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Abstract

We study the perfect conductivity problem with closely spaced perfect conductors
embedded in a homogeneous matrix where the current-electric field relation is the
power law J = o |E|P~2E. The gradient of solutions may be arbitrarily large as ¢, the
distance between inclusions, approaches to 0. To characterize this singular behavior
of the gradient in the narrow region between two inclusions, we capture the leading
order term of the gradient. This is the first gradient asymptotics result on the nonlinear
perfect conductivity problem.
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1 Introduction and main results

Our study is instigated by the damage analysis in the fiber composite materials [6].
Particularly, when fibers are closely packed and in high-contrast to the background
matrix in terms of material properties, the electric field could be amplified by the
composite micro-structure. In this article, we investigate the specific scenario in which
the fiber inclusions are perfect conductors, and the background matrix follows the
current-electric field relation described by the power law:
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J=cl|E|P?E, p=>1, (1.1

where J, E, and o represent current, electric field, and conductivity, respectively. This
power law has physical relevance across various materials, including dielectrics, plastic
moulding, plasticity phenomena, viscous flows in glaciology, electro-rheological and
thermo-rheological fluids. We refer to [5, 12, 24, 27, 31, 40, 41] and the references
therein.

Before stating our results, let us describe the mathematical setup: let 2 C R” be
a bounded domain with C2 boundary, and let D? and Dg be two C? open sets with
diam(D?) > ¢ > 0and dist(D(l) U Dg, 02) > ¢ > 0, touching at the origin with the
inner normal direction of BD? being the positive x,-axis. We write the variable x as
(x’, x,), where x’ € R"~L Fore > 0, translating D(l) and Dg by ¢/2 along the x,-axis,
we obtain

D§ =D 4 (0,e/2) and D5 :=D)— (0, ¢/2).

We denote Q2° := Q\ (D UD5).
The perfect conductivity problem incorporating the power law (1.1) can be modeled
by the following p-Laplace equation with p > 1:

—div(|Dug|”">Du,) = 0 in Q°,
ue=Uf onDf, i=1.2,

1

1.2
/ |Dug|P">Du, - v =0, i=1,2, (1.2
aDf
Ug = @ on 082,
where ¢ € C 2(E)Q) is given, v = (v, ..., v,) denotes the outer normal vector on

0D} U dD;5 (pointing away from D] UD3), and U7, U are two constants determined
by (1.2)3. Here and throughout the paper, we adopt the notation

Du, -v(x) := tli%l us(x + 1 v(;c)) —ue(0) and Du.(x) := [Du, - v(x)]v(x)
—U4

forx € 0D}, i =1,2.
The solution u, € W7 () can be viewed as the unique function which has the
minimal energy in appropriate function space: /,[u] = min,¢ = I,[v], where

I,[v] := / |Dv|”, ve o?,
Q
Z*=weW'P(Q):Dv=0in DiUD;5, v=g¢ on 9Q}. (1.3)
We refer the reader to the Appendix of [8] for the derivation of (1.2) and its equivalence
with (1.3). Although this derivation specifically addresses the case when p = 2, the

argument can be readily applied to p > 1 with slight modifications.
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Asymptotics of the solution to the perfect conductivity... 5007

The perfect conductivity problem (1.2) with p = 2 has undergone thorough studies.
It was proved by Ammari et al. in [3, 4] that, when D and D, are disks of comparable
radii in R?, the blow-up rate of the gradient of the solution is ¢ ~'/2 as & goes to
zero; Yun in [44, 45] generalized the above mentioned result for two strictly convex
inclusions in R2. These gradient estimates in dimension n = 2 were localized and
extended to higher dimensions by Bao, Li, and Yin in [8]:

C£_1/2||<p||cz(39) whenn = 2,
[ Ducll ooy < § Clelne| lgllc2pg) — whenn =3,

Cellelczan) when n > 4.

These bounds were shown to be optimal in the paper and they are independent of the
shape of inclusions, as long as the inclusions are relatively strictly convex. Moreover,
numerous studies have been conducted into characterizing the asymptotic behavior of
Du,, which are significant in practical applications. For further works on the linear
perfect conductivity problem, see e.g. [1, 2, 10, 11, 13, 17, 21, 25, 28-30, 32-34, 39]
and the references therein.

The study on the nonlinear perfect conductivity problem (1.2) is less comprehensive.
The only results were given by Gorb and Novikov [26] and Ciraolo and Sciammetta
[15]. They proved that for n > 2,

el 1

Ce 20-D when p > %,

- n+1

IDuell @, < § Ce~'[Ine|™7  when p = ; ,
1
Ce™! whenl < p < %

These bounds were shown to be optimal in their respective papers. In this paper, we
give a more precise characterization of the gradient by capturing its leading order term
in the asymptotics expansion.

It is noteworthy that, for the linear case in dimension two, solutions to the per-
fect conductivity problem and the insulated conductivity problem, representing the
two extremes of conductivity, are harmonic conjugate to each other as shown in [4].
Therefore, the behavior of their gradients is essentially identical due to the Cauchy—
Riemann equation. The authors of this paper in [20] studied the insulated conductivity
problem with p-Laplacian, and identified the optimal blow-up exponent in dimension
two. It turns out the gradient behaves significantly different from that of the solution
to (1.2) in dimension two. This showcases an intriguing feature of the nonlinear con-
ductivity problem. For more results on the linear insulated conductivity problem, we
refer to [9, 18, 19, 35, 36, 43, 46].

To study the asymptotic behavior of u,, the solution to (1.2), it is important to study
the limiting problem (1.3) with ¢ = 0. We will show that the minimizing problem
(1.3) with ¢ = 0 is equivalent to
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5008 H.Dong et al.

— div(|Duo|?~>Dug) = 0 in ©°,

uyg = Uy onD(l)UDg,

(1.4)

/ |Duo|P~2Dug - v =0,

aDYUIDY
uy = ¢ on 02
for a constant Uy when p > (n 4 1)/2, and is equivalent to
— div(|Dug|?~?Dug) =0 in ©°,
wo=U; onDO\{0}, i =12,

(1.5)

/Do |Duo|P~*Dug - v =0, i=12,
oD:

i

uy =@ on 02

for constants U and U, when p < (n + 1)/2. We would like to clarify a misunder-
standing in the papers [14, 15]. In [14, 15], the authors implicitly claimed that the
minimizing problem (1.3) with & = 0 is universally equivalent to (1.4), which is not
the case. We will justify this in Theorem 2.4. We emphasize that while the minimizer

ug of (1.3) with ¢ = 0 always takes the same value in D(l) and D_g when p > (n+1)/2,
it may take different values when 1 < p < (n 4 1)/2. On the other hand, the flux
along aD?, denoted by

F = / | Duo|P~2Dug - v, (1.6)
aDY

might not be zero when p > (n + 1)/2, but it must be zero when p < (n + 1)/2.

By the regularity of D} and D5, we can assume that near the origin, the part of 9D}
and dD5, denoted by I'. and I'®, are respectively the graphs of two C? functions in
terms of x’. That is,

= {n =2 4 me), W<t} T8 == -2 +he), W <1],

where /1 and h; are relatively convex C? functions satisfying

hi(0) = hy(0") =0, Dyhi(0) = Dyhy(0') =0, (L.7)
cl |x’|2 < hi(x") = ho(x") for 0 < |x'| <1, (1.8)

and
h1llc2 < c2, Nh2lle2 < e, (1.9)
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with some positive constants ¢y, ¢p. Forxg € Q4,0 <r < 1 — |x(’)|, we denote

Q= {(x’,x,,) e QFf } — % +ha(x)) < x, < g—l—hl(x/), [x" —xp < r},

X0,7
and Q0 := . We also denote

re,:=rinQ, I, .=r<nq,.
We use B, (xp) to denote the open ball of radius r centered at xo and we set
B, := B,(0), F(x0) := Q° N B, (xo).
Throughout this paper, we denote
8(x) =& + ¥ (1.10)
and
8(x) ==&+ h(x)) — ha(x'). (1.11)

By (1.7)—(1.9), it can be easily seen that

min{cy, 1}§(x) < §(x) < max{cy, 1}§(x), for x € Q.

We denote
2p—n—1 n +1
2(p—1
& . p > 3 s
1 1
O) == { [ne| 71, p= ”JZF , (1.12)
1
1, l<p< n—; ,
and
1
det (D2, (hy — h2)(0))2T(p — 1) n+1
— e , when p > —
27) 7 I'(p — 2L
K = @m) 7 T(p 2 ) (1.13)
det (D2 (h1 — h2)(0)) 2 (21 1
(Db —m)@)Pr(egl) L
Qm)'T 2

where I'(z) := fooo 1*~le~" is the Gamma function defined for z > 0.
Our main result is the following asymptotic expansion of Du.(x) for sufficiently
small & and x’.
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Theorem 1.1 Let hy, hy be C? functions satisfying (1.7)—(1.9), p > 1, n > 2, u, €
WI’P(Q) be the solution of (1.2), ug be the minimizer of (1.3) with e = 0, F be given
in (1.6), Uy, U; be the constants in (1.5)2, §(x) be defined in (1.11), ©(¢) be given in
(1.12), and K be defined in (1.13). Then there exist constants B € (0, 1) depending
only on n and p, and C1, C, > 0 depending only on n, p, ci, and c3, such that the
following holds:

Q) Ifp=m+1)/2 fore € (0,1)and x € SZ*{/4, we have

Du,(x) = (0, 8(x)"'@(e) (sgn(F)(KIFNYP™D + fo(e)) +fi(x, e),
(1.14)

where fo : R — R is a function of ¢ and f; : R" x R — R" is a function of x and
&, such that

lim fo(e) =0,
fi(x o)l = (80P OE(KFI "™ + | fo(e))
__©
+lellLepa)e ﬁ*'*"). (1.15)
) Ifl<p<m+1)/2 fore € (0,1)and x € Q‘i/4, we have
Dug(x) = (0, 8(x) (U1 — Uz + go(e))) + g1 (x, &),

where go : R — R is a function of ¢ and g1 : R" x R — R" is a function of x
and ¢, such that

lim go(e) =0,
e—0

2
210c,0) = C1 (8PN (U = Ual + Ig0(@)D) + lelleare” ).
(1.16)

As a consequence of the asymptotic expansion in Theorem 1.1, we provide a point-
wise upper bound of Du,.

Remark 1.2 Under the hypotheses of Theorem 1.1, there exist constants Cy, C; > 0
depending only on n, p, c1, and ¢z, such that for sufficiently small ¢ > 0, and any
X € 52513/4, we have

o) | -~z
|Dus(x)|§C1||<P||L°°(as2)<m+e o+ ) (1.17)

Infact, whenl < p < (n+1)/2, (lﬂ) f(&)ws directly from Proposition 2.2. When
p > (n+1)/2, since ug = Uy on DY U DY, we have |F| < C||<p||€;1(39) and thus
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(1.17) follows from (1.14). Indeed, one can see the boundedness of Dug on I"E)h 12 by
Lemma 2.1, and on BD?\FE)h 12 by classical gradient estimates (see e.g. [37]).

Another direct consequence of Theorem 1.1 is the following pointwise positive
lower bound of D,u. near the origin, provided the coefficient of the leading order
term in the asymptotic expansion is positive.

Remark 1.3 Under the hypotheses of Theorem 1.1, if either

1
and F >0 (1.18)

n—+
p=

or

1
l<p<™T" and Uy > Us (1.19)

holds, then there exist constants k1, k2 € (0, 1/4), y > 0 depending only on n, p, cy,
2, lellL=pe), F (when p > (n +1)/2), and Uy — U (when p < (n 4 1)/2), such
that for sufficiently small ¢ > 0, and any x € Qf /4 satisfying

1
x| < |lneg|77, when p > n—;— ,
1
x| §K1(1n|lns|)_1, when p = n—;— ,
1
|x/|§K27 when 1<p<n;_ ,
we have
! 1
Dnus(x) > ES(X)_I("D(E)(K]:)U([?_I), when p=> %,
1 na 1 (1.20)
Dyug(x) > E3(X)—1(U1 —U»), when 1 < p < T

Indeed, when p > (n + 1)/2, (1.20) follows directly from Theorem 1.1 by setting
1 1/(p—1)
[fo(e)] < E(Kj:) =,
1
Cro)P’? < -,
-9 ] _ -
Cillgli=pae T < 2807 0@ KRV,

and the case when p € (1, (n 4+ 1)/2) follows similarly.

Next, we provide a concrete example whose coefficient of the leading order term
in the asymptotic expansion is positive.
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Proposition 1.4 Let Q = Bs C R", D; = B»(0,2), Dy = By(0/, =2), ¢ = x,, and
uq be the minimizer of (1.3) with ¢ = 0. Then either (1.18) or (1.19) is satisfied.

Our proof of the main result Theorem 1.1 relies on the following C# bound of the
gradient, which may be of independent interest.

Proposition 1.5 Let hy, hy be C? functions satisfying (1.7)~(1.9), p > 1, n > 2,
e € (0,1), and u, € WHP(Q) be a solution of (1.2). Then there exist constants
B € (0, 1) depending only on n and p, and C > 0 depending only on n, p, c1, and c3,
such that for any x € Q4 and §(x) = € + |x’|2, it holds that

< C8(x) P2 | Ducll = (or

. 1.21
Nl 52 .21)

[leie]cﬁ(gE

Remark 1.6 It can be seen from the proof in Sect. 3 that Proposition 1.5 holds as long
as i, € Wl’p(Qi) is a solution of

—div(|Dug|P">Du,) =0 in ¢,
ug =U;j  onT,

ug =U5 onT%,

for some arbitrary constants U f and Uzg . Moreover, the same estimates also hold for
any solution u, € Wl'P(Qf) of

—div(|Due|P?Du;) =0 in QF,
olg
ov

=0 onl%,

which might be useful for obtaining sharper blow-up estimates for the insulated con-
ductivity problem with p-Laplacian (see [20]).

We briefly describe the steps of proving Theorem 1.1. First, we establish a pointwise
upper bound of the gradient in terms of Uy — U; for arbitrary given U; and Uj
(Proposition 2.2). Then we use mean oscillation estimates to prove a C Wl estimate
(Proposition 1.5). Note that Proposition 1.5 implies a power gain of order 8#/% for
the oscillation of the gradient in the x, direction. Because of this power gain and
Proposition 2.2, we then derive an asymptotic expansion of Du, in terms of U} — U;
(Proposition 4.1). When p > (n +1)/2, Uj — U5 will converge to 0 as ¢ — 0. In this
case, we use the flux conditions to derive the convergence rate for U f — Uf (Theorem
4.4). When p < (n+1)/2, Uj —U; will converges to Uy — U, (Theorem 2.5). Finally,
Theorem 1.1 follows from putting all the ingredients above together.

We would like to point out that weaker versions of Proposition 4.1 were proved
in [15, 26]. They derived an asymptotic expansion of Du, only on the upper and
lower boundaries "%, by constructing suitable barrier functions and using comparison
principle. However, in our opinion, it appears that there is a gap in their proofs. It is
nontrivial to see that the normal derivative is bounded in the case when Uy — U5 is
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small as lack of control of the oscillation of the solution in the x’ direction (see [15,
p. 6174] and [26, p. 740]). This gap can be filled by Proposition 2.2 of this paper. We
would like to remark that our argument in Proposition 4.1 is more robust in the sense
that the proof does not rely on the fundamental solution of the p-Laplace equation
or the maximum principle. In fact, the only place this paper involves the maximum
principle is Proposition 2.2. See also Remark 2.3. If one can give an alternative proof
of (2.7) in Proposition 2.2 without using the maximum principle, then our results can
be extended to nonlinear systems of p-Laplace type.

The rest of the paper is organized as follows: In Sect. 2, we provide some preliminary
estimates and results. In Sect. 3, we use mean oscillation estimates to prove Proposition
1.5. A convergence rate of Uy —U; when p > (n+1)/2is provided in Sect. 4. Finally,
the proofs of Theorem 1.1 and Proposition 1.4 are given in Sect. 5.

2 Preliminaries
In this section, we provide some preliminary results.

Lemma 2.1 Lethy, hy be szunctions satisfying (1.7)—(1.9), p > 1, n > 2, € [0, 1),
andv € W]’p(Qf) be a solution of

—div(|Dv|?’Dv) =0  in Qf,

2.1
v=0 onli. @D

Then there exist constants C1, Co > 0 depending only on n, p, c1, and ca, such that

__O I
[v(x)| + |Dv(x)| < Cie eti'l ||v||Lp(Q§\Qsl/2) for x € Qéi?/z- 2.2)

Proof The proof of this lemma essentially follows that of [7, Theorem 1.1], with some
modification. For simplicity, we omit the superscript ¢ in the proof. Without loss of
generality, we may assume & € [0, 1/256) and |x'| < 1/16 since otherwise (2.2)
follows from classical estimates for the p-Laplace equation (see e.g. [37]). For any
0 <t <s < 1,letn = n(x’) be a cutoff function such that » = 1in ,, 7 = 0 in
Q1\Qs,and |Dy| < C(s—1)~". Multiplying v” on both sides of (2.1) and integrating
by parts, we have

/ |Dv|Pn? + p|Dv|P~>Dv - Dyup?~!' = 0.
Q)
By Young’s inequality,

1
/ |Dv|Pn? < P/ |Dv|P~ 9P~ || Dy < —/ | Dv|PnP +C/ [v?|Dn|P.
Q1 Q1 2 Q Q
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5014 H.Dong et al.

Therefore,

c
/|Dv|f’s / o],
Q (s =07 Jane

Since v = 0 on ', by the Poincaré inequality in the x,, direction, we have

/ [v|? 5C(8+s2)p/ [Dul”.
Q\ Qs\ 2

Therefore,

2\ P
|Dv|? < C* (‘9 +s > / D). 2.3)
oh s—1 Q\Q

Letto = r € (Je,1/2) and t; = (1 — jr)r for j € N such that j < 1/r. Taking
s =tj,t =tj41in(2.3), we have

/ |Dv|? < 2PC*/ |Dv|”.
Q,jJrl sz\Qth

Adding both sides by 27C* [, |Dv|” and dividing both sides by 1 + 27C*, we
j+1

have
2P CH
/ Dul? < —/ Dl?.
Q. 1+2PC* Jq,
J

J+1

Letk = L%J and iterate the above inequality k times. We have

2P C* k 1
/ |Dv|? < (—) / |Dv|P < Clﬁ/ [v]”, 2.4
Q2 1+2rC* Q2 Qi\Q12

where € (0, 1) and C are constants depending only on n, p, c1, and ¢;. Now we
take r = 4(y/e + |x’]) and (2.2) follows from classical estimates for the p-Laplace
equation in 2,/ 1,2 and (2.4). O

Next, we derive a pointwise upper bound of the gradient in terms of U} — Us.

Proposition 2.2 Let hy, ho be C? functions satisfying (1.7)~(1.9), p > 1, n > 2,
e € [0, 1), Uy, U5 be arbitrary constants, and u, € Wl’/’(Q‘i) be a solution of

—div(|Dug|P"?Du,) =0 in Q,
ug = Uy onT%,

ug=U; onT%.
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Then there exist constants Cy, Cy > 0 depending only on n, p, c1, and c3, such that
forx € Qf/4, it holds that

|U18 — U28| __S
[Dug(x)| < Cq <W + ||ug||Loo(Q%i”\Q§/2)€ ‘/g*")"). 2.5)

Moreover, if ¢ € (0, 1), u, € WHP(Q) is the solution to (1.2) and Uy, and U5 are the
same constants in (1.2), we have

inf o < Uy, U5 <supo, (2.6)
a2 a9

and for x € Q*i"/4,

Ui — U3 ~ 7
[Dug(x)| < CI(W + lellLepae ) 2.7

Proof We first give the proof of (2.5). Take a point xy € Qf /4 In order to estimate

the gradient at xq, we first estimate the oscillation of u, in Qfm 5(x0)/8” where §(xg) =

e+ |x(’)|2. Without loss of generality, we may assume that U] > Uj. Let v be the
solution to

—div(|Dv|?"?Dv) =0 in QF,
v=0 onT,
v=u,—Uj ondQ]N{xeR": x| =1}

By Lemma 2.1,

1]
& .
[v(x)| < Cre Vel luelle@s\gs, for x € Q.

Since v > u, — U on dQ{, by the comparison principle, we have
ug(x) — U7 <v(x) in Qf.
Similarly, let w be the solution to

—div(|]Dw|P~?Dw) =0 in QF,
w=20 onT%,
w=u,—U;5 ondQ{N{xeR":|x'|=1}.

We have

__©
lw)| = Cre Vo lue |l Lo @i\

&

@ Springer



5016 H.Dong et al.

and
ug(x) — U5 > w(x) in Qf.

Therefore,

__G
osc  ug < |Uf — Us| + Cilluellp=@e\af e Vel
QFf 1 1/2
x0,8(x0)/8

Then the gradient estimate (2.5) follows from classical boundary and interior estimates
for the p-Laplace equation (see e.g. [37]).

Next we prove (2.6). Indeed, if U7 = max{U;, U5} > sup,q ¢, by the maximum
principle and the Hopf lemma (see [42, Theorem 5]), Du, - v > 0 on BDf , which
violates (1.2)3.

Finally, (2.7) follows directly from (2.5), (2.6), and the maximum principle. O

Remark 2.3 For systems of p-Laplace type, instead of (2.6), one can still show that
U7 | < Clellcrog, =12

holds for some e-independent constant C, by using classical boundary and interior
gradient estimates away from the neck region Q] /2- However, it is not clear to us
whether (2.7) (or a weaker version of it) is still true.

In the following, we justify the equivalence between the minimizing problem (1.3)
with ¢ = 0 and the equations (1.4)—(1.5).

Theorem 2.4 uq is the minimizer of (1.3) with ¢ = 0 if and only if ug € WP (Q)
satisfies (1.4) when p > (n + 1)/2 and satisfies (1.5) when p < (n 4+ 1)/2.

Proof First, we prove that (1.4) has at most one solution u € WP (). The same con-
clusion applies to (1.5). Let u, uy € W7 () be two solutions of (1.4). Multiplying
the equation by u; — u; and integrating by parts, we have for j = 1, 2,

0=/~ |Duj|p_2Duj-D(u1—u2)dx—/ |Du;|P~>Duj - v(uy — uz)dS
QO 02

— i/BDO |Du;|P"2Du; - v(uy — uz)dS
i= i
= /50 |Duj|P~Du; - D(uy — uz) dx.
Therefore,
0= /50 (lDu1|”_2Du1 - |Du2|”_2Du2) - D(uy —up)dx

min{l, p — 1 _
z—{ i }/ (|Duy| + | Duz|)?~%|Duy — Duy|? dx.
2r S0
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This implies 1 = u,. Itis straightforward to see that the minimizer of (1.3) withe = 0
is unique, due to the convexity of /, and &/ 0. It suffices to show that the minimizer
ug satisfies (1.4) when p > (n + 1)/2 and satisfies (1.5) when p < (n + 1)/2. We
show this by taking different test function v € .27 in the equation

(2.8)

d
0=—1 t
77 [pluo + 10l i

First we take v € ch(sz). Then (2.8) reads as
0 =/ |Duo|P~>Dug - Dv dx.
S0

This implies
—div(|Duo|”>Dug) =0 in Q°.

Next, we take v € C2°(€2) such that v = 1in D(l) U Dg . From (2.8) and integration by
parts, we have

0:/ |Duo|” "> Dug - Dvdx
Q0

2
Z_/N div(|Du0|p’2Duo)vdx+Z/ |Duo|”~>Dug - vdS
Qo o J D)

2
:Z/ 0|Du0|”72Duo-vdS.
i=1 7D

For t_he caseﬂhen p=>m+1)/2,it remaiﬁto show that u equ_alls to the same constant
on D(l) and Dg. Assume that ug = Uy in D(l) and ug = Uy in Dg with Uy # U,. Then
by the fundamental theorem of calculus,

hy(x")
U —U, = / Dyug(x)dx,.
ha(x")

Taking the absolute value and raising to the power of p on the both sides, by Holder’s
inequality, (1.7), and (1.9), we have

hi(x")
U= el = P [ Dol d
ha(x")
This implies
Uy — Uy|P
/ %dx’ 5c/ |Duo|” dx.
<12 x/[2P=D Q0

12
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The left-hand side diverges since p > (n + 1)/2 and U; # U,, which leads to a
contradiction. Therefore, Uy = U,.

For the case when p < (n+1)/2, we need to show the flux on each of aDO vanishes.
We will only show the flux vanishes on dDY, as a similar argument applles to E)DO

Let v be a function compactly supported in €2 such that v = 1 in DO, v=0in Dg ,

o) = (an — (i (x) +hz(x’>>) Ceq
" hy(x') — ha(x') L 7z

and v is smooth in $° \Q] 12 Then v € <7°. Indeed, we only need to verify

%) o
/ |Dv|Pdx < C / oy T dx,dx’ < C/ "TP < C
Q0 v/ <1/2 J GO ED |X| p 0

1/2

since n — 2p > —1. Taking this v in (2.8) and integrating by parts, we have
/ |Dug|P~>Dug - vdS = 0.
aDy)

The theorem is proved. O
Next, we show that u, converges to ug in the following sense.

Theorem 2.5 Let u, € WP(Q) be the solution of (1.2), and uy € WP (Q) be the
minimizer of (1.3) with ¢ = 0. Then as ¢ — 0, ug—ug weakly in WP (Q), and
ug — uq strongly in CYP(K) for some B > 0 and any

K cc sz\( U (DEUDEU {0}) with g > 0.
O<e<eo

As a consequence, as ¢ — 0, Uf — Uy and Uf — Uy when p < (n+ 1)/2, and
Uf, U; — Up when p > (n + 1)/2, where Uy, Uy, U are the constants in (1.4) and
(L.5).

Proof First we take an arbitrary function w € W'P(Q) such that w w = ¢ on JQ
and Dw = 0 in B, where B C  is an open set containing Up<.<.Dj U D5, where
0 < ¢ < dist(D) U DY, Q). Therefore, w € <7 for all & € [0, c], where </* is the
admissible set defined in (1.3). By Theorem 2.4,

Duglirr@) < IDwllLr(e)-

This together with the Poincaré inequality implies that |[ug ||y 1.5 () is bounded uni-

formly in e. Then there exists a subsequence {¢;} jen and a function u, € whr(Q),
such that Ug;—Us weakly in wlr (), and Ug; —> Us strongly in L?(£2), as j — oo.

From (2.6), we know that U 18 7 and UZS /the values of u, ;in ij and D5/ , are uniformly
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bounded. Then there exists a subsequence of {¢;} jcn, still denoted by {g;} jen, so that
Ufj — U for some constants U;, i = 1, 2. Therefore, for any x € Dl(.), we have

wi(x) = lim U7/ =U;, i=1,2.
Jj—>00
On the other hand, for any k, [ € Z., we denote

P & &
Kii = Q\(0<8L§Jl/k (DiuUDy) U 31/1(0)>.

By the classical C Lo egtimate, when ¢ j < 1/k, we have

”ué‘j ”Cl-a(Kk_,) S C(ka l)
This implies that there is a subsequence that converges in C Lp (Ek,z) for any 8 < «.
We can apply the Cantor diagonal argument to select a subsequence, still denoted by

{€j}jen, such that

Ug, = Use in CPP(K) as j — oo (2.9)

J

forany K CC sz\(0 U (DEUDSU {0}) with g > 0 and some C 18 function i
<e=<ego

Therefore, u, is a weak solution to the p-Laplace equation in QO Since Ug —> Uy
strongly in L? (2), we have u, = u,.. It remains to show that u, = ug, which implies
the convergence of {u,}.

When p > (n + 1)/2, by the same argument as in the proof of Theorem 2.4, we
know that U; = Us. It remains to prove that

/ |Duy|P > Duy - v = 0. (2.10)
DU DY

Let Q' be an open set such that D(l) U Dg cc Q' cc Q. Since ug; is the solution to

(1.2), when j is sufficiently large, by integration by parts in Q'\D?j U D5, we have
/ |Dug,;|”~*Dug, - v =0.
e
Therefore, by (2.9), we also have
/ |Duy|P "> Duy - v = 0. 2.11)
9

Since u, is a weak solution to the p-Laplace equation in QO by integration by parts
again in Q'\D{ U DY, (2.11) directly implies (2.10).
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Fig.1 An illustration of
rf cupy

When p < (n 4 1)/2, it remains to prove that

/DO |Dusy|P>Duy -v=0, i=1,2.
0D:

i

We will prove it only for i = 1. Fix a small s € (0, 1/2), we take a smooth surface n
so that Dy is surrounded by ngs U n. See Fig. 1.

Since fang |Dugj|P’2Dusj -v = 0, by integration by parts, we have
1
—/0 |Dug,;|”~*Du, -v+/|Du8j|p_2Du5j v =0.
rZ; n

Note that the minus sign appears because v on F(l,s is pointing upwards, while v on n
is pointing away from Df. By (2.7), we have [Dug;(x)] < C(ej+ Ix'|2)~!. Therefore,

1
_ p—2 . < - /< n—2p+1
Jo, 1w o = e s e
where we used 2p — 2 < n — 1. By (2.9), we know that

/|Du8j|P*2Du€j V> /|Du*|P*ZDu*-u as j — oo.
n n

@ Springer



Asymptotics of the solution to the perfect conductivity... 5021

Therefore,

S Csn72p+1 .

/lDu*|p72Du* )
1

Similarly by (2.5), we have | Dus(x)| < C|x’|~2 and

/0 |Duy|P > Duy - v
r

-5

S CSn_2p+l i

By integration by parts, we have

/0 IDu*|”_2Du* .y
D

/|D14>,<|"’_2Du*~v—/0 |Du*|”_2Du*‘v
n

-8

E Csn72p+l .

Sending s — 0 and using p < (n 4+ 1)/2, we have

/O |Du*|p_2DM* v =0.
D

1

Finally, by the uniqueness of solution to (1.4) and (1.5), we can conclude that
ux = ug, and the full sequence u, converges to ug in the corresponding topology. O

3 Mean oscillation estimates

In this section, we give the proof of Proposition 1.5 using mean oscillation estimates.
Throughout this section, unless otherwise specified, we use C to denote positive con-
stants depending only on n, p, c1, and ¢, which could differ from line to line. Here
c1 and ¢; are the same constants in (1.8) and (1.9), respectively. For simplicity, we
denote u := u, and we omit the superscript ¢ throughout this section when there is no
confusion.

First, we fix a point X € £21/2 and derive some mean oscillation estimates of Du
on a ball intersecting €21, namely €2, (x), for different radii r.

3.1 Mean oscillation estimates for small r

We recall a classical interior mean oscillation estimate when B, (x) C €2;. Estimates
of this type, with different exponents involved, were developed in [16, 22, 38].

Lemma3.1 Letu € Wl’p(Ql) be a solution to (1.2). There exist constants C > 1
and a € (0, 1) depending only on n and p, such that u € C“%(Q) and for every
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B, (x) C Q1 and p € (0, r], we have

b p) =C(2) o0,

where we denote

$(%.r) = (]l |Du — (Du)a,@w’) " 3.1
Q,(X)

3.2 Mean oscillation estimates for intermediate r

Next, we consider the case when B, (x) intersects with only one of ' and I'_. In this
case, we derive mean oscillation estimates around any x € (T UT_) N {x € R" :
|x'] < 3/4}.

Without loss of generality, let x € T'_ N {x € R" : |x’| < 3/4}. Then by (1.8)
and (1.9), there exists a constant ¢ = c(n, ¢, ¢c2) € (0, min{c;/4, 1/4}), such that
B(x,r) N T4 = @ for any r € (0, ¢c3(x)). Here we recall (1.10). We first choose a
coordinate system y = (y’, y,) such that y(x) = 0, the direction of axis y, is the
normal vector at ¥ € I'_ pointing upwards. Note that the coordinate y is a rotation
(plus a transition) of the coordinate x, namely y = T (x — x) for some rotation
matrix T € R"*", which maps the normal vector of I"_ at x pointing upward, namely
v = (=Dhy (%), 1)/y/1 4+ [Dh2(x")|? in the x-coordinate, to the unit vector e, =
0, ...,0,1) in y-coordinate. Therefore, by (1.7) and (1.9), there exists a constant
C = C(n, cp) > 0, such that

IT —1,| < C|¥'| and |T~' =1, < CI#|. (3.2)

Thus there exists a constant ¢3 = c3(n, c1,c2) € (0, min{c;/8, 1/8}) such that
Qry®) = {8+ T 'y iy € Bry : ya > x(¥)}, where Ry = c38(%) € (0, 1/4)
and x : {y/ € R"!:|y/| < Ry} — R is a C? function in the y-coordinate system
such that

x(©) =0, Dyx(©0)=0, lxlc2 = Clhallc2, (3-3)
for some constant C = C(n) > 0. Then we let
2=A =" = x0).
Since I'_ is C2, by (3.3) there exist constants

c4 = ca(n, c1, c2) € (0, min{c1/8, 1/8}), (3.4)
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C =C(n,cy,c) > 0,and R} = ¢48(x) such that

IDyx () < Cly'I<1/2 if |y'| <2Ry,
Q.2() C ATN(B)) C (%) Vre(0,2R],

and thus
IDA(y) = I,| < C|y'| <1/2 if [|y'| <2R;. (3.5)

Therefore, there exist positive constants ¢(n) and ¢’(n) depending only on 7, such that
foranyx € T UT_)N{x e R": |x/| <3/4}and 0 < r < c48(X),

c(mr'" < Q@) < (mr". (3.6)
Note that
det(DA) = 1.
Then u1(z) = u(A~'(z)) satisfies the following equation with constant Dirichlet
boundary condition
—div (|ATD ui [P 2AAT D ul) —0 in B, ,
: : : R (3.7)
uy =U; on Bg, N IR,

where we denote
A= A2) i= (a;j(2)) := DA(A(2).

Next we extend the equation to the whole ball Bg,. We take the even extension of a,,
and a;j,i,j = 1,2,...,n — 1, with respect to z, = 0, and take the odd extension
of aj, and ay;,i = 1,2,...,n — 1, with respect to z,, = 0. Then we reflect u; with
respect to z, = 0. Namely, we define u1(z) = 2U}§ —u1(z/, —z,) forz € BEI. We
still denote these functions by u; and A after the extension. Because of the Dirichlet
boundary condition, it is easily seen that u; satisfies

—div, (A(z, Du1)) = 0 in Bg,, (3.8)
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where the nonlinear operator A is defined as
A(z.6) = |ATg|P72AATe  forz € Bg,, £ €R".

By (3.5), similar to [20, Lemma 2.3], there exists a constant C = C(n, p, c1, c2) > 0,
such that for any z € Bg, and § € R”,

IA(z, &) — 1P| < C | g7~ (3.9)

Assume that » € (0, R;]. Welet vy € u; + Wé’p(Br) be the unique solution to

{ —div.(|D;v1|”*Dv1) =0 in B, (3.10)

vy =u; on J0B,.

By testing (3.10) and (3.8) with v; — u; and using (3.9), we have the comparison
estimate

|D.uy — Dovy|P < Crmn2Pl £ D uy|P, (3.11)
B, B,

where C > 0 is a constant depending only on n, p, c1, and ¢;. For detailed proof of
(3.11), see [22, Eq. (4.35)] when p € (1, 2) and [23, Lemma 3.4] when p > 2.
Applying Lemma 3.1 and the comparison estimate (3.11), we have

Lemma 3.2 Suppose that uy € Wl’p(B;gl) is a solution to (3.7). Then for any u €
(0, 1) and r € (0, R{], we have

I/p
(][+ |Dyur|P + | Dg,uy — (Dz,,ul)B;rr|p>

B

1/p
< Cﬂa <f+ |Dz/u1|p + |Dznul - (Dznul)3j|p>
By

1/p
+C (7; |Dzu1|p) , (3.12)

where 0, = min{l, 2/ p}, a is the same constant as in Lemma 3.1, C,, is a constant
depending on ., n, p, c1, and ca, and C is a constant depending on n, p, c1, and c;.
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Proof By Lemma 3.1, (3.11), and the triangle inequality, we have

1/p
(7[ |Dzuy — (Dzul)Bmlp)
/B,
1/p
<c <][ |Dyvy — (DzvoBﬂ,W) e (][
By B

1/p T 1/p
< Ccu” <][ |D vy —(Dzv1)3,|p> +Cu » <][ | Dz _Dzv1|p>
B, B,

1/p o 1/p
< C,ua <][ |Dyuy — (Dzul)Br|p) +Cu » (][ |Dyuy — Dzvl|p>
B, B,

1/p 1/p
<cp” <][ |D-uy — (Dzm)B,V’) + Cur® ( |Dzu1|f’) R )
By B,

1/p
|D;uy — Dzvl|p>

r

Since u is even in z,, (3.13) directly implies (3.12). The proof is completed. O

We now define

1/p
(X, r) = (][ |Dyul|? + |Dy,u — (Dynu)gr@)V’) . (3.14)
Qr (%)

Following a similar argument as in the proof of [20, Lemma 2.5], we have

Lemma 3.3 Suppose that u is a solution to (1.2) and x € T+ UT_)N{x € R" :
|x'| < 3/4}. Then there exist constants C > 0 depending only on n, p, ci, and c»,
and C,, > 0 depending on n, p, c1, c2, and , such that for any . € (0, 1/4) and
r € (0, c48(x)), it holds that

1/p
Y&, ur) < Cp®y(x, r) + Corf (][ |Du|p> , (3.15)
Q

r(X)
where 8, = min(1,2/p}, a € (0, 1) is the same constant as in Lemma 3.1, ¢4 =
c4(n, c1,c2) € (0, min{c,/8, 1/8}) is the same constant as in (3.4) and  is defined
in (3.14).

By iteration, Lemma 3.3 also implies

Corollary 3.4 Let u, X, cs, @, and 6, be as in Lemma 3.3 and a1 € (0, min{c, 6,}).
Then there exists a constant C > 0 depending only on n, p, c1, ¢z, and a1, such that
forany 0 < p <r < c48(%), it holds that

A PN*L s
Vo) =C(2)" yEn+C oM IDullxe, .
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Proof We choose u = p(n, p,ci,ca,@1) € (0,1/6) sufficiently small such that
Cu“* < 1, where C is the same constant in (3.15). Then Lemma 3.3 implies that
for any r € (0, c48(X)], we have

Y (R, ur) < pY R, 1) + Coy 7 | Dull oo, (2) (3.16)

where C,, > 01is a constant depending only on n, p, ¢, ¢2, and «1. By iteration, from
(3.16) we get

J
Y& ) < Y@ )+ Coy Y TV W T | Dull g, )
i=1

j
= uVY @R, 1)+ Cop Y p IR0 | Dl o, (3))

i=1

< VYR, 1) 4 Coy (WD) [ Dull Lo (i))- @3.17)

Here in the last inequality we used the facts that oy < 6, and r € (0, 1). _
Now forany 0 < p <r < c48(%), let j be the integer such that u/*! < p/r < /.
Then by (3.17) with =/ p in place of r, we get

V(& p) < uYE 1T p) + Coy 0N Dl (i)

PN
< Cor (2) 0G0 + Caq ' 1Dull (2, -

where C,, > 0 is a constant depending only on n, p, ci, ¢z, and «. The proof is
completed. O

3.3 Mean oscillation estimates for large r

Finally, we consider the case when B, (x) could potentially intersects with both I";
and I'_. In this case, we fix X € Q1,2 and assume %Q(i) <r< csé(i)%, where
§(x) is defined in (1.10), c4 is the same constant as in (3.4), and cs is a constant which
will be determined later. We define the map Z = A (x) by

4 i
Z =x',

() re/2 1 (3.18)
= (@ = I+ 8)(:1 @) —2(:2)(;:):/- =3

Thus A 5 1s invertible in 21,
- 1 _ -
01:=A:(QD={(Z Z)eR": |Z| <1, |2 < z(hl(x/) —ha(x") + o)},
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and
- - 1
o= AsTe) = {21 2) € R 2] < 1 2, = 25 (n) — @) +6)}.

Then uyr(2) = u([\;l(Z)) satisfies the following equation with constant Dirichlet
boundary conditions

—divg <|BTDgu2|p_2(det(B))_1BBTDZuz) =0 in 0,
up = Uj on f‘+, up = U; on r_,
where we denote
B = B; := B(Z) := (b;;(2)) := DAz (A;'(2)).
For Z € Qq,letx = ]\;1(2). Then

bii(Z2) =1 forie{l,2,....n—1)},
bif(2)=0 forie(l,2,....n—1}, je{l.2,....n}, i #j.
(%) — () +
(1 () — () + 6)2
D) (60 = I (@) = 3) = Doy a6 (0 = ha(x') + 5)]

byj(2) =

for j e {l,2,...,n—1},and

hi(x") —ha(x") + ¢

bun(2) = M) —ha(x) + &

Therefore,

hi(X") —ha(X) + ¢

det(B(2)) = bpu(2) = h(Z2) —hy(Z') + ¢

is a function independent of Z,. Assume

o

b =7 = a0 (3.19)

and let Z = A;(X). When Z € R” satisfies |2’ — 2’| < r, by the triangle inequality
and (3.19), we always have

1Z| <|Z|+r<|&|+r <1 (3.20)
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Then forany Z € Q; with |2/ — Z'| <randx = 1\;1(2), by the triangle inequality
and (3.19), we have

Wl <r+3<(1+ 216/C4)r% and |x')? X2 =12 > =(X)P —e).

FN

Thus, using (1.7), (1.8), and (1.9), we infer that for j = 1,2,...,n — 1 and some
constants C > 0 depending only on n, p, ¢, and ¢z,

Nhi (2 = ho (3 e =712
|b,,j(Z)|§2c2|x|( 1(X) —ha (X)) +¢) §2CQM
hi(x') —ha(x') + & crlx’l>+¢

Cr
8
‘fol (i (13 + (1= OF) = by’ + (1= )F))dt |
hi(x") —ha(x") + ¢
(x| + XDl — ¥ _ Cr

al¥P4+e T si)r

1
<Clx'|<Crz <

|bnn(z) - 1| =

< 2cp

(3.21)

and similarly,

[(det(B(2))) ™" = 1] = |(ban(2)) ' =1 < Crl . (3.22)
3(x)2

Therefore, when (3.19) holds and Z € Q) with |Z — z | < r, we have for some
constant C = C(n, p, c1, c2) > 0,

Cr
[B(Z) — Iy| < . (3.23)
8(x)2

In particular, there exists a constant
cs =cs5(n, p,c1, c2) € (0,1/8), (3.24)
such that if ££8(%) < cs8(%)? and Z € Qy with |2/ — Z'| < ¢58(X)?, it also holds

that

IB(Z) = I,] < 1/2 and |(det(B(Z)~' — 1] < 1/2. (3.25)

Next we extend up and B to the whole cylinder C; := {(Z', Z,) € R" : |Z/| <
1}. We denote H := h{(x’) — hp(xX") + . We take the even extension of b,,, and
bij,i,j=1,2,...,n—1, withrespect to Z, = H/2, and take the odd extension of
binand by;,i =1,2,...,n—1, withrespectto Z,, = H /2. Then we take the periodic
extension of B in the Z,, axis, so that the period is equal to 2H. Then we inductively
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reflect u, with respect to +=(k + %)H for k € N. Namely, for Z € Cy and k € Z, we
define

u(2)
H
2kUf — 2kU5 + ua (2, — 2kH), if 2, — 2KH| < 7,

2k +2)U; — 2kU; —ur(2k + DH — Z,,), if |12, — Qk+ 1H| < %
Then because of the Dirichlet boundary conditions, it is easily seen that u; satisfies
—divz (B(Z, Dzup)) = 0 inCy, (3.26)
where the nonlinear operator B is defined as
B(Z,&) = (det(B(2)) " \BT¢|P>2BBTe  for Z€(Cy, £ eR",
and

o1 hi(2) —ha(2
(det(B(Z)))il = (bnn(Z)) : = hl1((.f/; _ hzix/))_:_;'

Similar to (3.9), using (3.20), (3.22), (3.23), (3.25), and (3.20), we obtain that for any

re [£53(0), cs8()2]. Z € By(Z), and § € R”,

C
B(Z,8) — |12 < —— 5177, (3.27)

8(x)2

where C > 0 is a constant depending only on n, p, c1, and c;. Now we let vy €
uy + Wé "P(B,(Z)) be the unique solution to

—divz (|Dzv2l”2Dzv2) =0 in B,(2),
vy =up on 9B, (2).

Using (3.27), similar to (3.11), we have the following comparison estimate

Foo\min(2.p)
][ 1Dzuz — Dzl = C(—— ) ][ _IDzwl?,  (328)
B.(2) §(x)2 B.(Z)

where C > 0 is a constant depending only on n, p, c1, and c».
For ¥ € Q2 and r € (0, 18(¥)7), we define

5 1/p
B, ) = (f _ IDzuz—(Dzuz)Br(g)lp) . (3.29)
By (2)
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Then following the same proofs as those of Lemma 3.3 and Corollary 3.4 with (3.28)
in place of (3.11), we have

Lemma 3.5 Suppose that x € Q12 and u3 is a solution to (3.26). Then there exist
constants C > 0 depending only on n, p, ¢, and ¢, and C,, > 0 depending on n, p,

c1, ¢2, and , such that for any u € (0, 1) and r € [%Q(}E), C5§()E)%], it holds that

r 0 1/p
i ) ! (][ i IDzuzlp) .
8() B(2)

where 0, = min(1,2/p}, a is the same constant as in Lemma 3.1, c4, c5 are the
same constants as in (3.4) and (3.24), and ¢~> is defined in (3.29). Moreover, for any
ay € (0, min{a, 0,)), there exists a constant C > 0 depending only on n, p, c1, c2,

and oy, such that for any Z%Q(i) <p<r< cs§(32)%, it holds that

GG, ur) < Cu®¢(E, r) + cu(

~ _ ~ oy
B 0) = C(2)" @G +C(L7) 1Dzl gy (2 (B30)
3(x)2

3.4 Mean oscillation decay estimates

Now we deduce mean oscillation decay estimates by connecting the three different
cases of radii r, when §(x) is sufficiently small. We let

1 . 2
o] = —min o, — (3.31)
2 p
and assume
_ . Cs5 2 1
(X)) <miny|—— | ,——, (3.32)
10c4 4+ 4cy

where «, ¢4, and c5 are the same constants as in Lemmas 3.1, 3.3, and 3.5, respectively.
Let x € Q1,2. By (1.7), (1.9) and (3.32), we have

1
dist(x, L UT_) < E(hl(i’) — (X +e) < cz|)2/|2 +e<1/4, (3.33)
and thus

dist(¥, T4 UT_) = dist(F, 42)). (3.34)
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Lemma3.6 Letx € Qi2, u be a solution to (1.2), and r = %Q()E)l/z. Let ¢ and q~5 be
defined as in (3.1) and (3.29) and let 1 and c4 be the same constants as in (3.31) and
(3.4). Assume that (3.32) holds. Then there exists a constant C > 0 depending only
onn, p, c1, and c3, such that the following holds:

(i) Forany p € (0, %4(5)]

_ P\
¢ p) = C(5)" IDuli~@y,. (3.35)

(i) Forany p € [51¢8(X), r],
-~ £\l
. p) = C(2)" IDulim,,. (3.36)

Proof First, we prove assertion (ii). Note that B,(Z_') NnQ C ]\;(Qi,,). By the
definition of the extended solution u», (3.36) clearly holds for p € [c58(x)!/?, r],
where ¢5 € (0, 1/8) is the same constant as in (3.24). On the other hand, (3.30)
directly implies (3.36) for p € [51£8(X), c58(X)'/?).

Next, we give the proof of assertion (i). We consider the following three cases:

dist(¥, Ty UT_) < p < %é(i),
p < dist®@ T UT_) < %é(i),

o< %“g(f) < dist(E, Ty UT.).

Case I: dist(x, T UT_) < p < %‘Q()E). Since x € 12, by (3.33) and the triangle
inequality, we can choose X € 'y UT'_ with |X| < 3/4, such that dist(x, T UT_) =
|* — x|, and thus ,(x) C 2, (%) C Q3,(x).

Since |x — x| < p < %“Q (x), by the triangle inequality, we have

FP =28 +2(2) 8@ WP = 2 +2(2) 8
which also implies
1. _ R -
gé(X) =4(x) = 34(x) (3.37)
since ¢4 € (0, 1). By (3.37) and the fact that |[x — x| < p < %é(i), we also have
21X = x| =2p = cad(R). (3.38)
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Let Ry = c48(X). Then Qpg, (¥) C Q%Rl (x). Thus we can apply Corollary 3.4 at
Xxe@yUTr_)Nn{x € R": |x'| < 3/4} and use (3.6) to obtain

oy
_ ~ P ~
d(x,p) < CyY(x,20) <C <_R1> Y (&, Ry) + Cp' M| Dullpoogp, iy

o]

P .

<C <—> VU (X, Ry) + Cp | Dullp~@;  ()- (3.39)
Ry 2R

By using (3.2) and the change of variables x — y, we have

I/p
VG R) = (. Dol 4 Dy~ (Dyiag ol
QRI (52)

+C|%'| [Dull oo (g, £))
1/p
< ][ |Dyul? 4+ |Dy,u — (Dx,,u)sle(fﬂp
Qp, (%)
1/2
+CR)/ IDull=ay, - (3.40)
2
By (3.37), (3.32), and the fact that ¢5 € (0, 1/8), it holds that
cq4 . _ 3 9cq . _ C5 0 _1/2 1
I8 < SRy < Z28(%) < =26 < -r. 341
2_()6)_2 1 = 2_(X)_2_(X) =57 (3.41)

Since Qg, (X) C @ iR, (x),byusing (3.6), (3.22)—(3.25), (3.41), the change of variables
x — Z, and the triangle inequality, we also have

1/p
][ |Dyul? + |Dy,u — (Dx, )y )"
Qp, (8

~ R 1/p
| Az (Qg, ()[/P 7[
<C———=— |Dzuz|” + |Dz,uz — (Dz,u2)j. onl”
|QR1 (x)|l/p ( ]\;(QR] @) Az (Qg (X))

R
— 1Dull=@;, &)
8(%)2 2

+C

1/p
=C ][~ |Dzuz|” + |Dz,uz — (Dz,u2) 5 o epl”
Az (Qr, () !

1/2
+CR1/ ||Du||LDC(Q%R](j)). (342)

Without loss of generality, we assume X € I'_ and thus Z := Az (%) e I'_. We denote
B (2) = Br(Z)N{Z e R" : Z, > Z,} forany R > 0. By (3.25) and (3.38), we
have Byg,(Z£) C B3g,(Z) C B.(Z) C C; = {(Z/, Z,) € R" : |Z'| < 1}. Since
¢4 < min{cy/8, 1/8}, by (1.8) and (3.37), we know that Byg, (£) N Q| = B3y, (2).
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Again by (3.25), we also have B;{l /2(7:) - [\;(QRI X)) C B;’Rl (2). Therefore, by
the triangle inequality and the definition of u»,

I/p
][~ |Dzus|? + [Dz,u2 — (Dz,u2); o, ¢nl”
Az (Qr; (1)) R

1/p
=C ][ . |Dzua|” +|Dz,uz — (Dz,u2) g 2)1°
Bz, (2) H

1/p
=C ][ _Dzuz — (Dzuz)y 5 1P) = CHE.3R1). (3.43)
Bag,(2) !

Combining (3.39), (3.40), (3.42), and (3.43), we have

¢(x, p)

oy
P - 1,2
<C <—> (¢>(x, 3R + Rl/ | Du|l oo (s (2))) + C p“'|Dullr=; . )-
R 5 Ry 5 Ry

(3.44)

Note that by (3.37), R;*' R,/> < R;*"/* < Cr=1. Thus (3.36) with 3R, in place of
p and (3.44) directly imply (3.35).

Case 2: p < dist(¥, '} UT_) < 28(X). Let Ry = dist(x, [y UT'_). Then we
can apply the estimate (3.35) in Case 1 with R» in place of p to obtain

Ry 1
p(x,R) <C (T) | Dull ooy ,)- (3.45)
By (3.34), Bg,(x) C 21, and we can apply Lemma 3.1 to get
P\
¢(x,p) =C (R_2> (X, Ra). (3.46)

Combining (3.45) and (3.46) yields (3.35).
Case 3: p < 28(x) < dist(x,I'y UT_). Let R3 = Z8(x). Then by (3.34),
Bp,(x) C 1. By Lemma 3.1, we have

aj
$(%. p) < C (%) (%, R3). (3.47)
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Similar to Case 1, by using (3.22)—(3.25), change of variables, and the triangle inequal-
ity, we obtain

~ _ 1/p
_ | Az (Bgy (X))|'/P
$(x,R3) < C———2—" ][ |Dzus — (DZ”2)]\E(3R3(5))|p

| Bry (X)|1/P Az (Bry ()
R3
+C — I1Dull Lo (Bg, ()
3(x)2 )
-~ CR3
< Cop(x,2R3) + - [ DullLoo(Bg, (5))- (3.48)

By (3.36) with 2R3 in place of p, we also have

. R3\“!
¢(x,2R3) = C <73> | DullLe(g; ,)- (3.49)

Combining (3.47), (3.48), and (3.49) yields (3.35). The proof is completed. O

It is straightforward to see the following lower bound of €2, (x)| from the proof
of Lemma 3.6 (assertion (i), case 1) and (3.6), which would be useful in the proof of
Proposition 1.5.

Lemma3.7 Let x € Qi and c4 = c4(n, c1, c2) € (0, 1) be the same constant as in
(3.4). Assume that (3.32) holds. Then there exists a constant ¢ > O depending only on
n, such that for any p € (0, 28(x)), it holds that

€2, (X)] = cp”.

3.5 Proof of Proposition 1.5

Now we are ready to prove Proposition 1.5.

Proof of Proposition 1.5 Let xo € €214 and we prove the proposition around x = xo.

We recall §(xg) = ¢ + |x6|2. Letx € on MM. By the triangle inequality,

x| < 20xf 1% + 8(x0)/8,  1xp1* < 2|x"1* + 8(x0)/8.

Therefore, for any x € on V3G /4 it holds that

@ < 5(x) < 38(x0). (3.50)

We denote

2
I . cs 1
co := = min N I
3 10c4 44 4cy
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where c4 and c5 are the same constants as in (3.4) and (3.24). Thus ¢p > 0 depends only
onn, p,c1,and cz. When §(xg) > co, by (3.50), we can apply classical results of Holder
regularity of the gradient for the p-Laplace equation to get (1.21) with x = x¢, and
some 8 = B(n, p) € (0,1)and C = C(n, p,c1,c2) > 0. Let x1,x2 € QXO,«/Q(x_o)/‘l
and we denote

p = |x1 — xal.
It suffices to show that when §(x¢) < co,

|Du(x1) — Du(x2)| < C8(xo)™“/?p* || Dull =g (3.51)

o.«/é(Xo)/Z)

holds for some constant C > 0 depending only on #n, p, c1, and c3, where a1 € (0, 1)
is the same constant as in (3.31). From now on, we assume

1

1
3(xp) < co = 3 min {(160—'2)2, yyy }. (3.52)
By (3.50), we have
Q(SLO) < 5(x1) < 38(x0) and @ < 8(x2) < 38(x0) (3.53)

and therefore (3.52) also implies that (3.32) holds for x = x1,x; € on JiGo)/4 C

21/2. Thus, we can apply both Lemmas 3.6 and 3.7 with x = x; and with x = x;.
We consider two different cases: p < 5¢8(xo) and p > 528(xo).
Case I: p < g—gQ(xo). By (3.53), we also have

cq c4
[ EQ(M) and p < Eé()ﬂz)- (3.54)

For any x € €2, (x;), by the triangle inequality

[Du(x1) — Du(x2)| < |Du(x1) — (Du)a,, (| + [Du(x2) — (Du)g, (xy)|
+ [Du(x) — (Du)g,, (x| + 1Du(x) — (Du)g, (xy)l-

We then take the L? average over x € Q,(x2) C 2,(x1) and use Lemma 3.7, the
Lebesgue differentiation theorem, and the triangle inequality to get

[Du(x1) — Du(x2)]
< |Du(x1) = (Du)g,, x| + [Du(x2) — (Du)g, (x| + Co(x1,20) + Ch(x2, p)

<CY (1,2 p) +CY ¢, 27 p), (3.55)

j=0 j=0

where ¢ is the mean oscillation of Du defined in (3.1).
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By (3.53) and the triangle inequality, we know that ,, , C on J3Go)/2 C Qy,

where r = %Q(xl)l/z. Since (3.54) holds, we can apply (3.35) with x; in place of x
and 2'~7 p in place of p to obtain

o0 ) o0 21,]'10 o]
Y ¢t 2 T =Cy <T) 1Dul e, )
j=0 j=0

<c(” “ D

< Cé(xo)_al/Z,Om “DM”LOO(QXOW/M/Z). (356)
Similarly, we also have
e .
2 ¢(2.277p) < Co(x0) ™ M I Dullixie, s - (3.57)
j=0
Combining (3.55), (3.56), and (3.57) yields (3.51).
Case2: p > %Q(xo). By (3.53), we also have
c4 c4
—3 d —38(x2). 3.58
P> 108_()61) and p > 108‘(x2) (3.58)

With x; in place of x in Sect. 3.3, we denote the new coordinate by § = [\xl (x)
and set &1 := (él’, &l') := Ay (x1), where A, is defined as in (3.18). Similarly, with

x7 in place of x, we denote another coordinate by n := ('7/2» ny) = A x, (x) and set

m=A x, (x2). Let ugl) and ugz) be the extended solutions in the coordinates & and 7

defined as in Sect. 3.3, respectively. As in Sect. 3.3, we also define the mean oscillation
of extended solutions in the two coordinates & and 1 by

1/p
~ 1 1
dx1,r) = <][ | Dgul! — (Dgu ))Br(sl)lp)
B (&)

and

1/p
It 2 2
¢(xz,r)=(][ |Dnu§>—<Dnu§>>B,(m)|P) .
Br(r]2)

Let us first briefly describe our ideas to prove (3.51) in this case. By the triangle
inequality,

|Du(x) — Du(x2)| < |Dulxy) — (Dgu ) g, | + [Du(xa) — (Dyus?) g, o)
1 2
H(Deus ) gy e) = (Dytts) 8,0, (3.59)
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where c¢ > 0 is a constant which will be specified later. We will estimate the third
term on the right hand side of (3.59) using careful change of variables £ — n and
estimate the first two terms using iteration of Lemma 3.6. A delicate transition from
the original coordinates x to the new coordinates & (or n) is also needed when the
radius (inside the iteration procedure) is at the scale of §(xg).

Note that by (3.18), ® := 1~\xZ1~\;11 is indeed a dilation of the coordinate & in the
&" direction, namely,

hi(x}) —ha(x)) + ¢ n)
hi(x}) —ha(x})) +e° 7

n=0'n")=oE) = (&,
By (1.7), (1.8), and (3.53), we have

cr _calxhP+e  hGh) —hG)+e  olxblPte 9
RS LA A S =
92 T colxjlF+e T hi(x)) —ha(x)) +e T clxilc+e T

(3.60)

This implies that ® and ®~! are bounded independent of &. Moreover, similar to
(3.21), using (3.53) one can also show that

(Ixj] + [y D lx) — x5

‘hl(xé) — hz(xé) +¢
cilxi)? + ¢

hi(x}) —ha(x}) + ¢
hl(xi) — hz(xi) +eé
hi(xy) — ha(x}) + ¢

—1] <2 < C8(x0)"p,

(Ix}] + x5 D lx) — x5

< C8(xp) " V2 ,
cilxh)? + ¢ < Ca(xo) p

—1] < 2¢,

(3.61)

where C > 0 is a constant depending only on c¢; and c». Note that (3.61) directly
implies

ID® — I,| < C8(x0)""?p and |DO®™' —I,| < C8(x0)""?p.  (3.62)

(1) ()
2 2

By the definitions of the extended solutions u, ~ and u

&,n € R" with |€'| < 1and |n’| < 1, we have

, we also know that for any

w5 = u? (@@, u? ) =u” (@ ().
Without loss of generality, we assume

hi(xy) —ha(xy) + €
hi(x)) —ha(x})) +& —

and thus we have ®~'(B,(12)) C B, (&), where we denote & = (&5, £)) :=
&~ (12). Clearly & = x{ and & = xj. Therefore, by using (1.7), (1.9), (3.58),
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and the triangle inequality, for any & € ®~! (By(12)), it holds that

E—&l<IE—&l+1a—&l<p+I1&—&l+I1& — &
<2p+hi(x)) —ha(x}) + ¢

<2p+clxi* +& < cop.
where c¢ > 2 is a constant depending only on n, c1, and c;. Thus CD’I(Bp(nz)) C
Bp(EZ) C Bc‘(,p(gl)-
Let c5 € (0, 1/8) be the same constant as in Lemma 3.5. From now on, we assume

p < min{es /4, 1/(64c6)}8(x0)'/?, (3.63)

since otherwise (3.51) clearly holds. Note that (3.58), (3.63), and (3.53) directly imply

1
2 5(x0) < p < es8(x)? < 28(xp)' /2 (3.64)
108 8
and
¢4 ! 1/2
— < —94 . 3.65
S8 < cop = T8() (3.65)

Now we estimate the three terms on the right-hand side of (3.59) separately.
We first estimate the term |(D§u§l))3%p(§l) - (Dnugz))gp(,,zﬂ in (3.59). For any
£ € ®~1(B,(12)), by the triangle inequality,

(1) (2)
|(Dguy )., 61) — (Dytty ) B, ()]
1 1 1 2
< (Deus) 5, e — Del @) + [Deul” (€) — (Dyu) ).

We then take the L” average over & € q>—1(Bp(;72)) C Bp(&1) and use (3.60),
(3.62), and the triangle inequality to get

) @
|(Dguy ) By, 61y — (Dyity ) B, ()|

3 () @) pge)"”
= Cx1. com) + Dl (©) = (D) 5,01 )
®~1(By(m))

~ 1/p
< Co(x1,c6p) + (7[ IDnuéz)(n) D® — (Dnuéz))Bp(nz)l”dn)

B, (n2)
< Ch(x1. c6p) + Ch(x2, p) + C8(x0) ™2 p IDyus” LB,y (3.66)
By (3.64) and (3.25) we know that |D1~\x2| < Cin Q,, , and thus

2
”Dnu(2 )HLOO(Bp(nz)) < C”DM”LOO(QXZ‘K,) < C||Du||LOO(QXO.M/2)' (367)
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By (3.65), we can apply (3.36) with x| in place of x and cgp in place of p, and use
(3.53) to get

d(x1, c6p) < C8(x0) ™2 p™ || Dull (o

10./8G0)/4)
—a1/2
< CQ(XO) ay/ pﬁtl “Du”Loo(onv«/m/Q). (368)
Similarly, we have
$(x2.0) = Co(x0)™ 2 p" [ DutllLoc, ) s

< Cé(xo)*al/Zpotl ||DM||L00(QXO.\/M/2). (369)

Combining (3.66), (3.67), (3.68) and (3.69), we obtain

1 @ .

[(Deuuy ) By ) — (D) B,y | < C8(xo) /2 p™ I1Dullz=@, smm-

(3.70)

Next, we estimate the term |Du(x;) — (Dguél))B%p(gl)l in (3.59). We define p; :=
c62~/ p for j € N. Because of (3.58), we let j; > 1 be the integer such that

c4 c4
Pj = mé(xl)» Pji+1 < mé(xl)- (3.71)

Then by using the triangle inequality and Lemma 3.7, we have

1
|Du(xy) — (Dgus ))B%p(sl)l

1
< IDu(x) = (D, ol + 1D, o)~ (Deus g, @)l

Pj1+1

) (1)
+1(Dguy )y, ) — (Dglty ) Begy(én)]

o0 o 1
=C Y b +CY bt o)+ (D, o — (Deus s, el

j=i j=0
(3.72)

Using Lemma 3.7 and Holder’s inequality, we obtain

(1)
|(Dwe,, @ — (Dgiy B, @l

(M rax)”
=< C( |Du(x) — (Dguy ), @l dX)
Q) (1) :

1/p
= ][ Dl € BE) — (Deu)p, 17ds) . (373)
Ay (R (1) 1
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where as in Sect. 3.3, we denote
B(§) = DA, (A ¢)).

and use (3.25) in the last line. By (3.23) with x in place of x, from (3.73) we deduce

1 3
(Dwe,, @) = (Dsuy Vs, @l < CHO1,20,) + 7 [ Dulli=a,,, )

5( )
< Chx1, pji—1) + Cp'? | Dul| L, -

(3.74)

Here in the last inequality we also used (3.71) and (3.58). Combining (3.72), (3.74)
and using (3.63), we get

|Du(xr) — (Dguy) b e
<C Z ¢ (x1, p,)+CZ¢>(x1 pj)+ Cp'PIDul L=, | JEG”

3(xq)
j=j1+1 j=0
(3.75)

We recall (3.58) and (3.65). Therefore, by applying Lemma 3.6 with x; in place of x
and p; in place of p, and using (3.75) and (3.53), we obtain

1
|Du(xr) — (Dguy) b, 6|

< C8(x0) ™ *?p™ || Dull =g, Ny Cp'?|Dul| =g, i)
< CQ(XO)_OH/ZIOIXI “Du”LOO(QxO’«/M/Z). (376)
Similarly, it also holds that
2 -
|Du(e2) = (Deuy”) g, 6| < Co@0)™ 2o [Dulli=n, g 377)

Combining (3.59), (3.70), (3.76), and (3.77) yields (3.51). The proof is completed. O

4 Estimates of Uf - Uf

In the following, we use the C!-# estimate we derive in Proposition 1.5 to obtain an
asymptotic expansion of Du, in terms of U; — U5, for arbitrary constants U{ and U;
(Proposition 4.1). When p > (n + 1) /2, for the specific U and Uj in (1.2), Uy — U;
will converges to 0 as ¢ — 0, and we compute in Theorem 4.4 the rate of convergence
using information of the flux 7 defined in (1.6). When p < (n +1)/2, Uy — U; will
converges to Uy — U, as shown in Theorem 2.5.
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Proposition 4.1 Let hy, hy be C? functions satisfying (1.7)-(1.9), p > 1, n > 2, €€
[0, 1/4), U}, U5 be arbitrary constants with U} | < |l¢| 1= @), and ue € wlp(Q®)
be a solution of

—div(|Dug|?~>Dug) = 0 in Q°,
ug = U/ ondD;, i =1,2,

Ug = @ on 0L2.

There exist positive constants B € (0, 1), C and C depending only on n, p, ci, and
¢2, such that

’ Uig B U2€ ¢
Du.(x) = {0, W +fi(x,¢e) for x € 91/4, “.1)
where § is defined in (1.11),
|U€ - U€| —L/
Ifi(x. o) < Ci (W +lle@me V). 4.2)

Proof By mean value theorem, we know that for any x = (x/, x,,) € ﬁi /4> there exist
¢(x) € (=5 +ha(x"), § +hi1(x) and y(x) = (x', ¢ (x)) € §2] 4, such that

Dyue(y(x)) = (Uf — Uy)/8(x).
Let
fi(x, &) == (Dyue(x), Dyute(x) — Dyue (y(x))). (4.3)
By Propositions 1.5 and 2.2, we have
| Dt (x) = Dyt (y(0))] = Clan = LIPS P2 Duclei, s

U; — U5| S
<C <m + llellLeeoe et ). (4.4)

Let z(x) = (x’, &/2 4+ h1(x")). Since u, = U} on 5?, by Proposition 2.2, we have

|Dyu(z(x))| < Clx'||Du(z(x))|

\Ut — US| &
scl|x’|<ﬁ+uwnmame VI (4.5)

Similar to (4.4), we also have

Ut - sl -3
|Dyu(x) — Dyu(z(x))| = Cy RETEE) + llellLepoe V). (4.6)
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Therefore, by (4.5), (4.6), and the triangle inequality, we have
\Uf — Uj]|

|Dyu(x)| < Cy <m

__ G
+ llellLepae ﬁ*"”) .

This completes the proof of Proposition 4.1. O

Following the proof of [26, Proposition 2.1] with slight modification, we have the
following proposition, which will be proved in the Appendix to make this article
self-contained.

Proposition 4.2 Letn > 2, p > (n + 1)/2, hy, hy be C? functions satisfying (1.7)—
(1.9),e € (0,1), and u, € Wl”’(Q) be the solution of (1.2). Then there exist positive
constants Cy, Cy depending only on n, p, ci1, ca, and ||¢|| Lo, such that for any r €
O, D),

C
']-"— lim |Dug|”2Du, -v| < Cre™ 7, 4.7

e—~>04 Jpe .

where F is given in (1.6).

C
Remark 4.3 The proof of Proposition 4.2 relies on the facts that |Dug| < C 16_72
and |[ue — uollcrexy — 0ase — 0forany K CC Q\(0 U (DjuD5) U {O})
<e=<egp
with g9 > 0, where u is the minimizer of (1.3) with ¢ = 0. See Proposition 2.2 and

Theorem 2.5. However, Dug may be unbounded when p < (n 4 1)/2. This fact was
overlooked in [14, 15].

With the help of Propositions 2.2 and 4.2, we are able to derive the rate of conver-
gence for U] — U§ when ¢ — 0.

Theorem4.4 Let p > (n+ 1)/2, U and Uj be the constants in (1.2). Then it holds
that

lim (U — U$)O(e)~! = sgn(F)(K|FY P, (4.8)

e—>04
where O (¢) is given in (1.12), K is given in (1.13), and F is given in (1.6).
Proof By Proposition 4.1, we have

ui-u;

e _g7¢8
B 3 1(|Ul U |
3(y)

%)
~ e
m"l’e f*‘y‘) foryeFf)lM,

Dug -v(y) —

(4.9)

where § is defined in (1.11).
We will show that every sequence converges to the same limit.
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First, Let {¢;}cn be a decreasing sequence such that £; — 0 as j — oo and
Ufj > U;j for every j € N. By (4.9), forany t € (0, 1/2) and r € (0, 1/4), we have

Ugj - Usj r—1 B/2 —L/
a —r)(l(sT)z) (1= C8{ () = C(@e VT < D, |P~2Dug; - v(y)
USj _ Us.i p—1 _L] )
=+ (F ) Ak e on s cme VT fory ety

where §;(y) := ¢; + h1(y") — ha(y"), C, C, > 0 depends only on n, p, ci, c2, B,
llellLee, and dist(D;:j U D;j , 0R2), and C(7) additionally depends on 7. By the change

of variables dS = /1 + |Dyha(y')|2dy’, (1.7), and (1.9), we have for any r < 1/4,

U _ U pt 82 \/—, ,
-0 ] (F5t) A= onyi+iDordy

[y'l<r

o
~C(1) e VT ay
ly'l<r
5/ |Dug,;|”~*Dug, -vdS
r’ ’

o
&j &j

U/’ = U, \pr-1
<(+7) (F5o) Aoy 1+ IDemGRdy
yir 8
%
+C@) / e VT dy. @10
[y'l<r
Note that
O
/ e VI dy' < cr="1. 4.11)
[y'l<r

Moreover, for p > (n +1)/2,

A(e)\ p-1 1
lim lim / ( (8))" dy' = —. (4.12)
r—=04 604 J|y)<r N 8(Y) K

The verification of (4.12) follows from direct computations, which will be given
Lemma A.1. By taking the limit as j — oo in (4.10) first, then taking » — 0 and
T — 0, from (4.7), (4.10), (4.11), and (4.12) we get

lim (U, —UY0@E) ™) =K F. (4.13)

j—o00
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Similarly, if {¢;};cn is a decreasing sequence such that ¢; — 0 as j — oo and
Ufj < U;j for every j € N, then we have

lim ((Uy —U;HO@E) )~ = -k F. (4.14)

]—)

Therefore, we conclude that if F > 0, then for any decreasing sequence ¢; — 0O,
there exists jo € N such that U’ | I > U2 for every J = Jo, since otherwise there exists

a decreasing subsequence {¢}, } such that U, Tk < U2”‘ then from (4.14) we should
have F < 0. Thus if F > 0, (4.13) 1mp11es (4.8). Similarly, (4.8) also holds when
F < 0. For the remaining case when F = 0, let {¢} be any decreasing sequence such
that e; — 0 as j — oo. Then there exists a decreasing subsequence {¢,} such that

either U fj" < Uzgj" holds for every k € N or U lgj" > Uzgj * holds for every k € N. Thus
(4.13) (or (4.14)) implies that
. €k € jk -1 _
lim (U™ —U,")O(gj,)" =0
k—o00 X

Therefore, (4.8) is also true when F = 0. The proof of the theorem is completed. O

5 Proofs of Theorem 1.1 and Proposition 1.4

In this section, we give the proofs of Theorem 1.1 and Proposition 1.4.

Proof of Theorem 1.1 First, we consider the case when p > (n + 1)/2. Let
fo(e) :== (U} — U3)/O(e) — sgn(F)(K|FN"P~D. (5.1)
By Theorem 4.4 and (4.2), we know that
lim fo(e) =0,
and
fix, &)l = C1 (8020 (K FIV P + | fo(e)]) + ||¢||Lw(ag)e‘ﬁ),

where f; is defined as in (4.3). Then (1.15) follows from (4.1), (5.1), and the above.
Next, we consider the case when 1 < p < (n + 1)/2. We define

go(e) :==Uj —U; — (U — Uy)
and g1 (x, &) = f1(x, ¢) as in (4.3). By Theorem 2.5,

lim go(e) = 0.
e—0
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Similar as above, (1.16) follows. O

Proof of Proposition 1.4 For the case when p > (n + 1)/2, by the symmetry of the
domain and uniqueness of the solution, we know that ug(x’, x,) = —ug(x’, —x;).
Therefore, Uy = u(x’, 0) = 0. By the strong maximum principle, ug > 0in ﬁoﬂ{xn >
0}. Then by the Hopf lemma, Dug - v > 0 on DY, and hence F > 0.

Forthecasewhen 1 < p < (n+1)/2, we prove by contradiction. Assume U; < Uj.
Since ug(x’, x,) = —ug(x’, —x,), we know that ug(x’,0) = 0 and Uy = —U».
Therefore, U; < 0 and ug achieves minimum in B5+ on 8D(1). Hence Dug - v > 0 on
8D? by the Hopf lemma. This implies

/DO [Duo|” > Dug - v > 0,
d

1

which contradicts to (1.5)3. O

Appendix A

In the first part of the appendix, we prove Proposition 4.2. The proof essentially follows
those of [26, Proposition 2.1] and [15, Lemma 5.1]. Our estimate is sharper due to a
better estimate on |Dug| (Proposition 2.2).

Proof of Proposition 4.2 Similar to the proof of Theorem 2.5, for small r € (0, 1/2),
we take a smooth surface 7 so that Dy is surrounded by I‘g,s Un. See Fig. 1. We denote
the surface

¢ = {x eR": x| =r, —% +ho(x)) < x, < h2(x/)] }

r

Since faD? |Dug|P~2Dug - v = F and fan |Dug|P~2Du, - v = 0, by integration by
parts, we have

a / |Duo|”~2Dug - v + / |Dug|” > Dug - v = F, (A.1)
re, n

and

—/ |Du€|p_2Du8-v+/ |Du8|p_2Du5-v+/|Du£|p_2Du£-v:O.
re, = n

(A2)

Note that the minus signs appear because v on FQ’, and I'® , are defined to be point-
ing upwards, while v on 7 and X} are pointing away from Df. By (2.5), we have
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C -
|Dug(x)| < Cie™ 7 in 0, and hence

%)

/0 [Dug|”2Dug - v| < Cre” 7 (A.3)
r

—r

for some positive e-independent constants C; and C;. By Theorem 2.5, we have
lim / |Dug|P">Du, - v = / |Dug|”~>Dug - v. (A.4)
n "

e—>04

By (2.7), we have | Du,(x)| < C(e + [x'|*)"Lin Q(l)/z- Therefore,

ha(x) 1 p—1
<cC / / 2) dx,dS
I |=r J —e/24hs (x") 8 + [x]

(8 + rz)f”—1

/lDu [P~2Du, - v
EE

(A5)

Finally, (4.7) follows directly from (A.1)—(A.5). Proposition 4.2 is proved. O
In the following, we verify (4.12).

LemmaA.1 (4.12) holds when p > (n + 1)/2.

Proof We only give the proof for the case when n > 3. The case n = 2 follows
similarly and is simpler. After a rotation of coordinates if necessary, we may assume
that

D2, (hy — h2)(0') = diag (A1, ..., An1).

First, we replace 8(y) in the denominator with the quadratic polynomial ¢ +
Z:’:_ll AiY; /2 By (1.8), (1.9), and the fact that i1, h, are C2, we estimate

Jon G - i)

= 1:}( )p— / (8+ E 1 ’yl) —6(y)p—l
& i= 2
‘y|<l S(y)(g_lr_E ll )Lly ) p 1

h 712 p—2
5 C@(S)p-l/ OYPE+ P
|y'|<r (8 + |y |) P=

® -1
< Ch(r) _O@ gy
n—1 A .2
lyl<r Y&+ 3 10) 3y

dy/
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where h(r) is the modulus of continuity of Di, (h1 — hy), and hence h(r) — 0 as
r — 0, and C is some positive constant independent of ¢ and r. Therefore, it suffices
to show that for any r > 0,

lim (&)"_l dy' = (A.6)

1
1A K
=0 Jyi<r Ve + 0 57 K

In the spherical coordinates, for y’ € R"1 we write

2 2 2
y1 =,/ —scosf, y)=_|—ssinfjcosby, y3=_[—ssinbsinbdrcosbs,...,
)\,1 )\,2 )\'3
2 . . .
Yn—2 = ssinfqsind; ---sind,_3cosb,_»,
An—2

ssinf; sin6, - - -sinf,_3s8inb,_»,

Yn—1 =

n—1

where s € [0, 00), 01,6, ...,6,_3 € [0, 7] and 6,_» € [0, 277). For convenience of
notation, we denote X := [0, 71]"’3 x [0, 2mr). By this change of variables,

A(e) =1
( n—1 A; ) dy
ly|<r 8+Zl | &y?

/ /«J(ﬁ) 0(8) ;172‘](9) dsdo, (A7)
nlﬁ &+ 52

where

2 2 2 2 2 2
@(0) = (—cos 01 + —sin® 0y cos” O + - - - +
Al A2 An_1

. . 2
sin® @; - - - sin’ 6’",2) ,
and

J(©) =sin" 30, sin" 0, - - sin6,_3.

Note that

<) < .
max A; ¢(6) = min A;
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—n—1
When p > (n +1)/2,0(e) = ¢ T . By the change of variables r = ¢~'s2, the
right-hand side of (A.7) becomes

2" e
/ / —ldtJ(G)dH.
R - i 1+nr

Since (n —3)/2—(p—1) = (n—2p —1)/2 < —1, the integral converges as ¢ — 0.
Therefore,

O p-1
im [ (29
=0 Jyar Ne + Y000 357

2"773 z%
- —]// 1] (0)d6
(A dp2 JzJo  (L+DPT

P12 n—1 2p—n—1
= 13< > > ) (A.8)
(A Ap—1)2
where B is the beta function. Recalling the identities
n—1
27T —1 2p—n—1y I(EHr(p-1L
|Sn—2|: s _ B(n ’p n ): ( )(P ) (A.9)
e vz 2 Fp=D

and plugging them into (A.8), we have proved (A.6) for the case when p > (n+1)/2.

When p = (n+1)/2,0(¢) = |Ing|” l’ 7-1. By the change of variables w = ¢~ !/2s,
the right-hand side of (A.7) becomes

2 1 1 n—2
2% el //"’(W Y dwl(6)do
n 1)2 (1 +w )

2"7 |Ine|”!
_ 27 [Imelm //“’(W Ty dw ] (6)do

An— 1)2

2T 1 1 n—2
n [Ine|™ //w(o)f w w ) dwi)yan
Ot hne1)? (A+ud)'s  Ttw

=14+1IL

By direct computations,

n—3 r
27 |Ineg|™! ONG
1=&//“’(9” dIn(l + w?)J (0) d6
0

i+ hn)?
n—3
27771 -1 2
:”—“'1/ [1n(s+2r—)—1ns]f(9)de.
Al )2 /s @(0)
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Therefore, by (A.9),
2"7 |52 Qm)"T
lim I = - = : o (A.10)
0 Q) G A IT(55)
. . . - . ,
To estimate II, we split the integral over (0, W) into (0, 1) and (1, W), and

denote them by II; and II,, respectively. It is easily seen that [II;] < C|Ine|~!. To
estimate II,, we have

n—3
. T w[w”_3 — (1 +w)2 ]
2| < ClIneg| — dwJ(6)do.
/i (1+w?)'T
By the mean value theorem, there exists a & € (w2, 1+ w2), such that

w"73—(l—i-wz)%:—n;3 =

Note that (w2, 1+ u)2) C (wz, 2w2) when w > 1. Therefore,

n—3
=+ w[w"‘3 —(1+ wz)T] o0 n—4
/w(a)f dw| < C/ w— <C.
1 1

n—1 n—1 —

(1 + w?)" (14w

which implies |II| < C|Ine|~!. Hence, by (A.10) and the estimate |II;| + |II,| <
C|Ine|~!, we have proved (A.6) for the case when p = (n + 1)/2. m]
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