

by taking r = 1/4. Before we prove (4.9), we observe that if Bs(z0) ⊂ Bt (z1) and μ(Bs(z0)∩
B+

1 ) g c0μ(Bt (z1) ∩ B+
1 ) for some 0 < c0 < 1, then φ(z0, s) f 2c−1

0 φ(z1, t). This will be

used multiple times in the proof, and follows from the following computation:

−
∫

Bs (z0)

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

Bs (z0)

∣

∣

∣

∣

∣

dμ

f −
∫

Bs (z0)

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

Bt (z1)

∣

∣

∣

∣

∣

dμ +
∣

∣

∣

∣

∣

〈

u

xn

〉μ

Bs (z0)

−
〈

u

xn

〉μ

Bt (z1)

∣

∣

∣

∣

∣

f 2−
∫

Bs (z0)

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

Bt (z1)

∣

∣

∣

∣

∣

dμ f 2

c0
−
∫

Bt (z1)

∣

∣

∣

∣

∣

u

xn

−
〈

u

xn

〉μ

Bt (z1)

∣

∣

∣

∣

∣

dμ.

To derive (4.9), we fix a point x0 = (x ′
0, (x0)n) ∈ B+

1/2, and write d := (x0)n and

x̄0 := (x ′
0, 0) ∈ B ′

1/2. We split our proof into two cases

either ρ g d/2 or ρ < d/2.

Case 1. We first consider the case ρ g d/2.

Case 1.1. Suppose ρ < r/6. By using the observation above, we can obtain

φ(x0, ρ) f Cφ(x̄0, 3ρ) and φ(x̄0, r/2) f Cφ(x0, r).

We then have by Lemma 4.2,

φ(x0, ρ) f Cφ(x̄0, 3ρ) f C

(

3ρ

r/2

)1/2

φ(x̄0, r/2) + Cω(3ρ)

f C(ρ/r)1/2φ(x0, r) + Cω(ρ).

Case 1.2. If r/6 f ρ < r , then we simply have by using the above observation

φ(x0, ρ) f Cφ(x0, r) f C(ρ/r)1/2φ(x0, r).

Case 2. Suppose ρ < d/2. If r < d/2, then (4.9) simply follows from Lemma 4.3. Thus we

may assume ρ < d/2 f r . Notice that by Lemma 4.3 again,

φ(x0, ρ) f C(ρ/d)1/2φ(x0, d/2) + Cω(ρ). (4.10)

We consider further subcases either r/4 f d or d < r/4.

Case 2.1. Suppose d/8 < r/4 f d . Then we readily have φ(x0, d/2) f Cφ(x0, r), which

combined with (4.10) yields

φ(x0, ρ) f C(ρ/d)1/2φ(x0, r) + Cω(ρ) f C(ρ/r)1/2φ(x0, r) + Cω(ρ).
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Case 2.2. It remains to consider the case ρ < d/2 < r/8. By applying Lemma 4.2, we infer

φ(x0, d/2) f Cφ(x̄0, 2d) f C(d/r)1/2φ(x̄0, r/2) + ω(2d)

f C(d/r)1/2φ(x0, r) + ω(2d).

This, along with (4.10) and the monotonicity of t �−→ ω(t)

t1/2 , gives

φ(x0, ρ) f C(ρ/r)1/2φ(x0, r) + C(ρ/d)1/2ω(2d) + Cω(ρ)

f C(ρ/r)1/2φ(x0, r) + Cω(ρ).

This completes the proof. ��

4.2 Higher-order boundary Harnack principle on a fixed boundary

The aim of this subsection is to establish the higher-order boundary Harnack principle, The-

orem 1.5. In fact, the most technical part of the proof has already been done in the previous

subsection, where we proved the Dini mean oscillation of u/xn in Proposition 4.1. In this sub-

section, we first extend that result to deduce the higher regularity of u/xn ; see Corollary 4.7.

We then follow the argument presented in [26, Theorem 1.2] to achieve Theorem 1.5.

To extend Proposition 4.1, we need the following auxiliary result.

Proposition 4.4 Let n g 2, k ∈ N, ω a Dini function and u be a weak solution to (4.1):
{

− div(A∇u) = div g in B+
1 ,

u = 0 on B ′
1.

Let A, g ∈ Ck−1(B+
1 ) with Dk−1

x ′ A, Dk−1
x ′ g ∈ C

0,ω
1 (B+

1 ). Then u ∈ Ck
loc(B+

1 ∪B ′
1). Moreover,

if ‖A‖Ck−1(B+
1 ) + ∑

|β|=k−1[D
β

x ′ A]
C

0,ω
1,μ (B+

1 )
f L, then there exists a positive constant C and

a modulus of continuity σ depending only on n, λ, k, L and ω such that

‖u‖Ck,σ (B+
1/2) f C

⎛

¿‖u‖L2(B+
1 ) + ‖g‖Ck−1(B+

1 ) +
∑

|β|=k−1

[D
β

x ′g]
C

0,ω
1 (B+

1 )

À

⎠ . (4.11)

Proof Let us prove the result by induction on k ∈ N. The case k = 1 is [7, Proposition

2.7]. Let us suppose the result is true for a certain k ∈ N and prove it for k + 1. Assuming

A, g ∈ Ck(B+
1 ) and Dk

x ′ A, Dk
x ′g ∈ C

0,ω
1 (B+

1 ), we want to prove u ∈ Ck+1
loc (B+

1 ∪ B ′
1), which

is equivalent to prove ui = ∂i u ∈ Ck
loc(B+

1 ∪ B ′
1) for any i = 1, . . . , n. It is easily seen that

any tangential derivative ui = ∂i u with i = 1, . . . , n − 1 is a solution to
{

− div(A∇ui ) = div(∂i g + ∂i A∇u) in B+
1

ui = 0 on B ′
1.

(4.12)

Hence

ui ∈ Ck
loc(B+

1 ∪ B ′
1) for any i = 1, . . . , n − 1 (4.13)

by the inductive hypothesis since g := ∂i g + ∂i A∇u ∈ Ck−1 with Dk−1
x ′ g ∈ C

0,ω
1 . Let us

remark that we used that A, g ∈ Ck ⊂ Ck−1,1 and by standard Schauder estimates u ∈ Ck,β

for any 0 < β < 1, i.e. ∇u ∈ Ck−1,β for any 0 < β < 1.
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In order to prove that un ∈ Ck
loc(B+

1 ∪ B ′
1), it is enough to prove that unn = ∂2

nnu ∈
Ck−1

loc (B+
1 ∪ B ′

1) because uni := ∂2
ni u ∈ Ck−1

loc (B+
1 ∪ B ′

1) for any i = 1, . . . , n − 1 was

already given by (4.13). Then, for this last partial derivative, one can rewrite equation (4.1)

as

unn = − 1

ann

(

div g +
n−1
∑

i=1

∂i (〈A∇u, �ei 〉) +
n−1
∑

i=1

∂n(ani ui ) + ∂nannun

)

∈ Ck−1.

Observe that ann = 〈A�en, �en〉 g λ > 0. ��

By employing the standard flattening of the boundary (4.16), Proposition 4.4 can be

generalized to the boundary Schauder estimate in Ck,1−DMO domains as follows: let u be a

solution of
{

− div(A∇u) = div f in � ∩ B1,

u = 0 on ∂� ∩ B1.
(4.14)

Then the following result holds true

Corollary 4.5 (Boundary Schauder estimates in Ck,1−DMO domains) Let n g 2, k ∈ N, ω a

Dini function, and u be a weak solution to (4.14). Let A, f ∈ C
k−1,ω
1 (�∩ B1), γ ∈ C

k,ω
1 (B ′

1).

Then u ∈ Ck
loc(�∩ B1). Moreover, if ‖A‖

C
k−1,ω
1 (�∩B1)

+‖γ ‖
C

k,ω
1 (B′

1)
f L, then there exists a

positive constant C and a modulus of continuity σ depending only on n, λ, k, L, and ω such

that

‖u‖Ck,σ (�∩B1/2) f C
(

‖u‖L2(�∩B1)
+ ‖f‖

C
k−1,ω
1 (�∩B1)

)

.

Let us remark here that the modulus of continuity σ(r) is comparable with
∫ r

0
ω̂(s)

s
ds + rβ

for any chosen β ∈ (0, 1), where ω̂ is a Dini function derived from ω as in (2.6).

We combine Propositions 4.1 and 4.4 to derive the following result.

Proposition 4.6 Let us assume the same conditions of Proposition 4.4. Then u/xn ∈
Ck−1

loc (B+
1 ∪ B ′

1) and Dk−1
x ′

(

u
xn

)

is of L1(xndx)-DMO in B+
1/2.

Proof The fact that u/xn ∈ Ck−1
loc (B+

1 ∪ B ′
1) follows by Proposition 4.4 and the fact that

u(x ′, xn)

xn

=
∫ 1

0

∂nu(x ′, sxn) ds.

Let us prove that Dk−1
x ′

(

u
xn

)

is of L1(xndx)-DMO by induction on k ∈ N. The case k = 1

is given in Proposition 4.1. Let us suppose the result true for a certain k ∈ N and prove it for

k + 1. Assuming A, g ∈ Ck(B+
1 ) and Dk

x ′ A, Dk
x ′g ∈ C

0,ω
1 (B+

1 ), we want to prove Dk
x ′

(

u
xn

)

is of L1(xndx)-DMO in B+
1/2. Let us remark that Proposition 4.4 implies u ∈ Ck+1 and it

remains to show that Dk−1
x ′

(

∂i u
xn

)

is of L1(xndx)-DMO in B+
1/2 for any i = 1, . . . , n − 1.

In the proof of Proposition 4.4 we proved that any tangential derivative ui = ∂i u with

i = 1, . . . , n−1 is a solution to (4.12). Hence the result is proved by the inductive hypothesis

since g := ∂i g + ∂i A∇u ∈ Ck−1 with Dk−1
x ′ g ∈ C

0,ω
1 . ��
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Corollary 4.7 Let k g 1, and suppose that u is a solution of
{

− div(A∇u) = g in B+
1 ,

u = 0 on B ′
1.

(4.15)

Assume A, g ∈ Ck−1(B+
1 ) and Dk−1

x ′ A ∈ C
0,ω
1 (B+

1 ) for some Dini function ω. Then the

conclusion of Proposition 4.6 holds.

Proof In view of Proposition 4.6, it is enough to find a function g : B+
3/4 → R

n such that

div g = g, and g ∈ Ck−1(B+
3/4) with Dk−1

x ′ g ∈ C
0,ω
1 (B+

3/4). To this end, we take a smooth

and convex domain D such that B+
3/4 ⊂ D ⊂ B+

1 , and consider a Dirichlet problem

{

�w = g in D,

w = 0 on ∂D.

By the elliptic theory, there exists a (unique) solution w, which belongs to Ck,β(D) for any

0 < β < 1. Then g := ∇w is the desired one. ��

Now we are ready to establish Theorem 1.5 by following the argument introduced in [26,

Theorem 1.2].

Let us consider two functions u, v solving (1.4), i.e.,

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

− div (A∇v) = f in � ∩ B1,

− div (A∇u) = g in � ∩ B1,

u > 0 in � ∩ B1,

u = v = 0, ∂νu < 0 on ∂� ∩ B1,

where A is symmetric and satisfies (1.2), 0 ∈ ∂� and ν stands for the unit outward normal

vector to � on ∂�.

As shown in [26], the ratio w = v/u solves the degenerate elliptic equation

− div
(

u2 A∇w
)

= u f − gv in � ∩ B1;
with associated conormal boundary condition at ∂� ∩ B1, i.e., it is a weak solution in the

weighted Sobolev space H1(� ∩ B1, u2(x)dx)
∫

�∩B1

u2 A∇w∇φ =
∫

�∩B1

(u f − vg)φ

for any φ ∈ C∞
c (� ∩ B1). Theorem 1.5 is proved by composing u, v with the standard

diffeomorphism which flattens the boundary, and proving the regularity for the ratio near

the flat boundary. Then, the curved world inherits the regularity by composing back with the

same diffeomorphism.

Let k ∈ N and ω be a Dini function. Let us assume that A, f , g ∈ C
k−1,ω
1 (� ∩ B1) and

∂� ∈ Ck,1−DMO. After rotations and dilations, the domain �∩B1 can be locally parametrized

with γ ∈ C
k,ω
1 :

� ∩ B1 = {xn > γ (x ′)} ∩ B1, ∂� ∩ B1 = {xn = γ (x ′)} ∩ B1.

Let us consider the standard local diffeomorphism which straightens the boundary ∂�:

�(x ′, xn) = (x ′, xn + γ (x ′)), (4.16)
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which is of class C
k,ω
1 . By composing u, v, f , g with �, one can see that ṽ = v ◦ � and

ũ = u ◦ � solve, up to a further dilation,

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

− div( Ã∇ṽ) = f̃ in B+
1 ,

− div( Ã∇ũ) = g̃ in B+
1 ,

ũ > 0 in B+
1 ,

ũ = ṽ = 0, −∂n ũ < 0 on B ′
1,

with new free terms f̃ = f ◦�, g̃ = g◦� and coefficients Ã = (J−1
� )(A◦�)(J−1

� )T , where

J� is the Jacobian associated with �. It is easily seen that | det J�| ≡ 1, which combined

with Lemma A.2 implies that f̃ , g̃, Ã ∈ C
k−1,ω̃
1 for some Dini function ω̃. Hence we are

concerned with the regularity of the ratio

w̃ = w ◦ � = v ◦ �

u ◦ �
.

To prove Theorem 1.5 it suffices to show w̃ ∈ Ck up to � = {xn = 0}.
In the proof below we will rename for sake of simplicity of notation ũ, ṽ, w̃, f̃ , g̃, Ã, ω̃

as u, v, w, f , g, A, ω.

Proof of Theorem 1.5 After composing with the standard diffeomorphism in (4.16), the ratio

solves

− div

(

x2
n

(

u

xn

)2

A∇w

)

= xn

(

u

xn

f − v

xn

g

)

.

Taking k ∈ N, we have A, f , g ∈ C
k−1,ω
1 . Then by Corollary 4.7, we have that u/xn ∈ Ck−1

and Dk−1
x ′ (u/xn) ∈ C

0,ω̃
1,μ1

(the same for v) for some Dini function ω̃ and dμα = xα
n dx .

Hence, w is a solution to

− div
(

x2
n A∇w

)

= div(x2
n f),

where A =
(

u
xn

)2
A and

f(x ′, xn) = �en

x2
n

∫ xn

0

t f (x ′, t) dt = �en

∫ 1

0

s f (x ′, sxn) ds,

where f = u
xn

f − v
xn

g. By Lemma A.2, Lemma A.3 and Corollary A.5, we have A, f ∈ Ck−1

and Dk−1
x ′ A, Dk−1

x ′ f ∈ C
0,ω
1,μ2

, and thus we can conclude by applying Theorem 1.4. ��

4.3 Higher-order boundary Harnack principle across regular zero sets

The aim of this subsection is the proof of Theorem 1.6. We begin by deriving the Ck,2−DMO-

regularity of the A-harmonic function u for A ∈ C
k−1,ω
2 . In fact, in the proposition below,

we deal with a more general situation.

In Theorem 1.6, we require an L2-DMO type condition on the coefficient A, whereas we

impose L1-DMO type conditions for the other main results. This is because if A belongs to

the L1-DMO type space C
k−1,ω
1 , we expect only Ck-regularity of u, which is insufficient for

our objective. As we will soon observe, Dini mean oscillation of derivatives of u is necessary

for the DMO type condition for the new coefficient after flattening the regular nodal set.
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Proposition 4.8 Let n g 2, k ∈ N, ω a Dini function and u be a weak solution to (4.1):
{

− div(A∇u) = div g in B+
1 ,

u = 0 on B ′
1.

Let A, g ∈ C
k−1,ω
2 (B+

1 ). Then u ∈ C
k,2−DMO
loc (B+

1 ∪ B ′
1). Moreover, if

‖A‖
C

k−1,ω
2 (B+

1 )
f L,

then there exists a positive constant C and a Dini modulus of continuity ω depending only

on n, λ, k, L, and ω such that

‖u‖
C

k,ω
2 (B+

1/2)
f C

(

‖u‖L2(B+
1 ) + ‖g‖

C
k−1,ω
2 (B+

1 )

)

.

Proof When k = 1, the result can be inferred from [6, Theorem 1]. In fact, this theorem

concerns the interior C1,2−DMO-regularity of the solution with data of partially Dini mean-

oscillation with respect to x ′-variable. It is worth noting that while the statement of the

theorem indicates that the solution is C1, its C1,2−DMO regularity can be easily inferred from

the proof. To apply this result in our context, we take odd-extensions for u, A and g from B+
1

to B1. Then (4.1) gives

− div(A∇u) = div g in B1.

Since the extended A and g still remain of partially Dini mean-oscillation, the case k = 1

follows.

We can extend the case k = 1 to the general case k ∈ N by using the induction argument

demonstrated in the proof of Proposition 4.4. ��

By employing the standard flattening of the boundary (4.16), Proposition 4.8 can be

generalized to the boundary Schauder estimate in Ck,2−DMO domains as follows: let u be a

solution of (4.14), then the following result holds true

Corollary 4.9 (Boundary Schauder estimates in Ck,2−DMO domains) Let n g 2, k ∈ N, ω a

Dini function and u be a weak solution to (4.14). Let A, f ∈ C
k−1,ω
2 (�∩ B1), γ ∈ C

k,ω
2 (B ′

1).

Then u ∈ C
k,2−DMO
loc (� ∩ B1). Moreover, if ‖A‖

C
k−1,ω
2 (�∩B1)

+ ‖γ ‖
C

k,ω
2 (B′

1)
f L, then there

exists a positive constant C and a Dini modulus of continuity ω depending only on n, λ, k, L,

and ω such that

‖u‖
C

k,ω
2 (�∩B1/2)

f C
(

‖u‖L2(�∩B1)
+ ‖f‖

C
k−1,ω
2 (�∩B1)

)

.

Remark 4.10 By using Proposition 4.8 and Lemma A.4, in the L2-DMO setting one can

prove the following counterpart of Proposition 4.6: let us assume the same conditions of

Proposition 4.8. Then there exists a Dini function ω̃ and a positive constant C depending

only on n, λ, k, L , and ω such that
∥

∥

∥

∥

u

xn

∥

∥

∥

∥

C
k−1,ω̃
2 (B+

1/2)

f C
(

‖u‖L2(B+
1 ) + ‖g‖

C
k−1,ω
2 (B+

1 )

)

.

Now, let us return to Theorem 1.6. To prove it, we use the following strategy: first we

localize the problem around a given point on the regular part R(u) of the nodal set Z(u) =
u−1{0}, where u is a given A-harmonic function, i.e., local solution to div(A∇u) = 0. For

simplicity 0 ∈ R(u) ∩ B1, u is A-harmonic in B1 and S(u) ∩ B1 = ∅. Considering another
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A-harmonic function v in B1 such that locally Z(u) ⊆ Z(v), then the ratio w = v/u is

solution to

div(u2 A∇w) = 0 in B1.

We would like to straighten the regular nodal set and get the regularity estimates for the

ratio from both sides of R(u), and finally glue them together across the free interface. Under

L2-DMO type assumptions on coefficients, specifically A ∈ C
k−1,ω
2 , the solution u belongs

to C
k,ω̃
2 -spaces, by the interior counterpart of Proposition 4.8. We would like to stress the fact

that the implicit function theorem cannot ensure that R(u) ∩ B1 is a hypersurface of class

C
k,ω̃
2 since DMO type conditions are not preserved under restrictions to lower dimensional

subsets. For this reason we need to make use of a hodograph transformation [15, 17] which

is, in the present case, a diffeomorphism of class C
k,ω̃
2 which flattens the level sets of u.

We consider the A-harmonic function u in B1 with 0 ∈ R(u), S(u) ∩ B1 = ∅ and |∇u| g
c > 0. This nondegeneracy condition allows us assume, up to rotations, |∂nu| g c > 0.

Then, we can define the following diffeomorphism

�(x ′, xn) = (x ′, u(x ′, xn)). (4.17)

Denoting by x = (x ′, xn) the original coordinates and y = (y′, yn) the new coordinates,
{

y′ = x ′

yn = u(x ′, xn).

Up to dilations, � maps {u > 0} ∩ B1 into B+
1 = B1 ∩ {yn > 0}, {u < 0} ∩ B1 into

B−
1 = B1 ∩ {yn < 0} and R(u) ∩ B1 into B ′

1 = B1 ∩ {yn = 0}. In particular, for any t ∈ R,

the level set u−1{t} ∩ B1 is locally mapped into the hyperplane {yn = t} ∩ B1. Then,

u ◦ �−1(y′, yn) = yn .

The Jacobian associated with � is given by

J�(x) =
(

In−1 0

(∇x ′u(x))T ∂nu(x)

)

, with |det J�(x)| = |∂nu(x)| g c > 0,

and hence � is locally invertible and bi-Lipschitz by the implicit function theorem. In fact

J�−1 = J−1
� ◦ �−1;

that is,

J�−1(y) =
(

In−1 0

−(∇x ′u ◦ �−1(y))T /∂nu ◦ �−1(y) 1/∂nu ◦ �−1(y)

)

,

with

|det J�−1(y)| = 1

|∂nu ◦ �−1(y)| g 1

‖∇u‖∞
> 0.

Then, up to dilations, w̃ = w ◦ �−1 solves

div
(

x2
n Ã∇w̃

)

= 0 in B1,

where

Ã = (J−1

�−1)(A ◦ �−1)(J−1

�−1)
T |det J�−1 | = J� AJ T

�

|det J� | ◦ �−1.
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Notice that DMO type conditions are preserved under composition with this diffeomorphism.

Then, when u ∈ C
k,ω̃
2 the new matrix Ã belongs to C

k−1,ω̃
2 ⊂ C

k−1,ω̃
1 ⊂ C

k−1,ω̃
1,μ2

with

dμ2 = x2
n dx . Now we shall prove the Ck regularity of w̃ across � = {yn = 0} and composing

back with �, which is of class C
k,ω̃
2 , this will give the same regularity for w = w̃ ◦ �. Let

us denote Ã, w̃, ω̃ by A, w, ω.

Proof of Theorem 1.6 After applying the diffeomorphism in (4.17), the ratio solves

div
(

x2
n A∇w

)

= 0 in B1,

where A belongs to C
k−1,ω
1,μ2

for some Dini function ω, and solves the same problem separately

on the upper and lower half balls B+
1 , B−

1 with conormal boundary condition at B ′
1. Hence, by

applying Theorem 1.4 on the two half balls separately, we get that w belongs to Ck,σ (B+
1/2)

and Ck,σ (B−
1/2) for some modulus σ which is β-nonincreasing (i.e., r �→ σβ(r)r−β is

nonincreasing) for some β ∈ (0, 1]. Finally, we can apply the gluing lemma in [26, Lemma

2.11] which can be generalized to the case of the present modulus σ due to the validity of

[16, Lemma 3.9 and Lemma 3.10]. Let us stress that the validity of the gluing lemma relies

on the boundary condition (1.6). ��

Appendix A Properties of DMO functions

The following doubling property of the measure can be directly checked.

Lemma A.1 For α > −1, let dμ = xα
n dx. Suppose that D is a Lipschitz and convex domain

in B+
1 . Then there exists a constant C > 0, depending only on n, α, and the Lipschitz constant

of D, such that

μ(B2r (x0) ∩ D) f Cμ(Br (x0) ∩ D)

for any x0 ∈ D and 0 < r < diam D.

Lemma A.2 Let f and g be bounded functions in a domain �. Let μ be a Radon measure

and q ∈ [1,+∞). If f and g are of Lq(dμ)-DMO in � then so is f g.

Proof Let x0 ∈ � and 0 < r < 1 be given. Then, for �r (x0) = � ∩ Br (x0), we have

−
∫

�r (x0)

| f (x)g(x) − 〈 f g〉μ
�r (x0)

|q dμ(x)

f C−
∫

�r (x0)

| f (x)g(x) − f (x)〈g〉μ
�r (x0)

|q dμ(x)

+ C−
∫

�r (x0)

| f (x)〈g〉μ
�r (x0)

− 〈 f g〉μ
�r (x0)

|q dμ(x)

f C−
∫

�r (x0)

| f (x)|q |g(x) − 〈g〉μ
�r (x0)

|q dμ(x)

+ C−
∫

�r (x0)

−
∫

�r (x0)

| f (x) − f (y)|q |g(y)|q dμ(y) dμ(x)

f C‖ f ‖q
∞[ηq,μ

g (r)]q + C‖g‖q
∞[ηq,μ

f (r)]q .

��
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Lemma A.3 Let α g β > −1 and q ∈ [1,+∞). If f is of Lq(x
β
n dx)-DMO in B+

1 , then it is

of Lq(xα
n dx)-DMO in B+

1/2.

Proof Let x0 = (x ′
0, (x0)n) ∈ B+

1/2 and 0 < r < 1/6 be given. For simplicity, we write

dμα(x) = xα
n dx , �r (x0) := Br (x0) ∩ B+

1/2, d := (x0)n , and x̄0 := (x ′
0, 0). We consider two

cases:

either d/2 f r or d/2 > r .

Case 1. If d/2 f r , then we use Br (x0) ⊂ B3r (x̄0) and apply Lemma A.1 to get

−
∫

�r (x0)

| f − 〈 f 〉μα

�r (x0)
|qdμα f C−

∫

B+
3r (x̄0)

−
∫

B+
3r (x̄0)

| f (x) − f (y)|qdμα(x)dμα(y)

f C

r2(n+α)

∫

B+
3r (x̄0)

∫

B+
3r (x̄0)

| f (x) − f (y)|q xα
n yα

n dxdy

f C

r2(n+β)

∫

B+
3r (x̄0)

∫

B+
3r (x̄0)

| f (x) − f (y)|q xβ
n yβ

n dxdy

f C−
∫

B+
3r (x̄0)

| f − 〈 f 〉μβ

B+
3r (x̄0)

|qdμβ f C[ηq,μβ

f (3r)]q .

Case 2. If d/2 > r , then by using that d/2 f xn < 3d/2 for every x = (x ′, xn) ∈ Br (x0),

we can easily obtain

−
∫

�r (x0)

| f − 〈 f 〉μα

�r (x0)
|qdμα f C−

∫

�r (x0)

| f − 〈 f 〉μβ

�r (x0)
|qdμβ f C[ηq,μβ

f (r)]q .

��

Lemma A.4 For α > −1, let dμ = xα
n dx. Let q ∈ [1,+∞) and β > 0. If f is of Lq(dμ)-

DMO in B+
1 , then f̂ (x) :=

∫ 1
0 sβ f (x ′, sxn)ds is of Lq(dμ)-DMO in B+

1 .

Proof Given x0 ∈ B+
1 and 0 < r < 1

2
√

n
, we have by applying Minkowski’s integral

inequality and Jensen’s inequality

(

−
∫

Br (x0)∩B+
1

| f̂ − 〈 f̂ 〉μ
Br (x0)∩B+

1

|qdμ

)1/q

=
(

−
∫

Br (x0)∩B+
1

∣

∣

∣

∣

∫ 1

0

sβ( f (x ′, sxn) − 〈 f (·, s·)〉μ
Br (x0)∩B+

1

)ds

∣

∣

∣

∣

q

dμ(x)

)1/q

f
∫ 1

0

sβ

(

−
∫

Br (x0)∩B+
1

| f (x ′, sxn) − 〈 f (·, s·)〉μ
Br (x0)∩B+

1

|qdμ(x)

)1/q

ds

f
∫ 1

0

sβ

(

−
∫

Br (x0)∩B+
1

−
∫

Br (x0)∩B+
1

| f (x ′, sxn) − f (y′, syn)|qdμ(x)dμ(y)

)1/q

ds.

We claim that there is a dimensional constant C > 0 such that for each 0 < s < 1,

(

−
∫

Br (x0)∩B+
1

−
∫

Br (x0)∩B+
1

| f (x ′, sxn) − f (y′, syn)|qdμ(x)dμ(y)

)1/q
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f
Cη

q,μ

f (2
√

nsr)

s
. (A.1)

Suppose now the claim is true. Then, we readily have

(

−
∫

Br (x0)∩B+
1

| f̂ − 〈 f̂ 〉μ
Br (x0)∩B+

1

|qdμ

)1/q

f C

∫ 1

0

sβ−1η
q,μ

f (2
√

nsr)ds.

Here, ω(r) :=
∫ 1

0 sβ−1η
q,μ

f (2
√

nsr)ds is a Dini function since

∫ 1
2
√

n

0

ω(r)

r
dr =

∫ 1

0

sβ−1

∫ 1
2
√

n

0

η
q,μ

f (2
√

nsr)

r
drds =

∫ 1

0

sβ−1

∫ s

0

η
q,μ

f (t)

t
dtds

f
(

∫ 1

0

η
q,μ

f (t)

t
dt

)

(∫ 1

0

sβ−1ds

)

< +∞.

To close the argument, we need to verify (A.1), which by a change of variables is equivalent

to
∫

Es
r (x0)∩B+

1

∫

Es
r (x0)∩B+

1

| f (x) − f (y)|qdμ(x)dμ(y)

f C[ηq,μ

f (2
√

nsr)]q [μ(Br (x0) ∩ B+
1 )]2s2−q+2α,

(A.2)

where E s
r (x0) are ellipsoids defined by

E s
r (x0) :=

{

x = (x ′, xn) ∈ R
n : |x ′ − x ′

0|2 + |xn − s(x0)n)|2
s2

< r2

}

.

To prove (A.2), we cover the ellipsoid E s
r (x0) by hypercubes of length 2sr in the following

way:

- each center of the hypercube lies on {xn = s(x0)n},
- every intersection of two hypercubes has zero n-dimensional measure.

Note that the number of hypercubes is bounded by C/sn−1 for some dimensional constant

C > 0. Next, we cover each hypercube by the concentric ball of radius
√

nsr . Then we can

write

E s
r (x0) ⊂

⋃

B∈F

B,

where each element B is a ball of radius
√

nsr centered on {xn = s(x0)n} and n(F) f
C/sn−1.

We assert that given arbitrary two balls in F , say B̄ and B̃, it holds that
∫

B̄∩B+
1

∫

B̃∩B+
1

| f (x) − f (y)|qdμ(x)dμ(y)

f Cs−q [μ(B2
√

nsr (sx0) ∩ B+
1 )]2[ηq,μ

f (2
√

nsr)]q .

(A.3)

Indeed, if B̄ and B̃ are adjacent (i.e., B̄ ∩ B̃ �= ∅), then B̄ ∪ B̃ ⊂ B̂ for a ball B̂ centered on

{xn = s(x0)n} of radius 2
√

nsr . This readily gives
∫

B̄∩B+
1

∫

B̃∩B+
1

| f (x) − f (y)|qdμ(x)dμ(y)
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f
∫

B̂∩B+
1

∫

B̂∩B+
1

| f (x) − f (y)|qdμ(x)dμ(y)

f C[μ(B2
√

nsr (sx0) ∩ B+
1 )]2[ηq,μ

f (2
√

nsr)]q .

On the other hand, if B̄ and B̃ are not adjacent, we connect them by a chain of balls in F ,

with a length of the chain bounded by C/s for some C = C(n) > 0. That is, we consider a

sequence of balls B̄ = B0, B1, . . . , B J−1, B J = B̃ such that J f C/s, B j−1 ∩ B j �= ∅ and

B j ∈ F , 1 f j f J . Then by Hölder’s inequality
∫

B0∩B+
1

∫

B J ∩B+
1

| f (x0) − f (x J )|qdμ(x J )dμ(x0)

f
∫

B0∩B+
1

∫

B J ∩B+
1

−
∫

B1∩B+
1

· · · −
∫

B J−1∩B+
1

J q−1
J

∑

j=1

| f (x j−1) − f (x j )|qdμ(x J−1) · · · dμ(x1)dμ(x J )dμ(x0)

= J q−1
J

∑

j=1

∫

B j−1∩B+
1

∫

B j ∩B+
1

| f (x j−1) − f (x j )|qdμ(x j )dμ(x j−1)

f C J q [μ(B2
√

nsr (sx0) ∩ B+
1 )]2[ηq,μ

f (2
√

nsr)]q

f Cs−q [μ(B2
√

nsr (sx0) ∩ B+
1 )]2[ηq,μ

f (2
√

nsr)]q ,

and hence (A.3) is proved.

Now, by using (A.3), we obtain
∫

Es
r (x0)∩B+

1

∫

Es
r (x0)∩B+

1

| f (x) − f (y)|qdμ(x)dμ(y)

f
∑

1fi, jfC/sn−1

∫

Bsr (zi )

∫

Bsr (z j )

| f (x) − f (y)|qdμ(x)dμ(y)

f Cs−(2n−2+q)[μ(B2
√

nsr (sx0) ∩ B+
1 )]2[ηq,μ

f (2
√

nsr)]q .

Finally, by using μ(B2
√

nsr (sx0) ∩ B+
1 ) f Cμ(Bsr (sx0) ∩ B+

1 ) f Csn+αμ(Br (x0) ∩ B+
1 ),

we conclude (A.2). ��

Lemma A.4 has an immediate corollary.

Corollary A.5 Let α, μ, q and β be as in Lemma A.4. Given k ∈ N and a Dini function ω, if

f ∈ C
k,ω
q,μ(B+

1 ), then f̂ (x) :=
∫ 1

0 sβ f (x ′, sxn)ds ∈ C
k,ω̄
q,μ(B+

1 ) for some Dini function ω̄.
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