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Abstract

We study the perfect conductivity problem with closely spaced perfect conductors

embedded in a homogeneous matrix where the current-electric field relation is the

power law J = σ |E |p−2 E . The gradient of solutions may be arbitrarily large as ε, the

distance between inclusions, approaches to 0. To characterize this singular behavior

of the gradient in the narrow region between two inclusions, we capture the leading

order term of the gradient. This is the first gradient asymptotics result on the nonlinear

perfect conductivity problem.

Mathematics Subject Classification 35B40 · 35J92 · 35Q74 · 74E30 · 74G70

1 Introduction andmain results

Our study is instigated by the damage analysis in the fiber composite materials [6].

Particularly, when fibers are closely packed and in high-contrast to the background

matrix in terms of material properties, the electric field could be amplified by the

composite micro-structure. In this article, we investigate the specific scenario in which

the fiber inclusions are perfect conductors, and the background matrix follows the

current-electric field relation described by the power law:
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J = σ |E |p−2 E, p > 1, (1.1)

where J , E , and σ represent current, electric field, and conductivity, respectively. This

power law has physical relevance across various materials, including dielectrics, plastic

moulding, plasticity phenomena, viscous flows in glaciology, electro-rheological and

thermo-rheological fluids. We refer to [5, 12, 24, 27, 31, 40, 41] and the references

therein.

Before stating our results, let us describe the mathematical setup: let � ⊂ R
n be

a bounded domain with C2 boundary, and let D0
1 and D0

2 be two C2 open sets with

diam(D0
i ) > c > 0 and dist(D0

1 ∪ D0
2, ∂�) > c > 0, touching at the origin with the

inner normal direction of ∂D0
1 being the positive xn-axis. We write the variable x as

(x ′, xn), where x ′ ∈ R
n−1. For ε > 0, translating D0

1 and D0
2 by ε/2 along the xn-axis,

we obtain

D
ε
1 := D

0
1 + (0′, ε/2) and D

ε
2 := D

0
2 − (0′, ε/2).

We denote �̃ε := �\(Dε
1 ∪ D

ε
2).

The perfect conductivity problem incorporating the power law (1.1) can be modeled

by the following p-Laplace equation with p > 1:

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

− div(|Duε|p−2 Duε) = 0 in �̃ε,

uε = U ε
i on D

ε
i , i = 1, 2,

ˆ

∂D
ε
i

|Duε|p−2 Duε · ν = 0, i = 1, 2,

uε = ϕ on ∂�,

(1.2)

where ϕ ∈ C2(∂�) is given, ν = (ν1, . . . , νn) denotes the outer normal vector on

∂D
ε
1 ∪ ∂D

ε
2 (pointing away from D

ε
1 ∪ D

ε
2), and U ε

1 , U ε
2 are two constants determined

by (1.2)3. Here and throughout the paper, we adopt the notation

Duε · ν(x) := lim
t→0+

uε(x + t ν(x)) − uε(x)

t
and Duε(x) := [Duε · ν(x)]ν(x)

for x ∈ ∂D
ε
i , i = 1, 2.

The solution uε ∈ W 1,p(�) can be viewed as the unique function which has the

minimal energy in appropriate function space: Ip[u] = minv∈A ε Ip[v], where

Ip[v] :=
ˆ

�

|Dv|p, v ∈ A
ε,

A
ε := {v ∈ W 1,p(�) : Dv ≡ 0 in D

ε
1 ∪ D

ε
2, v = ϕ on ∂�}. (1.3)

We refer the reader to the Appendix of [8] for the derivation of (1.2) and its equivalence

with (1.3). Although this derivation specifically addresses the case when p = 2, the

argument can be readily applied to p > 1 with slight modifications.
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Asymptotics of the solution to the perfect conductivity… 5007

The perfect conductivity problem (1.2) with p = 2 has undergone thorough studies.

It was proved by Ammari et al. in [3, 4] that, when D1 and D2 are disks of comparable

radii in R
2, the blow-up rate of the gradient of the solution is ε−1/2 as ε goes to

zero; Yun in [44, 45] generalized the above mentioned result for two strictly convex

inclusions in R
2. These gradient estimates in dimension n = 2 were localized and

extended to higher dimensions by Bao, Li, and Yin in [8]:

‖Duε‖L∞(�̃ε) f

⎧
⎪⎪«
⎪⎪¬

Cε−1/2‖ϕ‖C2(∂�) when n = 2,

C |ε ln ε|−1‖ϕ‖C2(∂�) when n = 3,

Cε−1‖ϕ‖C2(∂�) when n g 4.

These bounds were shown to be optimal in the paper and they are independent of the

shape of inclusions, as long as the inclusions are relatively strictly convex. Moreover,

numerous studies have been conducted into characterizing the asymptotic behavior of

Duε, which are significant in practical applications. For further works on the linear

perfect conductivity problem, see e.g. [1, 2, 10, 11, 13, 17, 21, 25, 28–30, 32–34, 39]

and the references therein.

The study on the nonlinear perfect conductivity problem (1.2) is less comprehensive.

The only results were given by Gorb and Novikov [26] and Ciraolo and Sciammetta

[15]. They proved that for n g 2,

‖Duε‖L∞(�̃ε) f

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

Cε
− n−1

2(p−1) when p >
n + 1

2
,

Cε−1| ln ε|
1

1−p when p = n + 1

2
,

Cε−1 when 1 < p <
n + 1

2
.

These bounds were shown to be optimal in their respective papers. In this paper, we

give a more precise characterization of the gradient by capturing its leading order term

in the asymptotics expansion.

It is noteworthy that, for the linear case in dimension two, solutions to the per-

fect conductivity problem and the insulated conductivity problem, representing the

two extremes of conductivity, are harmonic conjugate to each other as shown in [4].

Therefore, the behavior of their gradients is essentially identical due to the Cauchy–

Riemann equation. The authors of this paper in [20] studied the insulated conductivity

problem with p-Laplacian, and identified the optimal blow-up exponent in dimension

two. It turns out the gradient behaves significantly different from that of the solution

to (1.2) in dimension two. This showcases an intriguing feature of the nonlinear con-

ductivity problem. For more results on the linear insulated conductivity problem, we

refer to [9, 18, 19, 35, 36, 43, 46].

To study the asymptotic behavior of uε, the solution to (1.2), it is important to study

the limiting problem (1.3) with ε = 0. We will show that the minimizing problem

(1.3) with ε = 0 is equivalent to
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⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

− div(|Du0|p−2 Du0) = 0 in �̃0,

u0 = U0 on D0
1 ∪ D0

2,
ˆ

∂D
0
1∪∂D

0
2

|Du0|p−2 Du0 · ν = 0,

u0 = ϕ on ∂�

(1.4)

for a constant U0 when p g (n + 1)/2, and is equivalent to

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

− div(|Du0|p−2 Du0) = 0 in �̃0,

u0 = Ui on D0
i \{0}, i = 1, 2,

ˆ

∂D
0
i

|Du0|p−2 Du0 · ν = 0, i = 1, 2,

u0 = ϕ on ∂�

(1.5)

for constants U1 and U2 when p < (n + 1)/2. We would like to clarify a misunder-

standing in the papers [14, 15]. In [14, 15], the authors implicitly claimed that the

minimizing problem (1.3) with ε = 0 is universally equivalent to (1.4), which is not

the case. We will justify this in Theorem 2.4. We emphasize that while the minimizer

u0 of (1.3) with ε = 0 always takes the same value in D0
1 and D0

2 when p g (n +1)/2,

it may take different values when 1 < p < (n + 1)/2. On the other hand, the flux

along ∂D0
1 , denoted by

F :=
ˆ

∂D
0
1

|Du0|p−2 Du0 · ν, (1.6)

might not be zero when p g (n + 1)/2, but it must be zero when p < (n + 1)/2.

By the regularity of D
ε
1 and D

ε
2, we can assume that near the origin, the part of ∂D

ε
1

and ∂D
ε
2, denoted by �ε

+ and �ε
−, are respectively the graphs of two C2 functions in

terms of x ′. That is,

�ε
+ =

{
xn = ε

2
+ h1(x ′), |x ′| < 1

}
, �ε

− =
{

xn = −ε

2
+ h2(x ′), |x ′| < 1

}
,

where h1 and h2 are relatively convex C2 functions satisfying

h1(0
′) = h2(0

′) = 0, Dx ′h1(0
′) = Dx ′h2(0

′) = 0, (1.7)

c1|x ′|2 f h1(x ′) − h2(x ′) for 0 < |x ′| < 1, (1.8)

and

‖h1‖C2 f c2, ‖h2‖C2 f c2, (1.9)
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with some positive constants c1, c2. For x0 ∈ �̃ε, 0 < r < 1 − |x ′
0|, we denote

�ε
x0,r :=

{
(x ′, xn) ∈ �̃ε

∣∣ − ε

2
+ h2(x ′) < xn <

ε

2
+ h1(x ′), |x ′ − x ′

0| < r
}

,

and �ε
r := �ε

0,r . We also denote

�ε
+,r := �ε

+ ∩ �
ε

r , �ε
−,r := �ε

− ∩ �
ε

r .

We use Br (x0) to denote the open ball of radius r centered at x0 and we set

Br := Br (0), �ε
r (x0) := �̃ε ∩ Br (x0).

Throughout this paper, we denote

δ(x) := ε + |x ′|2 (1.10)

and

δ(x) := ε + h1(x ′) − h2(x ′). (1.11)

By (1.7)–(1.9), it can be easily seen that

min{c1, 1}δ(x) f δ(x) f max{c2, 1}δ(x), for x ∈ �1.

We denote


(ε) :=

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

ε
2p−n−1
2(p−1) , p >

n + 1

2
,

| ln ε|−
1

p−1 , p = n + 1

2
,

1, 1 < p <
n + 1

2
,

(1.12)

and

K =

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

det
(
D2

x ′(h1 − h2)(0
′)
) 1

2 �(p − 1)

(2π)
n−1

2 �
(

p − n+1
2

) , when p >
n + 1

2
,

det
(
D2

x ′(h1 − h2)(0
′)
) 1

2 �
(

n−1
2

)

(2π)
n−1

2

, when p = n + 1

2
,

(1.13)

where �(z) :=
´∞

0 t z−1e−t is the Gamma function defined for z > 0.

Our main result is the following asymptotic expansion of Duε(x) for sufficiently

small ε and x ′.
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Theorem 1.1 Let h1, h2 be C2 functions satisfying (1.7)–(1.9), p > 1, n g 2, uε ∈
W 1,p(�) be the solution of (1.2), u0 be the minimizer of (1.3) with ε = 0, F be given

in (1.6), U1, U2 be the constants in (1.5)2, δ(x) be defined in (1.11), 
(ε) be given in

(1.12), and K be defined in (1.13). Then there exist constants β ∈ (0, 1) depending

only on n and p, and C1, C2 > 0 depending only on n, p, c1, and c2, such that the

following holds:

(i) If p g (n + 1)/2, for ε ∈ (0, 1) and x ∈ �ε
1/4, we have

Duε(x) =
(
0′, δ(x)−1
(ε)(sgn(F)(K |F |)1/(p−1) + f0(ε))

)
+ f1(x, ε),

(1.14)

where f0 : R → R is a function of ε and f1 : R
n × R → R

n is a function of x and

ε, such that

lim
ε→0

f0(ε) = 0,

|f1(x, ε)| f C1

(
δ(x)β/2−1
(ε)(|KF |1/(p−1) + | f0(ε)|)

+‖ϕ‖L∞(∂�)e
− C2√

ε+|x ′|
)
. (1.15)

(ii) If 1 < p < (n + 1)/2, for ε ∈ (0, 1) and x ∈ �ε
1/4, we have

Duε(x) =
(
0′, δ(x)−1(U1 − U2 + g0(ε))

)
+ g1(x, ε),

where g0 : R → R is a function of ε and g1 : R
n × R → R

n is a function of x

and ε, such that

lim
ε→0

g0(ε) = 0,

|g1(x, ε)| f C1

(
δ(x)β/2−1(|U1 − U2| + |g0(ε)|) + ‖ϕ‖L∞(∂�)e

− C2√
ε+|x ′|

)
.

(1.16)

As a consequence of the asymptotic expansion in Theorem 1.1, we provide a point-

wise upper bound of Duε.

Remark 1.2 Under the hypotheses of Theorem 1.1, there exist constants C1, C2 > 0

depending only on n, p, c1, and c2, such that for sufficiently small ε > 0, and any

x ∈ �ε
1/4, we have

|Duε(x)| f C1‖ϕ‖L∞(∂�)

( 
(ε)

ε + |x ′|2 + e
− C2√

ε+|x ′ |
)
. (1.17)

In fact, when 1 < p < (n + 1)/2, (1.17) follows directly from Proposition 2.2. When

p g (n + 1)/2, since u0 = U0 on D0
1 ∪ D0

2 , we have |F | f C‖ϕ‖p−1
L∞(∂�)

and thus
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(1.17) follows from (1.14). Indeed, one can see the boundedness of Du0 on �0
+,1/2 by

Lemma 2.1, and on ∂D0
1\�0

+,1/2 by classical gradient estimates (see e.g. [37]).

Another direct consequence of Theorem 1.1 is the following pointwise positive

lower bound of Dnuε near the origin, provided the coefficient of the leading order

term in the asymptotic expansion is positive.

Remark 1.3 Under the hypotheses of Theorem 1.1, if either

p g n + 1

2
and F > 0 (1.18)

or

1 < p <
n + 1

2
and U1 > U2 (1.19)

holds, then there exist constants κ1, κ2 ∈ (0, 1/4), γ > 0 depending only on n, p, c1,

c2, ‖ϕ‖L∞(∂�), F (when p g (n + 1)/2), and U1 − U2 (when p < (n + 1)/2), such

that for sufficiently small ε > 0, and any x ∈ �ε
1/4 satisfying

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

|x ′| f | ln ε|−γ , when p >
n + 1

2
,

|x ′| f κ1(ln | ln ε|)−1, when p = n + 1

2
,

|x ′| f κ2, when 1 < p <
n + 1

2
,

we have

⎧
⎪«
⎪¬

Dnuε(x) g 1

2
δ(x)−1
(ε)(KF)1/(p−1), when p g n + 1

2
,

Dnuε(x) g 1

2
δ(x)−1(U1 − U2), when 1 < p <

n + 1

2
.

(1.20)

Indeed, when p g (n + 1)/2, (1.20) follows directly from Theorem 1.1 by setting

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

| f0(ε)| f 1

6
(KF)1/(p−1),

C1δ(x)β/2 f 1

7
,

C1‖ϕ‖L∞(∂�)e
− C2√

ε+|x ′ | f 1

6
δ(x)−1
(ε)(KF)1/(p−1),

and the case when p ∈ (1, (n + 1)/2) follows similarly.

Next, we provide a concrete example whose coefficient of the leading order term

in the asymptotic expansion is positive.
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Proposition 1.4 Let � = B5 ⊂ R
n , D1 = B2(0

′, 2), D2 = B2(0
′,−2), ϕ = xn , and

u0 be the minimizer of (1.3) with ε = 0. Then either (1.18) or (1.19) is satisfied.

Our proof of the main result Theorem 1.1 relies on the following Cβ bound of the

gradient, which may be of independent interest.

Proposition 1.5 Let h1, h2 be C2 functions satisfying (1.7)–(1.9), p > 1, n g 2,

ε ∈ (0, 1), and uε ∈ W 1,p(�) be a solution of (1.2). Then there exist constants

β ∈ (0, 1) depending only on n and p, and C > 0 depending only on n, p, c1, and c2,

such that for any x ∈ �1/4 and δ(x) = ε + |x ′|2, it holds that

[Duε]Cβ (�ε

x,
√

δ(x)/4
) f Cδ(x)−β/2‖Duε‖L∞(�ε

x,
√

δ(x)/2
). (1.21)

Remark 1.6 It can be seen from the proof in Sect. 3 that Proposition 1.5 holds as long

as uε ∈ W 1,p(�ε
1) is a solution of

⎧
⎪«
⎪¬

− div(|Duε|p−2 Duε) = 0 in �ε
1,

uε = U ε
1 on �ε

+,

uε = U ε
2 on �ε

−,

for some arbitrary constants U ε
1 and U ε

2 . Moreover, the same estimates also hold for

any solution uε ∈ W 1,p(�ε
1) of

⎧
«
¬

− div(|Duε|p−2 Duε) = 0 in �ε
1,

∂uε

∂ν
= 0 on �ε

±,

which might be useful for obtaining sharper blow-up estimates for the insulated con-

ductivity problem with p-Laplacian (see [20]).

We briefly describe the steps of proving Theorem 1.1. First, we establish a pointwise

upper bound of the gradient in terms of U ε
1 − U ε

2 for arbitrary given U ε
1 and U ε

2

(Proposition 2.2). Then we use mean oscillation estimates to prove a C1,β estimate

(Proposition 1.5). Note that Proposition 1.5 implies a power gain of order δβ/2 for

the oscillation of the gradient in the xn direction. Because of this power gain and

Proposition 2.2, we then derive an asymptotic expansion of Duε in terms of U ε
1 − U ε

2

(Proposition 4.1). When p g (n + 1)/2, U ε
1 −U ε

2 will converge to 0 as ε → 0. In this

case, we use the flux conditions to derive the convergence rate for U ε
1 −U ε

2 (Theorem

4.4). When p < (n+1)/2, U ε
1 −U ε

2 will converges to U1 −U2 (Theorem 2.5). Finally,

Theorem 1.1 follows from putting all the ingredients above together.

We would like to point out that weaker versions of Proposition 4.1 were proved

in [15, 26]. They derived an asymptotic expansion of Duε only on the upper and

lower boundaries �ε
± by constructing suitable barrier functions and using comparison

principle. However, in our opinion, it appears that there is a gap in their proofs. It is

nontrivial to see that the normal derivative is bounded in the case when U ε
1 − U ε

2 is
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small as lack of control of the oscillation of the solution in the x ′ direction (see [15,

p. 6174] and [26, p. 740]). This gap can be filled by Proposition 2.2 of this paper. We

would like to remark that our argument in Proposition 4.1 is more robust in the sense

that the proof does not rely on the fundamental solution of the p-Laplace equation

or the maximum principle. In fact, the only place this paper involves the maximum

principle is Proposition 2.2. See also Remark 2.3. If one can give an alternative proof

of (2.7) in Proposition 2.2 without using the maximum principle, then our results can

be extended to nonlinear systems of p-Laplace type.

The rest of the paper is organized as follows: In Sect. 2, we provide some preliminary

estimates and results. In Sect. 3, we use mean oscillation estimates to prove Proposition

1.5. A convergence rate of U ε
1 −U ε

2 when p g (n+1)/2 is provided in Sect. 4. Finally,

the proofs of Theorem 1.1 and Proposition 1.4 are given in Sect. 5.

2 Preliminaries

In this section, we provide some preliminary results.

Lemma 2.1 Let h1, h2 be C2 functions satisfying (1.7)–(1.9), p > 1, n g 2, ε ∈ [0, 1),

and v ∈ W 1,p(�ε
1) be a solution of

{
− div(|Dv|p−2 Dv) = 0 in �ε

1,

v = 0 on �ε
±.

(2.1)

Then there exist constants C1, C2 > 0 depending only on n, p, c1, and c2, such that

|v(x)| + |Dv(x)| f C1e
− C2√

ε+|x ′| ‖v‖L p(�ε
1\�ε

1/2)
for x ∈ �ε

1/2. (2.2)

Proof The proof of this lemma essentially follows that of [7, Theorem 1.1], with some

modification. For simplicity, we omit the superscript ε in the proof. Without loss of

generality, we may assume ε ∈ [0, 1/256) and |x ′| < 1/16 since otherwise (2.2)

follows from classical estimates for the p-Laplace equation (see e.g. [37]). For any

0 < t < s < 1, let η = η(x ′) be a cutoff function such that η = 1 in �t , η = 0 in

�1\�s , and |Dη| f C(s−t)−1. Multiplying vηp on both sides of (2.1) and integrating

by parts, we have

ˆ

�1

|Dv|pηp + p|Dv|p−2 Dv · Dηvηp−1 = 0.

By Young’s inequality,

ˆ

�1

|Dv|pηp f p

ˆ

�1

|Dv|p−1ηp−1|v||Dη| f 1

2

ˆ

�1

|Dv|pηp + C

ˆ

�1

|v|p|Dη|p.

123



5014 H. Dong et al.

Therefore,

ˆ

�t

|Dv|p f C

(s − t)p

ˆ

�s\�t

|v|p.

Since v = 0 on �−, by the Poincaré inequality in the xn direction, we have

ˆ

�s\�t

|v|p f C(ε + s2)p

ˆ

�s\�t

|Du|p.

Therefore,

ˆ

�t

|Dv|p f C∗
(

ε + s2

s − t

)p ˆ

�s\�t

|Dv|p. (2.3)

Let t0 = r ∈ (
√

ε, 1/2) and t j = (1 − jr)r for j ∈ N such that j f 1/r . Taking

s = t j , t = t j+1 in (2.3), we have

ˆ

�t j+1

|Dv|p f 2pC∗
ˆ

�t j
\�t j+1

|Dv|p.

Adding both sides by 2pC∗ ´
�t j+1

|Dv|p and dividing both sides by 1 + 2pC∗, we

have

ˆ

�t j+1

|Dv|p f 2pC∗

1 + 2pC∗

ˆ

�t j

|Dv|p.

Let k = � 1
2r

� and iterate the above inequality k times. We have

ˆ

�r/2

|Dv|p f
(

2pC∗

1 + 2pC∗

)k ˆ

�r

|Dv|p f Cμ
1
r

ˆ

�1\�1/2

|v|p, (2.4)

where μ ∈ (0, 1) and C are constants depending only on n, p, c1, and c2. Now we

take r = 4(
√

ε + |x ′|) and (2.2) follows from classical estimates for the p-Laplace

equation in �x ′,ε+|x ′|2 and (2.4). ��

Next, we derive a pointwise upper bound of the gradient in terms of U ε
1 − U ε

2 .

Proposition 2.2 Let h1, h2 be C2 functions satisfying (1.7)–(1.9), p > 1, n g 2,

ε ∈ [0, 1), U ε
1 , U ε

2 be arbitrary constants, and uε ∈ W 1,p(�ε
1) be a solution of

⎧
⎪«
⎪¬

− div(|Duε|p−2 Duε) = 0 in �ε
1,

uε = U ε
1 on �ε

+,

uε = U ε
2 on �ε

−.
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Then there exist constants C1, C2 > 0 depending only on n, p, c1, and c2, such that

for x ∈ �ε
1/4, it holds that

|Duε(x)| f C1

( |U ε
1 − U ε

2 |
ε + |x ′|2 + ‖uε‖L∞(�ε

1\�ε
1/2)

e
− C2√

ε+|x ′|
)
. (2.5)

Moreover, if ε ∈ (0, 1), uε ∈ W 1,p(�) is the solution to (1.2) and U ε
1 , and U ε

2 are the

same constants in (1.2), we have

inf
∂�

ϕ f U ε
1 , U ε

2 f sup
∂�

ϕ, (2.6)

and for x ∈ �ε
1/4,

|Duε(x)| f C1

( |U ε
1 − U ε

2 |
ε + |x ′|2 + ‖ϕ‖L∞(∂�)e

− C2√
ε+|x ′|

)
. (2.7)

Proof We first give the proof of (2.5). Take a point x0 ∈ �ε
1/4. In order to estimate

the gradient at x0, we first estimate the oscillation of uε in �ε
x0,δ(x0)/8, where δ(x0) =

ε + |x ′
0|2. Without loss of generality, we may assume that U ε

1 g U ε
2 . Let v be the

solution to

⎧
⎪«
⎪¬

− div(|Dv|p−2 Dv) = 0 in �ε
1,

v = 0 on �ε
±,

v = uε − U ε
1 on ∂�ε

1 ∩ {x ∈ R
n : |x ′| = 1}.

By Lemma 2.1,

|v(x)| f C1e
− C2√

ε+|x ′ | ‖uε‖L∞(�ε
1\�ε

1/2)
for x ∈ �ε

1/2.

Since v g uε − U ε
1 on ∂�ε

1, by the comparison principle, we have

uε(x) − U ε
1 f v(x) in �ε

1.

Similarly, let w be the solution to

⎧
⎪«
⎪¬

− div(|Dw|p−2 Dw) = 0 in �ε
1,

w = 0 on �ε
±,

w = uε − U ε
2 on ∂�ε

1 ∩ {x ∈ R
n : |x ′| = 1}.

We have

|w(x)| f C1e
− C2√

ε+|x ′ | ‖uε‖L∞(�ε
1\�ε

1/2)
for x ∈ �ε

1/2,
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and

uε(x) − U ε
2 g w(x) in �ε

1.

Therefore,

osc
�ε

x0,δ(x0)/8

uε f |U ε
1 − U ε

2 | + C1‖uε‖L∞(�ε
1\�ε

1/2)
e
− C2√

ε+|x ′
0
| .

Then the gradient estimate (2.5) follows from classical boundary and interior estimates

for the p-Laplace equation (see e.g. [37]).

Next we prove (2.6). Indeed, if U ε
i = max{U ε

1 , U ε
2 } > sup∂� ϕ, by the maximum

principle and the Hopf lemma (see [42, Theorem 5]), Duε · ν > 0 on ∂D
ε
i , which

violates (1.2)3.

Finally, (2.7) follows directly from (2.5), (2.6), and the maximum principle. ��
Remark 2.3 For systems of p-Laplace type, instead of (2.6), one can still show that

|U ε
i | f C‖ϕ‖C1(∂�), i = 1, 2

holds for some ε-independent constant C , by using classical boundary and interior

gradient estimates away from the neck region �ε
1/2. However, it is not clear to us

whether (2.7) (or a weaker version of it) is still true.

In the following, we justify the equivalence between the minimizing problem (1.3)

with ε = 0 and the equations (1.4)–(1.5).

Theorem 2.4 u0 is the minimizer of (1.3) with ε = 0 if and only if u0 ∈ W 1,p(�)

satisfies (1.4) when p g (n + 1)/2 and satisfies (1.5) when p < (n + 1)/2.

Proof First, we prove that (1.4) has at most one solution u ∈ W 1,p(�). The same con-

clusion applies to (1.5). Let u1, u2 ∈ W 1,p(�) be two solutions of (1.4). Multiplying

the equation by u1 − u2 and integrating by parts, we have for j = 1, 2,

0 =
ˆ

�̃0

|Du j |p−2 Du j · D(u1 − u2) dx −
ˆ

∂�

|Du j |p−2 Du j · ν(u1 − u2) d S

−
2∑

i=1

ˆ

∂ D0
i

|Du j |p−2 Du j · ν(u1 − u2) d S

=
ˆ

�̃0
|Du j |p−2 Du j · D(u1 − u2) dx .

Therefore,

0 =
ˆ

�̃0

(
|Du1|p−2 Du1 − |Du2|p−2 Du2

)
· D(u1 − u2) dx

g min{1, p − 1}
2p−2

ˆ

�̃0
(|Du1| + |Du2|)p−2|Du1 − Du2|2 dx .
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This implies u1 ≡ u2. It is straightforward to see that the minimizer of (1.3) with ε = 0

is unique, due to the convexity of Ip and A
0. It suffices to show that the minimizer

u0 satisfies (1.4) when p g (n + 1)/2 and satisfies (1.5) when p < (n + 1)/2. We

show this by taking different test function v ∈ A
0 in the equation

0 = d

dt
Ip[u0 + tv]

∣∣∣∣
t=0

. (2.8)

First we take v ∈ C∞
c (�̃0). Then (2.8) reads as

0 =
ˆ

�̃0

|Du0|p−2 Du0 · Dv dx .

This implies

− div(|Du0|p−2 Du0) = 0 in �̃0.

Next, we take v ∈ C∞
c (�) such that v = 1 in D0

1 ∪ D0
2 . From (2.8) and integration by

parts, we have

0 =
ˆ

�̃0
|Du0|p−2 Du0 · Dv dx

= −
ˆ

�̃0
div(|Du0|p−2 Du0)v dx +

2∑

i=1

ˆ

∂D0
i

|Du0|p−2 Du0 · ν d S

=
2∑

i=1

ˆ

∂D0
i

|Du0|p−2 Du0 · ν d S.

For the case when p g (n+1)/2, it remains to show that u0 equals to the same constant

on D0
1 and D0

2 . Assume that u0 = U1 in D0
1 and u0 = U2 in D0

2 with U1 �= U2. Then

by the fundamental theorem of calculus,

U1 − U2 =
ˆ h1(x ′)

h2(x ′)
Dnu0(x) dxn .

Taking the absolute value and raising to the power of p on the both sides, by Hölder’s

inequality, (1.7), and (1.9), we have

|U1 − U2|p f C |x ′|2(p−1)

ˆ h1(x ′)

h2(x ′)
|Dnu0(x)|p dxn .

This implies

ˆ

|x ′|<1/2

|U1 − U2|p

|x ′|2(p−1)
dx ′ f C

ˆ

�0
1/2

|Du0|p dx .
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The left-hand side diverges since p g (n + 1)/2 and U1 �= U2, which leads to a

contradiction. Therefore, U1 = U2.

For the case when p < (n+1)/2, we need to show the flux on each of ∂D0
i vanishes.

We will only show the flux vanishes on ∂D0
1 , as a similar argument applies to ∂D0

2 .

Let v be a function compactly supported in � such that v = 1 in D0
1 , v = 0 in D0

2 ,

v(x ′, xn) =
(

2xn − (h1(x ′) + h2(x ′))

h1(x ′) − h2(x ′)

)

+
, x ∈ �0

1/2,

and v is smooth in �̃0\�0
1/2. Then v ∈ A

0. Indeed, we only need to verify

ˆ

�0
1/2

|Dv|p dx f C

ˆ

|x ′|<1/2

ˆ h1(x ′)

h1(x ′)+h2(x ′)
2

1

|x ′|2p
dxndx ′ f C

ˆ 1/2

0

rn−2p f C

since n − 2p > −1. Taking this v in (2.8) and integrating by parts, we have

ˆ

∂D0
1

|Du0|p−2 Du0 · ν d S = 0.

The theorem is proved. ��

Next, we show that uε converges to u0 in the following sense.

Theorem 2.5 Let uε ∈ W 1,p(�) be the solution of (1.2), and u0 ∈ W 1,p(�) be the

minimizer of (1.3) with ε = 0. Then as ε → 0, uε⇀u0 weakly in W 1,p(�), and

uε → u0 strongly in C1,β(K ) for some β > 0 and any

K ⊂⊂ �\
(

∪
0<εfε0

(Dε
1 ∪ D

ε
2) ∪ {0}

)
with ε0 > 0.

As a consequence, as ε → 0, U ε
1 → U1 and U ε

2 → U2 when p < (n + 1)/2, and

U ε
1 , U ε

2 → U0 when p g (n + 1)/2, where U0, U1, U2 are the constants in (1.4) and

(1.5).

Proof First we take an arbitrary function w ∈ W 1,p(�) such that w = ϕ on ∂�

and Dw = 0 in B, where B ⊂ � is an open set containing ∪0fεfcD
ε
1 ∪ D

ε
2, where

0 < c < dist(D0
1 ∪ D0

2, ∂�). Therefore, w ∈ A
ε for all ε ∈ [0, c], where A

ε is the

admissible set defined in (1.3). By Theorem 2.4,

‖Duε‖L p(�) f ‖Dw‖L p(�).

This together with the Poincaré inequality implies that ‖uε‖W 1,p(�) is bounded uni-

formly in ε. Then there exists a subsequence {ε j } j∈N and a function u∗ ∈ W 1,p(�),

such that uε j
⇀u∗ weakly in W 1,p(�), and uε j

→ u∗ strongly in L p(�), as j → ∞.

From (2.6), we know that U
ε j

1 and U
ε j

2 , the values of uε j
in D

ε j

1 and D
ε j

2 , are uniformly
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bounded. Then there exists a subsequence of {ε j } j∈N, still denoted by {ε j } j∈N, so that

U
ε j

i → Ui for some constants Ui , i = 1, 2. Therefore, for any x ∈ D0
i , we have

u∗(x) = lim
j→∞

U
ε j

i = Ui , i = 1, 2.

On the other hand, for any k, l ∈ Z+, we denote

Kk,l := �\
(

∪
0<εf1/k

(Dε
1 ∪ D

ε
2) ∪ B1/l(0)

)
.

By the classical C1,α estimate, when ε j f 1/k, we have

‖uε j
‖

C1,α(Kk,l )
f C(k, l).

This implies that there is a subsequence that converges in C1,β(Kk,l) for any β < α.

We can apply the Cantor diagonal argument to select a subsequence, still denoted by

{ε j } j∈N, such that

uε j
→ u∗∗ in C1,β(K ) as j → ∞ (2.9)

for any K ⊂⊂ �\
(

∪
0<εfε0

(Dε
1 ∪D

ε
2)∪{0}

)
with ε0 > 0 and some C1,β function u∗∗.

Therefore, u∗∗ is a weak solution to the p-Laplace equation in �̃0. Since uε → u∗
strongly in L p(�), we have u∗ ≡ u∗∗. It remains to show that u∗ ≡ u0, which implies

the convergence of {uε}.
When p g (n + 1)/2, by the same argument as in the proof of Theorem 2.4, we

know that U1 = U2. It remains to prove that

ˆ

∂D0
1∪∂D0

2

|Du∗|p−2 Du∗ · ν = 0. (2.10)

Let �′ be an open set such that D0
1 ∪ D0

2 ⊂⊂ �′ ⊂⊂ �. Since uε j
is the solution to

(1.2), when j is sufficiently large, by integration by parts in �′\Dε j

1 ∪ D
ε j

2 , we have

ˆ

∂�′
|Duε j

|p−2 Duε j
· ν = 0.

Therefore, by (2.9), we also have

ˆ

∂�′
|Du∗|p−2 Du∗ · ν = 0. (2.11)

Since u∗ is a weak solution to the p-Laplace equation in �̃0, by integration by parts

again in �′\D0
1 ∪ D0

2 , (2.11) directly implies (2.10).
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Fig. 1 An illustration of

�0
−,s ∪ η

When p < (n + 1)/2, it remains to prove that

ˆ

∂D0
i

|Du∗|p−2 Du∗ · ν = 0, i = 1, 2.

We will prove it only for i = 1. Fix a small s ∈ (0, 1/2), we take a smooth surface η

so that D
ε
1 is surrounded by �0

−,s ∪ η. See Fig. 1.

Since
´

∂D
ε j
1

|Duε j
|p−2 Duε j

· ν = 0, by integration by parts, we have

−
ˆ

�0
−,s

|Duε j
|p−2 Duε j

· ν +
ˆ

η

|Duε j
|p−2 Duε j

· ν = 0.

Note that the minus sign appears because ν on �0
−,s is pointing upwards, while ν on η

is pointing away from D
ε
1. By (2.7), we have |Duε j

(x)| f C(ε j +|x ′|2)−1. Therefore,

∣∣∣∣∣

ˆ

�0
−,s

|Duε j
|p−2 Duε j

· ν

∣∣∣∣∣ f C

ˆ

|x ′|<s

1

|x ′|2p−2
dx ′ f Csn−2p+1,

where we used 2p − 2 < n − 1. By (2.9), we know that

ˆ

η

|Duε j
|p−2 Duε j

· ν →
ˆ

η

|Du∗|p−2 Du∗ · ν as j → ∞.
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Therefore,

∣∣∣∣
ˆ

η

|Du∗|p−2 Du∗ · ν

∣∣∣∣ f Csn−2p+1.

Similarly by (2.5), we have |Du∗(x)| f C |x ′|−2 and

∣∣∣∣∣

ˆ

�0
−,s

|Du∗|p−2 Du∗ · ν

∣∣∣∣∣ f Csn−2p+1.

By integration by parts, we have

∣∣∣∣∣

ˆ

D0
1

|Du∗|p−2 Du∗ · ν

∣∣∣∣∣ =
∣∣∣∣∣

ˆ

η

|Du∗|p−2 Du∗ · ν −
ˆ

�0
−,s

|Du∗|p−2 Du∗ · ν

∣∣∣∣∣

f Csn−2p+1.

Sending s → 0 and using p < (n + 1)/2, we have

ˆ

D0
1

|Du∗|p−2 Du∗ · ν = 0.

Finally, by the uniqueness of solution to (1.4) and (1.5), we can conclude that

u∗ ≡ u0, and the full sequence uε converges to u0 in the corresponding topology. ��

3 Mean oscillation estimates

In this section, we give the proof of Proposition 1.5 using mean oscillation estimates.

Throughout this section, unless otherwise specified, we use C to denote positive con-

stants depending only on n, p, c1, and c2, which could differ from line to line. Here

c1 and c2 are the same constants in (1.8) and (1.9), respectively. For simplicity, we

denote u := uε and we omit the superscript ε throughout this section when there is no

confusion.

First, we fix a point x̄ ∈ �1/2 and derive some mean oscillation estimates of Du

on a ball intersecting �1, namely �r (x̄), for different radii r .

3.1 Mean oscillation estimates for small r

We recall a classical interior mean oscillation estimate when Br (x̄) ⊂ �1. Estimates

of this type, with different exponents involved, were developed in [16, 22, 38].

Lemma 3.1 Let u ∈ W 1,p(�1) be a solution to (1.2). There exist constants C > 1

and α ∈ (0, 1) depending only on n and p, such that u ∈ C1,α(�1) and for every
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Br (x̄) ⊂ �1 and ρ ∈ (0, r ], we have

Ç(x̄, ρ) f C
(ρ

r

)α

Ç(x̄, r),

where we denote

Ç(x̄, r) =
(
 

�r (x̄)

|Du − (Du)�r (x̄)|p

) 1
p

. (3.1)

3.2 Mean oscillation estimates for intermediate r

Next, we consider the case when Br (x̄) intersects with only one of �+ and �−. In this

case, we derive mean oscillation estimates around any x̂ ∈ (�+ ∪ �−) ∩ {x ∈ R
n :

|x ′| f 3/4}.
Without loss of generality, let x̂ ∈ �− ∩ {x ∈ R

n : |x ′| f 3/4}. Then by (1.8)

and (1.9), there exists a constant c = c(n, c1, c2) ∈ (0, min{c1/4, 1/4}), such that

B(x̂, r) ∩ �+ = ∅ for any r ∈ (0, cδ(x̂)). Here we recall (1.10). We first choose a

coordinate system y = (y′, yn) such that y(x̂) = 0, the direction of axis yn is the

normal vector at x̂ ∈ �− pointing upwards. Note that the coordinate y is a rotation

(plus a transition) of the coordinate x , namely y = T (x − x̂) for some rotation

matrix T ∈ R
n×n , which maps the normal vector of �− at x̂ pointing upward, namely

ν = (−Dh2(x̂ ′), 1)/
√

1 + |Dh2(x̂ ′)|2 in the x-coordinate, to the unit vector eyn =
(0, . . . , 0, 1) in y-coordinate. Therefore, by (1.7) and (1.9), there exists a constant

C = C(n, c2) > 0, such that

|T − In| f C |x̂ ′| and |T −1 − In| f C |x̂ ′|. (3.2)

Thus there exists a constant c3 = c3(n, c1, c2) ∈ (0, min{c1/8, 1/8}) such that

�R0(x̂) = {x̂ + T −1 y : y ∈ BR0 : yn > È(y′)}, where R0 = c3δ(x̂) ∈ (0, 1/4)

and È : {y′ ∈ R
n−1 : |y′| < R0} → R is a C2 function in the y-coordinate system

such that

È(0′) = 0, Dy′È(0′) = 0, ‖È‖C2 f C‖h2‖C2 , (3.3)

for some constant C = C(n) > 0. Then we let

z = �(y) = (y′, yn − È(y′)).

Since �− is C2, by (3.3) there exist constants

c4 = c4(n, c1, c2) ∈ (0, min{c1/8, 1/8}), (3.4)
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C = C(n, c1, c2) > 0, and R1 = c4δ(x̂) such that

|Dy′È(y′)| f C |y′| f 1/2 if |y′| f 2R1,

�r/2(x̂) ⊂ �−1(B+
r ) ⊂ �2r (x̂) ∀ r ∈ (0, 2R1],

and thus

|D�(y) − In| f C |y′| f 1/2 if |y′| f 2R1. (3.5)

Therefore, there exist positive constants c(n) and c′(n) depending only on n, such that

for any x̂ ∈ (�+ ∪ �−) ∩ {x ∈ R
n : |x ′| f 3/4} and 0 < r f c4δ(x̂),

c(n)rn f |�r (x̂)| f c′(n)rn . (3.6)

Note that

det(D�) ≡ 1.

Then u1(z) := u(�−1(z)) satisfies the following equation with constant Dirichlet

boundary condition

⎧
«
¬

− divz

(
|AT Dzu1|p−2 AAT Dzu1

)
= 0 in B+

R1
,

u1 = U ε
2 on BR1 ∩ ∂R

n
+,

(3.7)

where we denote

A := A(z) := (ai j (z)) := D�(�−1(z)).

Next we extend the equation to the whole ball BR1 . We take the even extension of ann

and ai j , i, j = 1, 2, . . . , n − 1, with respect to zn = 0, and take the odd extension

of ain and ani , i = 1, 2, . . . , n − 1, with respect to zn = 0. Then we reflect u1 with

respect to zn = 0. Namely, we define u1(z) = 2 U ε
2 − u1(z

′,−zn) for z ∈ B−
R1

. We

still denote these functions by u1 and A after the extension. Because of the Dirichlet

boundary condition, it is easily seen that u1 satisfies

− divz

(
A(z, Dzu1)

)
= 0 in BR1 , (3.8)

123



5024 H. Dong et al.

where the nonlinear operator A is defined as

A(z, ξ) = |AT ξ |p−2 AAT ξ for z ∈ BR1 , ξ ∈ R
n .

By (3.5), similar to [20, Lemma 2.3], there exists a constant C = C(n, p, c1, c2) > 0,

such that for any z ∈ BR1 and ξ ∈ R
n ,

|A(z, ξ) − |ξ |p−2ξ | f C |z′| |ξ |p−1. (3.9)

Assume that r ∈ (0, R1]. We let v1 ∈ u1 + W
1,p
0 (Br ) be the unique solution to

{
− divz(|Dzv1|p−2 Dzv1) = 0 in Br ,

v1 = u1 on ∂ Br .
(3.10)

By testing (3.10) and (3.8) with v1 − u1 and using (3.9), we have the comparison

estimate

 

Br

|Dzu1 − Dzv1|p f Crmin{2,p}
 

Br

|Dzu1|p, (3.11)

where C > 0 is a constant depending only on n, p, c1, and c2. For detailed proof of

(3.11), see [22, Eq. (4.35)] when p ∈ (1, 2) and [23, Lemma 3.4] when p g 2.

Applying Lemma 3.1 and the comparison estimate (3.11), we have

Lemma 3.2 Suppose that u1 ∈ W 1,p(B+
R1

) is a solution to (3.7). Then for any μ ∈
(0, 1) and r ∈ (0, R1], we have

(
 

B+
μr

|Dz′u1|p + |Dzn u1 − (Dzn u1)B+
μr

|p

)1/p

f Cμα

(
 

B+
r

|Dz′u1|p + |Dzn u1 − (Dzn u1)B+
r
|p

)1/p

+Cμr θp

(
 

B+
r

|Dzu1|p

)1/p

, (3.12)

where θp = min{1, 2/p}, α is the same constant as in Lemma 3.1, Cμ is a constant

depending on μ, n, p, c1, and c2, and C is a constant depending on n, p, c1, and c2.
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Proof By Lemma 3.1, (3.11), and the triangle inequality, we have

(
 

Bμr

|Dzu1 − (Dzu1)Bμr |p

)1/p

f C

(
 

Bμr

|Dzv1 − (Dzv1)Bμr |p

)1/p

+ C

(
 

Bμr

|Dzu1 − Dzv1|p

)1/p

f Cμα

(
 

Br

|Dzv1 − (Dzv1)Br |p

)1/p

+ Cμ
− n

p

(
 

Br

|Dzu1 − Dzv1|p

)1/p

f Cμα

(
 

Br

|Dzu1 − (Dzu1)Br |p

)1/p

+ Cμ
− n

p

(
 

Br

|Dzu1 − Dzv1|p

)1/p

f Cμα

(
 

Br

|Dzu1 − (Dzu1)Br |p

)1/p

+ Cμr θp

(
 

Br

|Dzu1|p

)1/p

. (3.13)

Since u1 is even in zn , (3.13) directly implies (3.12). The proof is completed. ��

We now define

ψ(x̂, r) =
(
 

�r (x̂)

|Dy′u|p + |Dyn u − (Dyn u)�r (x̂)|p

)1/p

. (3.14)

Following a similar argument as in the proof of [20, Lemma 2.5], we have

Lemma 3.3 Suppose that u is a solution to (1.2) and x̂ ∈ (�+ ∪ �−) ∩ {x ∈ R
n :

|x ′| f 3/4}. Then there exist constants C > 0 depending only on n, p, c1, and c2,

and Cμ > 0 depending on n, p, c1, c2, and μ, such that for any μ ∈ (0, 1/4) and

r ∈ (0, c4δ(x̂)], it holds that

ψ(x̂, μr) f Cμαψ(x̂, r) + Cμr θp

(
 

�r (x̂)

|Du|p

)1/p

, (3.15)

where θp = min{1, 2/p}, α ∈ (0, 1) is the same constant as in Lemma 3.1, c4 =
c4(n, c1, c2) ∈ (0, min{c1/8, 1/8}) is the same constant as in (3.4) and ψ is defined

in (3.14).

By iteration, Lemma 3.3 also implies

Corollary 3.4 Let u, x̂ , c4, α, and θp be as in Lemma 3.3 and α1 ∈ (0, min{α, θp}).
Then there exists a constant C > 0 depending only on n, p, c1, c2, and α1, such that

for any 0 < ρ f r f c4δ(x̂), it holds that

ψ(x̂, ρ) f C
(ρ

r

)α1

ψ(x̂, r) + C ρα1‖Du‖L∞(�r (x̂)).
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Proof We choose μ = μ(n, p, c1, c2, α1) ∈ (0, 1/6) sufficiently small such that

Cμα−α1 < 1, where C is the same constant in (3.15). Then Lemma 3.3 implies that

for any r ∈ (0, c4δ(x̂)], we have

ψ(x̂, μr) f μα1ψ(x̂, r) + Cα1r θp‖Du‖L∞(�r (x̂)), (3.16)

where Cα1 > 0 is a constant depending only on n, p, c1, c2, and α1. By iteration, from

(3.16) we get

ψ(x̂, μ jr) f μα1 jψ(x̂, r) + Cα1

j∑

i=1

μα1(i−1)(μ j−ir)θp‖Du‖L∞(�r (x̂))

= μα1 jψ(x̂, r) + Cα1

j∑

i=1

μα1( j−1)μ( j−i)(θp−α1)r θp‖Du‖L∞(�r (x̂))

f μα1 jψ(x̂, r) + Cα1(μ
jr)α1‖Du‖L∞(�r (x̂)). (3.17)

Here in the last inequality we used the facts that α1 < θp and r ∈ (0, 1).

Now for any 0 < ρ f r f c4δ(x̂), let j be the integer such that μ j+1 < ρ/r f μ j .

Then by (3.17) with μ− jρ in place of r , we get

ψ(x̂, ρ) f μα1 jψ(x̂, μ− jρ) + Cα1 ρα1‖Du‖L∞(�
μ− j ρ

(x̂))

f Cα1

(ρ

r

)α1

ψ(x̂, r) + Cα1 ρα1‖Du‖L∞(�r (x̂)),

where Cα1 > 0 is a constant depending only on n, p, c1, c2, and α1. The proof is

completed. ��

3.3 Mean oscillation estimates for large r

Finally, we consider the case when Br (x̄) could potentially intersects with both �+
and �−. In this case, we fix x̄ ∈ �1/2 and assume c4

216
δ(x̄) f r f c5δ(x̄)

1
2 , where

δ(x̄) is defined in (1.10), c4 is the same constant as in (3.4), and c5 is a constant which

will be determined later. We define the map Z = �̃x̄ (x) by

⎧
«
¬

Z
′ = x ′,

Zn = (h1(x̄ ′) − h2(x̄ ′) + ε)
( xn − h2(x ′) + ε/2

h1(x ′) − h2(x ′) + ε
− 1

2

)
.

(3.18)

Thus �̃x̄ is invertible in �1,

Q1 := �̃x̄ (�1) =
{
(Z ′,Zn) ∈ R

n : |Z ′| < 1, |Zn| <
1

2
(h1(x̄ ′) − h2(x̄ ′) + ε)

}
,
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and

�̃± := �̃x̄ (�±) =
{
(Z ′,Zn) ∈ R

n : |Z ′| < 1, Zn = ±1

2
(h1(x̄ ′) − h2(x̄ ′) + ε)

}
.

Then u2(Z) := u(�̃−1
x̄ (Z)) satisfies the following equation with constant Dirichlet

boundary conditions

⎧
«
¬

− divZ

(
|BT DZu2|p−2(det(B))−1 B BT DZu2

)
= 0 in Q1,

u2 = U ε
1 on �̃+, u2 = U ε

2 on �̃−,

where we denote

B := Bx̄ := B(Z) := (bi j (Z)) := D�̃x̄ (�̃
−1
x̄ (Z)).

For Z ∈ Q1, let x = �̃−1
x̄ (Z). Then

bi i (Z) = 1 for i ∈ {1, 2, . . . , n − 1},
bi j (Z) = 0 for i ∈ {1, 2, . . . , n − 1}, j ∈ {1, 2, . . . , n}, i �= j,

bnj (Z) = h1(x̄ ′) − h2(x̄ ′) + ε

(h1(x ′) − h2(x ′) + ε)2

·
[
Dx j

h2(x ′)
(
xn − h1(x ′) − ε

2

)
− Dx j

h1(x ′)
(
xn − h2(x ′) + ε

2

)]

for j ∈ {1, 2, . . . , n − 1}, and

bnn(Z) = h1(x̄ ′) − h2(x̄ ′) + ε

h1(x ′) − h2(x ′) + ε
.

Therefore,

det(B(Z)) = bnn(Z) = h1(x̄ ′) − h2(x̄ ′) + ε

h1(Z ′) − h2(Z ′) + ε

is a function independent of Zn . Assume

c4

216
δ(x̄) f r f 1

8
δ(x̄)

1
2 (3.19)

and let Z̄ = �̃x̄ (x̄). When Z ∈ R
n satisfies |Z ′ − Z̄ ′| f r , by the triangle inequality

and (3.19), we always have

|Z ′| f |Z̄ ′| + r f |x̄ ′| + r < 1. (3.20)
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Then for any Z ∈ Q1 with |Z ′ − Z̄ ′| f r and x = �̃−1
x̄ (Z), by the triangle inequality

and (3.19), we have

|x ′| f r + |x̄ ′| f
(
1 +

√
216/c4

)
r

1
2 and |x ′|2 g 1

2
|x̄ ′|2 − r2 g 1

4
(|x̄ ′|2 − ε).

Thus, using (1.7), (1.8), and (1.9), we infer that for j = 1, 2, . . . , n − 1 and some

constants C > 0 depending only on n, p, c1, and c2,

|bnj (Z)| f 2c2
|x ′|(h1(x̄ ′) − h2(x̄ ′) + ε)

h1(x ′) − h2(x ′) + ε
f 2c2

|x ′|(2c2|x̄ ′|2 + ε)

c1|x ′|2 + ε

f C |x ′| f Cr
1
2 f Cr

δ(x̄)
1
2

,

|bnn(Z) − 1| =
∣∣∣
´ 1

0
d
dt

(
h1(t x ′ + (1 − t)x̄ ′) − h2(t x ′ + (1 − t)x̄ ′)

)
dt

h1(x ′) − h2(x ′) + ε

∣∣∣

f 2c2
(|x ′| + |x̄ ′|)|x ′ − x̄ ′|

c1|x ′|2 + ε
f Cr

δ(x̄)
1
2

, (3.21)

and similarly,

∣∣(det(B(Z))
)−1 − 1

∣∣ =
∣∣(bnn(Z)

)−1 − 1
∣∣ f Cr

δ(x̄)
1
2

. (3.22)

Therefore, when (3.19) holds and Z ∈ Q1 with |Z ′ − Z̄ ′| f r , we have for some

constant C = C(n, p, c1, c2) > 0,

|B(Z) − In| f Cr

δ(x̄)
1
2

. (3.23)

In particular, there exists a constant

c5 = c5(n, p, c1, c2) ∈ (0, 1/8), (3.24)

such that if c4
216

δ(x̄) f c5δ(x̄)
1
2 and Z ∈ Q1 with |Z ′ − Z̄ ′| f c5δ(x̄)

1
2 , it also holds

that

|B(Z) − In| f 1/2 and
∣∣(det(B(Z)))−1 − 1

∣∣ f 1/2. (3.25)

Next we extend u2 and B to the whole cylinder C1 := {(Z ′,Zn) ∈ R
n : |Z ′| <

1}. We denote H := h1(x̄ ′) − h2(x̄ ′) + ε. We take the even extension of bnn , and
bi j , i, j = 1, 2, . . . , n − 1, with respect to Zn = H/2, and take the odd extension of
bin and bni , i = 1, 2, . . . , n −1, with respect to Zn = H/2. Then we take the periodic
extension of B in the Zn axis, so that the period is equal to 2H . Then we inductively
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reflect u2 with respect to ±(k + 1
2
)H for k ∈ N. Namely, for Z ∈ C1 and k ∈ Z, we

define

u2(Z)

:=

⎧
⎪«
⎪¬

2kU ε
1 − 2kU ε

2 + u2(Zn − 2k H), if |Zn − 2k H | f H

2
,

(2k + 2)U ε
1 − 2kU ε

2 − u2((2k + 1)H − Zn), if |Zn − (2k + 1)H | f H

2
.

Then because of the Dirichlet boundary conditions, it is easily seen that u2 satisfies

− divZ

(
B(Z, DZu2)

)
= 0 in C1, (3.26)

where the nonlinear operator B is defined as

B(Z, ξ) = (det(B(Z)))−1|BT ξ |p−2 B BT ξ for Z ∈ C1, ξ ∈ R
n,

and

(det(B(Z)))−1 =
(
bnn(Z)

)−1 = h1(Z
′) − h2(Z

′) + ε

h1(x̄ ′) − h2(x̄ ′) + ε
.

Similar to (3.9), using (3.20), (3.22), (3.23), (3.25), and (3.20), we obtain that for any

r ∈
[

c4
216

δ(x̄), c5δ(x̄)
1
2

]
, Z ∈ Br (Z̄), and ξ ∈ R

n ,

|B(Z, ξ) − |ξ |p−2ξ | f Cr

δ(x̄)
1
2

|ξ |p−1, (3.27)

where C > 0 is a constant depending only on n, p, c1, and c2. Now we let v2 ∈
u2 + W

1,p
0 (Br (Z̄)) be the unique solution to

{
− divZ

(
|DZv2|p−2 DZv2

)
= 0 in Br (Z̄),

v2 = u2 on ∂ Br (Z̄).

Using (3.27), similar to (3.11), we have the following comparison estimate

 

Br (Z̄)

|DZu2 − DZv2|p f C
( r

δ(x̄)
1
2

)min{2,p}  

Br (Z̄)

|DZu2|p, (3.28)

where C > 0 is a constant depending only on n, p, c1, and c2.

For x̄ ∈ �1/2 and r ∈ (0, 1
8
δ(x̄)

1
2 ), we define

Ç̃(x̄, r) =
(
 

Br (Z̄)

|DZu2 − (DZu2)Br (Z̄)|
p

)1/p

. (3.29)
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Then following the same proofs as those of Lemma 3.3 and Corollary 3.4 with (3.28)

in place of (3.11), we have

Lemma 3.5 Suppose that x̄ ∈ �1/2 and u2 is a solution to (3.26). Then there exist

constants C > 0 depending only on n, p, c1, and c2, and Cμ > 0 depending on n, p,

c1, c2, and μ, such that for any μ ∈ (0, 1) and r ∈ [ c4
216

δ(x̄), c5δ(x̄)
1
2 ], it holds that

Ç̃(x̄, μr) f CμαÇ̃(x̄, r) + Cμ

( r

δ(x̄)
1
2

)θp
(
 

Br (Z̄)

|DZu2|p

)1/p

,

where θp = min{1, 2/p}, α is the same constant as in Lemma 3.1, c4, c5 are the

same constants as in (3.4) and (3.24), and Ç̃ is defined in (3.29). Moreover, for any

α1 ∈ (0, min{α, θp}), there exists a constant C > 0 depending only on n, p, c1, c2,

and α1, such that for any c4
216

δ(x̄) f ρ f r f c5δ(x̄)
1
2 , it holds that

Ç̃(x̄, ρ) f C
(

ρ
r

)α1 Ç̃(x̄, r) + C
(

ρ

δ(x̄)
1
2

)α1

‖DZu2‖L∞(Br (Z̄)). (3.30)

3.4 Mean oscillation decay estimates

Now we deduce mean oscillation decay estimates by connecting the three different

cases of radii r , when δ(x̄) is sufficiently small. We let

α1 = 1

2
min

{
α,

2

p

}
(3.31)

and assume

δ(x̄) f min

{(
c5

10c4

)2

,
1

4 + 4c2

}
, (3.32)

where α, c4, and c5 are the same constants as in Lemmas 3.1, 3.3, and 3.5, respectively.

Let x̄ ∈ �1/2. By (1.7), (1.9) and (3.32), we have

dist(x̄, �+ ∪ �−) f 1

2
(h1(x̄ ′) − h2(x̄ ′) + ε) f c2|x̄ ′|2 + ε f 1/4, (3.33)

and thus

dist(x̄, �+ ∪ �−) = dist(x̄, ∂�1). (3.34)
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Lemma 3.6 Let x̄ ∈ �1/2, u be a solution to (1.2), and r = 1
8
δ(x̄)1/2. Let Ç and Ç̃ be

defined as in (3.1) and (3.29) and let α1 and c4 be the same constants as in (3.31) and

(3.4). Assume that (3.32) holds. Then there exists a constant C > 0 depending only

on n, p, c1, and c2, such that the following holds:

(i) For any ρ ∈ (0, c4
6
δ(x̄)],

Ç(x̄, ρ) f C
(ρ

r

)α1

‖Du‖L∞(�x̄,r ). (3.35)

(ii) For any ρ ∈ [ c4
216

δ(x̄), r ],

Ç̃(x̄, ρ) f C
(ρ

r

)α1

‖Du‖L∞(�x̄,r ). (3.36)

Proof First, we prove assertion (ii). Note that Br (Z̄) ∩ Q1 ⊂ �̃x̄ (�x̄,r ). By the

definition of the extended solution u2, (3.36) clearly holds for ρ ∈ [c5δ(x̄)1/2, r ],
where c5 ∈ (0, 1/8) is the same constant as in (3.24). On the other hand, (3.30)

directly implies (3.36) for ρ ∈ [ c4
216

δ(x̄), c5δ(x̄)1/2).

Next, we give the proof of assertion (i). We consider the following three cases:

dist(x̄, �+ ∪ �−) f ρ f c4

6
δ(x̄),

ρ < dist(x̄, �+ ∪ �−) f c4

6
δ(x̄),

ρ f c4

6
δ(x̄) < dist(x̄, �+ ∪ �−).

Case 1: dist(x̄, �+∪�−) f ρ f c4
6
δ(x̄). Since x̄ ∈ �1/2, by (3.33) and the triangle

inequality, we can choose x̂ ∈ �+ ∪�− with |x̂ | f 3/4, such that dist(x̄, �+ ∪�−) =
|x̂ − x̄ |, and thus �ρ(x̄) ⊂ �2ρ(x̂) ⊂ �3ρ(x̄).

Since |x̂ − x̄ | f ρ f c4
6
δ(x̄), by the triangle inequality, we have

|x̂ ′|2 f 2|x̄ ′|2 + 2
(c4

6

)2
δ(x̄)2, |x̄ ′|2 f 2|x̂ ′|2 + 2

(c4

6

)2
δ(x̄)2,

which also implies

1

3
δ(x̄) f δ(x̂) f 3δ(x̄) (3.37)

since c4 ∈ (0, 1). By (3.37) and the fact that |x̂ − x̄ | f ρ f c4
6
δ(x̄), we also have

2|x̂ − x̄ | f 2ρ f c4δ(x̂). (3.38)
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Let R1 = c4δ(x̂). Then �R1(x̂) ⊂ � 3
2 R1

(x̄). Thus we can apply Corollary 3.4 at

x̂ ∈ (�+ ∪ �−) ∩ {x ∈ R
n : |x ′| f 3/4} and use (3.6) to obtain

Ç(x̄, ρ) f Cψ(x̂, 2ρ) f C

(
ρ

R1

)α1

ψ(x̂, R1) + Cρα1‖Du‖L∞(�R1
(x̂))

f C

(
ρ

R1

)α1

ψ(x̂, R1) + Cρα1‖Du‖L∞(� 3
2

R1
(x̄)). (3.39)

By using (3.2) and the change of variables x → y, we have

ψ(x̂, R1) f
(
 

�R1
(x̂)

|Dx ′u|p + |Dxn u − (Dxn u)�R1
(x̂)|p

)1/p

+C |x̂ ′| ‖Du‖L∞(�R1
(x̂))

f
(
 

�R1
(x̂)

|Dx ′u|p + |Dxn u − (Dxn u)�R1
(x̂)|p

)1/p

+C R
1/2
1 ‖Du‖L∞(� 3

2
R1

(x̄)). (3.40)

By (3.37), (3.32), and the fact that c5 ∈ (0, 1/8), it holds that

c4

2
δ(x̄) f 3

2
R1 f 9c4

2
δ(x̄) f c5

2
δ(x̄)1/2 f 1

2
r . (3.41)

Since�R1(x̂) ⊂ � 3
2 R1

(x̄), by using (3.6), (3.22)–(3.25), (3.41), the change of variables

x → Z , and the triangle inequality, we also have

(
 

�R1
(x̂)

|Dx ′u|p + |Dxn u − (Dxn u)�R1
(x̂)|p

)1/p

f C
|�̃x̄ (�R1(x̂))|1/p

|�R1(x̂)|1/p

(
 

�̃x̄ (�R1
(x̂))

|DZ ′u2|p + |DZn
u2 − (DZn

u2)�̃x̄ (�R1
(x̂))|

p

)1/p

+C
R1

δ(x̄)
1
2

‖Du‖L∞(� 3
2

R1
(x̄))

f C

(
 

�̃x̄ (�R1
(x̂))

|DZ ′u2|p + |DZn
u2 − (DZn

u2)�̃x̄ (�R1
(x̂))|

p

)1/p

+C R
1/2
1 ‖Du‖L∞(� 3

2
R1

(x̄)). (3.42)

Without loss of generality, we assume x̂ ∈ �− and thus Ẑ := �̃x̄ (x̂) ∈ �̃−. We denote

B+
R (Ẑ) := BR(Ẑ) ∩ {Z ∈ R

n : Zn > Ẑn} for any R > 0. By (3.25) and (3.38), we

have B2R1(Ẑ) ⊂ B3R1(Z̄) ⊂ Br (Z̄) ⊂ C1 = {(Z ′,Zn) ∈ R
n : |Z ′| < 1}. Since

c4 f min{c1/8, 1/8}, by (1.8) and (3.37), we know that B2R1(Ẑ) ∩ Q1 ≡ B+
2R1

(Ẑ).
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Again by (3.25), we also have B+
R1/2(Ẑ) ⊂ �̃x̄ (�R1(x̂)) ⊂ B+

2R1
(Ẑ). Therefore, by

the triangle inequality and the definition of u2,

(
 

�̃x̄ (�R1
(x̂))

|DZ ′u2|p + |DZn
u2 − (DZn

u2)�̃x̄ (�R1
(x̂))|

p

)1/p

f C

(
 

B+
2R1

(Ẑ)

|DZ ′u2|p + |DZn
u2 − (DZn

u2)B+
2R1

(Ẑ)
|p

)1/p

= C

(
 

B2R1
(Ẑ)

|DZu2 − (DZu2)B2R1
(Ẑ0)

|p

)1/p

f CÇ̃(x̄, 3R1). (3.43)

Combining (3.39), (3.40), (3.42), and (3.43), we have

Ç(x̄, ρ)

f C

(
ρ

R1

)α1 (
Ç̃(x̄, 3R1) + R

1/2
1 ‖Du‖L∞(� 3

2
R1

(x̄))

)
+ C ρα1‖Du‖L∞(� 3

2
R1

(x̄)).

(3.44)

Note that by (3.37), R
−α1

1 R
1/2
1 f R

−α1/2
1 f Cr−α1 . Thus (3.36) with 3R1 in place of

ρ and (3.44) directly imply (3.35).

Case 2: ρ < dist(x̄, �+ ∪ �−) f c4
6
δ(x̄). Let R2 = dist(x̄, �+ ∪ �−). Then we

can apply the estimate (3.35) in Case 1 with R2 in place of ρ to obtain

Ç(x̄, R2) f C

(
R2

r

)α1

‖Du‖L∞(�x̄,r ). (3.45)

By (3.34), BR2(x̄) ⊂ �1, and we can apply Lemma 3.1 to get

Ç(x̄, ρ) f C

(
ρ

R2

)α1

Ç(x̄, R2). (3.46)

Combining (3.45) and (3.46) yields (3.35).

Case 3: ρ f c4
6
δ(x̄) < dist(x̄, �+ ∪ �−). Let R3 = c4

6
δ(x̄). Then by (3.34),

BR3(x̄) ⊂ �1. By Lemma 3.1, we have

Ç(x̄, ρ) f C

(
ρ

R3

)α1

Ç(x̄, R3). (3.47)
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Similar to Case 1, by using (3.22)–(3.25), change of variables, and the triangle inequal-

ity, we obtain

Ç(x̄, R3) f C
|�̃x̄ (BR3(x̄))|1/p

|BR3(x̄)|1/p

(
 

�̃x̄ (BR3
(x̄))

|DZu2 − (DZu2)�̃x̄ (BR3
(x̄))|

p

)1/p

+C
R3

δ(x̄)
1
2

‖Du‖L∞(BR3
(x̄))

f CÇ̃(x̄, 2R3) + C R3

r
‖Du‖L∞(BR3

(x̄)). (3.48)

By (3.36) with 2R3 in place of ρ, we also have

Ç̃(x̄, 2R3) f C

(
R3

r

)α1

‖Du‖L∞(�x̄,r ). (3.49)

Combining (3.47), (3.48), and (3.49) yields (3.35). The proof is completed. ��

It is straightforward to see the following lower bound of |�ρ(x̄)| from the proof

of Lemma 3.6 (assertion (i), case 1) and (3.6), which would be useful in the proof of

Proposition 1.5.

Lemma 3.7 Let x̄ ∈ �1/2 and c4 = c4(n, c1, c2) ∈ (0, 1) be the same constant as in

(3.4). Assume that (3.32) holds. Then there exists a constant c > 0 depending only on

n, such that for any ρ ∈ (0, c4
6
δ(x̄)), it holds that

|�ρ(x̄)| g cρn .

3.5 Proof of Proposition 1.5

Now we are ready to prove Proposition 1.5.

Proof of Proposition 1.5 Let x0 ∈ �1/4 and we prove the proposition around x = x0.

We recall δ(x0) = ε + |x ′
0|2. Let x ∈ �

x0,
√

δ(x0)/4
. By the triangle inequality,

|x ′|2 f 2|x ′
0|2 + δ(x0)/8, |x ′

0|2 f 2|x ′|2 + δ(x0)/8.

Therefore, for any x ∈ �
x0,

√
δ(x0)/4

, it holds that

δ(x0)

3
f δ(x) f 3δ(x0). (3.50)

We denote

c0 := 1

3
min

{(
c5

10c4

)2

,
1

4 + 4c2

}
,
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where c4 and c5 are the same constants as in (3.4) and (3.24). Thus c0 > 0 depends only

on n, p, c1, and c2. When δ(x0) > c0, by (3.50), we can apply classical results of Hölder

regularity of the gradient for the p-Laplace equation to get (1.21) with x = x0, and

some β = β(n, p) ∈ (0, 1) and C = C(n, p, c1, c2) > 0. Let x1, x2 ∈ �
x0,

√
δ(x0)/4

and we denote

ρ := |x1 − x2|.

It suffices to show that when δ(x0) f c0,

|Du(x1) − Du(x2)| f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/2
) (3.51)

holds for some constant C > 0 depending only on n, p, c1, and c2, where α1 ∈ (0, 1)

is the same constant as in (3.31). From now on, we assume

δ(x0) f c0 = 1

3
min

{
(

c5

10c4
)2,

1

4 + 4c2

}
. (3.52)

By (3.50), we have

δ(x0)

3
f δ(x1) f 3δ(x0) and

δ(x0)

3
f δ(x2) f 3δ(x0) (3.53)

and therefore (3.52) also implies that (3.32) holds for x̄ = x1, x2 ∈ �
x0,

√
δ(x0)/4

⊂
�1/2. Thus, we can apply both Lemmas 3.6 and 3.7 with x̄ = x1 and with x̄ = x2.

We consider two different cases: ρ f c4
36

δ(x0) and ρ > c4
36

δ(x0).

Case 1: ρ f c4
36

δ(x0). By (3.53), we also have

ρ f c4

12
δ(x1) and ρ f c4

12
δ(x2). (3.54)

For any x ∈ �ρ(x2), by the triangle inequality

|Du(x1) − Du(x2)| f |Du(x1) − (Du)�2ρ (x1)| + |Du(x2) − (Du)�ρ (x2)|
+ |Du(x) − (Du)�2ρ (x1)| + |Du(x) − (Du)�ρ (x2)|.

We then take the L p average over x ∈ �ρ(x2) ⊂ �2ρ(x1) and use Lemma 3.7, the

Lebesgue differentiation theorem, and the triangle inequality to get

|Du(x1) − Du(x2)|
f |Du(x1) − (Du)�2ρ (x1)| + |Du(x2) − (Du)�ρ (x2)| + CÇ(x1, 2ρ) + CÇ(x2, ρ)

f C

∞∑

j=0

Ç(x1, 21− jρ) + C

∞∑

j=0

Ç(x2, 2− jρ), (3.55)

where Ç is the mean oscillation of Du defined in (3.1).

123



5036 H. Dong et al.

By (3.53) and the triangle inequality, we know that �x1,r ⊂ �
x0,

√
δ(x0)/2

⊂ �1,

where r = 1
8
δ(x1)

1/2. Since (3.54) holds, we can apply (3.35) with x1 in place of x̄

and 21− jρ in place of ρ to obtain

∞∑

j=0

Ç(x1, 21− jρ) f C

∞∑

j=0

(
21− jρ

r

)α1

‖Du‖L∞(�x1,r )

f C
(ρ

r

)α1

‖Du‖L∞(�
x0,

√
δ(x0)/2

)

f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/2
). (3.56)

Similarly, we also have

∞∑

j=0

Ç(x2, 2− jρ) f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/2
). (3.57)

Combining (3.55), (3.56), and (3.57) yields (3.51).

Case 2: ρ > c4
36

δ(x0). By (3.53), we also have

ρ >
c4

108
δ(x1) and ρ >

c4

108
δ(x2). (3.58)

With x1 in place of x̄ in Sect. 3.3, we denote the new coordinate by ξ = �̃x1(x)

and set ξ1 := (ξ ′
1, ξ

n
1 ) := �̃x1(x1), where �̃x1 is defined as in (3.18). Similarly, with

x2 in place of x̄ , we denote another coordinate by η := (η′
2, η

n
2) := �̃x2(x) and set

η2 = �̃x2(x2). Let u
(1)
2 and u

(2)
2 be the extended solutions in the coordinates ξ and η

defined as in Sect. 3.3, respectively. As in Sect. 3.3, we also define the mean oscillation

of extended solutions in the two coordinates ξ and η by

Ç̃(x1, r) =
(
 

Br (ξ1)

|Dξ u
(1)
2 − (Dξ u

(1)
2 )Br (ξ1)|p

)1/p

and

Ç̃(x2, r) =
(
 

Br (η2)

|Dηu
(2)
2 − (Dηu

(2)
2 )Br (η2)|p

)1/p

.

Let us first briefly describe our ideas to prove (3.51) in this case. By the triangle

inequality,

|Du(x1) − Du(x2)| f |Du(x1) − (Dξ u
(1)
2 )Bc6ρ (ξ1)| + |Du(x2) − (Dηu

(2)
2 )Bρ (η2)|

+|(Dξ u
(1)
2 )Bc6ρ (ξ1) − (Dηu

(2)
2 )Bρ (η2)|, (3.59)
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where c6 > 0 is a constant which will be specified later. We will estimate the third

term on the right hand side of (3.59) using careful change of variables ξ → η and

estimate the first two terms using iteration of Lemma 3.6. A delicate transition from

the original coordinates x to the new coordinates ξ (or η) is also needed when the

radius (inside the iteration procedure) is at the scale of δ(x0).

Note that by (3.18), � := �̃x2�̃
−1
x1

is indeed a dilation of the coordinate ξ in the

ξn direction, namely,

η = (η′, ηn) = �(ξ) =
(
ξ ′,

h1(x ′
2) − h2(x ′

2) + ε

h1(x ′
1) − h2(x ′

1) + ε
ξn
)
.

By (1.7), (1.8), and (3.53), we have

c1

9c2
f c1|x ′

2|2 + ε

c2|x ′
1|2 + ε

f h1(x ′
2) − h2(x ′

2) + ε

h1(x ′
1) − h2(x ′

1) + ε
f c2|x ′

2|2 + ε

c1|x ′
1|2 + ε

f 9c2

c1
. (3.60)

This implies that � and �−1 are bounded independent of ε. Moreover, similar to

(3.21), using (3.53) one can also show that

∣∣h1(x ′
2) − h2(x ′

2) + ε

h1(x ′
1) − h2(x ′

1) + ε
− 1
∣∣ f 2c2

(|x ′
1| + |x ′

2|)|x ′
1 − x ′

2|
c1|x ′

1|2 + ε
f Cδ(x0)

−1/2ρ,

∣∣h1(x ′
1) − h2(x ′

1) + ε

h1(x ′
2) − h2(x ′

2) + ε
− 1
∣∣ f 2c2

(|x ′
1| + |x ′

2|)|x ′
1 − x ′

2|
c1|x ′

2|2 + ε
f Cδ(x0)

−1/2ρ,

(3.61)

where C > 0 is a constant depending only on c1 and c2. Note that (3.61) directly

implies

|D� − In| f Cδ(x0)
−1/2ρ and |D�−1 − In| f Cδ(x0)

−1/2ρ. (3.62)

By the definitions of the extended solutions u
(1)
2 and u

(2)
2 , we also know that for any

ξ, η ∈ R
n with |ξ ′| < 1 and |η′| < 1, we have

u
(1)
2 (ξ) = u

(2)
2 (�(ξ)), u

(2)
2 (η) = u

(1)
2 (�−1(η)).

Without loss of generality, we assume

h1(x ′
2) − h2(x ′

2) + ε

h1(x ′
1) − h2(x ′

1) + ε
g 1,

and thus we have �−1(Bρ(η2)) ⊂ Bρ(ξ2), where we denote ξ2 := (ξ ′
2, ξ

n
2 ) :=

�−1(η2). Clearly ξ ′
1 = x ′

1 and ξ ′
2 = x ′

2. Therefore, by using (1.7), (1.9), (3.58),
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and the triangle inequality, for any ξ ∈ �−1(Bρ(η2)), it holds that

|ξ − ξ1| f |ξ − ξ2| + |ξ2 − ξ1| f ρ + |ξ ′
2 − ξ ′

1| + |ξn
2 − ξn

1 |
f 2ρ + h1(x ′

1) − h2(x ′
1) + ε

f 2ρ + c2|x ′
1|2 + ε f c6ρ,

where c6 > 2 is a constant depending only on n, c1, and c2. Thus �−1(Bρ(η2)) ⊂
Bρ(ξ2) ⊂ Bc6ρ(ξ1).

Let c5 ∈ (0, 1/8) be the same constant as in Lemma 3.5. From now on, we assume

ρ f min{c5/4, 1/(64c6)}δ(x0)
1/2, (3.63)

since otherwise (3.51) clearly holds. Note that (3.58), (3.63), and (3.53) directly imply

c4

108
δ(x2) < ρ f c5δ(x2)

1/2 <
1

8
δ(x2)

1/2 (3.64)

and

c4

108
δ(x1) < c6ρ f 1

16
δ(x1)

1/2. (3.65)

Now we estimate the three terms on the right-hand side of (3.59) separately.

We first estimate the term |(Dξ u
(1)
2 )Bc6ρ (ξ1) − (Dηu

(2)
2 )Bρ (η2)| in (3.59). For any

ξ ∈ �−1(Bρ(η2)), by the triangle inequality,

|(Dξ u
(1)
2 )Bc6ρ (ξ1) − (Dηu

(2)
2 )Bρ (η2)|

f |(Dξ u
(1)
2 )Bc6ρ (ξ1) − Dξ u

(1)
2 (ξ)| + |Dξ u

(1)
2 (ξ) − (Dηu

(2)
2 )Bρ (η2)|.

We then take the L p average over ξ ∈ �−1(Bρ(η2)) ⊂ Bc6ρ(ξ1) and use (3.60),

(3.62), and the triangle inequality to get

|(Dξ u
(1)
2 )Bc6ρ (ξ1) − (Dηu

(2)
2 )Bρ (η2)|

f CÇ̃(x1, c6ρ) +
(  

�−1(Bρ (η2))

|Dξ u
(1)
2 (ξ) − (Dηu

(2)
2 )Bρ (η2)|pdξ

)1/p

f CÇ̃(x1, c6ρ) +
(  

Bρ (η2)

|Dηu
(2)
2 (η) D� − (Dηu

(2)
2 )Bρ (η2)|pdη

)1/p

f CÇ̃(x1, c6ρ) + CÇ̃(x2, ρ) + Cδ(x0)
−1/2ρ ‖Dηu

(2)
2 ‖L∞(Bρ (η2)). (3.66)

By (3.64) and (3.25) we know that |D�̃x2 | f C in �x2,ρ and thus

‖Dηu
(2)
2 ‖L∞(Bρ (η2)) f C‖Du‖L∞(�x2,ρ ) f C‖Du‖L∞(�

x0,
√

δ(x0)/2
). (3.67)
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By (3.65), we can apply (3.36) with x1 in place of x̄ and c6ρ in place of ρ, and use

(3.53) to get

Ç̃(x1, c6ρ) f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/4
)

f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/2
). (3.68)

Similarly, we have

Ç̃(x2, ρ) f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x2,
√

δ(x0)/4
)

f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/2
). (3.69)

Combining (3.66), (3.67), (3.68) and (3.69), we obtain

|(Dξ u
(1)
2 )Bc6ρ (ξ1) − (Dηu

(2)
2 )Bρ (η2)| f Cδ(x0)

−α1/2ρα1‖Du‖L∞(�
x0,

√
δ(x0)/2

).

(3.70)

Next, we estimate the term |Du(x1) − (Dξ u
(1)
2 )Bc6ρ (ξ1)| in (3.59). We define ρ j :=

c62− jρ for j ∈ N. Because of (3.58), we let j1 g 1 be the integer such that

ρ j1 g c4

216
δ(x1), ρ j1+1 <

c4

216
δ(x1). (3.71)

Then by using the triangle inequality and Lemma 3.7, we have

|Du(x1) − (Dξ u
(1)
2 )Bc6ρ (ξ1)|

f |Du(x1) − (Du)�ρ j1+1
(x1)| + |(Du)�ρ j1+1

(x1) − (Dξ u
(1)
2 )Bρ j1

(ξ1)|

+|(Dξ u
(1)
2 )Bρ j1

(ξ1) − (Dξ u
(1)
2 )Bc6ρ (ξ1)|

f C

∞∑

j= j1+1

Ç(x1, ρ j ) + C

j1∑

j=0

Ç̃(x1, ρ j ) + |(Du)�ρ j1+1
(x1) − (Dξ u

(1)
2 )Bρ j1

(ξ1)|.

(3.72)

Using Lemma 3.7 and Hölder’s inequality, we obtain

|(Du)�ρ j1+1
(x1) − (Dξ u

(1)
2 )Bρ j1

(ξ1)|

f C
(  

�ρ j1
(x1)

|Du(x) − (Dξ u
(1)
2 )Bρ j1

(ξ1)|pdx
)1/p

f C
(  

�̃x1
(�ρ j1

(x1))

|Dξ u
(1)
2 (ξ) B(ξ) − (Dξ u

(1)
2 )Bρ j1

(ξ1)|pdξ
)1/p

, (3.73)
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where as in Sect. 3.3, we denote

B(ξ) = D�̃x1(�̃
−1
x1

(ξ)),

and use (3.25) in the last line. By (3.23) with x1 in place of x̄ , from (3.73) we deduce

|(Du)�ρ j1+1
(x1) − (Dξ u

(1)
2 )Bρ j1

(ξ1)| f CÇ̃(x1, 2ρ j1) + Cρ j1

δ(x1)1/2
‖Du‖L∞(�x1,ρ j1

)

f CÇ̃(x1, ρ j1−1) + Cρ1/2‖Du‖L∞(�x1,c6ρ ).

(3.74)

Here in the last inequality we also used (3.71) and (3.58). Combining (3.72), (3.74)

and using (3.63), we get

|Du(x1) − (Dξ u
(1)
2 )Bc6ρ (ξ1)|

f C

∞∑

j= j1+1

Ç(x1, ρ j ) + C

j1∑

j=0

Ç̃(x1, ρ j ) + Cρ1/2‖Du‖L∞(�
x1,

√
δ(x0)/4

).

(3.75)

We recall (3.58) and (3.65). Therefore, by applying Lemma 3.6 with x1 in place of x̄

and ρ j in place of ρ, and using (3.75) and (3.53), we obtain

|Du(x1) − (Dξ u
(1)
2 )Bc6ρ (ξ2)|

f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x1,
√

δ(x0)/4
) + Cρ1/2‖Du‖L∞(�

x1,
√

δ(x0)/4
)

f Cδ(x0)
−α1/2ρα1‖Du‖L∞(�

x0,
√

δ(x0)/2
). (3.76)

Similarly, it also holds that

|Du(x2) − (Dξ u
(2)
2 )Bρ (ξ2)| f Cδ(x0)

−α1/2ρα1‖Du‖L∞(�
x0,

√
δ(x0)/2

). (3.77)

Combining (3.59), (3.70), (3.76), and (3.77) yields (3.51). The proof is completed. ��

4 Estimates of U
"

1 − U
"

2

In the following, we use the C1,β estimate we derive in Proposition 1.5 to obtain an

asymptotic expansion of Duε in terms of U ε
1 − U ε

2 , for arbitrary constants U ε
1 and U ε

2

(Proposition 4.1). When p g (n + 1)/2, for the specific U ε
1 and U ε

2 in (1.2), U ε
1 − U ε

2

will converges to 0 as ε → 0, and we compute in Theorem 4.4 the rate of convergence

using information of the flux F defined in (1.6). When p < (n + 1)/2, U ε
1 − U ε

2 will

converges to U1 − U2 as shown in Theorem 2.5.
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Proposition 4.1 Let h1, h2 be C2 functions satisfying (1.7)–(1.9), p > 1, n g 2, ε ∈
[0, 1/4), U ε

1 , U ε
2 be arbitrary constants with |U ε

i | f ‖ϕ‖L∞(∂�), and uε ∈ W 1,p(�̃ε)

be a solution of

⎧
⎪«
⎪¬

− div(|Duε|p−2 Duε) = 0 in �̃ε,

uε = U ε
i on ∂D

ε
i , i = 1, 2,

uε = ϕ on ∂�.

There exist positive constants β ∈ (0, 1), C1 and C2 depending only on n, p, c1, and

c2, such that

Duε(x) =
(

0′,
U ε

1 − U ε
2

δ(x)

)
+ f1(x, ε) for x ∈ �

ε

1/4, (4.1)

where δ is defined in (1.11),

|f1(x, ε)| f C1

( |U ε
1 − U ε

2 |
δ1−β/2(x)

+ ‖ϕ‖L∞(∂�)e
− C2√

ε+|x ′|

)
. (4.2)

Proof By mean value theorem, we know that for any x = (x ′, xn) ∈ �
ε

1/4, there exist

ζ(x ′) ∈ (− ε
2

+ h2(x ′), ε
2

+ h1(x ′)) and y(x) = (x ′, ζ(x ′)) ∈ �ε
1/4, such that

Dnuε(y(x)) = (U ε
1 − U ε

2 )/δ(x).

Let

f1(x, ε) := (Dx ′uε(x), Dnuε(x) − Dnuε(y(x))). (4.3)

By Propositions 1.5 and 2.2, we have

|Dnuε(x) − Dnuε(y(x))| f C |xn − ζ(x ′)|βδ(x)−β/2‖Duε‖L∞(�
x,

√
δ(x)/2

)

f C1

( |U ε
1 − U ε

2 |
δ1−β/2(x)

+ ‖ϕ‖L∞(∂�)e
− C2√

ε+|x ′ |

)
. (4.4)

Let z(x) = (x ′, ε/2 + h1(x ′)). Since uε ≡ U ε
1 on D

ε

1, by Proposition 2.2, we have

|Dx ′u(z(x))| f C |x ′||Du(z(x))|

f C1|x ′|
( |U ε

1 − U ε
2 |

δ(x)
+ ‖ϕ‖L∞(∂�)e

− C2√
ε+|x ′|

)
. (4.5)

Similar to (4.4), we also have

|Dx ′u(x) − Dx ′u(z(x))| f C1

( |U ε
1 − U ε

2 |
δ1−β/2(x)

+ ‖ϕ‖L∞(∂�)e
− C2√

ε+|x ′ |

)
. (4.6)
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Therefore, by (4.5), (4.6), and the triangle inequality, we have

|Dx ′u(x)| f C1

( |U ε
1 − U ε

2 |
δ1−β/2(x)

+ ‖ϕ‖L∞(∂�)e
− C2√

ε+|x ′|

)
.

This completes the proof of Proposition 4.1. ��

Following the proof of [26, Proposition 2.1] with slight modification, we have the

following proposition, which will be proved in the Appendix to make this article

self-contained.

Proposition 4.2 Let n g 2, p g (n + 1)/2, h1, h2 be C2 functions satisfying (1.7)–

(1.9), ε ∈ (0, 1), and uε ∈ W 1,p(�) be the solution of (1.2). Then there exist positive

constants C1, C2 depending only on n, p, c1, c2, and ‖ϕ‖L∞ , such that for any r ∈
(0, 1),

∣∣∣∣∣F − lim
ε→0+

ˆ

�ε
−,r

|Duε|p−2 Duε · ν

∣∣∣∣∣ f C1e− C2
r , (4.7)

where F is given in (1.6).

Remark 4.3 The proof of Proposition 4.2 relies on the facts that |Du0| f C1e− C2
r

and ‖uε − u0‖C1,α(K ) → 0 as ε → 0 for any K ⊂⊂ �\
(

∪
0<εfε0

(Dε
1 ∪ D

ε
2) ∪ {0}

)

with ε0 > 0, where u0 is the minimizer of (1.3) with ε = 0. See Proposition 2.2 and

Theorem 2.5. However, Du0 may be unbounded when p < (n + 1)/2. This fact was

overlooked in [14, 15].

With the help of Propositions 2.2 and 4.2, we are able to derive the rate of conver-

gence for U ε
1 − U ε

2 when ε → 0.

Theorem 4.4 Let p g (n + 1)/2, U ε
1 and U ε

2 be the constants in (1.2). Then it holds

that

lim
ε→0+

(U ε
1 − U ε

2 )
(ε)−1 = sgn(F)(K |F |)1/(p−1), (4.8)

where 
(ε) is given in (1.12), K is given in (1.13), and F is given in (1.6).

Proof By Proposition 4.1, we have

∣∣∣∣Duε · ν(y) − U ε
1 − U ε

2

δ(y)

∣∣∣∣ f C1

( |U ε
1 − U ε

2 |
δ1−β/2(y)

+ e
− C2√

ε+|y′|
)

for y ∈ �ε
−,1/4,

(4.9)

where δ is defined in (1.11).

We will show that every sequence converges to the same limit.
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First, Let {ε j } j∈N be a decreasing sequence such that ε j → 0 as j → ∞ and

U
ε j

1 g U
ε j

2 for every j ∈ N. By (4.9), for any τ ∈ (0, 1/2) and r ∈ (0, 1/4), we have

(1 − τ)
(U

ε j

1 − U
ε j

2

δ j (y)

)p−1
(1 − Cδ

β/2
j (y)) − C(τ )e

− C2√
ε j +|y′| f |Duε j

|p−2 Duε j
· ν(y)

f (1 + τ)
(U

ε j

1 − U
ε j

2

δ j (y)

)p−1
(1 + Cδ

β/2
j (y)) + C(τ )e

− C2√
ε j +|y′ |

for y ∈ �
ε j

−,1/4,

where δ j (y) := ε j + h1(y′) − h2(y′), C, C2 > 0 depends only on n, p, c1, c2, β,

‖ϕ‖L∞ , and dist(D
ε j

1 ∪D
ε j

2 , ∂�), and C(τ ) additionally depends on τ . By the change

of variables d S =
√

1 + |Dx ′h2(y′)|2dy′, (1.7), and (1.9), we have for any r < 1/4,

(1 − τ)

ˆ

|y′|<r

(U
ε j

1 − U
ε j

2

δ j (y)

)p−1
(1 − Cδ

β/2
j (y))

√
1 + |Dx ′h2(y′)|2 dy′

− C(τ )

ˆ

|y′|<r

e
− C2√

ε j +|y′ |
dy′

f
ˆ

�
ε j
−,r

|Duε j
|p−2 Duε j

· ν d S

f (1 + τ)

ˆ

|y′|<r

(U
ε j

1 − U
ε j

2

δ j (y)

)p−1
(1 + Cδ

β/2
j (y))

√
1 + |Dx ′h2(y′)|2 dy′

+ C(τ )

ˆ

|y′|<r

e
− C2√

ε j +|y′ |
dy′. (4.10)

Note that

ˆ

|y′|<r

e
− C2√

ε j +|y′|
dy′ f Cr (n−1). (4.11)

Moreover, for p g (n + 1)/2,

lim
r→0+

lim
ε→0+

ˆ

|y′|<r

(
(ε)

δ(y)

)p−1
dy′ = 1

K
. (4.12)

The verification of (4.12) follows from direct computations, which will be given

Lemma A.1. By taking the limit as j → ∞ in (4.10) first, then taking r → 0 and

τ → 0, from (4.7), (4.10), (4.11), and (4.12) we get

lim
j→∞

(
(U

ε j

1 − U
ε j

2 )
(ε j )
−1
)p−1 = KF . (4.13)
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Similarly, if {ε j } j∈N is a decreasing sequence such that ε j → 0 as j → ∞ and

U
ε j

1 f U
ε j

2 for every j ∈ N, then we have

lim
j→∞

(
(U

ε j

2 − U
ε j

1 )
(ε j )
−1
)p−1 = −KF . (4.14)

Therefore, we conclude that if F > 0, then for any decreasing sequence ε j → 0+,

there exists j0 ∈ N such that U
ε j

1 g U
ε j

2 for every j g j0, since otherwise there exists

a decreasing subsequence {ε jk } such that U
ε jk

1 < U
ε jk

2 , then from (4.14) we should

have F f 0. Thus if F > 0, (4.13) implies (4.8). Similarly, (4.8) also holds when

F < 0. For the remaining case when F = 0, let {ε j } be any decreasing sequence such

that ε j → 0 as j → ∞. Then there exists a decreasing subsequence {ε jk } such that

either U
ε jk

1 f U
ε jk

2 holds for every k ∈ N or U
ε jk

1 g U
ε jk

2 holds for every k ∈ N. Thus

(4.13) (or (4.14)) implies that

lim
k→∞

(U
ε jk

1 − U
ε jk

2 )
(ε jk )
−1 = 0.

Therefore, (4.8) is also true when F = 0. The proof of the theorem is completed. ��

5 Proofs of Theorem 1.1 and Proposition 1.4

In this section, we give the proofs of Theorem 1.1 and Proposition 1.4.

Proof of Theorem 1.1 First, we consider the case when p g (n + 1)/2. Let

f0(ε) := (U ε
1 − U ε

2 )/
(ε) − sgn(F)(K |F |)1/(p−1). (5.1)

By Theorem 4.4 and (4.2), we know that

lim
ε→0

f0(ε) = 0,

and

|f1(x, ε)| f C1

(
δ(x)β/2−1
(ε)(|KF |1/(p−1) + | f0(ε)|) + ‖ϕ‖L∞(∂�)e

− C2√
ε+|x ′ |

)
,

where f1 is defined as in (4.3). Then (1.15) follows from (4.1), (5.1), and the above.

Next, we consider the case when 1 < p < (n + 1)/2. We define

g0(ε) := U ε
1 − U ε

2 − (U1 − U2)

and g1(x, ε) = f1(x, ε) as in (4.3). By Theorem 2.5,

lim
ε→0

g0(ε) = 0.
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Similar as above, (1.16) follows. ��

Proof of Proposition 1.4 For the case when p g (n + 1)/2, by the symmetry of the

domain and uniqueness of the solution, we know that u0(x ′, xn) = −u0(x ′,−xn).

Therefore, U0 = u(x ′, 0) = 0. By the strong maximum principle, u0 > 0 in �̃0∩{xn >

0}. Then by the Hopf lemma, Du0 · ν > 0 on ∂D
0
1 , and hence F > 0.

For the case when 1 < p < (n+1)/2, we prove by contradiction. Assume U1 f U2.

Since u0(x ′, xn) = −u0(x ′,−xn), we know that u0(x ′, 0) = 0 and U1 = −U2.

Therefore, U1 f 0 and u0 achieves minimum in B+
5 on ∂D

0
1 . Hence Du0 · ν > 0 on

∂D
0
1 by the Hopf lemma. This implies

ˆ

∂D
0
1

|Du0|p−2 Du0 · ν > 0,

which contradicts to (1.5)3. ��

Appendix A

In the first part of the appendix, we prove Proposition 4.2. The proof essentially follows

those of [26, Proposition 2.1] and [15, Lemma 5.1]. Our estimate is sharper due to a

better estimate on |Du0| (Proposition 2.2).

Proof of Proposition 4.2 Similar to the proof of Theorem 2.5, for small r ∈ (0, 1/2),

we take a smooth surface η so that Dε
1 is surrounded by �0

−,s ∪η. See Fig. 1. We denote

the surface

�ε
r :=

{
x ∈ R

n : |x ′| = r ,−ε

2
+ h2(x ′) < xn < h2(x ′)

}
.

Since
´

∂D
0
1
|Du0|p−2 Du0 · ν = F and

´

∂D
ε
1
|Duε|p−2 Duε · ν = 0, by integration by

parts, we have

−
ˆ

�0
−,r

|Du0|p−2 Du0 · ν +
ˆ

η

|Du0|p−2 Du0 · ν = F , (A.1)

and

−
ˆ

�ε
−,r

|Duε|p−2 Duε · ν +
ˆ

�ε
r

|Duε|p−2 Duε · ν +
ˆ

η

|Duε|p−2 Duε · ν = 0.

(A.2)

Note that the minus signs appear because ν on �0
−,r and �ε

−,r are defined to be point-

ing upwards, while ν on η and �ε
r are pointing away from D

ε
1. By (2.5), we have

123



5046 H. Dong et al.

|Du0(x)| f C1e− C2
r in �0

r , and hence

∣∣∣∣∣

ˆ

�0
−,r

|Du0|p−2 Du0 · ν

∣∣∣∣∣ f C1e− C2
r (A.3)

for some positive ε-independent constants C1 and C2. By Theorem 2.5, we have

lim
ε→0+

ˆ

η

|Duε|p−2 Duε · ν =
ˆ

η

|Du0|p−2 Du0 · ν. (A.4)

By (2.7), we have |Duε(x)| f C(ε + |x ′|2)−1 in �0
1/2. Therefore,

∣∣∣∣∣

ˆ

�ε
r

|Duε|p−2 Duε · ν

∣∣∣∣∣ f C

ˆ

|x ′|=r

ˆ h2(x ′)

−ε/2+h2(x ′)

( 1

ε + |x ′|2
)p−1

dxnd S

f C
εrn−2

(ε + r2)p−1
. (A.5)

Finally, (4.7) follows directly from (A.1)–(A.5). Proposition 4.2 is proved. ��

In the following, we verify (4.12).

Lemma A.1 (4.12) holds when p g (n + 1)/2.

Proof We only give the proof for the case when n g 3. The case n = 2 follows

similarly and is simpler. After a rotation of coordinates if necessary, we may assume

that

D2
x ′(h1 − h2)(0

′) = diag (λ1, . . . , λn−1).

First, we replace δ(y) in the denominator with the quadratic polynomial ε +∑n−1
i=1 λi y2

i /2. By (1.8), (1.9), and the fact that h1, h2 are C2, we estimate

∣∣∣∣∣

ˆ

|y′|<r

(
(ε)

δ(y)

)p−1
−
( 
(ε)

ε +
∑n−1

i=1
λi

2
y2

i

)p−1
dy′
∣∣∣∣∣

= 
(ε)p−1

∣∣∣∣∣∣∣

ˆ

|y′|<r

(
ε +

∑n−1
i=1

λi

2
y2

i

)p−1
− δ(y)p−1

[
δ(y)

(
ε +

∑n−1
i=1

λi

2
y2

i

)]p−1
dy′

∣∣∣∣∣∣∣

f C
(ε)p−1

ˆ

|y′|<r

h(r)|y′|2(ε + |y′|2)p−2

(ε + |y′|)2p−2
dy′

f Ch(r)

ˆ

|y′|<r

( 
(ε)

ε +
∑n−1

i=1
λi

2
y2

i

)p−1
dy′,
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where h(r) is the modulus of continuity of D2
x ′(h1 − h2), and hence h(r) → 0 as

r → 0, and C is some positive constant independent of ε and r . Therefore, it suffices

to show that for any r > 0,

lim
ε→0+

ˆ

|y′|<r

( 
(ε)

ε +
∑n−1

i=1
λi

2
y2

i

)p−1
dy′ = 1

K
. (A.6)

In the spherical coordinates, for y′ ∈ R
n−1, we write

y1 =
√

2

λ1
s cos θ1, y2 =

√
2

λ2
s sin θ1 cos θ2, y3 =

√
2

λ3
s sin θ1 sin θ2 cos θ3, . . . ,

yn−2 =
√

2

λn−2
s sin θ1 sin θ2 · · · sin θn−3 cos θn−2,

yn−1 =
√

2

λn−1
s sin θ1 sin θ2 · · · sin θn−3 sin θn−2,

where s ∈ [0,∞), θ1, θ2, . . . , θn−3 ∈ [0, π ] and θn−2 ∈ [0, 2π). For convenience of

notation, we denote � := [0, π ]n−3 × [0, 2π). By this change of variables,

ˆ

|y′|<r

( 
(ε)

ε +
∑n−1

i=1
λi

2
y2

i

)p−1
dy′

= 2
n−1

2

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ
r

ϕ(θ)

0

( 
(ε)

ε + s2

)p−1
sn−2 J (θ) dsdθ, (A.7)

where

ϕ(θ) =
( 2

λ1
cos2 θ1 + 2

λ2
sin2 θ1 cos2 θ2 + · · · + 2

λn−1
sin2 θ1 · · · sin2 θn−2

) 1
2
,

and

J (θ) = sinn−3 θ1 sinn−4 θ2 · · · sin θn−3.

Note that

√
2

max λi

f ϕ(θ) f
√

2

min λi

.
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When p > (n + 1)/2, 
(ε) = ε
2p−n−1
2(p−1) . By the change of variables t = ε−1s2, the

right-hand side of (A.7) becomes

2
n−3

2

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ
r2

ϕ2(θ)ε

0

t
n−3

2

(1 + t)p−1
dt J (θ)dθ.

Since (n − 3)/2 − (p − 1) = (n − 2p − 1)/2 < −1, the integral converges as ε → 0.

Therefore,

lim
ε→0+

ˆ

|y′|<r

( 
(ε)

ε +
∑n−1

i=1
λi

2
y2

i

)p−1
dy′

= 2
n−3

2

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ ∞

0

t
n−3

2

(1 + t)p−1
dt J (θ)dθ

= 2
n−3

2 |Sn−2|
(λ1 · · · λn−1)

1
2

B
(n − 1

2
,

2p − n − 1

2

)
, (A.8)

where B is the beta function. Recalling the identities

|Sn−2| = 2π
n−1

2

�
(

n−1
2

) , B
(n − 1

2
,

2p − n − 1

2

)
=

�
(

n−1
2

)
�
(

p − n−1
2

)

�(p − 1)
, (A.9)

and plugging them into (A.8), we have proved (A.6) for the case when p > (n +1)/2.

When p = (n + 1)/2, 
(ε) = | ln ε|−
1

p−1 . By the change of variables w = ε−1/2s,

the right-hand side of (A.7) becomes

2
n−1

2 | ln ε|−1

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ
r

ϕ(θ)
√

ε

0

wn−2

(1 + w2)
n−1

2

dwJ (θ) dθ

= 2
n−1

2 | ln ε|−1

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ
r

ϕ(θ)
√

ε

0

w

1 + w2
dwJ (θ) dθ

+ 2
n−1

2 | ln ε|−1

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ
r

ϕ(θ)
√

ε

0

(
wn−2

(1 + w2)
n−1

2

− w

1 + w2

)
dwJ (θ) dθ

=: I + II.

By direct computations,

I = 2
n−3

2 | ln ε|−1

(λ1 · · · λn−1)
1
2

ˆ

�

ˆ
r

ϕ(θ)
√

ε

0

d ln(1 + w2)J (θ) dθ

= 2
n−3

2 | ln ε|−1

(λ1 · · · λn−1)
1
2

ˆ

�

[
ln
(
ε + r2

ϕ2(θ)

)
− ln ε

]
J (θ) dθ.
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Therefore, by (A.9),

lim
ε→0+

I = 2
n−3

2 |Sn−2|
(λ1 · · · λn−1)

1
2

= (2π)
n−1

2

(λ1 · · · λn−1)
1
2 �
(

n−1
2

) . (A.10)

To estimate II, we split the integral over (0, r
ϕ(θ)

√
ε
) into (0, 1) and (1, r

ϕ(θ)
√

ε
), and

denote them by II1 and II2, respectively. It is easily seen that |II1| f C | ln ε|−1. To

estimate II2, we have

|II2| f C | ln ε|−1

ˆ

�

ˆ
r

ϕ(θ)
√

ε

1

w
[
wn−3 − (1 + w2)

n−3
2

]

(1 + w2)
n−1

2

dwJ (θ) dθ.

By the mean value theorem, there exists a ξ ∈ (w2, 1 + w2), such that

wn−3 − (1 + w2)
n−3

2 = −n − 3

2
ξ

n−5
2 .

Note that (w2, 1 + w2) ⊂ (w2, 2w2) when w g 1. Therefore,

∣∣∣∣∣∣

ˆ
r

ϕ(θ)
√

ε

1

w
[
wn−3 − (1 + w2)

n−3
2

]

(1 + w2)
n−1

2

dw

∣∣∣∣∣∣
f C

ˆ ∞

1

wn−4

(1 + w2)
n−1

2

f C,

which implies |II2| f C | ln ε|−1. Hence, by (A.10) and the estimate |II1| + |II2| f
C | ln ε|−1, we have proved (A.6) for the case when p = (n + 1)/2. ��
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