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ON HIGHER REGULARITY OF STOKES SYSTEMS WITH

PIECEWISE HÖLDER CONTINUOUS COEFFICIENTS

HONGJIE DONG, HAIGANG LI, AND LONGJUAN XU

Abstract. In this paper, we consider higher regularity of a weak solution
(u, p) to stationary Stokes systems with variable coefficients. Under the as-
sumptions that coefficients and data are piecewise Cs,δ in a bounded domain
consisting of a finite number of subdomains with interfacial boundaries in
Cs+1,µ, where s is a positive integer, δ ∈ (0, 1), and µ ∈ (0, 1], we show that

Du and p are piecewise Cs,δμ , where δµ = min
{

1
2
, µ, δ

}

. Our result is new
even in the 2D case with piecewise constant coefficients.

1. Introduction and main results

Stokes systems with variable coefficients have been studied extensively in the
literature. See, for instance, the pioneer work of Giaquinta and Modica [23]. Such
type of Stokes systems can be used to model the motion of inhomogeneous fluid
with density dependent viscosity [1, 28, 32]. In this paper, we study stationary
Stokes systems with piecewise smooth coefficients

{
D³(A

³´D´u) +Dp = D³f³f
³

divu = g
in D,(1.1)

where u = (u1, . . . , ud)� and f³ f³ = (f1
³, . . . , f

d
³)

�, d ≥ 2, and we used the Einstein
summation convention over repeated indices. We assume that the bounded domain
D in R

d contains a finite number of disjoint subdomains Dj , j = 1, . . . ,M , and the
coefficients and the data may have jump across the boundaries of the subdomains.
By approximation, we may assume that any point x ∈ D belongs to the boundaries
of at most two of the Dj ’s. With these assumptions, the Stokes systems (1.1)
is connected to the study of composite materials with closely spaced interfacial
boundaries (see, for instance, [24, 33]), as well as the study of the motion of two
fluids with interfacial boundaries [6, 11, 12, 26, 27].

This problem is also stimulated by the study of regularity of weak solutions for
equations with rough coefficients. There have been significant developments on
the regularity theory for partial differential equations and systems with coefficients
which satisfy some proper piecewise continuous conditions. We shall begin by
reviewing the literature for results on gradient estimates in such a setting from
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the past two decades. Bonnetier and Vogelius first [3] considered divergence form
second-order elliptic equations with piecewise constant coefficients:

(1.2) D³(a(x)D³u) = 0 in D,

where a(x) is given by

a(x) = a01D1∪D2
+ 1D\(D1∪D2),

with 0 < a0 < ∞ and 1• is the indicator function. They proved that the gradient of
the solution is bounded when the subdomains are circular touching fibers of com-
parable radii. Li and Vogelius [31] studied general elliptic equations in divergence
form:

D³(A
³´D´u) = D³f³ in D,

where the coefficients A³´ and the data f³ are C· (· ∈ (0, 1)) up to the boundary in
each subdomain with C1,μ boundary, μ ∈ (0, 1], but may have jump discontinuities
across the boundaries of the subdomains. They established global Lipschitz and
piecewise C1,·′ estimates of the solution with ·′ ∈ (0,min{·, μ

d(μ+1)}]. This result

was extended to elliptic systems under the same conditions by Li and Nirenberg
[30] and the range of ·′ was improved to ·′ ∈ (0,min{·, μ

2(μ+1)}]. Dong and Xu [14]

further relaxed the range to ·′ ∈ (0,min{·, μ
μ+1}] by using a completely different

argument from [30, 31]. Notably, the estimates in [14, 30, 31] are independent of
the distances between subdomains. For more related results, we refer the reader to
[5,9,10,34,35] and the references therein. The estimates were extended to the case
of parabolic equations and systems with piecewise continuous coefficients [16,20,29],
and stationary Stokes systems with piecewise Dini mean oscillation coefficients [7].

Now let us discuss the topic of the higher regularity for solutions to partial dif-
ferential equations and systems with piecewise smooth coefficients. Significant pro-
gresses have been made on the second-order elliptic equations (1.2) with piecewise
constant coefficients. By using conformal mappings, Li and Vogelius [31] proved
that the solutions to (1.2) are piecewise smooth up to interfacial boundaries, when
the subdomains D1 and D2 are two touching unit disks in R

2, and D is a disk
BR0

with sufficiently large R0. Dong and Zhang [19] removed the requirement of
R0 being sufficiently large with the help of the construction of Green’s function.
Dong and Li [13] then applied the Green function method to obtain higher deriva-
tive estimates by demonstrating the explicit dependence of the coefficients and the
distance between interfacial boundaries of inclusions. Related results about higher
derivative estimates with circular inclusions were investigated in [18,25]. It is worth
noting that in all these works, the dimension is always assumed to be two and the
inclusions are circular. To the best of our knowledge, there is no corresponding
result available for Stokes systems.

Recently, Dong and Xu [17] tackled more general divergence form parabolic
systems in any dimensions with piecewise Hölder continuous coefficients and data
in a bounded domain consisting of a finite number of cylindrical subdomains. By
using a completely different method from those in [13,18,19,25,31], they established
piecewise higher derivative estimates for weak solutions to such parabolic systems,
and the estimates are independent of the distance between the interfaces. This
result also implies piecewise higher regularity for the corresponding elliptic systems,
addressing the open question proposed in [31].
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In this paper, we study higher regularity for solutions to the Stokes system (1.1),
closely following the scheme in [17]. However, the presence of the pressure term p
introduces added difficulties in the proofs below.

To state our main result precisely, we first give Assumption 1.1 imposed on the
domain D.

Assumption 1.1. The bounded domain D in R
d contains M disjoint subdomains

Dj , j = 1, . . . ,M , and the interfacial boundaries are Cs+1,μ, where s ∈ N and
μ ∈ (0, 1]. We also assume that any point x ∈ D belongs to the boundaries of at
most two of the Dj ’s.

For 0 < · < 1, we denote the C· Hölder semi-norm by

[u]C·(D) := sup
x,y∈D
x�=y

|u(x)− u(y)|
|x− y|· ,

and the C· norm by

|u|·;D := [u]C·(D) + |u|0;D, where |u|0;D = sup
D

|u|.

By C·(D) we denote the set for all bounded measurable functions u satisfying
[u]C·(D) < ∞. The function spaces Cs,·(D), s ∈ N, are defined accordingly. For
¸ > 0 small, we set

D¸ := {x ∈ D : dist(x, ∂D) > ¸}.
Assumption 1.2. The coefficients A³´ are bounded and satisfy the strong ellip-
ticity condition, that is, there exists ¿ ∈ (0, 1) such that

|A³´(x)| ≤ ¿−1,

d∑

³,´=1

A³´(x)À´ · À³ ≥ ¿

d∑

³=1

|À³|2

for any x ∈ R
d and À³ ∈ R

d, α ∈ {1, . . . , d}. Moreover, A³´ , f³, and g are assumed
to be of class Cs,·(D¸ ∩ Dj), j = 1, . . . ,M , where s ∈ N and · ∈ (0, 1).

Here is our main result.

Theorem 1.3. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Assume that D satisfies Assumption

1.1, and A³´, f³, and g satisfy Assumption 1.2. Let (u, p) ∈ W 1,q(D)d ×Lq(D) be
a weak solution to (1.1) in D. Then (u, p) ∈ Cs+1,·μ(D¸ ∩Dj0)

d ×Cs,·μ(D¸ ∩Dj0)
and it holds that

|u|s+1,·μ;D¸∩Dj0
+ |p|s,·μ;D¸∩Dj0

≤ N
(
‖Du‖L1(D) + ‖p‖L1(D) +

M∑

j=1

|f³|s,·;Dj
+

M∑

j=1

|g|s,·;Dj

)
,

where j0 = 1, . . . ,M , ·μ = min
{
1
2 , μ, ·

}
, N depends on d, M , q, ¿, ¸, |A|s,·;Dj

,

and the Cs+1,μ characteristic of Dj.

Remark 1.4. The piecewise Hölder-regularity of (Du, p) for s = 0 was proved in [7]
with ·μ = min{·, μ

μ+1}. As mentioned in [7, p. 3616], the results in Theorem 1.3

can also be applied to anisotropic Stokes systems in the form
{
div(τSu) +Dp = D³f³

divu = g
in D,
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8480 H. DONG, H. LI, AND L. XU

where τ = τ (x) is a piecewise Cs,· scalar function satisfying ¿ ≤ τ ≤ ¿−1 and
Su = 1

2 (Du+ (Du)�) is the rate of deformation tensor or strain tensor.

Remark 1.5. In view of [7, Remark 2.7 and Theorem 2.10] and [15, Corollary 1.2],
by using an induction argument, Theorem 1.3 can be extended to the stationary
Navier-Stokes systems

{
D³(A

³´D´u) +Dp+ u³D³u = D³f³

divu = g
in D

with piecewise smooth coefficients provided that q ≥ d/2. In particular, the result
holds for any H1-weak solution when the dimension d = 2, 3, 4.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the notation, vector fields, and coordinate systems introduced in [17],
along with several auxiliary results. In Section 3, we derive a new Stokes system
for the case when s = 1. Sections 4 and 5 contain the key components of the proof
of Theorem 1.3 with s = 1. It is important to note that we encounter challenges
due to the presence of the pressure term p, as exemplified in the proof of Lemma
5.1. Finally, in Section 6, we conclude the proof of Theorem 1.3 with s = 1 by
utilizing the results from Sections 4 and 5. In Section 7, we extend the proof to
cover Theorem 1.3 for general s ≥ 2.

2. Preliminaries

In this section, we first review the notation, vector fields, and coordinate systems
in [17]. Then we give some auxiliary lemmas which will be used in the proof of our
results.

2.1. Notation, vector fields, and coordinate systems. We use x = (x′, xd)
to denote a generic point in the Euclidean space R

d, where d ≥ 2 and x′ =
(x1, . . . , xd−1) ∈ R

d−1. For r > 0, we denote

Br(x) = {y ∈ R
d : |y − x| < r}, B′

r(x
′) = {y′ ∈ R

d−1 : |y′ − x′| < r}.

We often write Br and B′
r for Br(0) and B′

r(0), respectively. For q ∈ (0,∞], we
define

Lq
0(D) = {f ∈ Lq(D) : (f)D = 0},

where (f)D is the average of f over D:

(f)D =

 

D

f dx =
1

|D|

ˆ

D

f dx.

We denote by W 1,q(D) the usual Sobolev space and by W 1,q
0 (D) the completion of

C∞
0 (D) in W 1,q(D), where C∞

0 (D) is the set of all infinitely differentiable functions
with a compact support in D.

For simplicity, we take D to be B1. By suitable rotation and scaling, we may sup-
pose that a finite number of subdomains lie in B1 and that they can be represented
by

xd = hj(x
′), x′ ∈ B′

1, j = 1, . . . ,m(< M),
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where

−1 < h1(x
′) < · · · < hm(x′) < 1,

hj(x
′) ∈ Cs+1,μ(B′

1) with s ∈ N. Set h0(x
′) = −1 and hm+1(x

′) = 1. Then we have
m+ 1 regions:

Dj := {x ∈ D : hj−1(x
′) < xd < hj(x

′)}, 1 ≤ j ≤ m+ 1.

The interfacial boundary is denoted by Γj := {xd = hj(x
′)}, and the normal

direction of Γj is given by

(2.1) nj := (n1
j , . . . , n

d
j ) =

(−Dx′hj(x
′), 1)�

(1 + |Dx′hj(x′)|2)1/2 ∈ R
d, j = 1, . . . ,m.

As in [17, Section 2.3], we fix a coordinate system such that 0 ∈ Di0 for some i0 ∈
{1, . . . ,m+1} and the closest point on ∂Di0 is xi0 = (0′, hi0(0

′)), and ∇x′hi0(0
′) =

0′. In this coordinate system, we shall use x = (x′, xd) and Dx to denote the point
and the derivatives, respectively.

The following vector field was introduced in [17]. For the completeness of the
paper and reader’s convenience, we review it here. For each k = 1, . . . , d − 1,
we define a vector field 	k,0 : Rd → R

d near the center point 0 of B1 as follows:
	k,0 = (0, . . . , 0, 1, 0, . . . , 	dk,0), where

	k,0i 	ik,0 = ·ki, i = 1, . . . , d− 1,

·ki are Kronecker delta symbols, and

	k,0d 	dk,0

=

⎧
⎪«
⎪¬

Dkhm(x′), xd ≥ hm,
xd−hj−1

hj−hj−1
Dkhj(x

′) +
hj−xd

hj−hj−1
Dkhj−1(x

′), hj−1 ≤ xd < hj , j = 1, . . . ,m,

Dkh1(x
′), xd < h1.

Here, Dk := Dxk
. One can see that 	dk,0 = Dkhj(x

′) on Γj and thus 	k,0 is in a

tangential direction. Moreover, it follows from hj ∈ Cs+1,μ that 	k,0 is Cs,μ on Γj .
Introduce the projection operator defined by

projab =
〈a, b〉
〈a, a〉a,

where 〈a, b〉 denotes the inner product of the vectors a and b, and 〈a, a〉 = |a|2. By
using the Gram-Schmidt process:

	̃1 = 	1,0, 	1 = 	̃1/|	̃1|,
	̃2 = 	2,0 − proj�1	2,0, 	2 = 	̃2/|	̃2|,
...

	̃d−1 = 	d−1,0 −
d−2∑

j=1

proj�j	d−1,0, 	d−1 = 	̃d−1/|	̃d−1|,

(2.2)
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8482 H. DONG, H. LI, AND L. XU

the vector fields are orthogonal to each other. Now we define the corresponding
unit normal direction which is orthogonal to 	k,0, k = 1, . . . , d−1 (and thus also 	k):

(2.3) n(x) = (n1, . . . , nd)� =
(−	d1,0, . . . ,−	dd−1,0, 1)

�

(
1 +

∑d−1
k=1(	

d
k,0)

2
)1/2 .

Obviously, n(x) = nj on Γj .
For any point x0 ∈ B3/4 ∩ Dj0 , j0 = 1, . . . ,m + 1, suppose the closest point on

∂Dj0 to x0 is y0 := (y′0, hj0(y
′
0)). On the surface Γj0 , the unit normal vector at

(y′0, hj0(y
′
0)) is

(2.4) ny0
= (n1

y0
, . . . , nd

y0
)� =

(
−∇x′hj0(y

′
0), 1

)�
(
1 + |∇x′hj0(y

′
0)|2)1/2

.

The corresponding tangential vectors are defined by

(2.5) τk = 	k(y0), k = 1, . . . , d− 1,

where 	k is defined in (2.2). In the coordinate system associated with x0 with the
axes paralleled to ny0

and τk, k = 1, . . . , d − 1, we will use y = (y′, yd) and Dy

to denote the point and the derivatives, respectively. Moreover, we have y = Λx,
where

Λ = (Λ1, . . . ,Λd)� = (Λ³´)d³,´=1

is a d × d matrix representing the linear transformation from the coordinate sys-
tem associated with 0 to the coordinate system associated with x0, and τk =
(Γ1k, . . . ,Γdk)�, k = 1, . . . , d − 1, ny0

= (Γ1d, . . . ,Γdd)�, where Γ = Λ−1. Finally,
we introduce m+ 1 “strips” (in the y-coordinates)

Ωj := {y ∈ D : ydj−1 < yd < ydj }, j = 1, . . . ,m+ 1,

where yj := (Λ′y0, y
d
j ) ∈ Γj and Λ′ = (Λ1, . . . ,Λd−1)�. For any 0 < r ≤ 1/4, we

have

(2.6) |(Dj \ Ωj) ∩ (Br(Λx0))| ≤ Nrd+1/2, j = 1, . . . ,m+ 1.

See, for instance, [14, Lemma 2.3].

2.2. Auxiliary results. Here we collect some elementary results. The following
weak type-(1, 1) estimate is almost the same as [6, Lemma 3.4].

Lemma 2.1. Let q ∈ (1,∞). Let (v, π) ∈ W 1,q
0 (Br(Λx0))

d × Lq
0(Br(Λx0)) be a

weak solution to
{
D³(A³´(yd)D´v) +Dπ = f1Br/2(Λx0) +D³(F³1Br/2(Λx0))

div v = H1Br/2(Λx0) − (H1Br/2(Λx0))Br(Λx0)

in Br(Λx0),

where f,F³,H ∈ Lq(Br/2(Λx0)). Then for any t > 0, we have

|{y ∈ Br/2(Λx0) : |Dv(y)|+ |π(y)| > t}| ≤ N

t

ˆ

Br/2(Λx0)

(|F³|+ |H|+ r|f|) dy,

where N = N(d, q, ¿).
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Lemma 2.2 ([7, Theorem 2.4]). Let ¸ ∈ (0, 1), q ∈ (1,∞), A³´, f³, and g satisfy

Assumption 1.2 with s = 0. Let (u, p) ∈ W 1,q(B1)
d ×Lq(B1) be a weak solution to

(1.1) in B1. Then (u, p) ∈ C1,·′(B1−¸ ∩ Dj0)
d × C·′(B1−¸ ∩ Dj0) and it holds that

‖Du‖L∞(B1/4) + |u|1,·′;B1−¸∩Dj0
+ ‖p‖L∞(B1/4) + |p|·′;B1−¸∩Dj0

≤ N
(
‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|·;Dj
+

M∑

j=1

|g|·;Dj

)
,

where j0 = 1, . . . ,m+ 1, ·′ = min{·, μ
1+μ}, N > 0 is a constant depending only on

d,m, q, ¿, ¸, |A|·;Dj
, and the C1,μ norm of hj.

3. A new Stokes system

This section is devoted to deriving a new Stokes system in B3/4 as follows:

⎧
⎪«
⎪¬

D³(A
³´D´ũ) +Dp̃ = f +D³ f̃³,

div ũ = D�g +D	iDiu−∑m+1
j=1 1

Dj
D	i,jDiu(Pjx0)

−∑m+1
j=1 (1

D
c
j
D	̃i,jDiu(Pjx0))B1

,

(3.1)

where ũ and p̃ are defined in (3.16), f and f̃³ are defined in (3.4) and (3.17),

respectively, and 	̃,j := (	̃1,j , . . . , 	̃d,j) is a smooth extension of 	|Dj
to ∪m+1

k=1,k �=jDk.

To prove (3.1), we first use the definition of weak solutions to find that the
problem (1.1) is equivalent to a homogeneous transmission problem

⎧
⎪«
⎪¬

D³(A
³´D´u) +Dp = D³f³ in

⋃m+1
j=1 Dj ,

u|+Γj
= u|−Γj

, [n³
j (A

³´D´u− f³) + pnj ]Γj
= 0, j = 1, . . . ,m,

divu = g in
⋃m+1

j=1 Dj ,

(3.2)

where

[n³
j (A

³´D´u− f³) + pnj ]Γj

:= (n³
j (A

³´D´u− f³) + pnj)|+Γj
− (n³

j (A
³´D´u− f³) + pnj)|−Γj

,

nj is the unit normal vector on Γj defined by (2.1), u|+Γj
and u|−Γj

(n³
j A

³´D´u|+Γj

and n³
j A

³´D´u|−Γj
) are the left and right limits of u (its conormal derivatives) on

Γj , respectively, j = 1, . . . ,m. Here and throughout this paper the superscript
± indicates the limit from outside and inside the domain, respectively. In the
proofs below, we assume that Du and p are piecewise C1. After we obtain the
corresponding a priori estimates, this assumption can be removed by using an
approximation argument.

Taking the directional derivative of (3.2) along the direction 	 := 	k, k =
1, . . . , d− 1, we get the following inhomogeneous transmission problem

⎧
⎪«
⎪¬

D³(A
³´D´D�u) +DD�p = f +D³f³,1 in

⋃m+1
j=1 Dj ,

D�u|+Γj
= D�u|−Γj

, [n³
j (A

³´D´D�u− f³,1) + njD�p]Γj
= h̃j , j = 1, . . . ,m,

div(D�u) = D�g +D	iDiu in
⋃m+1

j=1 Dj ,

(3.3)
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where

f = (A³´D´Du+DA³´D´u−Df³)D³	+D	Dp,

f³,1 = D�f³ +A³´(D´	
i)Diu−D�A

³´D´u,
(3.4)

and

h̃j = [D�n
³
j (−A³´D´u+ f³)− pD�nj ]Γj

.(3.5)

From (2.1), it follows that D�nj is a tangential direction on Γj and thus we may

write h̃j = h̃j(x
′) and D�nj ∈ Cμ.

Now by adding a term

m∑

j=1

Dd

(
1xd>hj(x′)h̃j(x

′)/nd
j (x

′)
)

to the first equation in (3.3), where 1• is the indicator function, we can get rid of

h̃j in the second equation of (3.3) and reduce the problem (3.3) to a homogeneous
transmission problem:

⎧
⎪«
⎪¬

D³(A
³´D´D�u) +DD�p = f +D³f³,2 in

⋃m+1
j=1 Dj ,

D�u|+Γj
= D�u|−Γj

, [n³
j (A

³´D´D�u− f³,2) + njD�p]Γj
= 0,

div(D�u) = D�g +D	iDiu in
⋃m+1

j=1 Dj ,

(3.6)

where

f³,2 := f³,1 + ·³d

m∑

j=1

1xd>hj(x′)

h̃j(x
′)

nd
j (x

′)
,

·³d = 1 if α = d, and ·³d = 0 if α 
= d. Note that D	 is singular at any point where
two interfaces touch or are very close to each other. To cancel out this singularity,
for x0 ∈ B3/4 ∩ Dj0 , we consider

(3.7) u
�
:= u

�
(x;x0) = D�u− u0,

where

u0 := u0(x;x0) =

m+1∑

j=1

	̃i,jDiu(Pjx0),(3.8)

Pjx0 =

⎧
⎪«
⎪¬

x0 for j = j0,

(x′
0, hj(x

′
0)) for j < j0,

(x′
0, hj−1(x

′
0)) for j > j0,

(3.9)

and the vector field 	̃,j := (	̃1,j , . . . , 	̃d,j) is a smooth extension of 	|Dj
to ∪m+1

k=1,k �=jDk.

Then it follows from (3.6) that
⎧
⎪«
⎪¬

D³(A
³´D´u�

) +DD�p = f +D³f³,3 in
⋃m+1

j=1 Dj ,

[n³
j (A

³´D´u�
− f³,3) + njD�p]Γj

= 0, j = 1, . . . ,m,

divu
�
= D�g +D	iDiu−

∑m+1
j=1 D	̃i,jDiu(Pjx0) in

⋃m+1
j=1 Dj ,

(3.10)
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where

f³,3 := f³,3(x;x0) = f³,2 − A³´
m+1∑

j=1

D´ 	̃
i,jDiu(Pjx0)

= D�f³ −D�A
³´D´u+A³´

(
D´	

iDiu−
m+1∑

j=1

D´ 	̃
i,jDiu(Pjx0)

)

+ ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̃j(x
′).(3.11)

Note that the mean oscillation of

A³´
(
D´	

iDiu−
m+1∑

j=1

D´ 	̃
i,jDiu(Pjx0)

)

in (3.11) is only bounded. For this, we choose a cut-off function ζ ∈ C∞
0 (B1)

satisfying

0 ≤ ζ ≤ 1, ζ ≡ 1 in B3/4, |Dζ| ≤ 8.

Denote

(3.12) Ã³´ := ζA³´ + ¿(1− ζ)·³´·ij .

For j = 1, . . . ,m+ 1, denote Dc
j := D \ Dj . From [8, Corollary 5.3], it follows that

there exists (uj(·;x0), πj(·;x0)) ∈ W 1,q(B1)
d × Lq

0(B1) such that

⎧
⎪⎪«
⎪⎪¬

D³(Ã
³´D´uj(·;x0)) +Dπj(·;x0) = −D³(1D

c
j
A³´D´ 	̃

i,jDiu(Pjx0)) in B1,

div uj(·;x0) = −1
D

c
j
D	̃i,jDiu(Pjx0) + (1

D
c
j
D	̃i,jDiu(Pjx0))B1

in B1,

uj(·;x0) = 0 on ∂B1,

(3.13)

where 1 < q < ∞. Moreover, by using the fact that 1
D

c
j
D´ 	̃

,j is piecewise Cμ and

the local boundedness estimate of Du in Lemma 2.2, it holds that

‖uj(·;x0)‖W 1,q(B1) + ‖πj(·;x0)‖Lq(B1)

≤ N‖1
D

c
j
A³´D´ 	̃

i,jDiu(Pjx0)‖Lq(B1) +N‖1
D

c
j
D	̃i,jDiu(Pjx0)‖Lq(B1)

≤ N
(
‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|1,·;Dj
+

M∑

j=1

|g|1,·;Dj

)
,(3.14)

where N > 0 is a constant depending on d,m, q, ¿, ¸, |A|·;Dj
, and the C1,μ norm of

hj . We also obtain from Lemma 2.2 that

(uj(·;x0), πj(·;x0)) ∈ C1,μ′

(Di ∩B1−¸)
d × Cμ′

(Di ∩B1−¸), i = 1, . . . ,m+ 1,
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with the estimate

‖Duj‖L∞(B1/4) + |uj |1,μ′;Di∩B1−¸
+ ‖πj‖L∞(B1/4) + |πj |μ′;Di∩B1−¸

≤ N
(
‖Duj(·;x0))‖L1(B1) + ‖πj(·;x0))‖L1(B1) + |1

D
c
j
A³´D´ 	̃

i,jDiu(t0, Pjx0)|μ;Dj

+ |1
D

c
j
D	̃i,jDiu(t0, Pjx0)|μ;Dj

)

≤ N
(
‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|1,·;Dj
+

M∑

j=1

|g|1,·;Dj

)
,

where μ′ := min{μ, 12} and we used (3.14) in the second inequality.
Denote

u := u(x;x0) =
m+1∑

j=1

uj(x;x0), π := π(x;x0) =
m+1∑

j=1

πj(x;x0).

Then for each i = 1, . . . ,m+ 1, we have

‖Du‖L∞(B1/4) + |u|1,μ′;Di∩B1−¸
+ ‖π‖L∞(B1/4) + |π|μ′;Di∩B1−¸

≤ N
(
‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|1,·;Dj
+

M∑

j=1

|g|1,·;Dj

)
.(3.15)

We further define

(3.16) ũ := ũ(x;x0) = u
�
− u = D�u− u0 − u, p̃ := p̃(x;x0) = D�p− π.

Then (ũ, p̃) satisfies (3.1), where

f̃³ := f̃³(x;x0) = f̃³,1(x;x0) + f̃³,2(x),(3.17)

with

f̃³,1(x;x0) := A³´
(
D´	

iDiu−
m+1∑

j=1

1
Dj

D´	
iDiu(Pjx0)

)
,(3.18)

and

f̃³,2(x) := D�f³ −D�A
³´D´u+ ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̃j(x
′).(3.19)

Compared to (3.11), such data f̃³ is good enough for us to apply Campanato’s

method in [4, 21], since the mean oscillation of f̃³ vanishes at a certain rate as the
radii of the balls go to zero (see the proof of (4.14) below for the details).

4. Decay estimates

Let us denote

(4.1) Ũ := Ũ(x;x0) = n³(A³´D´ũ− f̃³) + np̃,

where n³ and n are defined in (2.3), α = 1, . . . , d, and ũ is defined in (3.16). Denote
(4.2)

Φ(x0, r) := inf
qk′ ,Q∈Rd

(
 

Br(x0)

(
|D�k′

ũ(x;x0)− qk′ | 12 + |Ũ(x;x0)−Q| 12
)
dx

)2

.
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We shall adapt the argument in [17] to establish a decay estimate of

φ(Λx0, r) := inf
qk′ ,Q∈Rd

(  

Br(Λx0)

(
|Dyk′ ṽ(y; Λx0)− qk′ | 12 + |Ṽ(y; Λx0)−Q| 12

)
dy

)2

,

(4.3)

where

(4.4) Ṽ(y; Λx0) = Ad´Dyβ ṽ(y; Λx0)− f̃d(y; Λx0) + p̃(y; Λx0)ed,

ed is the d-th unit vector in R
d, f̃³ = (̃f1³, . . . , f̃

d
³)

� with α = 1, . . . , d,

A³´(y) = ΛΛ³kAks(x)Λs´Γ, ṽ(y; Λx0) = Λũ(x;x0), p̃(y; Λx0) = p̃(x;x0),

f̃τ³(y; Λx0) = ΛτmΛ³kf̃m
k (x;x0), τ = 1, . . . , d,

(4.5)

f̃m
k (x;x0) is the m-th component of f̃k(x;x0) defined in (3.17) with k in place of
α, y = Λx, Λ = (Λ³´)d³,´=1 is defined in Section 2 (see p. 8482), and Γ = Λ−1.
Denote

(4.6) G := G(x;x0)

= D�g +D	iDiu−
m+1∑

j=1

1
Dj

D	i,jDiu(Pjx0)−
m+1∑

j=1

(1
D

c
j
D	̃i,jDiu(Pjx0))B1

,

and set

(4.7) G := G(y; Λx0) = G(x;x0), f = (f1, . . . , fd)�, fτ (y) = Λτmfm(x).

Then it follows from (3.1) that ṽ satisfies

(4.8)

{
D³(A³´D´ṽ) +Dp̃ = f+D³f̃³

div ṽ = G
in Λ(B3/4),

where f̃³ = (̃f1³, . . . , f̃
d
³)

�. From (4.5), the τ -th component of f̃³,1 and f̃³,2 is

(4.9) f̃τ³,1(y; Λx0) = ΛτmΛ³kf̃m
k,1(x;x0), f̃τ³,2(y) = ΛτmΛ³k f̃m

k,2(x),

where f̃m
k,1(x;x0) and f̃m

k,2(x) are the m-th component of f̃k,1(x;x0) and f̃k,2(x)

defined in (3.18) and (3.19), respectively. Then f̃³,1 + f̃³,2 = f̃³ which is defined in
(4.5).

Recalling that f³, A
³´ ∈ C1,·(Dj), D�n

³
j ∈ Cμ, the assumption that Du and p

are piecewise C1, and the fact that the vector field 	 is C1/2 (see [17, Lemma 2.1]),

we find that f̃³,2 is piecewise C·μ , where ·μ = min
{
1
2 , μ, ·

}
. Now we denote

F³ := F³(y; Λx0)

= (A³´(yd)−A³´(y))Dyβ ṽ(y; Λx0) + f̃³,1(y; Λx0) + f̃³,2(y)− f̄³,2(y
d),

F = (F1, . . . ,Fd), H := G − G,
(4.10)
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where f̄³,2(y
d) and G are piecewise constant functions corresponding to f̃³,2(y) and

G, respectively. For the convenience of notation, set

C1 :=

m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

|f³|1,·;Dj

+
m+1∑

j=1

|g|1,·;Dj
+ ‖Du‖L1(B1) + ‖p‖L1(B1),

(4.11)

and

C0 := C1 +
m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj).(4.12)

Lemma 4.1. Let f, f , and H be defined as in (4.7) and (4.10), respectively. Then

we have

‖f‖L1(Br(Λx0)) ≤ NC0rd−
1
2 ,(4.13)

‖F‖L1(Br(Λx0)) ≤ NC0rd+·μ ,(4.14)

and

‖H‖L1(Br(Λx0)) ≤ NC1rd+·μ ,(4.15)

where C0 and C1 are defined in (4.12) and (4.11), respectively, ·μ = min
{

1
2 , μ, ·

}
,

N depends on |A|1,·;Dj
, d, q,m, ¿, and the C2,μ norm of hj.

Proof. Note that
ˆ

Br(x0)∩Dj

|D	| dx ≤ Nrd−
1
2 ,(4.16)

see [17, (3.26)]. Here, N depends only on the C2,μ norm of hj . Then together with
fτ (y) = Λτmfm(x), Lemma 2.2, and (3.4), we obtain (4.13).

Since f̃³,2(y) is piecewise C·μ , we have
ˆ

Br(Λx0)

∣∣̃f³,2(y)− f̄³,2(y
d)
∣∣

≤ Nrd+·μ
(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

+

m+1∑

j=1

|f³|1,·;Dj
+ ‖Du‖L1(B1) + ‖p‖L1(B1)

)
,

(4.17)

where ·μ = min
{
1
2 , μ, ·

}
, and N depends on d,m, and the C2,μ norm of hj . By

using (3.8) and (3.16), we have

Dsũ(x;x0) = 	iDsDiu−Dsu+Ds	
iDiu−

m+1∑

j=1

Ds	̃
i,jDiu(Pjx0).
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HIGHER REGULARITY OF STOKES SYSTEMS 8489

Then combining with (4.5), we have

(A³´(yd)−A³´(y))Dyβ ṽ(y; Λx0)

= (A³´(yd)−A³´(y))ΛΓ´sDsũ(x;x0)

= (A³´(yd)−A³´(y))ΛΓ´s
(
	iDsDiu−Dsu+Ds	

iDiu−
m+1∑

j=1

Ds	̃
i,jDiu(Pjx0)

)
.

Using (3.18), (4.9), and A³´(y) = ΛΛ³kAks(x)Λs´Γ in (4.5), we have for each
τ = 1, . . . , d,

f̃τ³,1(y; Λx0) = ΛτmΛ³kf̃m
k,1(x;x0)

= ΛτmΛ³kAks
mn(x)

(
Ds	

iDiu
n −

m+1∑

j=1

1
Dj

Ds	
iDiu

n(Pjx0)
)

= A³´
τγ (y)Λ

γnΓ´s
(
Ds	

iDiu
n −

m+1∑

j=1

1
Dj

Ds	
iDiu

n(Pjx0)
)
.

Thus,

f̃³,1(y; Λx0) = A³´(y)ΛΓ´s
(
Ds	

iDiu−
m+1∑

j=1

1
Dj

Ds	
iDiu(Pjx0)

)

and

(A³´(yd)−A³´(y))Dyβ ṽ(y; Λx0) + f̃³,1(y; Λx0)

= (A³´(yd)−A³´(y))ΛΓ´s(	iDsDiu−Dsu−
m+1∑

j=1

1
D

c
j
Ds	̃

i,jDiu(Pjx0))

+A³´(yd)ΛΓ´s
(
Ds	

iDiu−
m+1∑

j=1

1
Dj

Ds	
iDiu(Pjx0)

)
.

Together with A ∈ C1,·(D¸ ∩Dj), (2.6), (3.15), (4.16), and the fact that 1
D

c
j
Ds	̃

i,j

is piecewise Cμ, we have

‖(A³´(yd)−A³´(y))Dyβ ṽ(y; Λx0) + f̃³,1(y; Λx0)‖L1(Br(Λx0)) ≤ NC1rd+
1
2 .

Combining with (4.17), we derive (4.14).
Finally, recalling G := G(y; Λx0) = G(x;x0), where G(x;x0) is defined in (4.6),

using (2.6), Lemma 2.2, and the fact that 1
D

c
j
D	̃i,j is piecewise Cμ again, we have

(4.15). The proof of the lemma is complete. �

Lemma 4.2. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Suppose that A³´, f³, and g satisfy

Assumption 1.2 with s = 1. If (ṽ, p̃) is a weak solution to (4.8), then for any

0 < ρ ≤ r ≤ 1/4, we have

φ(Λx0, ρ) ≤ N
(ρ
r

)·μ
φ(Λx0, r/2) +NC0ρ·μ ,

where φ(Λx0, r) is defined in (4.3), C0 is defined in (4.12), ·μ = min
{

1
2 , μ, ·

}
, N

depends on d,m, q, ¿, the C2,μ norm of hj, and |A|1,·;Dj
.
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8490 H. DONG, H. LI, AND L. XU

Proof. Let v0 = (v10 , . . . , v
d
0) and p0 be functions of yd, such that vd0 = G, Addv0 +

p0ed = f̄d,2, where G and f̄d,2 are piecewise constant functions corresponding to G
and f̃d,2, respectively. Set

ve = ṽ −
ˆ yd

Λxd
0

v0(s) ds, pe = p̃− p0.

Then according with (4.8), we have

{
D³(A³´(yd)D´ve) +Dpe = f+D³F³

div ve = H
in Br(Λx0),

where H = G − G, and F³ is defined in (4.10). Now we decompose (ve, pe) =

(v, p1) + (w, p2), where (v, p1) ∈ W 1,q
0 (Br(Λx0))

d × Lq
0(Br(Λx0)) satisfies

{
D³(A³´(yd)D´v) +Dp1 = f1Br/2(Λx0) +D³(F³1Br/2(Λx0))

div v = H1Br/2(Λx0) − (H1Br/2(Λx0))Br(Λx0)

in Br(Λx0).

Then by Lemmas 2.1 and 4.1, we have

(
 

Br/2(Λx0)

(|Dv|+ |p1|)
1
2 dy

)2

≤ NC0r·μ ,(4.18)

where C0 is defined in (4.12). Moreover, (w, p2) satisfies

{
D³(A³´(yd)D´w) +Dp2 = 0

divw = (H1Br/2(Λx0))Br(Λx0)

in Br/2(Λx0).

Then it follows from [6, (3.7)] that

(

 

Bκr(Λx0)

(

|D
yk′w(y; Λx0)−(D

yk′w)Bκr(Λx0)|
1
2 +|W(y; Λx0)−(W)Bκr(Λx0)|

1
2

)

dy

)2

≤ Nκ

(

 

Br/2(Λx0)

(

|D
yk′w(y; Λx0)− qk′ |

1
2 + |W(y; Λx0)−Q|

1
2

)

dy

)2

,

(4.19)

where W := W(y; Λx0) = Ad´(yd)Dyβw(y; Λx0) + p2ed and κ ∈ (0, 1/2) to be
fixed later. Set

Ve = Ad´(yd)Dyβve(y; Λx0) + peed.

Then

Ṽ −Ve = −Fd(y; Λx0),
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HIGHER REGULARITY OF STOKES SYSTEMS 8491

where Ṽ and Fd are defined in (4.4) and (4.10), respectively. Thus, combining the
triangle inequality, (4.18), (4.19), and (4.14), we obtain
(
 

Bκr(Λx0)

(
|Dyk′ ṽ(y; Λx0)−(Dyk′w)Bκr(Λx0)|

1
2 +|Ṽ(y; Λx0)−(W)Bκr(Λx0)|

1
2

)
dy

)2

≤ Nκ

(
 

Br/2(Λx0)

(
|Dyk′ ṽ(y; Λx0)− qk′ | 12 + |Ṽ(y; Λx0)−Q| 12

)
dy

)2

+Nκ−2d

(
 

Br/2(Λx0)

|Fd(y; Λx0)|
1
2 dy

)2

+Nκ−2dC0r·μ

≤ Nκ

(
 

Br/2(Λx0)

(
|Dyk′ ṽ(y; Λx0)−qk′ | 12 +|Ṽ(y; Λx0)−Q| 12

)
dy

)2

+Nκ−2dC0r·μ .

Using the fact that qk′ ,Q ∈ R
d are arbitrary, we deduce

φ(Λx0, κr) ≤ N0κφ(Λx0, r/2) +Nκ−2dC0r·μ .
Choosing κ ∈ (0, 1/2) small enough so that N0κ ≤ κγ for any fixed γ ∈ (·μ, 1) and
iterating, we get

φ(Λx0, κ
jr) ≤ κj·μφ(Λx0, r/2) +NC0(κjr)·μ .

Therefore, for any ρ with 0 < ρ ≤ r ≤ 1/4 and κjr ≤ ρ < κj−1r, we have

φ(Λx0, ρ) ≤ N
(ρ
r

)·μ
φ(Λx0, r/2) +NC0ρ·μ .

The lemma is proved. �

Now we are ready to prove the decay estimate of Φ(x0, r) defined in (4.2) as
follows.

Lemma 4.3. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Suppose that A³´, f³, and g satisfy

Assumption 1.2 with s = 1. If (ũ, p̃) is a weak solution to (3.1), then for any

0 < ρ ≤ r ≤ 1/4, we have

Φ(x0, ρ) ≤ N
(ρ
r

)·μ
Φ(x0, r/2) +NC0ρ·μ ,(4.20)

where C0 is defined in (4.12), ·μ = min
{

1
2 , μ, ·

}
, N depends on d,m, q, ¿, the C2,μ

norm of hj, and |A|1,·;Dj
.

Proof. The proof is an adaptation of [17, Lemma 3.4]. Let y0 be as in Section 2.
Note that

D�k ũ(x;x0)− ΓDyk ṽ(y; Λx0) = (	k(x)− τk) ·Dũ(x;x0),

Ũ(x;x0)− Γ
(
Ad´(y)Dyβ ṽ(y; Λx0)− f̃d(y; Λx0) + p̃(y; Λx0)ed

)

= (n³ − n³
y0
)(A³´(x)D´ũ(x;x0)− f̃³(x;x0)) + (n− ny0

)p̃(x;x0),

(4.21)

where τk and n³
y0

are defined in (2.5) and (2.4), respectively. For any x ∈ Br(x0)∩
Dj , where r ∈ (|x0 − y0|, 1) and j = 1, . . . ,m+ 1, we have

|	k(x)− τk| ≤ N
√
r, |n(x)− ny0

| ≤ N
√
r,
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where k = 1, . . . , d − 1. See the proof of [17, Lemma 3.4] for the details. Then
coming back to (4.21), we obtain

(4.22)

|D�k ũ(x;x0)− ΓDyk ṽ(y; Λx0)| ≤ N
√
r|Dũ(x;x0)|,

|Ũ(x;x0)− Γ(Ad´(y)Dyβ ṽ(y; Λx0)− f̃d(y; Λx0) + p̃(y; Λx0)ed)|
≤ N

√
r(|Dũ(x;x0)|+ |f̃³(x;x0)|+ |p̃(x;x0)|).

By using (3.16), (3.8), and (3.15), we have

 

Br(x0)

(|Dũ|+ |p̃|) dx

≤
m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj) + ‖Du‖L∞(Br(x0))

+ ‖π‖L∞(Br(x0)) +

 

Br(x0)

∣∣D	kDu−
m+1∑

j=1

D	̃,jk Du(Pjx0)
∣∣ dx

≤
m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

+N
(
‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|1,·;Dj
+

M∑

j=1

|g|1,·;Dj

)

+

 

Br(x0)

∣∣D	kDu−
m+1∑

j=1

D	̃,jk Du(Pjx0)
∣∣ dx.

(4.23)

To estimate the last term on the right-hand side above, on one hand, using the fact
that 	̃,j is the smooth extension of 	|Dj

to ∪m+1
k=1,k �=jDk and the local boundedness

of Du in Lemma 2.2, we obtain

∥∥∥
m+1∑

j=1,j �=i

D	̃,jk Du(Pjx0)
∥∥∥
L1(Br(x0)∩Di)

≤ Nrd
(
‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|1,·;Dj
+

M∑

j=1

|g|1,·;Dj

)
,(4.24)

where i = 1, . . . ,m+ 1. On the other hand, it follows from (4.16) that
∥∥D	k(Du−Du(Pix0))

∥∥
L1(Br(x0)∩Di)

≤ Nr‖D2u‖L∞(Br(x0)∩Di)

ˆ

Br(x0)∩Di

|D	k| dx ≤ Nrd+
1
2 ‖D2u‖L∞(Br(x0)∩Di).

(4.25)

Thus, coming back to (4.23), and using (4.24) and (4.25), we obtain
 

Br(x0)

(|Dũ|+ |p̃|) dx ≤ NC0,(4.26)
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where C0 is defined in (4.12). It follows from (3.17) that

 

Br(x0)

|f̃³| dx ≤ N
( M∑

j=1

|f³|1,·;Dj
+ ‖Du‖L1(B1)

)

+N

 

Br(x0)

∣∣D´	
iDiu−

m+1∑

j=1

1
Dj

D´	
iDiu(Pjx0)

∣∣ dx

+

 

Br(x0)

∣∣·³d
m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̃j(x
′)
∣∣ dx.

Then by using (4.16) and (3.5), we derive
 

Br(x0)

|f̃³| dx ≤ NC1,(4.27)

where C1 is defined in (4.11).
Using the triangle inequality and (4.22)–(4.27), we have
(
 

Bρ(x0)

(
|D�k′

ũ(x;x0)− qk′ | 12 + |Ũ(x;x0)−Q| 12
)
dx

)2

≤
(
 

Bρ(Λx0)

(
|Γ(Dyk′ ṽ(y; Λx0)− Γ−1qk′)| 12

+ |Γ(Ad´(y)Dyβ ṽ(y; Λx0)− f̃d(y; Λx0) + p̃(y; Λx0)ed − Γ−1Q)| 12
)
dy

)2

+NC0
√
ρ

≤
(
 

Bρ(Λx0)

(
|Dyk′ ṽ(y; Λx0)− Γ−1qk′ | 12

+ |Ad´(y)Dyβ ṽ(y; Λx0)− f̃d(y; Λx0) + p̃(y; Λx0)ed − Γ−1Q| 12
)
dy

)2

+NC0
√
ρ,

where 0 < ρ ≤ r ≤ 1/4 and C0 is defined in (4.12). By using the fact that
qk′ ,Q ∈ R

d are arbitrary, we obtain

Φ(x0, ρ) ≤ φ(Λx0, ρ) +NC0
√
ρ.

Combining with Lemma 4.2, we derive

Φ(x0, ρ) ≤ N
(ρ
r

)·μ
φ(Λx0, r/2) +NC0ρ·μ .(4.28)

Similarly, we have

φ(Λx0, r/2) ≤ Φ(x0, r/2) +NC0
√
r.

Substituting it into (4.28) and using ·μ ≤ 1/2, we obtain

Φ(x0, ρ) ≤ N
(ρ
r

)·μ
Φ(x0, r/2) +NC0ρ·μ .

The lemma is proved. �
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5. The boundedness of ‖D2u‖L∞ and ‖Dp‖L∞

For convenience, set

C2 := ‖Du‖L1(B1) + ‖p‖L1(B1) +

m+1∑

j=1

|f³|1,·;Dj
+

m+1∑

j=1

|g|1,·;Dj
.(5.1)

We first prove the estimates of ‖Dũ(·;x0)‖L2(Br/2(x0)) and ‖p̃(·;x0)‖L2(Br/2(x0)) in
Lemma 5.1.

Lemma 5.1. Under the same assumptions as in Lemma 4.3, we have

‖Dũ(·;x0)‖L2(Br/2(x0)) + ‖p̃(·;x0)‖L2(Br/2(x0))

≤ Nr
d+1

2

(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +
m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)
+NC2r

d
2
−1,

where x0 ∈ D¸∩Dj0 , r ∈ (0, 1/4), ũ and p̃ are defined in (3.16), the constant N > 0
depends on d,m, q, ¿, ¸, |A|1,·;Dj

, and the C2,μ norm of hj.

Proof. We start with proving the estimate of ‖Dũ(·;x0)‖L2(Br/2(x0)). By using the

definition of weak solutions, the transmission problem (3.10) is equivalent to
{
D³(A

³´D´u�
) +D(D�p− (D�p)Br(x0)) = f +D³f³,3

divu
�
= D�g +D	iDiu−∑m+1

j=1 D	̃i,jDiu(Pjx0)
inB1.(5.2)

By [2, Lemma 10], one can find ψ ∈ H1
0 (Br(x0))

d satisfying

divψ = D�p− (D�p)Br(x0) in Br(x0),

and

(5.3) ‖ψ‖L2(Br(x0)) + r‖Dψ‖L2(Br(x0)) ≤ Nr‖D�p− (D�p)Br(x0)‖L2(Br(x0)),

where N = N(d). Then by applying ψ to (5.2) as a test function, and using Young’s
inequality and (5.3), we obtain
ˆ

Br(x0)

|D�p− (D�p)Br(x0)|2 dx

= −
ˆ

Br(x0)

A³´D´u�
D³ψ dx−

ˆ

Br(x0)

fψ dx+

ˆ

Br(x0)

f³,3D³ψ dx

≤ ¸0

ˆ

Br(x0)

|D�p−(D�p)Br(x0)|2 dx+N(d, ¸0)

ˆ

Br(x0)

(|Du
�
|2+r2|f |2+|f³,3|2) dx.

Taking ¸0 = 1
2 , we have

(5.4) ‖D�p− (D�p)Br(x0)‖L2(Br(x0))

≤ N
(
‖Du

�
‖L2(Br(x0)) + r‖f‖L2(Br(x0)) + ‖f³,3|‖L2(Br(x0))

)
.

Now we choose η ∈ C∞
0 (Br(x0)) such that

(5.5) 0 ≤ η ≤ 1, η = 1 in Br/2(x0), |Dη| ≤ N(d)

r
.
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Then we apply η2u
�
to (5.2) as a test function to obtain

ˆ

Br(x0)

η2A³´D´u�
D³u�

dx

= −2

ˆ

Br(x0)

ηu
�
A³´D´u�

D³η dx− 2

ˆ

Br(x0)

ηu
�
Dη(D�p− (D�p)Br(x0)) dx

−
ˆ

Br(x0)

η2(D�p− (D�p)Br(x0))(D�g +D	iDiu−
m+1∑

j=1

D	̃i,jDiu(Pjx0)) dx

−
ˆ

Br(x0)

fη2u
�
dx+

ˆ

Br(x0)

η2f³,3D³u�
dx+ 2

ˆ

Br(x0)

ηf³,3D³ηu�
dx.

Using the ellipticity condition, Young’s inequality, (5.4), and η = 1 in Br/2(x0), we
derive

‖Du
�
(·;x0)‖L2(Br/2(x0))

≤ N
(
r−1‖u

�
(·;x0)‖L2(Br(x0)) + r‖f‖L2(Br(x0)) + ‖f³,3(·;x0)‖L2(Br(x0))

+ ‖D�g +D	iDiu−
m+1∑

j=1

D	̃i,jDiu(Pjx0)‖L2(Br(x0))

)

+ ¸1‖Du
�
(·;x0)‖L2(Br(x0)),

where ¸1 > 0. This, in combination with a well-known iteration argument (see, for
instance, [22, pp. 81–82]), yields

‖Du
�
(·;x0)‖L2(Br/2(x0))

≤ N
(
r−1‖u

�
(·;x0)‖L2(Br(x0)) + r‖f‖L2(Br(x0)) + ‖f³,3(·;x0)‖L2(Br(x0))

+ ‖D�g +D	iDiu−
m+1∑

j=1

D	̃i,jDiu(Pjx0)‖L2(Br(x0))

)
.

(5.6)

Next we estimate the terms on the right-hand side above. By using (3.7) and
the local boundedness estimate of Du in Lemma 2.2, we obtain
(5.7)

‖u
�
(·;x0)‖L2(Br(x0)) ≤ Nr

d
2

(
‖Du‖L1(B1)+‖p‖L1(B1)+

M∑

j=1

|f³|1,·;Dj
+

M∑

j=1

|g|1,·;Dj

)
.

From the definition of 	 in (2.2), it follows that

ˆ

Br(x0)∩Di

|D	k|2 dx ≤ N

ˆ

B′
r(x

′

0
)

min{2r, hi − hi−1}
|hi − hi−1|

dx′ ≤ Nrd−1.(5.8)

See [17, lemma 2.1] for the properties of 	. Using this and recalling the definition
of f in (3.4), we get

‖f‖L2(Br(x0)) ≤ NC0r
d−1

2 ,(5.9)
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where C0 is defined in (4.12). Similarly, we have
⎛
¿
 

Br(x0)

∣∣D	iDiu−
m+1∑

j=1

D	̃i,jDiu(Pjx0)
∣∣2 dx

À
⎠

1/2

≤ Nr1/2
m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +NC2,

where C2 is defined in (5.1). According to (3.11), we have

‖f³,3(·;x0)‖L2(Br(x0)) ≤ Nr
d+1

2

m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +NC2r
d
2 .(5.10)

Thus, substituting (5.7), (5.9), and (5.10) into (5.6), we obtain

‖Du
�
(·;x0)‖L2(Br/2(x0))

≤ Nr
d+1

2

(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)
+NC2r

d
2
−1.

(5.11)

Combining (5.11) with (3.15) and (3.16), the estimate of ‖Dũ(·;x0)‖L2(Br/2(x0))

follows.
Next we proceed to estimate ‖p̃‖L2(Br/2(x0)). Integrating D�(pη

2) over Br(x0)

directly, and using the integration by parts and η ∈ C∞
0 (Br(x0)), we obtain

ˆ

Br(x0)

(
D�(pη

2) + pη2 div 	
)
dx = 0.

Then by using [2, Lemma 10] again, there exists a function ϕ ∈ H1
0 (Br(x0))

d such
that

divϕ = D�(pη
2) + pη2 div 	 in Br(x0),

and

‖ϕ‖L2(Br(x0)) + r‖Dϕ‖L2(Br(x0)) ≤ Nr‖D�(pη
2) + pη2 div 	‖L2(Br(x0)),

where N = N(d). Moreover, combining (5.5), the local boundedness of p in Lemma
2.2 and (5.8), we have

‖ϕ‖L2(Br(x0)) + r‖Dϕ‖L2(Br(x0))

≤ Nr‖D�pη‖L2(Br(x0)) +Nr‖pηD�η‖L2(Br(x0)) +Nr‖pη2 div 	‖L2(Br(x0))

≤ Nr‖D�pη‖L2(Br(x0)) +NC2rd/2.(5.12)

Applying ϕ to (5.2) as a test function, we have
ˆ

Br(x0)

η2|D�p|2 dx

= −
ˆ

Br(x0)

A³´D´u�
D³ϕ dx−

ˆ

Br(x0)

fϕ dx+

ˆ

Br(x0)

f³,3D³ϕ dx

−
ˆ

Br(x0)

D�p(2pηD�η + pη2 div 	) dx.
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By Young’s inequality and (5.12), we have

‖ηD�p‖L2(Br(x0)) ≤ ¸2‖ηD�p‖L2(Br(x0)) +N(¸2)
(
‖Du

�
‖L2(Br(x0)) + ‖f³,3‖L2(Br(x0))

+ r‖f‖L2(Br(x0))

)
+NC2r

d
2
−1.

Taking ¸2 = 1
2 , and using η = 1 in Br/2(x0), (5.9)–(5.11), we obtain

‖D�p‖L2(Br/2(x0)) ≤ Nr
d+1

2

(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)

+NC2r
d
2
−1.

This together with (3.15) gives the estimate of ‖p̃‖L2(Br/2(x0)). The lemma is proved.
�

Lemma 5.2. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Suppose that A³´, f³, and g satisfy

Assumption 1.2 with s = 1. If (u, p) ∈ W 1,q(B1)
d × Lq(B1) is a weak solution to

{
D³(A

³´D´u) +Dp = D³f³

divu = g
in B1,

then we have

m+1∑

j=1

‖D2u‖L∞(B1/4∩Dj)
+

m+1∑

j=1

‖Dp‖L∞(B1/4∩Dj)
≤ NC2,

where C2 is defined in (5.1), N > 0 is a constant depending only on d,m, q, ¿, ¸,
|A|1,·;Dj

, and the C2,μ norm of hj.

Proof. For any s ∈ (0, 1), let qk′;x0,s,Qx0,s ∈ R
d be chosen such that

Φ(x0, s) =

(
 

Bs(x0)

(
|D�k′

ũ(x;x0)− qk′;x0,s|
1
2 + |Ũ(x;x0)−Qx0,s|

1
2

)
dx

)2

,

where k′ = 1, . . . , d− 1. It follows from the triangle inequality that

|qk′;x0,s/2 − qk′;x0,s|
1
2 ≤ |D�k′

ũ(x;x0)− qk′;x0,s/2|
1
2 + |D�k′

ũ(x;x0)− qk′;x0,s|
1
2

and

|Qx0,s/2 −Qx0,s|
1
2 ≤ |Ũ(x;x0)−Qx0,s/2|

1
2 + |Ũ(x;x0)−Qx0,s|

1
2 .

Taking the average over x ∈ Bs/2(x0) and then taking the square, we obtain

|qk′;x0,s/2 − qk′;x0,s|+ |Qx0,s/2 −Qx0,s| ≤ N(Φ(x0, s/2) + Φ(x0, s)).

By iterating and using the triangle inequality, we derive

(5.13) |qk′;x0,2−Ls − qk′;x0,s|+ |Qx0,2−Ls −Qx0,s| ≤ N

L∑

j=0

Φ(x0, 2
−js).

Using (3.16) and (4.1), we have

D�k′
ũ(x;x0) = 	ik	

j
k′DiDju+D�k′

	iDiu−
m+1∑

j=1

D�k′
	̃i,jDiu(Pjx0)−D�k′

u(5.14)
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and

Ũ(x;x0) = n³
(
A³´D´Diu	

i
k −D�f³ +D�A

³´D´u−A³´D´u

− ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̃j(x
′)−A³´

m+1∑

j=1

1
D

c
j
D´ 	̃

i,jDiu(Pjx0)
)

+ n(D�p− π).

(5.15)

Recalling the assumption that Du and p are piecewise C1, A³´ and f³ are piecewise
C1,·, and using (3.15), it follows that D�k′

ũ(x;x0), ũ(x;x0) ∈ C0(D¸ ∩Dj). Taking

ρ = 2−Ls in (4.20), we have

lim
L→∞

Φ(x0, 2
−Ls) = 0.

Thus, for any x0 ∈ D¸ ∩ Dj , we obtain

lim
L→∞

qk′;x0,2−Ls = D�k′
ũ(x0;x0), lim

L→∞
Qx0,2−Ls = Ũ(x0;x0).

Now taking L → ∞ in (5.13), choosing s = r/2, and using Lemma 4.3, we have for
r ∈ (0, 1/4), k′ = 1, . . . , d− 1, and x0 ∈ D¸ ∩ Dj ,

|D�k′
ũ(x0;x0)− qk′;x0,r/2|+ |Ũ(x0;x0)−Qx0,r/2|

≤ N
∞∑

j=0

Φ(x0, 2
−j−1r) ≤ NΦ(x0, r/2) +NC0r·μ ,(5.16)

where ·μ = min
{

1
2 , μ, ·

}
, and C0 is defined in (4.12). By averaging the inequality

|qk′;x0,r/2|+ |Qx0,r/2| ≤ |D�k′
ũ(x;x0)− qk′;x0,r/2|+ |Ũ(x;x0)−Qx0,r/2|

+ |D�k′
ũ(x;x0)|+ |Ũ(x;x0)|

over x ∈ Br/2(x0) and then taking the square, we have

|qk′;x0,r/2|+ |Qx0,r/2|

≤ NΦ(x0, r/2) +N

(
 

Br/2(x0)

(
|D�k′

ũ(x;x0)|
1
2 + |Ũ(x;x0)|

1
2

)
dx

)2

≤ Nr−d
(
‖D�k′

ũ(·;x0)‖L1(Br/2(x0)) + ‖Ũ(·;x0)‖L1(Br/2(x0))

)
.

Therefore, combining (5.16) and the triangle inequality, we obtain

|D�k′
ũ(x0;x0)|+ |Ũ(x0;x0)|

≤ Nr−d
(
‖D�k′

ũ(·;x0)‖L1(Br/2(x0)) + ‖Ũ(·;x0)‖L1(Br/2(x0))

)
+NC0r·μ .(5.17)

By using Hölder’s inequality and Lemma 5.1, we have

‖Dũ(·;x0)‖L1(Br/2(x0)) + ‖p̃‖L1(Br/2(x0))

≤ Nrd+
1
2

(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)
+NC2rd−1.
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Recalling (4.1) and (3.16), and using (3.15), we have

‖Ũ(·;x0)‖L1(Br/2(x0))

≤ ‖Dũ(·;x0)‖L1(Br/2(x0)) + ‖f̃(·;x0)‖L1(Br/2(x0)) + ‖p̃‖L1(Br/2(x0))

≤ Nrd+
1
2

(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)
+NC2rd−1.

These estimates together with (5.17) imply that

|D�k′
ũ(x0;x0)|+ |Ũ(x0;x0)|

≤ Nr·μ
(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +
m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)
+NC2r−1.(5.18)

It follows from (1.1) that

(5.19) A³´D³´u+Dp = D³f³ −D³A
³´D´u

and

(5.20) D(divu) = Dg,

in B1−¸ ∩ Dj , j = 1, . . . ,M . To solve for D2u and Dp, we need to show that
the determinant of the coefficient matrix in (5.14), (5.15), (5.19), and (5.20) is not
equal to 0. To this end, let us define

y = Λx, v(y) = Λu(x), π(y) = p(x), A³´(y) = ΛΛ³kAks(x)Λs´Γ,

where Γ = Λ−1, Λ is the linear transformation from the coordinate system associ-
ated with 0 to the coordinate system associated with the fixed point x ∈ Br(x0),
which is defined in Section 2 (see p. 8482). A direct calculation yields

(5.21) n³A³´D´Diu	
i
k + nD�p = ΓAd´D´Dkv + nDkπ.

Using the definitions of Λ and n in Section 2 (see p. 8482), we have

Λn = (0, . . . , 0, 1)� =: ed.

Then (5.21) becomes

Λ
(
n³A³´D´Diu	

i
k + nD�p

)
= Ad´D´Dkv + edDkπ.

Similarly, we obtain

	ik	
j
k′DiDju = ΓDkDk′v

and
A³´D³´u+Dp = Γ(A³´D³´v +Dπ), D(divu) = D(div v)Λ.

Thus, in view of (5.14), (5.15), (5.19), and (5.20), we obtain the equations for D2v

and Dπ as follows:
⎧
⎪⎪⎪«
⎪⎪⎪¬

DkDk′v = R1,

Ad´D´Dkv + edDkπ = R2,

A³´D³´v +Dπ = R3,

D(divv) = R4,

(5.22)

where k, k′ = 1, . . . , d − 1, Rm, m = 1, 2, 3, 4, is derived from the terms in (5.14),
(5.15), (5.19), and (5.20), respectively. It follows from the first and last equations
in (5.22) that DkDk′v and DkDdv

d are solved, where k, k′ = 1, . . . , d − 1. If we
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solve for DdDiv
j and Ddπ, i = 1, . . . , d, j = 1, . . . , d − 1, and (i, j) = (d, d), then

Dkπ are obtained from the second equation in (5.22), k = 1, . . . , d− 1. For this, we
rewrite the last three equations in (5.22) as, i = 1, . . . , d− 1, k = 1, . . . , d− 1,

⎧
⎪⎪⎪«
⎪⎪⎪¬

∑d−1
j=1 Add

ij DdDkv
j = R̃i

2,∑d−1
´,j=1 A

d´
ij Dd´v

j +
∑d−1

³,j=1 A³d
ij D³dv

j +Add
ij D

2
dv

j −
∑d−1

j=1 Add
dj DdDiv

j = R̃i
3,∑d−1

´,j=1 A
d´
dj Dd´v

j +
∑d−1

³,j=1 A³d
dj D³dv

j +Add
dj D

2
dv

j +Ddπ = R̃d
3,

DdDjv
j = Rd

4,

(5.23)

where

R̃i
2 = Ri

2 −
d−1∑

´=1

Ad´
ij D´Dkv

j −Add
idDdDkv

d,

R̃i
3 = Ri

3 −
d−1∑

³,´=1

A³´
ij D³´v

j −Rd
2 +

d−1∑

´=1

Ad´
dj D´Div

j −
d−1∑

´=1

Ad´
id Dd´v

d

−
d−1∑

³=1

A³d
id D³dv

d +Add
ddDdDiv

d,

R̃d
3 = Rd

3 −
d−1∑

³,´=1

A³´
dj D³´v

j −
d−1∑

´=1

Ad´
ddDd´v

d −
d−1∑

³=1

A³d
ddD³dv

d,

and Ri
m is the i-th component of Rm, m = 2, 3, 4. A direct calculation yields the

determinant of the coefficient matrix in (5.23) is (cof(Add
dd))

d 
= 0, where cof(Add
dd) is

the cofactor of (Add). This implies thatDdDiv
j and Ddπ can be solved by Cramer’s

rule and thus D2u and Dp. Moreover, using (5.18) and (3.15), we obtain

|D2u(x0)|+ |Dp(x0)|

≤ N
(
|D�k′

ũ(x0;x0)|+ |Ũ(x0;x0)|+ |Du(x0)|
)

+N
(m+1∑

j=1

|f³|1,·;Dj
+

m+1∑

j=1

|g|1,·;Dj
+ ‖Du‖L1(B1) + ‖p‖L1(B1)

)

≤ Nr·μ
(m+1∑

j=1

‖D2u‖L∞(Br(x0)∩Dj) +
m+1∑

j=1

‖Dp‖L∞(Br(x0)∩Dj)

)
+NC2r−1.(5.24)

For any x1 ∈ B1/4 and r ∈ (0, 1/4), by taking the supremum with respect to
x0 ∈ Br(x1) ∩ Dj , we have

m+1∑

j=1

‖D2u‖L∞(Br(x1)∩Dj) +
m+1∑

j=1

‖Dp‖L∞(Br(x1)∩Dj)

≤ Nr·μ
(m+1∑

j=1

‖D2u‖L∞(B2r(x1)∩Dj) +

m+1∑

j=1

‖Dp‖L∞(B2r(x1)∩Dj)

)
+NC2r−1.
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Applying an iteration argument (see, for instance, [14, Lemma 3.4]), we conclude
that

m+1∑

j=1

‖D2u‖L∞(B1/4∩Dj)
+

m+1∑

j=1

‖Dp‖L∞(B1/4∩Dj)
≤ NC2.

We finish the proof of the lemma. �

6. Proof of Theorem 1.3 with s = 1

In this section, we first estimate |D�k′
ũ(x;x0) − D�k′

ũ(x;x1)| and |Ũ(x;x0) −
Ũ(x;x1)|, where x0, x1 ∈ B1−¸. Then we establish an a priori estimate of the

modulus of continuity of (D�k′
ũ, Ũ) by using the results in Sections 4 and 5, which

implies Theorem 1.3 with s = 1.

Lemma 6.1. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Suppose that A³´, f³, and g satisfy

Assumption 1.2 with s = 1. If (ũ, p̃) is a weak solution to (3.1), then for any

x0, x1 ∈ B1−¸, we have

|D�k′
ũ(x;x0)−D�k′

ũ(x;x1)|+ |Ũ(x;x0)− Ũ(x;x1)| ≤ NC2r,(6.1)

where C2 is defined in (5.1), N depends on d,m, q, ¿, ¸, |A|1,·;Dj
, and the C2,μ

characteristic of Dj.

Proof. We first note that for any x0 ∈ B1/8 ∩ Dj0 and x1 ∈ B1/8 ∩ Dj1 , by using

(3.9) and hj ∈ C2,μ,

|Pjx0 − Pjx1| ≤ N |x0 − x1|.
Combining with Lemma 5.2, we have

|Du(Pjx0)−Du(Pjx1)| ≤ Nr‖D2u‖L∞(B1/4∩Dj)
≤ NC2r.(6.2)

By (3.13), one has
⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

D³(Ã
³´D´ ũj)+Dπ̃j = −D³(1D

c
j
A³´D´ 	̃

i,j(Diu(Pjx0)−Diu(Pjx1))) in B1,

div ũj = 1
D

c
j
D	̃i,j(Diu(Pjx1)−Diu(Pjx0))

+(1
D

c
j
D	̃i,j(Diu(Pjx0)−Diu(Pjx1)))B1

in B1,

ũj = 0 on ∂B1,

where

ũj := uj(x;x0)− uj(x;x1), π̃j := πj(x;x0)− πj(x;x1).

Then by using Lemma 2.2, (6.2), and the fact that 1
D

c
j
D´ 	̃

i,j is piecewise Cμ,

i = 1, . . . ,m+ 1, we obtain

|ũj |1,μ′;Di∩B1−¸

≤ N‖Dũj‖L1(B1)+‖πj‖L1(B1)+N
m+1∑

j=1

|1
D

c
j
A³´D´ 	̃

i,j(Diu(Pjx0)

−Diu(Pjx1))|μ;B1
+N |1

D
c
j
D	̃i,j(Diu(Pjx1)−Diu(Pjx0))|μ;B1

≤ N‖1
D

c
j
A³´D´ 	̃

i,j(Diu(Pjx0)−Diu(Pjx1))‖Lq(B1) +NC2r
≤ NC2r,
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where μ′ = min{μ, 1
2}. Thus,

|u(·;x0)− u(·;x1)|1,μ′;Di∩B1−¸
≤

m+1∑

j=1

|ũj |1,μ′;Di∩B1−¸
≤ NC2r.

This combined with (3.16), (3.8), and (6.2) yields

|D�k′
ũ(x;x0)−D�k′

ũ(x;x1)|

=
∣∣∣
m+1∑

j=1

D�k′
	̃i,j

(
Diu(Pjx0)−Diu(Pjx1)

)
+D�k′

u(x;x0)−D�k′
u(x;x1)

∣∣∣ ≤ NC2r.

(6.3)

Similarly, we have the estimate of |Ũ(x;x0)−Ũ(x;x1)| and thus the proof of Lemma
6.1 is finished. �

Together with the results in Sections 4 and 5, we obtain an a priori estimate of
the modulus of continuity of (D�k′

ũ, Ũ) as follows.

Proposition 6.2. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Suppose that A³´, f³, and g
satisfy Assumption 1.2 with s = 1. If (u, p) ∈ W 1,q(B1)

d × Lq(B1) is a weak

solution to {
D³(A

³´D´u) +Dp = D³f³

divu = g
in B1,

then for any x0, x1 ∈ B1−¸, we have

|(D�k′
ũ(x0;x0)−D�k′

ũ(x1;x1)|+ |Ũ(x0;x0)− Ũ(x1;x1)| ≤ NC2|x0 − x1|·μ ,
(6.4)

where k′ = 1, . . . , d − 1, C2 is defined in (5.1), ũ and Ũ are defined in (3.16) and

(4.1), respectively, ·μ = min
{

1
2 , μ, ·

}
, N depends on d,m, q, ¿, ¸, |A|1,·;Dj

, and the

C2,μ characteristic of Dj.

Proof. It follows from (5.14) that

(6.5) D�k′
ũ(x0;x0)

= 	ik(x0)	
j
k′(x0)DiDju(x0)−

m+1∑

j=1,j �=j0

D�k′
	̃i,j(x0)Diu(Pjx0)−D�k′

u(x0).

For any x1 ∈ B1/8 ∩ Dj1 , where j1 ∈ {1, . . . ,m + 1}, if |x0 − x1| ≥ 1/16, then by
using (6.5), Lemma 2.2, Lemma 5.2, and (3.15), we have

|D�k′
ũ(x0;x0)−D�k′

ũ(x1;x1)|

≤ N
m+1∑

j=1

‖D2u‖L∞(B1/4∩Dj)
+N‖Du‖L∞(B1/4) +NC2

≤ NC2|x0 − x1|·μ .
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Similarly, by using (5.15) and equation (1.1), we have

Ũ(x0;x0) = n³(x0)
(
A³´(x0)D´Diu(x0)	

i
k(x0)−D�f³(x0) +D�A

³´(x0)D´u(x0)

−A³´(x0)D´u(x0)− ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′
0))

−1h̃j(x
′
0)

−A³´(x0)

m+1∑

j=1,j �=j0

1
D

c
j
D´ 	̃

i,j(x0)Diu(Pjx0)
)

+ n(x0)	(x0)
(
D³f³(x0)−D³A

³´D´u(x0)−A³´(x0)D³´u(x0)
)

− n(x0)π(x0;x0),(6.6)

and thus,

|Ũ(x0;x0)− Ũ(x1;x1)| ≤ NC2|x0 − x1|·μ .

If |x0 −x1| < 1/16, then we set r = |x0 −x1|. By the triangle inequality, for any
x ∈ Br(x0) ∩Br(x1), we have

|D�k′
ũ(x0;x0)−D�k′

ũ(x1;x1)|
1
2 + |Ũ(x0;x0)− Ũ(x1;x1)|

1
2

≤ |D�k′
ũ(x0;x0)−qk′;x0,r|

1
2 +|D�k′

ũ(x;x0)−qk′;x0,r|
1
2 +|D�k′

ũ(x;x1)−qk′;x1,r|
1
2

+ |D�k′
ũ(x;x0)−D�k′

ũ(x;x1)|
1
2 + |D�k′

ũ(x1;x1)− qk′;x1,r|
1
2

+ |Ũ(x0;x0)−Qx0,r|
1
2 + |Ũ(x;x0)−Qx0,r|

1
2 + |Ũ(x;x1)−Qx1,r|

1
2

+ |Ũ(x;x0)− Ũ(x;x1)|
1
2 + |Ũ(x1;x1)−Qx1,r|

1
2 ,

(6.7)

where qk′;x0,r,Qx0,r,qk′;x1,r,Qx1,r ∈ R
d, k′ = 1, . . . , d− 1, satisfy

Φ(x0, r) =

(
 

Br(x0)

(
|D�k′

ũ(x;x0)− qk′;x0,r|
1
2 + |Ũ(x;x0)−Qx0,r|

1
2

)
dx

)2

,

and

Φ(x1, r) =

(
 

Br(x1)

(
|D�k′

ũ(x;x1)− qk′;x1,r|
1
2 + |Ũ(x;x1)−Qx1,r|

1
2

)
dx

)2

,

respectively. Taking the average over x ∈ Br(x0) ∩ Br(x1) and then taking the
square in (6.7), we obtain

|D�k′
ũ(x0;x0)−D�k′

ũ(x1;x1)|+ |Ũ(x0;x0)− Ũ(x1;x1)|
≤ |D�k′

ũ(x0;x0)− qk′;x0,r|+ |Ũ(x0;x0)−Qx0,r|+Φ(x0, r) + Φ(x1, r)

+ |D�k′
ũ(x1;x1)− qk′;x1,r|+ |Ũ(x1;x1)−Qx1,r|

+

(
 

Br(x0)∩Br(x1)

(
|D�k′

ũ(x;x0)−D�k′
ũ(x;x1)|

1
2 +|Ũ(x;x0)−Ũ(x;x1)|

1
2

)
dx

)2

.

(6.8)
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It follows from Lemmas 4.3 and 5.2, (3.15), (4.26), and (4.27) with B1/8 in place of
Br(x0) that

sup
x0∈B1/8

Φ(x0, r)

≤ Nr·μ
(m+1∑

j=1

‖D2u‖L∞(B1/4∩Dj)
+

m+1∑

j=1

‖Dp‖L∞(B1/4∩Dj)
+ ‖Dũ‖L1(B1/4)

+ ‖f̃‖L1(B1/4) + ‖p̃‖L1(B1/4) +

m+1∑

j=1

|f³|1,·;Dj
+

m+1∑

j=1

|g|1,·;Dj
+ ‖Du‖L1(B1)

+ ‖p‖L1(B1)

)
≤ NC2r·μ .

Applying (5.16) and using (6), we derive

sup
x0∈B1/8

(
|D�k′

ũ(x0;x0)− qk′;x0,r|+ |Ũ(x0;x0)−Qx0,r|
)
≤ NC2r·μ .(6.9)

Substituting (6), (6.9), (6.3), and (6.1) into (6.8), we obtain (6.4). �

Proof of Theorem 1.3 with s = 1. By using (5.19) and (5.20) at the point x = x0,
(6.5), (6.6), and Cramer’s rule, we get that D2u(x0) and Dp(x0) are combinations
of

(6.10) Dg(x0), D³f³(x0)−D³A
³´(x0)D´u(x0),

(6.11) D�k′
ũ(x0;x0) +

m+1∑

j=1,j �=j0

D�k′
	̃i,j(x0)Diu(Pjx0) +D�k′

u(x0),

and

Ũ(x0;x0) + n³(x0)
(
D�f³(x0)−D�A

³´(x0)D´u(x0) +A³´(x0)D´u(x0)

+ ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′
0))

−1h̃j(x
′
0)+A³´(x0)

m+1∑

j=1,j �=j0

1
D

c
j
D´ 	̃

i,j(x0)Diu(Pjx0)
)

− n(x0)	(x0)
(
D³f³(x0)−D³A

³´D´u(x0)
)
+ n(x0)π(x0;x0).

(6.12)

Similarly, for any x̃0 ∈ B1−¸∩Dj0 , D
2u(x̃0) and Dp(x̃0) are combinations of (6.10)–

(6.12) with x0 replaced with x̃0. It follows from (6.4) and (3.15) that

[D2u]·μ;B1−¸∩Dj0
+ [Dp]·μ;B1−¸∩Dj0

≤ NC2

for any j0 = 1, . . . ,m+ 1. Theorem 1.3 is proved. �

7. The case when s ≥ 2

7.1. Main ingredients of the proof. We first use an induction argument for
s ≥ 2 to obtain

D� · · ·D�u = 	i1	i2 · · · 	isDi1Di2 · · ·Disu+R(u),(7.1)
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where we used D�(fg) = gD�f+fD�g and the Einstein summation convention over

repeated indices, 	iτ := 	iτkτ
, τ = 1, . . . , s, kτ = 1, . . . , d− 1, iτ = 1, . . . , d, and

R(u) = D�i1 (	
i2 · · · 	is )Di2 · · ·Disu

+D�i1

(
D�i2 (	

i3 · · · 	is )Di3 · · ·Dis
u+D�i2

(
D�i3 (	

i4 · · · 	is )Di4 · · ·Dis
u

+D�i3

(
D�i4 (	

i5 · · · 	is )Di5 · · ·Disu+ · · ·+D�is−2 (D�is−1 	
isDisu)

))
)
,

which is the summation of the products of directional derivatives of 	 and derivatives
of u. Taking D� · · ·D� to the equation D³(A

³´D´u) +Dp = D³f³ and divu = g,

respectively, we obtain in
⋃m+1

j=1 Dj ,

⎧
⎪«
⎪¬

D³

(
A³´D´(D� · · ·D�u)

)
+D(D� · · ·D�p) = D³ f̆³,1 + f̆ ,

div(D� · · ·D�u) = 	i1	i2 · · · 	isDi1Di2 · · ·Dis g +D³(R(u³))

+D³(	
i1	i2 · · · 	is )Di1Di2 · · ·Disu

³,

(7.2)

where f̆³,1 = (f̆1
³,1, . . . , f̆

d
³,1)

�, f̆ = (f̆1, . . . , f̆d)�, for the i-th equation, i = 1, . . . , d,

f̆ i
³,1 := 	i1	i2 · · · 	isDi1Di2 · · ·Dis f

i
³ +A³´

ij D´(	
i1	i2 · · · 	is )Di1Di2 · · ·Disu

j

+ A³´
ij D´(R(uj)) + ·³iR(p)− 	i1	i2 · · · 	is

(
Di1A

³´
ij D´Di2 · · ·Disu

j

+

s−1∑

τ=1

Di1 · · ·Diτ (Diτ+1
A³´

ij D´Diτ+2
· · ·Disu

j)
)
,(7.3)

and

f̆ i := D³(	
i1	i2 · · · 	is )

(
Di1Di2 · · ·Dis (A

³´
ij D´u

j − f i
³ + ·³ip)

)

+R(D³(f
i
³ −A³´

ij D´u
j)−Dip).(7.4)

Similarly, by taking D� · · ·D� to [n³
j (A

³´D´u − f³) + pnj ]Γj
= 0, we obtain the

boundary condition

(7.5) [n³
j (A

³´D´(D� · · ·D�u)− f̆³,1)]Γj
= h̆j ,

where

h̆j :=
[

− �
i1�

i2
· · · �

is
(

s
∑

τ=1

Diτn
α
j Di1 · · ·Dτs−1

Diτ+1
· · ·Dis(A

αβ
Dβu− fα)

+

s
∑

τ=1

DiτnjDi1 · · ·Dτs−1
Diτ+1

· · ·Disp

+
∑

1≤τ1<τ2≤s

Diτ1
Diτ2

n
α
j Di1 · · ·Diτ1−1Diτ1+1 · · ·Diτ2−1Diτ2+1 · · ·Dis(A

αβ
Dβu−fα)

+
∑

1≤τ1<τ2≤s

Diτ1
Diτ2

njDi1 · · ·Diτ1−1Diτ1+1 · · ·Diτ2−1Diτ2+1 · · ·Disp

+ · · ·+Di1Di2 · · ·Disn
α
j (A

αβ
Dβu− fα) +Di1Di2 · · ·Disnjp

)

]

Γj

− [R(nα
j (A

αβ
Dβu− fα)) +R(njp)]Γj .
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By adding a term
m∑

j=1

Dd(1xd>hj(x′)(n
d
j (x

′))−1h̆j(x
′))

to the first equation in (7.2), then (7.2) and (7.5) become
⎧
⎪⎪⎪«
⎪⎪⎪¬

D³

(
A³´D´(D� · · ·D�u)

)
+D(D� · · ·D�p) = D³ f̆³,2 + f̆ ,

div(D� · · ·D�u) = 	i1	i2 · · · 	isDi1Di2 · · ·Dis g +D³(R(u³))

+D³(	
i1	i2 · · · 	is )Di1Di2 · · ·Disu

³,

[n³
j (A

³´D´(D� · · ·D�u)− f̆³,2)]Γj
= 0,

(7.6)

where

f̆³,2 := f̆³,1 + ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̆j(x
′).

As mentioned above (3.7), since D´(	
i1	i2 · · · 	is ) and R(uj) are singular at any

point where two interfaces touch or are close to each other, we cannot prove the
smallness of the mean oscillation of (7.3). To cancel out the singularity, we choose

u0 := u0(x;x0)

=

m+1∑

j=1

	̃i1,j 	̃i2,j · · · 	̃is,jDi1Di2 · · ·Disu(Pjx0)

+
m+1∑

j=1

s−1∑

τ=1

D�̃i1,jD�̃i2,j · · ·D�̃iτ ,j (	̃
iτ+1,j · · · 	̃is ,j)

(
Diτ+1

· · ·Disu(Pjx0)

+ (x− x0) ·DDiτ+1
· · ·Disu(Pjx0)

)
+ · · ·

+
m+1∑

j=1

(D�̃is−1,j 	̃is,j)	̃i1,j 	̃i2,j · · · 	̃is−2,j
(
Di1Di2 · · ·Di

s−2
Disu(Pjx0)

+ (x− x0) ·DDi1Di2 · · ·Di
s−2

Disu(Pjx0)
)
,(7.7)

where Pjx0 is defined in (3.9), x0 ∈ B3/4 ∩ Dj0 , r ∈ (0, 1/4), 	̃,j is the smooth

extension of 	|Dj
to ∪m+1

k=1,k �=jDk. Denote

(7.8) u� := u�(x;x0) = D� · · ·D�u− u0.

Then by using (7.6), we obtain
⎧
⎪⎪⎪«
⎪⎪⎪¬

D³(A
³´D´u

�) +DD� · · ·D�p = D³ f̆³,3 + f̆ ,

[n³
j (A

³´D´u
� − f³,3) + njD� · · ·D�p]Γj

= 0,

divu� = 	i1	i2 · · · 	isDi1Di2 · · ·Dis g +D³(R(u³))− divu0

+D³(	
i1	i2 · · · 	is )Di1Di2 · · ·Disu

³,

(7.9)

where f̆³,3 = (f̆1
³,3, . . . , f̆

d
³,3)

�, and

f̆ i
³,3 := f̆ i

³,3(x;x0) = f̆ i
³,2 −A³´

ij D´u
j
0, i = 1, . . . , d.(7.10)

Finally, we consider the following problem:
{
D³(Ã

³´D´u) +Dπ = −D³

(
A³´F´

)

div u = −E+ (E)B1

in B1,(7.11)
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where (u(·;x0), π(·;x0)) ∈ W 1,q
0 (B1)

d × Lq
0(B1), the coefficient Ã³´ is defined in

(3.12),

F´ :=
m+1∑

j=1

1
D

c
j
D´(	̃

i1,j 	̃i2,j · · · 	̃is,j)Di1Di2 · · ·Disu(Pjx0) + · · ·

+

m+1∑

j=1

1
D

c
j
D´

(
(D�̃is−1,j 	̃is,j)	̃i1,j 	̃i2,j · · · 	̃is−2,j

)(
Di1Di2 · · ·Di

s−2
Disu(Pjx0)

+ (x− x0) ·DDi1Di2 · · ·Di
s−2

Disu(Pjx0)
)

+
m+1∑

j=1

1
D

c
j
(D�̃is−1,j 	̃is,j)	̃i1,j 	̃i2,j · · · 	̃is−2,jD´Di1Di2 · · ·Di

s−2
Disu(Pjx0),

(7.12)

which is the summation of the products of 1
D

c
j
and derivatives of the terms on the

right-hand side of (7.7), and

E :=

m+1∑

j=1

1
D

c
j
D(	̃i1,j 	̃i2,j · · · 	̃is,j)Di1Di2 · · ·Disu(Pjx0) + · · ·

+
m+1∑

j=1

1
D

c
j
D
(
(D�̃is−1,j 	̃is,j)	̃i1,j 	̃i2,j · · · 	̃is−2,j

)(
Di1Di2 · · ·Di

s−2
Disu(Pjx0)

+ (x− x0) ·DDi1Di2 · · ·Di
s−2

Disu(Pjx0)
)

+
m+1∑

j=1

1
D

c
j
(D�̃is−1,j 	̃is,j)	̃i1,j 	̃i2,j · · · 	̃is−2,jDDi1Di2 · · ·Di

s−2
Dis

u(Pjx0).

Define

(7.13) ŭ := ŭ(x;x0) = u� − u, p̆ := p̆(x;x0) = D� · · ·D�p− π.

Then it follows from (7.9) and (7.11) that in B3/4, ŭ and p̆ satisfy

⎧
⎪«
⎪¬

D³(A
³´D´ŭ) +Dp̆ = D³ f̆³ + f̆ ,

div ŭ = 	i1	i2 · · · 	isDi1Di2 · · ·Dis g−divu0+D³(	
i1	i2 · · · 	is )Di1Di2 · · ·Disu

³

+E− (E)B1
,

(7.14)

where f̆³ = (f̆1
³, . . . , f̆

d
³)

�, and for i = 1, . . . , d,

f̆ i
³ := f̆ i

³(x;x0) = f̆ i
³,1 + ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̆i
j(x

′)−A³´
ij D´u

j
0 +A³´

ij F j
´ ,

(7.15)

and f̆ i
³,1 is defined in (7.3).
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The general case s ≥ 2 will be proved by induction on s. If A³´, f³, and g are
piecewise Cs−1,·, and the interfacial boundaries are Cs,μ, then we have

|u|s,·μ;D¸∩Dj0
+ |p|s−1,·μ;D¸∩Dj0

≤ N
(
‖Du‖L1(D) + ‖p‖L1(D) +

M∑

j=1

|f³|s−1,·;Dj
+

M∑

j=1

|g|s−1,·;Dj

)
,(7.16)

where j0 = 1, . . . ,m + 1, ·μ = min
{

1
2 , μ, ·

}
, and N depends on d,m, q, ¿, ¸, the

Cs,μ characteristic of Dj , and |A|s−1+·;Dj
. Now assuming that A³´, f³, and g are

piecewise Cs,·, and the interfacial boundaries are Cs+1,μ, we will prove that u is
piecewise Cs+1,·μ and p is piecewise Cs,·μ .

Recalling that 	̃,j is the smooth extension of 	|Dj
to ∪m+1

k=1,k �=jDk and using (7.16),

one can see that the right-hand side of (7.11) is piecewise C·μ . Then by applying
Lemma 2.2 to (7.11), we have

|u|1+·μ;Di∩B1−¸
+ |π|·μ;Di∩B1−¸

≤ N
(
‖Du‖L1(D) + ‖p‖L1(D) +

M∑

j=1

|f³|s−1,·;Dj
+

M∑

j=1

|g|s−1,·;Dj

)
,(7.17)

where i = 1, . . . ,m+ 1. Therefore, combining with (7.13), to derive the regularity
of D� · · ·D�u and D� · · ·D�p, it suffices to prove that for ŭ and p̆. For this, by
replicating the argument in the proof of Lemma 4.3, we obtain the decay estimate
of Ψ(x0, r) as follows, where

Ψ(x0, r) := inf
qk′ ,Q∈Rd

(
 

Br(x0)

(
|D�k′

ŭ(x;x0)− qk′ | 12 + |Ŭ(x;x0)−Q| 12
)
dx

)2

,

and

(7.18) Ŭ(x;x0) = n³(A³´D´ŭ− f̆³) + np̆.

Lemma 7.1. Let ¸ ∈ (0, 1) and q ∈ (1,∞). Suppose that A³´, f³, and g satisfy

Assumption 1.2 with s ≥ 2. If (ŭ, p̆) is a weak solution to (7.14), then for any

0 < ρ ≤ r ≤ 1/4, we have

Ψ(x0, ρ) ≤ N
(ρ
r

)·μ
Ψ(x0, r/2) +NC3ρ·μ ,

where

C3 :=

m+1∑

j=1

‖Ds+1u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dsp‖L∞(Br(x0)∩Dj) + C4,

C4 := ‖Du‖L1(B1) + ‖p‖L1(B1) +

M∑

j=1

|f³|s,·;Dj
+

M∑

j=1

|g|s,·;Dj
,(7.19)

·μ = min
{

1
2 , μ, ·

}
, N depends on d,m, q, ¿, the Cs+1,μ norm of hj, and |A|s,·;Dj

.

By the definitions of f̆ , u0, and f̆³,3 in (7.4), (7.7), and(7.10), respectively, using
(5.8), and mimicking the proof of Lemma 5.1, we obtain the following result.
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Lemma 7.2. Under the same assumptions as in Lemma 7.1, we have

‖Dŭ(·;x0)‖L2(Br/2(x0)) + ‖p̆(·;x0)‖L2(Br/2(x0))

≤ Nr
d+1

2

(m+1∑

j=1

‖Ds+1u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dsp‖L∞(Br(x0)∩Dj)

)
+NC4r

d
2
−1,

where x0 ∈ D¸∩Dj0 , r ∈ (0, 1/4), ŭ and p̆ are defined in (7.13), the constant N > 0
depends on d,m, q, ¿, ¸, |A|s,·;Dj

, and the Cs+1,μ norm of hj.

Lemma 7.3. Under the same assumptions as in Lemma 7.1, if (u, p)∈W 1,q(B1)
d×

Lq(B1) is a weak solution to
{
D³(A

³´D´u) +Dp = D³f³

divu = g
in B1,

then we have

m+1∑

j=1

‖Ds+1u‖L∞(B1/4∩Dj)
+

m+1∑

j=1

‖Dsp‖L∞(B1/4∩Dj)
≤ NC4,

where C4 is defined in (7.19), N > 0 is a constant depending on d,m, q, ¿, ¸,
|A|s,·;Dj

, and the Cs+1,μ norm of hj.

Proof. The proof is similar to that of Lemma 5.2. It follows from (7.1), (7.8), (7.13),
and (7.15) that

D�k ŭ(x;x0) = 	i1	i2 · · · 	isD�kDi1Di2 · · ·Disu+D�k(	
i1	i2 · · · 	is )Di1Di2 · · ·Disu

+D�k(R(u))−D�ku0 −D�ku(7.20)

and

Ŭ(x;x0) = n³
(
A³´D´ŭ− f̆³

)
+ np̆

= n³
(
A³´	i1	i2 · · · 	isD´Di1Di2 · · ·Disu−A³´D´u−	i1	i2 · · · 	isDi1Di2 · · ·Dis f³

+ 	i1	i2 · · · 	is
(
Di1A

³´D´Di2 · · ·Disu

+

s−1∑

τ=1

Di1 · · ·Diτ (Diτ+1
A³´D´Diτ+2

· · ·Disu)
)

− ·³d

m∑

j=1

1xd>hj(x′)(n
d
j (x

′))−1h̆j(x
′)−A³´F´

)

+ n(	i1	i2 · · · 	isDi1Di2 · · ·Dis p− π).

(7.21)

Then using Lemmas 7.1, 7.2, and the argument that led to (5.18), we have

|D�k′
ŭ(x0;x0)|+ |Ŭ(x0;x0)|

≤ Nr·μ
(m+1∑

j=1

‖Ds+1u‖L∞(Br(x0)∩Dj) +

m+1∑

j=1

‖Dsp‖L∞(Br(x0)∩Dj)

)
+NC4r−1.

(7.22)
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Note that Ds+1u and Dsp have d
(
d+s
s+1

)
and

(
d+s−1

s

)
components, respectively. To

solve for them, we first take the (s − 1)-th derivative of the first equation (1.1) in

each subdomain to get the following d
(
d+s−2
s−1

)
equations

(7.23) A³´D³´D
s−1u+Dsp

= Ds−1D³f³ −
s−1∑

i=1

(
s−1
i

)
DiA³´Ds−1−iD³´u−Ds−1(D³A

³´D´u).

Here, it follows from (7.16), the assumption on A³´ and f³ in Assumption 1.2
that the right-hand side of (7.23) is of class piecewise C·μ . Next, by taking the

s-th derivative of the second equation (1.1) in each subdomain, we obtain
(
d+s−1

s

)

equations

(7.24) Ds(divu) = Dsg.

Finally, by the d
(
d+s−1
s+1

)
+d

(
d+s−2

s

)
equations in (7.20) and (7.21), and using (7.23),

(7.24), and Cramer’s rule, we derive Ds+1u and Dsp. Furthermore, combining
(7.17) and (7.22), we obtain

|Ds+1u(x0)|+ |Dsp(x0)|

≤ Nr·μ
(m+1∑

j=1

‖Ds+1u‖L∞(Br(x0)∩Dj) +
m+1∑

j=1

‖Dsp‖L∞(Br(x0)∩Dj)

)
+NC4r−1.

Finally, following the argument below (5.24), Lemma 7.3 is proved. �

7.2. Proof of Theorem 1.3 with s ≥ 2. Using Lemmas 7.1–7.3, and following
the argument in the proof of (6.4), we reach an a priori estimate of the modulus of
continuity of (D�k′

ŭ, ŭ) as follows:

|(D�k′
ŭ(x0;x0)−D�k′

ŭ(x1;x1)|+ |Ŭ(x0;x0)− Ŭ(x1;x1)| ≤ NC4|x0 − x1|·μ ,
(7.25)

where C4 is defined by (7.19), x0, x1 ∈ B1−¸, k
′ = 1, . . . , d− 1, ŭ and Ŭ are defined

in (7.13) and (7.18), respectively, ·μ = min
{

1
2 , μ, ·

}
, N depends on d,m, q, ¿, ¸,

|A|s,·;Dj
, and the Cs+1,μ characteristic of Dj .

For any x0 ∈ B1−¸∩Dj0 , it follows from (7.1) and (7.7) that the terms containing
(directional) derivatives of 	 at x0 in (7.20) are cancelled. Then using (7.20), (7.21),
(7.23), and (7.24) with x = x0 and Cramer’s rule, one can solve for Ds+1u(x0) and
Dsp(x0). For any x1 ∈ B1−¸ ∩ Dj0 , D

s+1u(x1) and Dsp(x1) are similarly solved.
Thus, combining (7.16), (7.17), (7.25), and Assumption 1.2, we derive

[Ds+1u]·μ;B1−¸∩Dj0
+ [Dsp]·μ;B1−¸∩Dj0

≤ NC4

for j0 = 1, . . . ,m+ 1. Theorem 1.3 with s ≥ 2 follows.
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