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Abstract
In this paper, we study degenerate or singular elliptic equations in divergence form

—div(x} AVu) = div(x;g) in B; N{x, > 0}.

When o > —1, we establish boundary Schauder type estimates under the conormal boundary
condition on the flat boundary, provided that the coefficients satisfy Dini mean oscillation
(DMO) type conditions. Additionally, as an application, we derive higher-order boundary
Harnack principles for uniformly elliptic equations in divergence form with DMO coeffi-
cients.

Mathematics Subject Classification 35B45 - 35B65 - 35J70 - 35J75

1 Introduction and main results

1.1 Degenerate or singular equations

For a fixed number « € (—1, 00), we consider a second-order elliptic equation in divergence
form with conormal boundary condition

in B}, (1.1)

—div(xYAVu) = div(x'g)
limy, 0 X2 (AVu + g, é,) =0
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Here, the coefficient matrix A = (a,-.,-)l’.” ot BIJr — R satisfies the following conditions
for some constant A > 0 '
{the uniform ellipticity: A|£]> < (A(x)€,£), & e€R", x e B},

1.2
the uniform boundedness: |A(x)| < 1 xe Bl+. (12)

We say that a function u € H"(B") = H'(B], x%dx) is a weak solution of (1.1) if it
satisfies

fﬁZ‘(AVHg, V¢) =0,
B]

for all ¢ € CZ°(B;). Note that by using a suitable cutoff function and the Cauchy-Schwarz
inequality, when « > 1 it is sufficient to test the equation with ¢ € Cfo(BlJr).

The main objective of this paper is to establish boundary Schauder type estimates for
solutions of (1.1) under Dini mean oscillation (DMO) type conditions on coefficients and
data. When « = 0, it was shown in [9] that weak solutions of (1.1) are continuously differen-
tiable up to the boundary when coefficients have DMO. Our paper can be primarily viewed
as a generalization of [9] from “uniformly elliptic” equations to “degenerate or singular”
equations. We refer the reader to Theorem 1.4 for our main result.

The above class of equations has been studied extensively in the literature. We refer the
reader to recent work [24-26] for Holder and Schauder estimates and [11-14] for Sobolev
type estimates, as well as the references therein.

In the rest of this subsection, we provide the precise definitions of spaces of DMO functions
and CKPMO domains.

Definition 1.1 (L9 (dw)-DMO function) Let @ C R" be a domain and f :  — R a
measurable function. Let i be a Radon measure, g € [1, 400), r € (0, 1), and

/g
7751#7“(”) ‘= sup (][ Lf(x) — (f)lé(xo,r)w dM(X)) ’
Q(x0,r)

xX0ER

where Q2 (xq, ) := B,(xg) N 2 and (f)g(xo n = JCQ(xo " f(x)du(x). We say that f is of
L4 (d ) Dini mean oscillations in €2, briefly L4 (d«)-DMO in 2, if n']]{” (r) is a Dini function,
1.e.,

Pyt
/ f dr < 4o00.
0

,
Moreover, the case ¢ = oo corresponds to uniform Dini continuity; that is, given

nF(r):==sup sup |f(y)— f@I

x0€Ry,zeQ(x0,7)

we say that f is Dini continuous in € if n?o(r) is a Dini function. Recall the following
example given in [8]. Let a;;(0) = §;; and for 0 < |x] < 1/2,

aij(x) = 8; (1+ (—loglx)7"),

where 0 < y < 1. Then A does not satisfies the L°>°-DMO condition (with respect to the
Lebesgue measure) or the Holder continuity condition. However, a simple calculation reveals
that for any ¢ € [1, 00),

n% () ~ (—logr)™"~1,
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which implies that A satisfies the L?-DMO condition in Definition 1.1 for any ¢ € [1, 00).

In this paper, our primary focus is on L'-DMO type conditions. However, there are sit-
uations where we also consider L2-DMO type conditions. Let us remark that any time we
work with L2-DMO type conditions, we could work with LZ-DMO type conditions for any
other ¢ € (1, +00) instead. We decided to choose ¢ = 2 as the representative of the range
(1, 400) for the sake of simplicity and clarity.

Definition 1.2 (C*PMO spaces) Let k € N'U {0}, 1 be a Radon measure, ¢ € {1,2}, and
a Dini function. We say that f € C,I;j,“j(ﬁ) if f € C*(Q) and DP £ is of L1 (d)-DMO in
with DMO modulus an’éLf < Cw for any multiindex g € (NU{0})" with |8| =Y/, Bi =k
for some constant C > 0. Defining the norm
— B
1ty = 1f ko) + D 1DF Fleveq)-
|B1=k
where

1/q
(JCQﬁBr(y) lg(x) — <g>l;z03,(y)|q dﬂ(ﬂ)
= sup

yeQ,r>0 w(r)

then ngfj(ﬂ) consists of measurable functions with the finite C§ jﬁ—norm.

Sometimes, we will refer to CKPMO functions briefly to indicate functions satisfying the
previous definition for certain ¢ € {1, 2}, w, and . We use C k.g=DMO 45 well if we want
to indicate the choice of ¢ € {1,2}. Given k € N, the k-th derivative Dk f stands for a
generic derivative of order k of the function f, i.e., D f for some |8| = k. Any time we
omit the dependence on the measure, we mean that y is the Lebesgue measure of the relevant
dimension.

We would like to remark here that C¥ uniform Dini spaces embed into C* spaces with
Dini mean oscillation. Moreover, if a radon measure p satisfies the doubling property in €2,
then we have

Ck’Dini(Q) C Ck,szMO(Q) c Ck,lfDMO(Q) C Ck(ﬁ)

In other words, fixed a Dini function w (r) there exists a modulus of continuity o () compa-
rable with ‘”gs) ds such that

Che(Q) € CYU(Q) € CPU(Q) € C0 (). (1.3)

The definition of C¥ uniform spaces is standard. In fact, in order to define Ccke(Q) with
®(0) = 0 the reader may just consider the previous Definition 1.2 and replace the L9 (du)-
DMO seminorm with

Lg]eo —  sup lg(x) — g(¥)l
e X,yEQ, x#y o(lx —yl)

The first inclusion in (1.3) holds if w is locally finite, the second one follows from the
Cauchy-Schwarz inequality, and the last one needs the Lebesgue differentiation theorem and
the doubling property; that is, the existence of a positive constant C > 0 such that

w(R(xg,2r)) < Cu(Q(xp,r)) Vxo € 2, 0 <r < diam Q.

We refer to the example below Definition 1.1 for an L9-DMO function for any ¢ € [1, 4-00)
which is not Dini continuous. We remark that it is still not known whether the second inclusion
in (1.3) is strict.
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Definition 1.3 (C*PMO domains) Letn > 2,k € N,and g € {1,2}. Aset Q C R"isa C*
domain with L4 Dini mean oscillations (briefly €2 is CK-2~PMO) if it can be locally described
as the epigraph of Cl,;’w functions; that is, given 0 € 92, up to rotations and dilations we can
parametrize

QN By ={x, >y},  IQNB1={xy = y())

with y(0) =0, Vyy(0) =0,y € C,];’w(Bi) for some Dini function w (i.e. n%k y < Cw).

This DMO type condition on the domain is strictly weaker than the usual Dini type
condition on the domain. For example, in two dimensions, consider adomain whose boundary
is locally given by

X

W, lx] < 1/2.

y(x) =
In this case, the domain is C"PMO_ but not C'-Pini,

Although the definition of C k boundaries with DMO is new in literature, we will show that
it is natural and somehow sharp in order to guarantee “C* qualitative properties” of solutions,
i.e., Schauder type estimates, the Hopf-Oleinik lemma (or boundary point principle), and
higher-order boundary Harnack principles.

1.2 The higher-order boundary Harnack principle

In this subsection, we present the applications of Schauder type estimates for (1.1), Theo-
rem 1.4, to higher-order boundary Harnack principles, both on a fixed boundary and across
the “regular” part of the nodal set.

For a bounded domain @ C R”, n > 2, we assume that a variable coefficient matrix
A= (aij);’_./.zl is symmetric A = AT and satisfies (1.2) in Q N Bj. Then, the higher-order
boundary Harnack principle concerns regularity of the ratio of two solutions which vanish
on the same fixed boundary, more precisely, two functions u, v weakly solving

—div(AVv) = f in QN By,
—div(AVu) =g in QN By,
u>0 in QN By,
u=v=0, ou<0 onod2N By,

(1.4)

where 0 € 92 and v stands for the outward unit normal vector on 9<2.

The Schauder Ck-# regularity of the ratio was first established in [5] in the case of
C*-P boundaries, CK—1-# coefficients and right-hand sides, and both in divergence and non-
divergence form. See also [3, 18] for the parabolic counterpart in non-divergence form. Later
in [26] a second proof was proposed, based on the following observation: the ratio w = v/u,
after composing with a straightening diffeomorphism, solves the degenerate equation

—div(x2AVw) = uf — gv, where A = (u/x,)>A. (1.5)

Then, the regularity of the ratio follows from that of solutions to the degenerate equation
(1.5) with the new coefficient A. Finally, using this approach, the work in [16] was a first
attempt in providing the C¥ regularity of the ratio lowering the requirement on boundaries,
coefficients, and free terms up to uniform Dini ones.
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By following this approach and applying Theorem 1.4, we achieve the regularity of the
ratio under the DMO type conditions imposed on boundaries, coefficients, and data. See
Theorem 1.5.

Next, we introduce the boundary Harnack principle across the regular part of the nodal
set. Suppose two functions u, v € H'(B)) solve div(AVu) = div(AVv) = 0 in B; and
share their zero sets, i.e., Z(u) € Z(v), where Z(u) := u~'{0}. From now on, we will refer
to solutions to div(AVu) = 0 as A-harmonic functions. The study of local regularity of the
ratio w = v/u across Z(u) is called boundary Harnack principle on nodal domains [20-22,
26].

Let us assume that the variable coefficients A are symmetric, satisfy (1.2), and belong to
C§ 71"”(8 1) for some k € N, @ a Dini function. Then, by utilizing Theorem 1.4, we establish
Schauder type estimates for the ratio w = v/u across the regular set R(u) := {x € Z(u) :
[Vu(x)| # 0}. See Theorem 1.6 for the precise statement.

1.3 The Hopf-Oleinik boundary point principle

The Hopf-Oleinik lemma or boundary point principle (BPP) can be extended to elliptic
equations in domains with C!-!=PMO poundary. The BPP follows from [23], where the result
was proved in case of flat boundaries and L!-DMO coefficients, which is preserved after
a standard straightening diffeomorphism (4.16) of the C!!~PMO boundary. Consequently,
under these DMO conditions on (1.4), whenever g > 0, the condition d,u < 0 holds on 9€2.
Let us remark here that this is not in contradiction with [1], where counterexamples to BPP
are constructed on boundaries which fail our C'-!=PMO definition. See Proposition 3.1.

1.4 Main results

We precisely state the main results of this paper.
Our central result is as follows.

Theorem 1.4 (Schauder type estimates in the L' (x?dx)-DMO setting) Let o« > —1, k € N,
and ® be a Dini function. Let u € H'(B], xydx) be a weak solution to (1.1) with A

satisfying (1.2) in Bf'. Assume that g, A € Ck’l(E) and D];,_lg, D)]ET]A € C?:;‘)(Br) with
du(x) = xydx. Then, u € C]‘E)C(BIJr U B}) and satisfies

(AVu+g,2,)=0 onB]. (1.6)

Moreover, if | All cx-1 (B}) + Z‘ﬁ|:k71 [Df’A]CO’w(Bﬂ < L, then there exist a modulus o and
ILp 21

a constant C > 0, depending on n, A, w, k, and L, such that

B
lllcroag,y = € | tlliasy agan + I8l + D2 [Dpgleno e,
1Bl=k—1

A similar result was attained in [26] when coefficients belong to the Holder space C*¥~1-¢,
However, as the argument in [26] is specialized for the homogeneous power-type moduli, it
is not applicable to our setting. Instead, we adopt Campanato’s approach and utilize the weak
type-(1,1) estimate presented in [9], following the original idea in [7, 8]. [9] deals with the
specific case of Theorem 1.4 with « = 0 and k = 1, and its crucial step involves the growth
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estimate of

1/p
][ |[Vu — q|” , O<r<1/2,xoeBl+/2,O<p<1.
qeR" \J B, (xo)nB;

@(xp,r) := inf (
However, it turns out that in our weighted context, we have to work with

. 1/p

infqerr (£, ) (Vi U) = alPdp) "0 0 <r = (a2,

. 1/p

inf g gt (fB,(xo)m g |(Vou — 4, U)|Pdu) (o2 <r < 1)2,

where U := (AVu + g, ¢é,) and U™ = (x,/(x0),)*(AVu + g, &,). This is where our
proof substantially differs from [9], requiring careful handling of the discontinuity of ¢ at

r = (x0)n/2.
Next, we present higher-order boundary Harnack principle on a fixed boundary.

Y (xo,r) =

Theorem 1.5 (Higher-order boundary Harnack principle) Let k € N, and w a Dini function.
Consider two functions u, v € H'( N By) solving (1.4) with A symmetric and satisfying
(1.2). Assume that A, f, g € C]ffl’w(Q N By)and y € C]f’w(Bi). Then, w = v/u belongs
to Ck (QN By) and satisfies the following boundary condition

loc

2(Vu,v)(AVw,v)+ f —gw =0 ondQN Bj.

Moreover, if”A”CIF*I,ﬂ)(QmBI) + ”yllci\’ﬂ)(gi) + ||g||le71’m(QﬁBl) = L]v ”u”Lz(QﬁBl) = LZ’
and infagm33/4 |0yu| > L3 > O, then the following estimate holds true

H
u
with a modulus of continuity o and a positive constant C depending on n, A, w, k, L1, Lo,
and L3. Finally, ifu(é,/2) = 1 and v > 0 in Q N By, then

v v
2y =€ (26031 )
”M Ck’a(QﬂB]/z) - M( n/ ) ”f”Cf ! (2NBy)

< C( vl 2 + k1w )
Cko(QNB1)2) Ivllz2@ns)) ”f”Cl (£2NB1)

with o and a positive constant C depending only on n, A, w, k, L1, and L.

Similar to the approaches in Holder and uniform Dini settings [16, 26], we establish
Theorem 1.5 by reducing it to the Schauder type estimate for the degenerate equation (1.5).
As u/x, is absorbed into the new coefficient A, the regularity property of u/x,, is crucial for
applying the Schauder type estimate, Theorem 1.4. While this is rather immediate in [16,
26], in our DMO context, it is highly nontrivial to verify that u#/x,, is in the DMO-space. We
prove this by employing Campanato’s approach in a clever manner; see Proposition 4.1.

Lastly, we state the boundary Harnack principle across the regular zero set, subject to the
L?-DMO type condition on the coefficient. We recall the regular set R(u) = {x € Z(u) :
[Vu(x)| # 0} and denote the singular set by S(u) = {x € Z(u) : |Vu(x)| = 0}.

Theorem 1.6 (Schauder type estimates for the ratio across regular zero sets) Let k € N and
w a Dini function. Consider two A-harmonic functions u,v € H'(By) with A symmetric
and satisfying (1.2) in Bi, A € Cy~"“(B1). Assume that S(u) N By = @ and Z(u) C Z(v).
Then, w = v/u belongs to Cﬁ)c(Bl) and satisfies the following boundary condition

(AVw,v) =0 on R(u)N By,
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where v is the unit normal vector on R(u). Moreover, I IIA] k1.0 < L then
2

H
u
with modulus o and a positive constant C depending on n, A, w, L1, u, and its nodal set
Z(u).

(B1)

<Clvlz2)
Cho (Byj2) (B1)

For the proof, we first show that the solution u# belongs to the DMO-space C];”D under
the L2-DMO assumption on the coefficient. Then, we flatten the zero-set of u and reduce
the problem to the degenerate equation with a DMO-type coefficient. Finally, we apply
Theorem 1.4 on both sides of R(u) together with a gluing lemma.

It is noteworthy that the standard straightening diffeomorphism (4.16) does not ensure
that the new coefficient retains the DMO property, as it is not preserved when restricting to
lower-dimensional subsets, unlike the Holder condition. To address this issue, we employ a
different type of diffeomorphism to flatten the level set; see (4.17).

1.5 Notation and structure of the paper

We use the following notation in this paper.

e R” stands for the n-dimensional Euclidean space. We indicate the points in R” by x =
(x', xp), where x’ = (x1, ..., x,—1) € R""! and identify R"~! with R*~! x {0}.
Forx € R" and r > 0, we let

B (x)={yeR":|x—y| <r}, balinR",
BX(x') = B,(x',0) N {&y, >0},  half-ball,

B.(x") = B, (x",0) N {y, = 0}, thin ball.
When the center is the origin, we simply write B, = B,(0), Bri = Bri (0), and B, =
B/ (0).
e The notation (-, -) stands for the scalar product of two vectors; thatis, forx = (x1, ..., x,)

andy = (y1, ..., yn), then (x, y) = >/, x;y;. The orthonormal basis of R" is denoted
bye,i=1,...,n.

e We denote the set of positive integers by N = {1, 2, 3,...}.

o Let B =(Bi,..., B € (NU{0}D" be a multiindex. Given |8] = >/, Bi and axP =

I, axf ', the B partial derivative of order |8 is given by

1Bl
By L1
dxh
When we write D¥u for some k € N, we mean a generic partial derivative Dfu with
|B] = k. By Dfx_ Xiyonoy ) U> WE MeEAN WE consider only derivatives of u of order k with
L et R R lk
respect to some chosen directions Eij withi; € {iy, ..., i} C{l,...,n}

The rest of the paper is organized as follows: Sect. 2 is devoted to the proof of Theorem 1.4,
i.e., Schauder type estimates for degenerate or singular equations asin (1.1) for general powers
a > —1. In Sect.3, we discuss the validity of the boundary point principle on C'!:!~PMO
boundaries. In Sect.4, we prove Theorems 1.5 and 1.6, i.e., the boundary Harnack principle
on a fixed C%!1~PMO poundary and the boundary Harnack principle across regular zero sets
of solutions to elliptic equations with C¥~1-2-PMO variable coefficients. Finally, we prove
some properties of DMO-functions in Appendix A.
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2 Schauder type estimates for degenerate or singular equations

This section is devoted to the proof of our main result, Theorem 1.4. Throughout this section,
we fix

dp =xidx, o> —Ll.

2.1 Weak type-(1, 1) estimates

In this subsection, we prove the following version of weak type-(1, 1) estimates for the
solution of degenerate or singular equations, which will play a significant role in the proof
of the C'-estimate in Theorem 2.4.

Lemma 2.1 Let A be a constant matrix satisfying
MEP < (A8)8), §eR', and A <1/2

for some constant . > 0. Let D and D be smooth and convex domains in RY with Bl+ C
D C BZ}3 and B;'/Z cDc B;’. Forf € HY¥(D), let u € H"%(D) be a weak solution of

—div(x* AVu) = div(x*fxp) inD,
with the conormal boundary condition
x?(AVu +fxp,v) =0 on dD.

Then there exists a constant C = C(n, A, o) > 0 such that for any t > 0
C
pitx e D3 Vueol > ) = 5 [ ifidu
D

The proof of Lemma 2.1 relies on the following auxiliary results.

Lemma2.2 Let A, D and D be as in Lemma 2.1. Given x0 € Dand 0 < r < % diam D,
suppose thatb € L*>(D; R", d 1) is supported in B, (xo) D and satisfies fBr (x0)ND bdu =0.
If i is a solution of

—div(x*AVii) = div(x®b) inD, x¥(AVi+b,v)=0 ondD, 2.1

then there exists a constant C > 0, depending only on n, «, A, such that

/ |Vildup < C/ |bldw.
D\ Bay (x0) B, (x0)ND

Proof Since the proof of this lemma follows a portion of the proof in [9, Lemma 2.12] with
straightforward modifications, we shall provide the outline of the proofs instead of going into
the details.

For any R > 2r such that D\ Br(xo) # ¥ and a function g € CZ°((B2r (x0)\Br(x0)) N
D; R™), let & € H“*(D) be a solution to

—div(x®ATVD) = div(x?g) inD, x*(ATVi+gv)=0 ondD. (2.2)

By testing (2.2) with & and (2.1) with v and using the assumptions on b, we obtain
[ wigan= [ (Vb= [ (5= (T0) bl
D D B, (x0)ND rifo
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This gives

(Vi, g>du’ < 2r||D25||L°O(B,(x0)ﬂD)/;; [bld .

‘/;BZR (x0)\Br(x0))ND » (x0)ND

Since v solves the homogeneous equation div(xfl‘/iTVf)) = 0 in Bgr(xg) N D with the
homogeneous boundary condition and » < R/2, we have by [13, Proposition 4.4]

- C -2 C 2
D913 < —][ V|2 du < —f lgl%d .
L>® (B, (x0)ND) R2 BR(xo)ﬂ'ﬁ RZM(BR(XO) n D) D

Combining the previous two estimates yields

| (Vi g
(B2r (x0)\Bg (x0))ND
< < [
= = w82 .
RI(BR(x0) N D)V2 Ji, (x> L>((B2r (x0)\Bg (x0))ND,d 1)
By using the duality and applying Holder’s inequality, we deduce

- Cr
IVEN L1 (Bar o)\ Br oD D) = / bldps.
B, (x))"D

Taking the smallest positive integer K such that D C B,k+1,(xp) and applying the above
inequality with R = 2r, 22, ..., 2% ¢, we conclude

K
1
/ |Viildp < Cr/ bldu " —— < cf Ib|d .
D\By (x0) B, (x0)ND =2 B, (x0)ND

[m}

Lemma23 Let D C BI" be a smooth convex domain and T be a bounded linear operator
from L%(D;R", du) to L*(D; R", d ). Suppose that there exists a constant Cy > 0 such
that for any xo € Dand 0 <r < % diam D,

/ I7h| < Co / b
D\ By (x0) B (x0)ND

whenever b € L(D; R", du) is supported in B.(xo) N D and satisfies fD bdu = 0. Then
forf e L2(D; R”, dw) and any t > 0, it holds that

C
pxeD: [TH)| > 1)) < 7/D|f|du,

where C > 0 is a constant, depending only on n, a, A, D, Cj.

Proof In view of Lemma A.l1, D equipped with the standard Euclidean metric and the
weighted measure u (restricted to D) is a space of homogeneous type. Moreover, the Lebesgue
differentiation theorem is available in our situation. With these properties at hand, we can
follow the proof of [7, Lemma 4.1], making obvious adjustments as needed to conclude the
lemma. O

Now, Lemma 2.1 can be directly derived from the preceding two lemmas.

Proof of Lemma 2.1 Given any f € H'%(D), we solve for u. As u is unique up to a constant,
the map T : f — Vu is well defined, and it is a bounded linear operator on LZ(D, du).
Thus, Lemma 2.1 follows by combining Lemmas 2.2 and 2.3. O
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239 Page 10 of 42 H.Dong et al.

2.2 C' estimates

In this subsection, we establish Theorem 1.4 for the case k = 1. We will subsequently
generalize this result to the cases k > 1 by employing an induction argument in the next
subsection.

Theorem 2.4 Fora > —1, leru € H"® (BZ') be a weak solution of
—div(xY AVu) = div(x,g) in B;r, (2.3)
satisfying the conormal boundary condition on B

lim xY(AVu+g,é,) =0.

xp—01

Suppose A = [a;jluxn satisfies (1.2) in B4+. If A and g are of L' (d)-DMO in B4+, then
ue Cl(Bh.

Note that the case « = 0 was achieved in [9, Proposition 3.2]. A similar result can be
found in [7, Proposition 2.7], where the zero Dirichlet boundary condition on B was imposed
instead of the conormal boundary condition. In our proof of Theorem 2.4, we follow the lines
in these two papers. However, our case involving o > —1 requires significantly more intricate
technical considerations due to the degenerate or singular nature of the problem.

Asin[7, 9], we will establish an a priori estimate of the modulus of continuity of Vu under
the assumption u € C! (B;' ). The general case can be obtained by a standard approximation
argument (see e.g. pages 134-135 in [6]).

Given xo = (x(), (x0)n) € B;‘, we put dy, = dist(xg, B}) = (x0), > 0. We set

U:=(AVu+g,é,), and U™ := (x,/dy)*({AVu +g,&,) whendy, > 0.

We fix 0 < p < 1 and consider

. 1/p
infaerr (£, | (Vo UD) —alPdp) L 0<r =dy/2,

V(xo, r) := ) 1/p
lnfq/ERn—l (fBr(XO)ﬂBI (Veu — (', U)|Pdp,) , dey/2 <1 < 1/2.

We would like to mention that for the latter case dy,/2 < r < 1/2, the infimum can be taken
over q € R” instead of ¢/ € R”~!. However, we opt for this formulation of ' as it readily
yields the boundary condition U = 0 (equation (1.6)), which is a significant ingredient in
the boundary Harnack Principe across the regular set; see Sect. 4.3.

Next, we introduce several Dini functions derived from nl’” to be used in this section,
where e represents either A or g. We remark that r — ni’“ (r) is not necessarily nonde-
creasing. Instead, there are constants C > ¢ > 0, depending only on n and «, such that

endt(r)y < nit(s) < Cnl(r) (2.4)

whenever /2 <s <r < 1. See [19].
Given a constant 0 < ¥ < 1, we define

i) = o (T < Dl DT > 1), 0<r <1, 25)
i=0
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where [-]is Iverson’s bracket notation (i.e., [P] = 1 when P istrue, while [ P] = 0 otherwise).
We note that ﬁi’” > nl’“ and ﬁi’“ is a Dini function satisfying (2.4). See e.g., [6]. Given
0 < B < 1, we also set

ALty = sup (r/p)PalH(p), 0<r <. (2.6)
pelr,1)

Note that ﬁl’“ is a Dini function satisfying (2.4) and that ﬁl“ > ﬁl“ and r —> % is
nonincreasing. See e.g., [6, 16].

Now, we start the proof of Theorem 2.4 by first addressing the case when the center of
the ball lies on Bj.

In this subsection u is a solution of (2.3), where both A and g are of L'(d)-DMO, as in
Theorem 2.4. We write for simplicity ||glco = ||g||Loo(B:f).

Lemma2.5 Letxog € By, 0 < B < 1and0 < p < 1. Then, forany0 < p <r < 1/2, it
holds that

¥ (xo, p) < C(P/’”)ﬂd/(im r)+ C”V””Lw(th(;o))ﬁ,lq’#(zP) + Cﬁé’M(ZPL 2.7
where C = C(n, A, «, p, B) > 0 are constants and f;l’“ isasin(2.5).

Proof Without loss of generality, we may assume xo = 0. We fix 0 < r < 1/2 and write for
simplicity A = (A)’;+ and g = (g)‘;. Note that u satisfies the following equation
2r 2r
—div(x* AVu) = div(x®g) + div(x* (A — A)Vu).
We set
((x) = () + ) G,

and observe that it solves

—div(x?AVi) = div(x? (A — A)Vu+g—g)  inB;,

limy, 0+ X¥(AVi + (A — A)Vu +g—§,¢,) =0 on B, .
We take a smooth and convex domains D, and D, such that B;r C D, C B}frand B;“r C

3 2

D, C B3, and write D, = D, N B} and D, = D, N Bj,. We decompose @i =  + W, where
w is a solution of

—div(x?AV®) = div (x¢ (A — A)Vu+g—g) xp,) inD,
with the boundary condition
x2(AVD + (A — A)Vu+g—8xp,,v) =0 ondD;.
For any ¢t > 0, we have by applying Lemma 2.1 with scaling

Cn, A, ) - _
— [((A—A)Vu+g—gldu.

pn(fx € B - [Vb(x)| > 1}) <
B

This inequality implies that for any v € (0, 4+-00)

+o00
/+ Vo |1Pdu =/0 ptP lu((x € B [V(x)| > 1)) dt
B/
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T +00 C _
< [ prusnars [t (S - DV g gl ar
0 T

BZr

<CuBH’+C (/+ [(A—A)Vu +g— gld,u> P
Bz,.
Sy (A=A Vutg—gldn
(B

Taking T = , we get

14
[ v < cumh! e ([ (A= A)Vu+g— gldu> .
B,

Bj,.

It follows that

1/p _
(][ |vw|"du> < Cus)™ [ 1A= HVu+g - gan
B By (2.8)

I,
< C||V“||Loo(3;)’lAM(2’”) + Cr;é’#(Zr).
Next, we observe that v = iz — w satisfies
div(x¥AVd) =0 in D, 2.9)
lim,, o+ x¢(AVD,é,) =0 onDj. '

Since D; 0 satisfies the same equation for 1 < i < n—1, we have by applying [13, Lemma4.2,
Proposition 4.4] with a standard iteration

. C . 1/p C ~ 1/p
||DDiU||L00(B+ )y S = <][ |D,'v|1’d,u> < — <][ |Vx/v|1’du> , (2.10)
r/2 r B r B

where V0 = (3,0, ..., 0y, , ). To obtain the similar estimate for D, 0, we use an idea
in [13]. Denote

n
V= (AVD,8,) = > an;Djb.
j=1

From the equation div (x5 AVYD) = 0 in D,, we infer

n—1 n

an (x,‘f \7) = —x,‘f Z ZE’UDU{)'

i=1 j=1
By combining this with lim, _ o+ x7 V(x) = 0 and (2.10), we deduce that for any x € B;r/z

n—1 n

Xn
< / SQZZV_IUDUI’)(X/,S)MS
0

i=tj=l Q.11

C /p px, Cxo+1 1/p
< — <][ |Vx/f)|1’du> / sYds < n (][ |Vx/ﬁ|pdu> .
r Bt 0 r B

. Cx . 1/p
IV(X)IST”(][B+IWUI”61M> ) xer/z.

Xn ~
x,‘fV(x)‘ - VO 35 (s*V (x', 5))ds

This gives
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Combining this with (2.10) gives that for small ¥ € (0, 1/2) to be chosen later

. A . 1/p
(£, (9= @etrgyr+1917) an)

Kr

1/p R 1/p
<Cx <][ |Vﬁ|”du> <Cx <][ (|Vx/ﬁ|” n |V|P) du) .
Bt B

For any constant vector ¢ = (g1, . ..gn—1) € R""!, we set
y q q q

(2.12)

Xn n—1
ﬁ(X) = i)(X) - <q/v )C/> +/(; [C_lrm(yn)]il (Zani(yn)qi) dyn
i=1

and

V = (AV,é,).

It is easily seen that ¥ satisfies (2.9) and V = V in B;t. This enables us to replace v and 1%
with ¥ and V in (2.12), respectively, to have

. 1/p
(][ (195 = (Vard) gy 17 + Ile)du)
B’j; Kr
. 1/p
scK(J[ (|vx/ﬁ—q’|l”+|vv’)du> :
B

Let U := (AVi, &,). By using U=V + (AV®,é,) and (2.13), we get

1/p
(][ (19t = (V2r8) g 17 +1017) du)
By

1/p
5(:(][ <|Vx/ﬁ—(Vx/ﬁ)B+|”+|V|”)du) +C<][ |Vﬁ;|”du)
B, “r B,

o (2.14)

A 1/p 1/p
< Ck <][ (|Vx/f;—q’|”+|V|”)du> +C<][ |Vzi;|”du>
Bt B

Kr

A l/p n+o l/p
< Ck <][ (|vx/ﬁ —q'17 + |U|") du) +Ck™ 7 <][ |Vﬁ)|”du) .
B+ B

From u = &t — a,,' g,xy, we find Vyu = Vit and

(2.13)

1/p

U= (AVu+gé)+((A-ADVu+g—gé)=U+((A-ADVu+g—g2).

Combining this with (2.14) and (2.8) produces

A 1/p
(][ (19 = (Va8) gy 17 +1U17) du)
B "

R 1/p

<C (][ (190t = (T 517 + IUI”)du>

BKr

B 1/p

+C (][ (A~ D)Vu+g -8, én>|"du>

BKI‘
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239 Page 14 of 42 H.Dong et al.

A l/p n+o l/p
<Cx (][ (|vx/a —q"+ |U|1’> du) r o (f |Vzi;|”du>
B;" B

r

B 1/p
+C <][+ [{((A—A)Vu+g-—g, En)l"du>
chr
l/p nta l/p
< Ck (][ (IVeu —q'1” + |U|P)du> +Cx™ 7 <][ |V12;|Pdu>
B;" B

1/p
_nta = - >
roe (ﬁ|<<A—A>w+g—g,en>|”du)
BZV

1/p
<Ck (][ (IVx'u —q'1”+ IUlp)du>
B

n+a

+ O (IVul g ni" @)+ g 2n)).

Since q' € R"~! is arbitrary, we get

+a

_n l7
v(0,kr) < Cxky(0,r)+Ck 7 (||Vu||Lw(Bz+r)7]A”(2r)—I—né’“(Zr)).
By taking « small so that Ck < «# and using a standard iteration, we obtain (2.7). O

Next, we consider the interior case when the ball B, (x() is away from the boundary B[t.
It should be noted that when r < (x¢), /2, u solves an uniformly elliptic equation

—div(A™Vu) = div(g™) in B.(xp),

where AY = (x,,/(x0)n,)*A and g0 := (x,/(x0)n)*g. It may seem tempting to directly
apply the result from [8] to obtain estimates involving ¢. However, this approach leads to
the mean-oscillations of A*0 and g*°. When bounding them by those of A and g, we cannot
avoid extra terms that depend on (x¢),. Handling these terms becomes challenging as the
center xo approaches to the boundary Bj.

To rectify this issue, we utilize the concept of partially Dini mean oscillation (partially
DMO). A function f € LY(B;", dx) is said to be of L!(dx)-partially DMO with respect to
x'in Bf" if

dx, O0<r<l,

ﬂ)} (r) == sup ][ fx) —][ O, x)dy
' xoeB; J Br(x0)NBY Bl(x{)NB|

is Dini. This partially DMO requirement is weaker than the standard DMO, and it holds that
17)]5/ (r) < Cny(r). For further understanding of the regularity results under the partially DMO
condition, one can refer to [6, 10].

Now we instead view new data A" and g*° as being of partially DMO with respect to
x’-variable, and apply a result in [10]. As we will see in the proof of Lemma 2.6, this approach
allows us to avoid the additional term containing (xg),, as (x, /(x0),)* remains constant with
respect to x’.

When xg = (x(), (x0)n) € B; is away from the thin ball B} and there is no confusion, we
write for simplicity

d = (x0), = dist(xo, B}) > 0.
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Lemma 2.6 Let xy € B;‘ and0 < B < 1. Forany0 < p <r <dJ/2,
-1, -
¥ (x0, p) < C(p/r)Pyr(xo, 1) + ClIVullLoo(s, xoniiz" (0) + Cné’“(ﬁ)» (2.15)
where C = C(n, A, a, p, B) > 0 are constants and f)i’“ isasin(2.5).

Proof As mentioned above, u solves

—div(A*™Vu) = div(g™) in B, (xq),
where A = (x,,/d)*A and g*° = (x,/d)*g are partially DMO with respect to x’. Then, it
can be deduced from the proof of [10, Lemma 3.3] (see also [4, Lemma 2.5]) that for any
O<k<1/2and0 <r <d/2,

¥ (xo, kr) < Crer®(xo, 1)

+Ci™P <||Vu||L°°(B,(xo))/:
B

gy
By (x0)

where C = C(n, o, A, p) > 0 and

dx

AT (x) — ][ AT, xn)dy'
BJ.(xp)

dx),

r (X0

g (x) — ][ gy, xn)dy’
BL(x)

1/p
¥ 0.1 = inf (][B o [Tt <A*0Vu+g"0,én>>—q|pdx) :
r (X0

From the identity (A*°Vu + g*0, ¢,) = U™ and the fact that d/2 < x,, < 3d/2 for every
x € B,(xg), we have

¥ (x0, p) < CY°x0, p), ¥O(x0,7) < C¥(x0, 7).

‘fBr(XO)
<cf
By (xo)

< Cnyt ).

Moreover,

dx

AT (x) — ][ AT, xn)dy'
B(xp)

du(x)

A(x) —][ A, xn)dy'
Bl.(x))

Clearly, a similar estimate holds for g. Thus, we obtain

¥ (x0, k1) < Ckpr(x0, 1) + Cic /P (||Vu||LoC(Br(xO))n}4’M(r) + né’“(r)) .

Taking k € (0, 1/2) small and performing a standard iteration as before, we conclude (2.15).
m}

We now combine the previous two lemmas to establish the following uniform decay
estimate of .
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Lemma 2.7 Suppose 0 < B < 1. Then, for any xg € B;‘ and0 < p <r < 1]—4, we have

Clp/r)? (][ Vuldp + ||g||oo)
¥ (x0, p) < Bg (x0)NB} (2.16)

+C IVl oo 1y ey " (0) + Ciig ™ (),
where C = C(n,a, A, p, ) > 0 and ﬁi“ is defined as in (2.6).
Proof We divide the proof into the three cases:
p<r<d/2, di2<p<r, or p<d/2<r.
Case 1. We first consider the case p < r < d/2. By Lemma 2.6
¥ (0, ) = Clo/rP o, 1) + € (IVull Lo, onily" (0) + g™ (0)) . 2.17)

Using [U*| < C|AVu + g| in B, (xp), we get

1/p
Y (xo,r) < <][ [(Vyu, U"")Ipdu> <C (][ [Vuldp + ||g||oo> . (2.18)
B, (x0) By (x0)

This, along with (2.17) and the doubling property of © (Lemma A.1), implies (2.16).
Case 2. Suppose d /2 < p < r. For Xo := (x{, 0) € Bj, the doubling and Lemma 2.5 yield

¥ (x0, p) < Cr (%o, 3p)
< Clo/r)P Y Go, 3r) + C (Vo g 2 14" (60) + 7 (69))

Moreover, we have

1/p
¥ (xo,3r) = ][ (Vyu, U)Pdp =C ][ Vuldp + gl | -
B3 (%) Bs, (x0)NB;
(2.19)

Thus,

¥ (x0, p) < Clp/r)P (][ Vuldp + ||g||oo)

Bsy (xo)NB}

-1, -
+C (Hvu||L°°(Bg,(x0)ﬁBz')nA#(6p) + né’“(@o)) .

Sl _ oAlp i) : : :
From the fact that 7" < 7" and 1 — == is nonincreasing, we infer

alr6p) < Al 6p) < 6Pl (p).

This concludes (2.16).
Case 3. It remains to deal with the case p < d/2 < r. We observe that

1/p 1/p 1/p
][ US| <c ][ UlPdp)  <c ][ U|Pdp
B2 (x0) B2 (x0) B34 /2(X0)

= Cyr(x0,3d/2),
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which gives

q’eR"‘l

1/p
velf werd
B2 (x0)

< Cy (X0, 3d/2).

1/p
Y(x0.d/2) <C inf ][ Vou — q'\Pdu
B2 (x0)

By using this and Lemmas 2.5 and 2.6, we derive
¥ (0. p) = Cp/d) (w0, d/2) + € (IVullLoe(sypionis” (0) + i (0) )
< Clo/d)P W (Go,3d/) + C (IVull3p0an s (0) + " (0)
< C(p/r)Pv(xo,3r)+C (||VuIILOO(Bd/z(xo))ﬁi{M(P) + ﬁé’“(ﬂ))

+ COo/d) (V] e 5 2o 14" BeD) + " (3 )

< Clo/r) (][ Vuldp + ||g||oo)
Bs, (x0)NB

Al .
+ € (Ve gy ey 14" () + ™ (0
Al
where in the last step we used 70 < As* and the monotonicity of s —> ”Siﬁ(s) This
completes the proof. O

Our next objective is the L>°-estimate of Vu, which enables us to remove the C! assumption
on u by a standard approximation argument. For this purpose, we follow the idea in [7,
Lemma 2.11]. For xg € B;r and 0 < r < 1/14, we take a vector q,, , € R" such that

1/p
(3, 1V U™) = @y 7). 0 <1 <dp2,

U (2.20)
(Fs ey 1V, U) = @ rlPdps) " dj2 <r <114,

Y(xo,7) =

Note that the last component of qy, , is zero when d/2 < r < 1/14.
Lemma 2.8 It holds that

1 shp
Ng )
||Vu||Loc(Bz+) < C/Bj [Vuldu + C/(.) fdl‘ + C||g||LOO(BD, (2.21)

for some constant C > 0 depending only on n, A, o, p.

Proof We split the proof of this lemma into two steps.
Step 1. We claim that for any x¢ € B; and0 <r <1/18,

[Vu(xo)l SC][ [Vuldiu + Cliglleo
Bior (x0)NBy

r oAl roalu
ns (@) ng" (t)
4Ol crny [ arte [ Can e
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To prove the claim (2.22), we consider two cases:

O<r<d/2 or d/2<r <1/18.

Case 1. Suppose r < d /2. We take average of the trivial inequality
Qxo,r — Qxg,r/21” < HVeux), U (X)) = Gy, r|” + [{(Veru(x), U (X)) — qegr2l”
over x € B, >(xo) with respect to d 4 and take the p-th root to get
[Qxo.r — Qxg.r/2l < C (W (xo,r) + ¥(xo0,7/2)).

By iterating, we further have

k

|9 24 — Qegr| < C D W0, 2771). (2.23)
j=0

Note that by (2.16)

lim ¥ (xp,27%r) =0,
k—+00

which along with the assumption u € C' (B73+) implies

lim  qy 5+, = (Vwu(xo), U™ (x0)) = (Vyu(xo), U(xo)).

k—+00

Thus, by taking k — +o00 in (2.23) and using (2.16), we obtain
[(Vyu(xp), U(xp)) — qxo,r|

< C][ IVuldp + Cliglleo
By (x0)NB; (2.24)

roalu ks
Ny (1) g (1)
+C||Vu||L°c(Bl4r(xo)ﬂBI>/0 t di+c 0 fdt'

On the other hand, we have for any x € B, (xp),

Qo |7 < (Ve (x), U (X)) = Qegr|” + [(Vou(x), U ))|P
< [(Veu(x), U (x)) = Qg 1P + C (IVu)” + |gx)|7) .

Taking average of this over x € B, (xo) with respect to du and taking the p-th root yield

1/p
Qx| < C¥(x0,7)+C <][ |Vu|Pdu> + Cliglloco-

By (x0)

Due to (2.18), we further have
sl =Cf  (Vuldp + Cligl.
By (x0)

Combining this with (2.24), we infer
[Vu(xo)| < C ([(Vyu(xo), Uxo))| + l18lloo)

< C][ IVuldi + Cliglloo
B (x0)NBY
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roalu " et
N0 g (1)
+C||Vu||Loc(Bl4r<xo)ﬂBI)/0 At dH_C/o g[ ar

Case 2. Next, we consider the case d/2 < r < 1/18. We take a nonnegative integer jo such
that 2=Uo+Dy < @/2 < 27Jor, By using the idea at the beginning of Case 1, we can easily
obtain that for every j > 0 with j # jo

6,257 = Qg 2o, | = € (W0, 2777) + (30, 27040
However, the bound is nontrivial when j = jo due to the discrepancy between U~ and U.
By iteration, we have that for any £ > jo + 1

+00

19xo.r — qx0,2—kr| <C Z ¥ (xo, 2_'/r) + |qu,2—for - qx0,27<,-0+1),|. (2.25)
=0

We can use (2.16) to estimate the first term in the right-hand side of (2.25):

+0o0o )
> w27 =cf |Vuldp + Cllgllo

=0 Bs, (x))NBy

r Al r A1,
Ny (@) ng'" (1)
+ ClIVull ooy, (o)) fo At dt+C /0 %d:. (2.26)
To treat the second term, we observe that for x € B,—(jp+1),.(x0)

L qx0,2*</0+1>r|p
< KVwu, U) —q 5-to+n, |7+ {Vou, U) = gy p-io, |7 + U = U|P.

Arguing as before, we can deduce from this inequality

14y, 2-j0r — Uy 2-Co+Dy |

1/p
< CY(x0, 270y 4 Cyr(x0,27r) + C (f o — Ul"du> :

B,—(jo+1),(x0)

We recall 2~ U0+t < (/2 < 270 and apply Lemma 2.5 to obtain

1/p
][ U™ —UlPdp
B, _(jo+1), (*0)
1/p 1/p
<C ][ |U|Pd <C ][ |U|Pd
Ba/2(x0) B2 jy, (¥0)

%o, 2377 1, — »
< Cy (%o, 2% or) + C||Vu||Lw(B?_6r(jo))nAM(24 Jory + Cné’“(z“ oy
% S A . .
< Cy(xo, 8r) +C”V”||L°°(B,*%r(;o))m“(24 jor +Cné’“(24 oy,
By combining the preceding two estimates, we get

|qu.2’-"0r - qu,Q—(jOH)rI
< CY (0. 294 Dr) + Cy (x0, 270r) + CY (o, 87) 227)
.1, . _ .
+ C||VM||Lm(318,(x0)mgj)77AM(24 Jopy 4+ Cné’ﬂ(g‘* jopy.
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We can argue as in (2.19) to get

W (o, 8r) < c][ Valdi + gloo.
Bior (x0)NB;

which combined with (2.27) implies
1y 2-i0r = Uiy 2-Co+ D |

< CY (0, 279 D) 4 Oy (x0, 2790r) + c][ Vuldy (2.28)
Bior (x0)NBY

-1 » _ »
+ ClIVitll o g, oy 14" @170 + Ciig* 27 0r) + gl .
In addition, by using that ﬁi“ satisfies (2.4), one can easily show that

roalin
. Ot
L@ i) < C f UM t()dt.
0

Combining this with (2.25), (2.26) and (2.28) and taking k — oo yield
[{(Veu(xo), U(x0)) — Qxo.rl

< c][ Vuldu + Cligloe
Bior (x)NB;

roali ropla
) g (1)
+C||vu||L°o(Bl8r(X0)mB:r)/(; t i+ ¢ 0 fdt.

On the other hand, we can obtain the following estimate by arguing as in Case 1
@l <Cf  (Vuldy + Clgl.
By (x0)NBy

The previous two estimates imply (2.22).

Step 2. We are now ready to prove (2.21). For k € N, we denote s; := 3 — 2!7*, so that
Skt1 — sk = 2%, 51 = 2 and s¢ 7' 3. We note that for every xo € Bl and r = 27k=3,
Bis,(x0) N B C B;/:H' For C > 0 as in (2.22) and o™ = max{«, 0}, we fix 0 < ry < 1/4
small so that

A1
c/ro Nar gy < 3~(nte®),
o (B

and take ko € N such that 27%0=5 < ry_Ttis easily seen that s (B, (x0) N B} ) > c(n, a)r"+e"
whenever xg € B;r and 0 < r < 1. Then, we have by (2.22) that for every k > kg

+ _ +
IVl poo gy < C24OHED f |Vuldp + Cliglloo + 3~ "NVl poo 5t
Sk B} Sk+1

1 ﬁé#
+C / ——tdt.
o (@
We multiply this by 3-k(n+e™) and take summation over k > ko to get

+o00

— +
Y 3kta )||W||Lw(35+k) < C/

k=ko B

1 sl

g
. |Vu|d,u+C/O 1+ Clgl i ay,
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+o00
—(k+1D)(n+a™)
+kaj 3 IVull oess -
=Ko

Due to our assumption u € C'(B5"), the sum Z,J;’io 3—knta®)| vy ||L°°(B;',’() converges, and

hence (2.21) follows. ]

To proceed, given 0 < 8 < 1, we consider a modulus of continuity w : [0, 1) — [0, +00)
defined by

roalp
Ng

o(r) = [ IVuldi + 18]l oo n+ rﬂ+/ & _tdt
<B+ D 0o

4

1 ﬁé’“ r ﬁi{u (2.29)
+ (/B4+ [Vuldp + IIgIILw(BI) -l—/(; (t)tdt) /0 Wtdt.
Lemma 2.9 Forany xo € Bfr and 0 < r < 1/18, we have
[{(Vyu(x0), U(x0)) — Qxg,r| = Ca(r) (2.30)

for some constant C > 0 depending only on n, A, «, p, .

Proof Recall the identity limy_, 1~ Ay, 24 = (Vau(xo), U(xp)), and, as before, consider
two cases: either 0 <r <d/2ord/2 <r < 1/18.

Case 1. If 0 < r < d/2, then we have

+00 T
[(Varu(x0), Ux0)) = Qugrl < Y 10 277 — Qyg2-00, | < C Y Pr(x0, 277 7).
Jj=0 Jj=0

By using (2.16), we obtain

+00
Y v, 27 <C (/+ |Vuldp + IIgllLoo<B4+)> P
B4

Jj=0

r ﬁ}AM r ﬁéu
+ Cl|IVull; o +/ —tdt+C/ —=—1tdt, (2.31)
FED Joo ) o (0

and hence (2.30) follows from Lemma 2.8.

Case 2. Suppose d/2 < r < 1/18. Take jo > 0 such that 2=+ Dy < d/2 < 2=Joy By first
sending k — 400 in (2.25) and then applying (2.27) and (2.7) sequentially, we get

{Vyu(xo), U(x0)) — Auxo,r|
+00

<CY V0. 277 + 16 2-ior — Uy 2o+,
j=0
+00

<CY Y(x0.277r) + ColFo. 8r) + C||W||Lm(3;)ﬁi;“(24—f0r) + Cijg ™2 o)
j=0

+00
<C Zl/f(XO, 27 ry + Crf /+ |Vuldp + C (ﬁé’#(]ﬁr) + ﬁé*“(z“*jor))
./=O B4
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~1, ~1, —
+ClIVull oo (nA“(16r) e ;o,)) .

This, together with (2.21) and (2.31), implies (2.30). ]
We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4 Our goal is to show that for any xo, yo € B} with r := |xo — yo| > 0,
[Vu(xo) — Vu(yo)| < Co(r), (2.32)

where C > 0 is a constant, depending only on n, A, &, p, 8, and w is a modulus of continuity
as in (2.29).
If r > 1/18, then we can simply use |Vu(xo) — Vu(yp)| < 2||Vu||Lw(Bl+) <

36||Vu||Loo(Bl+)r and apply (2.21) to get (2.32). Thus, we may assume 0 < r < 1/18.
We consider two cases either r > (xg),/8 or r < (x0),/8.

A1,
Case 1. Suppose r > (x0),/8. Since the monotonicity of t +—— % implies that of

w

t—> t—ﬁ’), we have @ (5r) < Cw(r). This, along with (2.30), gives

[{(Viru(xo), U(x0)) — (Viru(yo), U(yo))l
< {Vyu(xo), U(xo)) — xo,5-1 + [{(Veu(yo) — U(30)) — dyy,5r|
+ |qx0,5r - qyo,5r|
< Co(r) + |9xy.5 — Qyo.5r- (2.33)

To treat the last term |qy,,5- — qy,,5-|, We observe that the assumption r > (x¢),/8 gives
% < ()“’)T”H < 5r. We then take average of the inequality

|qx0,5r - qy0,5r|p =< |qx0,5r - (Vx’u(x)’ U(x))|p + |qy0,5r - (Vx’u(x)s U(X)HP

over x € B, (xg) N BI and take the p-th root to obtain

1/p
|qx0,5r - qy0,5r| <C f |(Vx’u7 U) - qx0,5r|pdﬂ
Bs; (x)NB

1/p
+C ][ [(Veu,U) — dyo,5-17dp
Bsy (yo)NBy

< Cy¥(x0, 51) + C¥ (Yo, 5r)
< Cow(r),

where we applied (2.16) in the last step. By combining this with (2.33) and using the definition
of U, we get (2.32).
Case 2. Now we suppose r < (x0),/8. We argue as in (2.33) to get

[(Varu(x0), Ux0)) — (Varu(yo), U(yo))| = Co(r) + [dxg2r — byo.2rl-

To estimate the last term, we note that (yp), > (xo), —r > 7r, which implies 2r <
min{(x0),/2, (y0)n/2}. We then use the trivial inequality

|qxo,2r - qyo,2r|p =< |qx0,2r - (Vx/u(x), UXO(X)HP + |qyo,2r - (Vx’u(x)7 Uyo(x)>|17
+ U0 = UP )
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for x € B, (xg) to deduce

|on,2r - q_vo,2r|

1/p
<C (][ (Veu, UY) — qxo,zrlpdu>
By (x0)

1/p 1/p
e (f (Vyrue, U) — qyo,zm’du) +C (f o — Uy“l”du>
By (y0) By (x0)

1/p
§C1/f(xo,2r)+CW(yo,2r)+C<][ IUXO—U}'Olde>
By (x0)

1/p
§Cw(r)+C<][ |Ux°—Uy°|pd/,L> .
By (xo0)

1/p
Thus, it is sufficient to show that (fBr o) |U*o — Uyolpd,u,) < Cw(r). To this end, we
observe that in B, (xg),

o
|Ux0_Uy0|:‘l_((x0)n> ||Ux0|§i|Uxo|7
(Yo)n (x0)n

which gives

1/p Cr 1/p
<][ |u* — Uyol”du> < <][ |UX0|"d;L> ) (2.34)
B (x0) (x0)n \JB, (xo)

To estimate the right-hand side, we denote d := (x¢), and take k € N such that
d/8 < 2k < d/4. For each 0 < j < k — 1, notice that 20t < d/4 and let
Ay 2+, = (q,/ro,Z-f+1r’ (4, 2/+1,)n) € R" be as in (2.20). Then

][ U1 du
B, ;. (x0)

- ][ ][ U () + (U () — U () Pd () dpa(x)
B,j.(x0) Y B,j1,(x0)

< ][ ][ U ()P d i (3)d s ()
B,j,(x0) Y B,j+1,(x0)

+ c][ ][ U () — U () Pdp(y)d i (x)
B,jy1,(x0) Y Byjt1,.(x0)

< ][ U Pdp + C][ U™ — (g 21l d i

32_,‘+|r(X()) sz+l ’ (x0)

4 p
5][ U Pdy + C (w(zf“r)) ,
B, j+1,(x0)

where we applied Lemma 2.7 in the last step. By summing up the previous estimate over
0 <j<k—1,weattain

k
N
|oowmransf oy (oein)”.
B (x0) By, (x0)

Jj=1
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and hence by applying Holder’s inequality

1/p 1/p K ‘
<][ |U“‘°|pdu> <C ][ U™©Pdp)  +Ck 7 Y 0@,
By (x0) By, (x0)

J=1

To bound the first term in the right-hand side, we denote ¥y := (x;,0) € B and exploit
Lemma 2.5 and the monotonicity of # — % to get

1/p
][ U™ \Pdu
By, (x0)

1/p 1/p
<c ][ US| <C ][ (AVu +g, &) Pdp
B /4(x0) B /4(x0)

1/p
<C ][ [(AVu +g,e,)| dun < Cw(2d) < Co(2"r).
B (%0)

Combining the preceding two estimates gives

1/p , K , LI
<][ |Ux°|”du) <ck7 Y o@n<ckr Y @Fo@r)
B (x0)

=l i=1
1-p Cd
< Ck 7 20(r) < C2%00) < ~L0 ().
r

This, together with (2.34), concludes

1/p
<][ IUXO—UyUII’d;L> < Cw(r).
By (x0)

This completes the proof. O

2.3 C¥ estimates

In this subsection, we establish Theorem 1.4 by employing the case k = 1 (Theorem 2.4)
and the induction argument.
In the statement of Theorem 1.4, we assume Dl;,_ ! ge C?:ﬁ(B:“) (same for A), whichis a

weaker requirement than D¥ g € C?’ﬁ’(Bf“). While this may not be a significant improve-
ment, this formulation of the theorem is crucial for facilitating the induction argument.

In addition, one can infer that the modulus o (r) of the latter result in Theorem 1.4 is
comparable with for @ds + P for any chosen g € (0, 1). This implies that our result
recovers the classical C*¥ estimates in [26] when the data belong to the Holder space.

Proof of Theorem 1.4 As (1.6) follows by taking p — 0 in (2.7), it is sufficient to establish
the CK estimates of the solution u.

We argue by induction on k € N. The case k = 1 follows from Theorem 2.4. We now
assume the theorem is true for k& and prove it for k + 1. We observe that the tangential
derivatives u; := o;ju fori =1,...,n — 1, solve

—div(x? AVu;) = div(x% (d;g + 3 AVu)) in B,
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with the conormal boundary condition on Bj

lim x2(AVu; + 9;g+ 9;AVu, é,) = 0.
xp—0t
AsA,ge Ck c c¥ 1.1 the Schauder estimates in [26, Theorem 2.6] giveu € CkP for any
0 < B < 1.Thisimplies thatthe field g := 0;g+09; AVu belongs to C*=1 with Dl;flg € C?f:
Thus we have by the inductive hypothesis

ui € Ck.(Bf UB)), Vi=1,...,n—1. (2.35)

For the Ck+! -regularity of u, it is sufficient to show u, := d,,u € Cﬁ;l (Bl+ U B;). To this
aim, we rewrite the equation (1.1) as
. AVu +g,¢ .
—div(AVu) = w + divg.

n
It follows that for U = (AVu + g, é,),
n—1
X0 (S U) = h = —divg + dugn — Y 9 ((AVIL, &),
i=1

Notice that & € C¥~!. Since x2U = 0 on By, this equation gives

1 Xn
U’ x,) = —/ t*h(x’, t)dt,
x5 Jo
and thus

1

a U( / _ / o o o / _ / o !/
U(x', x,) = h(x', x,) — T t“h(x", t)dt = h(x', x;)) — « sYh(x", sx,)ds.
Xn 0 0

Therefore, 3, U belongs to C¥~!, with its modulus of continuity dominated by that of 4. The
definition of U, along with (2.35), readily implies u,, € C¥~1. O

3 The Hopf-Oleinik boundary point principle

In this short section, we discuss the validity of the boundary point principle, which holds
true under the same conditions stated in [23] but with a weaker requirement on the boundary
regularity of the domain ; that is, 2 € C!~PMO_ This is just a remark once one observes
that the flattening of such a boundary (4.16) leads to the same situation as in [23].

Recall that [1] provides counterexamples to the boundary point principle, where the bound-
aries of the domains are parametrized by convex functions which do not satisfy satisfies the
interior C"P"_paraboloid condition. However this kind of counterexamples fails the C1-PMO
regularity since one can prove the following fact: if €2 is convex and C1'!~PMO then Q sat-
isfies the interior Cl’Di“i-paraboloid condition [2]; that is, the following result holds true.

Proposition 3.1 Let ¢ be a convex function in By such that ¢(0) = 0 and Vo(0) = 0. If Vo
is of L'-DMO in By, then

w(r) = sup @
xl<r X1

is a Dini function.
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Proof Let us consider the ball B, and select a direction, without loss of generality é,. Taking
0 < s <r, by convexity

psé) _ pUé) _ 1

=

< 7][ o(y, 1) dy, 3.1
s r r By (rép)N{x,=r}

where y = (y1, ..., yu—1). Then, for any y € B,(ré,) N {x, = r} we have

1 1
o(y,r) = @Oy, kr)ly = /(; v, 1) - VoQy, ar)di = \[1y* + F2/0 Vie(Ly, Ar) dA,

= (y’r) . . .
where v = —==—. By the convexity of ¢, D;@(Ay, Ar) is nonnegative whenever A > 0
/|y|2+r2

and nonpositive whenever A < 0. Thus,

oy, r)

r

1 1
< Cf [Vip(hy, Ar)ldA < C/ [Vsp(hy, Ar) — Vio(=Ay, —Ar)| dA
0 0
1
< C/ [IVo(Ay, Ar) — Vo(=Ay, —Ar)|dA.
0

Then, considering (3.1)

o(séy) 1
— <- o(y,r)dy
s rJB, (rén)Nfxp=r}

1
< C][ f IVo(Ay, Ar) — Vo(=Ay, —Ar)|dy dA
By (€n)N{xp=r} JO
< c][ V() — Vo(—x)| dx
D,

= C][D ][D IVo(x) = Vo(2)| + [Ve(2) — Vo(—x)|dx dz
< g, ().
The domain D, above stands for a portion of a cone
Dy = {1y »€(0,1), y € Br(éx) N{xy =71}}.
The latter bound is uniform in the choice of the direction, then

sup £ Cny, ().

|x|<r |X|

4 Higher-order boundary Harnack principle

The Schauder type estimates derived in Sect. 2, particularly the case @ = 2, can be utilized to
establish higher-order boundary Harnack principles, as shown in [26] within the framework
of Holder condition. Recently, [16] demonstrated the applicability of this technique under
the uniform Dini condition. However, as previously mentioned, the situation becomes more
complicated within our DMO framework.
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4.1 Dini mean oscillation of u/x,

The purpose of this section is to establish the following result.
Proposition 4.1 Letu € H! (Bl+) be a weak solution of

—div(AVu) = divg in B},

4.1
u=20 on Bj. @1
If A and g are ole (dx)-DMO in B, then u/xp is ole (x,dx)-DMO in B?}z.

In the subsequent subsection, we will utilize Proposition 4.1 to obtain the higher regularity
of u/x,, Corollary 4.7, which will play a significant role in establishing the higher-order
boundary Harnack principle. Notice that the equation (4.1) differs from the one (4.15) in
Corollary 4.7. We start with (4.1) to facilitate the induction process in Proposition 4.6.

In the remaining of this subsection, we fix

du = x,dx
and define

u u ®
¢ (xo, 1) 1= — —{=
Brxo)NBy" | *n \Xn [ B, (xo)nBf

We first prove the following auxiliary results.

du, xo€ Bl+/2, r > 0.

Lemma4.2 Letu, A, g be as in Proposition 4.1. Then for any Xxo € B{/z and) < p <r <
1/4,

¢ o, p) < C(p/N)'?@(Fo. 1) + ClIVuell oo ) 14 () + Cilg (), (4.2)
where C = C(n, 1) > 0 are constants, and 771 is a Dini function derived from nl.

Proof We may ‘assume without loss of generality that o = 0. We fix r € (0, 1/2), and write
for simplicity A = (A) 5+ and g = (g) 5+. Let w € W, '>(B;") be a solution of

—div(AVw) = div((A — A)Vu + (g — g)) in B}.

By using the estimate of Green’s functions, we have

| werarzer [ - iver @-pla
B B 4.3)

< crt! (||W||Lo<>(31+)’7}x(’) + né(r)) .

This estimate implies that for a small constant ¥ € (0, 1/2) to be chosen later

w w \* 2 [+ lw(x)|dx
Ll oo, -
B, | Xn Xn | B, By,

nBY; (4.4)
On the other hand, v := u — w solves

Xn

< Ck D (1Vull e gy 1h () + () )

div(AVv) =0 in B,
v=1u on 4B
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Note that v = u = 0 on B].. From v(x) = (;C” O v(x’, dt = x, fol d,v(x’, x,5)ds, we infer
by using the boundary elliptic estimate

v C
v < Vol = D%Vl gt ) < —][ lo(o)ldx
|:xni|LiP(Br+/2) Lip(B,)2) L2 = 2 [y
v(x)
c Jgr |5 mdx ¢ v
=S = —\|dn
r M(Br ) rJB | Xn

For every constant ¢ € R, as the function v(x) = v(x) — cx, is a solution of diV(AVﬁ) =0
in B, with ¥ = v = 0 on B/, repeating the above process with ¥ in the place of v yields

v C v
— < — — —cldu.
*ndLip(g),)  TJBS 1Y
.. o . . H
This inequality implies by setting ¢ = <xl> o
n Br
"w
v v v
][ ——<—> dp < Ckr [—]
B | Xn Xn | B, Xn Lip(B,)

4.5)
du.

< CK][
BF

v v \#
Xn Xn B
This, together with (4.3), gives

][ ; < ; >M
B | Xn Xn | BE,

du

u u I w w "
SCK][ v\ dM+CK][ Z X du
B | Xn Xn Bt BY | Xn Xn B
u u I w
= CK][ Y _<7> dl/«+CK][ 7‘07“
B,+ n Xn BrJr Br+ Xn
<C u u\* J c o 1 1
R/ R T n K(” u||L°°(Bl+)nA(r)+’7g(”)>.

By combining this estimate with (4.4), we obtain that

v v \# w w\*
- —( — dﬂ + - —(—
Xn Xn | g, B [ Xn Xn | Bt

= Ckp(0,1) + Ck™ D (V] o gy (1) + 141

dp

(0, xr) 5][

+
By

where constants C > 0 depend only on n and A. As before, we can choose « small so that
Ck < kY2 and use iteration argument to deduce (4.2). O
Lemma4.3 Let u, A, g be as in Proposition 4.1. For any xo = (x(’), (x0)n) € Br/z and

O<p<r< %(xo),,, the estimate (4.2) holds true.
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Proof We follow the argument in Lemma 4.2. To begin with, we decompose # = w + v in
B, (x0) C Bfr, where w € W(}’Z(Br (x0)) is a solution of

—div({A) B, (xp) VW) = div((A — (A) B, (x)) Vit + (8 — () B, (x))) 1n By (x0),
and v is a solution to

div({A) B, (x)VV) = 0 in B, (x0) (4.6)

withv—u € WOI’Z(B,.(xO)). For d := (x¢),, the condition r < d/2 implies thatd /2 < x, <
3d /2 whenever x € B, (xg), which yields for small « € (0, 1/2)

11(B(x0)) < Cr"d and (Ber(x0)) = c(kr)'d > cx"r" L.
By arguing as in Lemma 4.2, we can get

| weoldr <t (19l g nh )+ 1j00)
By (x0)

which implies an analogue of (4.4):

I
ol e
Byr(x0) | Xn Xn | B, (x0)

<Ck™" (||Vu||L00(Bl+)77114(r) + r]é(r)) :
Concerning %, we can exploit L*>°-estimates for v and Vv to deduce

H NG
Xn ILip(B, 2 (x0)) Xn /112 (B, 5 (x0))

c VUl oo (B, 2 (x0)) N vl Lo (B, /2(x0))
d d?

2 fBr(XO) |lw(x)|dx
U (Ber (x0)) 4.7

v

Xn

du.

< C / eoldx < &
< v(x)|dx < =
"t d I, (x) 7 JB, (xo)

R

" > Xxn, which also satisfies (4.6), gives
™[ By (x0)

Xn ILip(B,/2(x0)) By |Kn Xn | B, (xo)

v v \¥ v v \#
——(— du < Ck ——{—
Byer (x0) Xn Xn By (x0) By (x0) Xn Xn B (x0)

This is an analogue of (4.5). As we have seen in the proof of Lemma 4.2, the estimates (4.7)
and (4.8) imply

Replacing v with #(x) := v(x) — (

du.

Thus

du. 4.8)

b (x0, k) = Chp(x0, 1)+ C ™ IVl e gy 14 () + 1g(1))

This concludes the lemma by choosing « sufficiently small and using the iteration argument.
]

We now provide the proof of Proposition 4.1 with the help of Lemmas 4.2 and 4.3.
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Proof of Proposition 4.1 We consider

o) = Vullqpp) s [0/9)' 204+ sup (/9P| 0<r<1.
selr,

selr,1]

Note that w(r) > ||Vu||Loo(Bl+)ﬁ}{ (r) + ﬁé(r) and 7 —> “’1(/’2) in nonincreasing. We claim

that for any xo € Bfr/z and0 < p <r < 1/4
¢ (x0, p) < C(p/r)' ¢ (x0,7) + Ca(p) 4.9)

for some constant C = C(n, A) > 0. As = is bounded, (4.9) readily implies Proposition 4.1
by taking r = 1/4. Before we prove (4. 9) we observe that if By (z9) C B, (z1) and (B (zo)N
Bi") > cop(B:(z1) N By) for some 0 < ¢y < 1, then ¢ (20, 5) < 2¢; ' ¢ (21, 1). This will be
used multiple times in the proof, and follows from the following computation:

fro i),
By(z0) | *n Xn | By (z0)
A o 0 I (S N )
5 —_ —_ —_ —
By (z0) | Xn Xn | By (z1) XnlBszo) \XnlB(z)

LA o 0 MO Ry A o 0
<2 ——({— — ==
Bs(z0) | *n Xn | By (z1) Xn Xn | B, (z1)

dp < —
0J By (z1)

To derive (4.9), we fix a point xg = (xo, (x0)n) € Bl/z’ and write d := (x¢), and

X0 := (x),0) € B} /2~ We split our proof into two cases

dup

dp +

du.

either p>d/2 or p <d/2.

Case 1. We first consider the case p > d /2.
Case 1.1. Suppose p < r /6. By using the observation above, we can obtain

¢ (x0, p) = Co(Xo,3p) and ¢ (xo,7/2) < Co(xo,7).
We then have by Lemma 4.2,

¢ (x0, p) = Cop(x0,3p) = C ( 3//)2)1/2¢(io,r/2) + Cw(3p)
< C(p/N)'?¢(x0, 1) + Ca(p).
Case 1.2. If r /6 < p < r, then we simply have by using the above observation
¢ (x0, p) < Ch(x0,r) < Clp/r)' ¢ (xo, 7).

Case 2. Suppose p < d/2.If r < d/2, then (4.9) simply follows from Lemma 4.3. Thus we
may assume p < d/2 < r. Notice that by Lemma 4.3 again,

¢ (x0, p) < C(p/d)'*p(x0,d/2) + Cw(p). (4.10)

We consider further subcases either r /4 < d ord < r/4.
Case 2.1. Suppose d/8 < r/4 < d. Then we readily have ¢ (xg, d/2) < C¢(xo, r), which
combined with (4.10) yields

b (x0, p) < C(p/d)" p(x0,7) + Car(p) < C(p/r) 2 p(x0, 1) + Car(p).
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Case 2.2. It remains to consider the case p < d/2 < r/8. By applying Lemma 4.2, we infer

¢ (x0,d/2) < C¢ (T, 2d) < C(d/r)'"*¢ (%o, /2) + w(2d)
< Cd/r)"*p(x0, 1) + w(2d).

This, along with (4.10) and the monotonicity of # —> %, gives

¢ (x0, p) < C(p/r)' ¢ (x0,1) + C(p/d)'*w(2d) + Cwr(p)
< C(p/r)'p(x0,7) + Caw(p).

This completes the proof. O

4.2 Higher-order boundary Harnack principle on a fixed boundary

The aim of this subsection is to establish the higher-order boundary Harnack principle, The-
orem 1.5. In fact, the most technical part of the proof has already been done in the previous
subsection, where we proved the Dini mean oscillation of u /x,, in Proposition 4.1. In this sub-
section, we first extend that result to deduce the higher regularity of u/x,; see Corollary 4.7.
We then follow the argument presented in [26, Theorem 1.2] to achieve Theorem 1.5.

To extend Proposition 4.1, we need the following auxiliary result.

Proposition 4.4 Letn > 2, k € N, w a Dini function and u be a weak solution to (4.1):

—div(AVu) = divg in BT,
u=~0 on Bj.

LetA,g € C*" ' (B ) with D71 A, DX g € CV(BY). Thenu € CL, (B UB)). Moreover,
. B . o
if||A ||Ck—1(Bl+) + ZIBI:k—l [Dx/A]C?;/’f(Bl*) < L, then there exists a positive constant C and

a modulus of continuity o depending only on n, A, k, L and @ such that

lllco s,y < € | uellasry + gl + D [Dhglcvogs, |- @10
|Bl=k—1

Proof Let us prove the result by induction on k € N. The case k = 1 is [7, Proposition

2.7]. Let us suppose the result is true for a certain k € N and prove it for k + 1. Assuming
A ge Ck(BlJ’) and D’;,A, Di,g IS C?’“’(BfL), we want to prove u € Clk;gl (Bfr U Bi), which
is equivalent to prove u; = d;ju € CIIE)C(BIJr U Bj) forany i =1, ..., n.Itis easily seen that

any tangential derivative u; = d;u withi =1, ..., n — 1 is a solution to

—div(AVu;) = div(d;g + 3; AVu) in B}

4.12
u; =0 on Bj. (4.12)

Hence
ui € CL.(Bf UB)) foranyi=1,...,n—1 (4.13)

by the inductive hypothesis since g := 9;g + 3;AVu € C*~! with D];flg € C?'w. Let us
remark that we used that A, g € C¥ ¢ C¥~!! and by standard Schauder estimates u € C*-#
forany 0 < 8 < 1,i.e. Vu € C¥"1A forany 0 < g < 1.
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k(B U B ), it is enough to prove that u,, = 82,u €

loc (BJr U B 1) because uy; = 82 u e Cloc (Bfr U Bi) foranyi = 1,...,n — 1 was
already given by (4.13). Then, for thls last partial derivative, one can rewrite equation (4.1)
as

In order to prove that u, € Ck

1 — n—1
Upp = —— (dwg—i—Z@ (AVU, &) + D On(aniuei) + 0y annun) eck 1,

Gnn i=1 i=1
Observe that a,,,, = (Aé,, é,) > A > 0. O

By employing the standard flattening of the boundary (4.16), Proposition 4.4 can be
generalized to the boundary Schauder estimate in C*!~PMO domains as follows: let u be a
solution of

:—div(AVu):divf inQnN B, “14)

u=20 on 92 N Bjy.
Then the following result holds true

Corollary 4.5 (Boundary Schauder estimates in C*'~PMO domains) Letn > 2, k € N, w a

Dlmfunctlon and u be a weak solution to (4.14). Let A, f € Cf Lo@nB)), y e Cf’w(B/)
Thenu € ClOC(QﬂBl) Moreover, if | Al .+~ Loongy) T ||y||ckw(B y <L then there exists a
1 1

positive constant C and a modulus of continuity o depending only on n, ;, k, L, and w such
that

ko @ns, = € (Il2@ns) + IEl ko, ) -

Let us remark here that the modulus of continuity o (r) is comparable with f ‘ “’EY) ds +rP
for any chosen 8 € (0, 1), where @ is a Dini function derived from w as in (2.6).
We combine Propositions 4.1 and 4.4 to derive the following result.

Proposition 4.6 Let us assume the same conditions of Proposition 4.4. Then u/x, €
Clic (B U B)) and DI () is of L' (x,d)-DMO in B,

Proof The fact that u/x, € C10C (Bl+ U By) follows by Proposition 4.4 and the fact that

/ 1
M:/ u(x’, sx,)ds.
0

Xn

Let us prove that Dk ! ( ) is of L' (x,,dx)-DMO by induction on k € N. The case k = 1
is given in Proposition 4.1. Let us suppose the result true for a certain k € N and prove it for
k + 1. Assuming A, g € Ck(?f) and Dﬁ,A, D';,g € C?’w(Bf”), we want to prove D’;, <%)
is of L!(x,dx)-DMO in B1 2 Let us remark that Proposition 4.4 implies u € C k+1 and it
remains to show that Dk ! ( ) is of L!(x,dx)-DMO in Bl/2 foranyi =1,...,n — 1.

In the proof of Proposition 4.4 we proved that any tangential derivative u; = d;u with
i =1,...,n—1isasolution to (4.12). Hence the result is proved by the inductive hypothesis
since g 1= 9;g + 9 AVu € C*~1 with D¥'g e €} a)
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Corollary 4.7 Let k > 1, and suppose that u is a solution of

—div(AVu) = g in B,

4.15
u=20 on Bj. ( )

Assume A, g € Ck’l(?r) and D];,_IA € C?’w(Bf') for some Dini function w. Then the
conclusion of Proposition 4.6 holds.

Proof In view of Proposition 4.6, it is enough to find a function g : B3+/ 4+ — R’ such that
divg =g,and g € Ck_l(B3+/4) with folg € C?’w(B3+/4). To this end, we take a smooth
and convex domain D such that B3+/ +CDC Bfr, and consider a Dirichlet problem

Aw =g inD,
w=0 on dD.

By the elliptic theory, there exists a (unique) solution w, which belongs to C*#(D) for any
0 < B < 1. Then g := Vw is the desired one. O

Now we are ready to establish Theorem 1.5 by following the argument introduced in [26,
Theorem 1.2].
Let us consider two functions u, v solving (1.4), i.e.,

—div(AVv) = f in 2N By,
—div(AVu) =g in QN By,
u>0 in QN By,
u=v=0, dhu<0 ondN By,
where A is symmetric and satisfies (1.2), 0 € 92 and v stands for the unit outward normal

vector to £ on 9€2.
As shown in [26], the ratio w = v/u solves the degenerate elliptic equation

—div (u?AVw) = uf — gv in QN By;

with associated conormal boundary condition at 32 N By, i.e., it is a weak solution in the
weighted Sobolev space H' (2N By, u?(x)dx)

/ u>AVwVé :/ (uf —vg)e
QNBy QNB;

for any ¢ € C°(Q N By). Theorem 1.5 is proved by composing u, v with the standard
diffeomorphism which flattens the boundary, and proving the regularity for the ratio near
the flat boundary. Then, the curved world inherits the regularity by composing back with the
same diffeomorphism.

Let k € N and w be a Dini function. Let us assume that A, f, g € Cf‘l’”(sz N Bp) and
3Q e CK17PMO_ Afier rotations and dilations, the domain 2N B; can be locally parametrized
withy € C ]1“"

QNBy={x, >y&H}INBy, 9QNB; ={x, =yx)}NBy.
Let us consider the standard local diffeomorphism which straightens the boundary 0<2:

D', xn) =, x + ¥ (), (4.16)
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which is of class Cll"w. By composing u, v, f, g with ®, one can see that v = v o ® and
it = u o ® solve, up to a further dilation,

—div(AVY) = f in B,
—div(AVi) = 3 in Bf",
>0 in B,

S ™

v=0, —d,4 <0 on B,

with new free terms f = fo®, g = god and coefficients A= (qul)(A o <I>)(qu1 )T, where
Jo is the Jacobian associated with ®. It is easily seen that | det Jo| = 1, which combined
with Lemma A.2 implies that f , 8, AecC ]f_l’w for some Dini function @. Hence we are
concerned with the regularity of the ratio

vo®d

w=wod = .
uod

To prove Theorem 1.5 it suffices to show @ € C¥ up to & = {x,, = 0.
In the proof below we will rename for sake of simplicity of notation i, v, w, f, g, A, @
asu,v,w, f,g, A, w.

Proof of Theorem 1.5 After composing with the standard diffeomorphism in (4.16), the ratio

solves
2
. 2 u u v
—div (xn (—) AVw) =Xy (—f - —g) .
Xn Xn Xn

Taking k € N, we have A, f, g € C]ffl’w. Then by Corollary 4.7, we have that u/x,, € C¥~!
and Dl;fl(u/xn) € C?’I‘f] (the same for v) for some Dini function ® and dp, = xjdx.
Hence, w is a solution to

—div (x2AVw) = div(x2f),

_ 2
where A = (ﬁ) A and

-

Xn r
f(x/, x) = %/0 tf(x 1) de ZEn/O s f(xX, sxp)ds,

where f = - f — *g. By Lemma A.2, Lemma A.3 and Corollary A.5, we have A, f € ck1
and ng,—‘Z, Df,_lf € C?:fz, and thus we can conclude by applying Theorem 1.4. O

4.3 Higher-order boundary Harnack principle across regular zero sets

The aim of this subsection is the proof of Theorem 1.6. We begin by deriving the C*¥-2~PMO_
regularity of the A-harmonic function u for A € Cé_l’“’. In fact, in the proposition below,
we deal with a more general situation.

In Theorem 1.6, we require an L>-DMO type condition on the coefficient A, whereas we
impose L'-DMO type conditions for the other main results. This is because if A belongs to
the L'-DMO type space Cll‘_l"”, we expect only C*-regularity of u, which is insufficient for
our objective. As we will soon observe, Dini mean oscillation of derivatives of u is necessary
for the DMO type condition for the new coefficient after flattening the regular nodal set.
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Proposition 4.8 Letn > 2, k € N, w a Dini function and u be a weak solution to (4.1):
—div(AVu) = divg in B},
u=0 on Bj.

Let A, g € Clchl’w(B?'). Then u € Ck’szMO(B]"' U BY). Moreover, if

loc

”A ||C§71’M(Bl+) =< L»

then there exists a positive constant C and a Dini modulus of continuity @ depending only
onn, A, k, L, and w such that

Il gy < € (Il + Iglcsro)) -

Proof When k = 1, the result can be inferred from [6, Theorem 1]. In fact, this theorem
concerns the interior C1"2~PMO_regularity of the solution with data of partially Dini mean-
oscillation with respect to x’-variable. It is worth noting that while the statement of the
theorem indicates that the solution is C', its C-27PMO regylarity can be easily inferred from
the proof. To apply this result in our context, we take odd-extensions for u, A and g from BIJr
to B;. Then (4.1) gives

—div(AVu) = divg in Bj.

Since the extended A and g still remain of partially Dini mean-oscillation, the case k = 1
follows.

We can extend the case k = 1 to the general case k € N by using the induction argument
demonstrated in the proof of Proposition 4.4. O

By employing the standard flattening of the boundary (4.16), Proposition 4.8 can be
generalized to the boundary Schauder estimate in CK2~PMO domains as follows: let u be a
solution of (4.14), then the following result holds true

Corollary 4.9 (Boundary Schauder estimates in C*>~PMO domains) Letn > 2,k € N, w a
Dini function and u be a weak solution to (4.14). Let A, f € Cg_l’w(Q NBy),y € C’;’w(Bi).

k.2-DMO /& .
Thenu € Cy;; (2 N By). Moreover, ’f”A”C’z‘*"“’(SmB.) + ||]/||C12c,m(Bi) < L, then there

exists a positive constant C and a Dini modulus of continuity o depending only onn, A, k, L,
and o such that

”u”Cng(QmBl/z) = C <||u||L2(QﬂBl) + ”f”C;‘*l,w(QﬁBl)) .

Remark 4.10 By using Proposition 4.8 and Lemma A.4, in the L>-DMO setting one can
prove the following counterpart of Proposition 4.6: let us assume the same conditions of
Proposition 4.8. Then there exists a Dini function @ and a positive constant C depending
only on n, A, k, L, and w such that

u

- = € (Il gy + Il ct-rosr) -

¢ B

Now, let us return to Theorem 1.6. To prove it, we use the following strategy: first we
localize the problem around a given point on the regular part R(«) of the nodal set Z(u) =
u~1{0}, where u is a given A-harmonic function, i.e., local solution to div(AVu) = 0. For
simplicity O € R(u) N By, u is A-harmonic in By and S(#) N B; = @. Considering another
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A-harmonic function v in Bj such that locally Z(u) € Z(v), then the ratio w = v/u is
solution to

divw?AVw) =0 in By.

We would like to straighten the regular nodal set and get the regularity estimates for the
ratio from both sides of R(u), and finally glue them together across the free interface. Under
L%-DMO type assumptions on coefficients, specifically A € CIZC 71’“’, the solution # belongs
toC § "“_spaces, by the interior counterpart of Proposition 4.8. We would like to stress the fact
that the implicit function theorem cannot ensure that R(x) N By is a hypersurface of class
C§ "“ since DMO type conditions are not preserved under restrictions to lower dimensional
subsets. For this reason we need to make use of a hodograph transformation [15, 17] which

is, in the present case, a diffeomorphism of class C§ *“ which flattens the level sets of u.

We consider the A-harmonic function « in By with O € R(u), S(u) N B = ¥ and |Vu| >
¢ > 0. This nondegeneracy condition allows us assume, up to rotations, |d,u| > ¢ > 0.
Then, we can define the following diffeomorphism

W', x,) = (7, ux’, xp)). 4.17)

Denoting by x = (x/, x,,) the original coordinates and y = (y’, y,) the new coordinates,

Y =x'
Yn = u(x’, xp).

Up to dilations, ¥ maps {u > 0} N Bj into Bl+ = B N{y, > 0}, {u < 0} N By into
B{ = By N{y, < 0}and R(u) N By into B] = By N {y, = 0}. In particular, for any ¢ € R,
the level set u~!{t} N By is locally mapped into the hyperplane {y, = r} N By. Then,
uow™! (y/, Yn) = Yn.
The Jacobian associated with W is given by
Loi | 0
(VoG [ (x)

Jy(x) = < > . with [det Jy (x)| = [d,u(x)| = ¢ > 0,

and hence W is locally invertible and bi-Lipschitz by the implicit function theorem. In fact
Jyr =J5 0w

that is,

It 0
Tor ) = (—(vxru U TN Janu 0 U T () |1/ o W(y)) ’
with
1
— > >0
i 0 U1 = [Virlloo

det Jy-1 ()] =
Then, up to dilations, w = w o W1 golves
div (x2AVid) =0 in B,

where

JuAJL -

y 1 —1 —1\T =
A=, )(AoW™)(Jy ) [det Jy-1] = |det Jy |

@ Springer



Schauder type estimates for degenerate or singular equations Page370f42 239

Notice that DMO type conditions are preserved under composition with this diffeomorphism.
Then, when u € C ® the new matrix A belongs to Ck Lo - Ck Lo - Ck 1“’ with
djy = x2dx.Now we shall prove the C* regularity of i across £ = {y, = 0} and composing
back with W, which is of class C2 this will give the same regularity for w = w o W. Let
us denote A, w, by A, w, w.

Proof of Theorem 1.6 After applying the diffeomorphism in (4.17), the ratio solves
div (x7AVw) =0 in By,

where A belongs to Cf;lzw for some Dini function w, and solves the same problem separately

on the upper and lower half balls B 37 with conormal boundary condition at B]. Hence, by
applying Theorem 1.4 on the two half balls separately, we get that w belongs to C ko(B 1 /2)

and Ck-o (Bl/z) for some modulus o which is B-nonincreasing (i.e., r + og(r)r~ B is
nonincreasing) for some 8 € (0, 1]. Finally, we can apply the gluing lemma in [26, Lemma
2.11] which can be generalized to the case of the present modulus o due to the validity of
[16, Lemma 3.9 and Lemma 3.10]. Let us stress that the validity of the gluing lemma relies
on the boundary condition (1.6). O

Appendix A Properties of DMO functions

The following doubling property of the measure can be directly checked.

LemmaA.1 Fora > —1, letdp = x3dx. Suppose that D is a Lipschitz and convex domain
in B 1+ Then there exists a constant C > 0, depending only on n, o, and the Lipschitz constant
of D, such that

w(Bar(x0) N D) < Cu(B,(x9) ND)
for any xo € D and 0 < r < diam D.

LemmaA.2 Let f and g be bounded functions in a domain 2. Let | be a Radon measure
and q € [1, +00). If f and g are of L4(dw)-DMO in Q2 then so is fg.

Proof Let xp € Qand 0 < r < 1 be given. Then, for 2, (xo) = 2 N B, (xp), we have
][ [f@)g(x) = (f8)g, (x| drt(x)
Qr(x0)
< C][ £ ()8 = F((8), ()| A1)

Q2 (x0)

7 ®

+ C]é oy NG, ) = (£ I d)
< C]é S 18() = (8)6, ()¢ drx)

r(x0)

+C][ ][ [f(x) = fOIT gD dp(y) dpa(x)
Q (x0) J 2, (x0)

< Clf18ng™ (M1 + Cliglidoln’ " (17

[m}
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LemmaA3 Leta > 8 > —1andq € [1,+00). If f is oqu(x,/fdx)-DMO in BT, then it is
of LY (xydx)-DMO in B ,.

Proof Let xo = (x(), (x0)n) € BlJr/2 and 0 < r < 1/6 be given. For simplicity, we write

dpg(x) = xXdx, Q(x0) = Br(x0) N Bfr/z, d = (x0)n, and xg := (x(’), 0). We consider two
cases:

eitherd/2 <rord/2 >r.

Case 1.1f d/2 < r, then we use B, (xg) C B3,(Xp) and apply Lemma A.1 to get

b= ntsgltdne=cf 17w - o))
Qr (x0) B (%) J B (%0)
C
- _ q oo
< ot /B " fB oy 00 = SOy

ol
< |f(x) — fO)I9xE yPdxay
r2e ) It o) JE o) e

M g a9 ,
C][B;ozmlf gyl dis = Clng " Gl

IA

Case 2. If d/2 > r, then by using that d/2 < x, < 3d/2 for every x = (x', x,) € B,(x0),
we can easily obtain

][ |f = ()6 )Pt < c][ 1 = (P l?dump < CIny™ (019
Q, (x0) 2 (x0)

[m}

LemmaA4 Fora > —1,letdp = x;dx. Let q € [1,400) and B > 0. If f is of L9(dp)-
DMO in BI", then f(x) = fol sﬂf(x’, sxp)ds is of L1(dw)-DMO in BI".

Proof Given xy € Bfr and 0 < r <
inequality and Jensen’s inequality

1/q
o ,
(fB o T s du)
q 1/q

=<][ du(X)>

B (x0)NB}

1 1/q
=) ][ sxn) = (F s “d d
<[ (mwngr'f(x’”) (FCasl e 11d0) ) ds

1 1/q
- / § ][ ][ &, 525 — FO sylfdp(oduy) | ds.
0 B (x))NB]" J B, (xo)N B}

We claim that there is a dimensional constant C > 0 such that foreach0 <5 < 1,

l/q
(][ ][ | f s sx0) — FOY, syn)l”’du(X)du(y)>
By (x0)NB;" J Br (x0)NBY

ﬁ, we have by applying Minkowski’s integral

1
/0 PG 8x0) = (FCosy (g )
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Cn?’“(%/ﬁsr)
< —.

(A.1)

N

Suppose now the claim is true. Then, we readily have

1/q 1
A AW 44 <C/ B=1,9:1 > ds.
(»fB,(,m)ﬂBlJr 7 (f>Br(Xo)ﬂBl+| M) = ) N Ny ( ﬁsr) s

Here, w(r) := fol sﬁ_lnq.’“(Z\/ﬁsr)ds is a Dini function since

/m o) / P 1/2[ nf“(2fsr) 0 S_/ P 1/ nf“(t) irds
0
it
< (/ i (t)dt> (/ sﬁ_lds) < +00.
0 t 0

To close the argument, we need to verify (A.1), which by a change of variables is equivalent

to
/ / 100 — FOIdu()dp(y)
E$ (x0)NB; JES (x)NB} (A.2)
< Clu%" @v/nsr)V [(B, (x0) N B P> 742,

where E? (xo) are ellipsoids defined by

_ 2
E}(x0) == {x = x,) €R": ) — x>+ miﬂ < r2} .

To prove (A.2), we cover the ellipsoid E; (xo) by hypercubes of length 2sr in the following
way:

- each center of the hypercube lies on {x, = s(x0),},

- every intersection of two hypercubes has zero n-dimensional measure.
Note that the number of hypercubes is bounded by C/s"~! for some dimensional constant

C > 0. Next, we cover each hypercube by the concentric ball of radius /nsr. Then we can
write

El(xo) C | B.
BeF

where each element B is a ball of radius /nsr centered on {x, = s(x¢),} and n(F) <
Cc/s" L
We assert that given arbitrary two balls in F, say B and B, it holds that

/_ f [fx) = fO)Tdux)du(y)
BNnB} JBNBf (A3)

< Cs™U (B, yis, (s%0) N B[ 2/nsr)}e.

Indeed, if B and B are adjacent (i.e., BNB # ()), then B U B C B for aball B centered on
{x, = s(x0),} of radius 2,/nsr. This readily gives

/_ +/, +If(X)—f(y)l‘fdu(x)du(y)
BBy JBnB;
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<[ [ e - rordeedne)
BB} JBNBf
< CLu(By iy, (sx0) N BN (24/nsr))?.
On the other hand, if B and B are not adjacent, we connect them by a chain of balls in F,
with a length of the chain bounded by C/s for some C = C(n) > 0. That is, we consider a

sequence of balls B=B B! ...,B/7! B/ = BsuchthatJ < C/s,B/"'NBJ + @and
B/ € F,1 < j < J.Then by Holder’s inequality

/ f 10 = faeHd e )dp(x%)
BnBf JBINB;

< e
/30me /Bmel+ ][BlmBl+ ][31—1031*

J
T = e dp e Y - dpeHdp (e )d e (x°)
Jj=1

J
= Z/BHW /ij |f ™ = FaDTdpyd T

< CIUu(By iy (s%0) N B IGH (24/nsr)]
< Cs™[1(By fiy (sx0) N BN " (2/nsr))?,

and hence (A.3) is proved.
Now, by using (A.3), we obtain

[ f £ — FOIdr)dny)
Eso)nB; JEs (xo)nBiF

/ / 100 = FOINdp)duly)
Bsr(Z: Bsr(ZJ

IA

1<i ]<C/s” 1
< Cs~ "2 O[u(By sy, (sx0) N BHPInG" 2/nsr)1?

Finally, by using 1t(B, s, (sx0) N B{) < Cu(By,(sx0) N By < Cs" ¥ u(B, (xo) N B),
we conclude (A.2). m]

Lemma A.4 has an immediate corollary.

Corollary A5 Let o, 1, g and B be as in Lemma A.4. Given k € N and a Dini function o, if
fe CZ;:,“Z(BI"), then f(x) := f()] sPF(Y, sxy)ds € C]q(jﬁ(Br)for some Dini function @.
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