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ON HIGHER REGULARITY OF STOKES SYSTEMS WITH
PIECEWISE HOLDER CONTINUOUS COEFFICIENTS

HONGJIE DONG, HAIGANG LI, AND LONGJUAN XU

ABSTRACT. In this paper, we consider higher regularity of a weak solution
(u,p) to stationary Stokes systems with variable coefficients. Under the as-
sumptions that coefficients and data are piecewise C>® in a bounded domain
consisting of a finite number of subdomains with interfacial boundaries in
CstLE | where s is a positive integer, § € (0,1), and u € (0, 1], we show that
Du and p are piecewise C'5:%, where 0, = min {%,u,&}. Our result is new
even in the 2D case with piecewise constant coefficients.

1. INTRODUCTION AND MAIN RESULTS

Stokes systems with variable coefficients have been studied extensively in the
literature. See, for instance, the pioneer work of Giaquinta and Modica [23]. Such
type of Stokes systems can be used to model the motion of inhomogeneous fluid
with density dependent viscosity [1,28,32]. In this paper, we study stationary
Stokes systems with piecewise smooth coefficients

Do (A3 Dgu) + Dp = D, f,f*

(1.1) i in D,
divu=g

where u = (u',...,u?) T and £, £, = (fL,..., f9) T, d > 2, and we used the Einstein
summation convention over repeated indices. We assume that the bounded domain
D in R contains a finite number of disjoint subdomains Dj,j=1,...,M, and the
coefficients and the data may have jump across the boundaries of the subdomains.
By approximation, we may assume that any point « € D belongs to the boundaries
of at most two of the D;’s. With these assumptions, the Stokes systems (1.1)
is connected to the study of composite materials with closely spaced interfacial
boundaries (see, for instance, [24,33]), as well as the study of the motion of two
fluids with interfacial boundaries [6,11, 12,26, 27].

This problem is also stimulated by the study of regularity of weak solutions for
equations with rough coefficients. There have been significant developments on
the regularity theory for partial differential equations and systems with coefficients
which satisfy some proper piecewise continuous conditions. We shall begin by
reviewing the literature for results on gradient estimates in such a setting from

Received by the editors September 14, 2023, and, in revised form, February 17, 2024.

2020 Mathematics Subject Classification. Primary 14N10, 14N35, 14T90.

The first author was partially supported by Simons Fellows Award 007638 and the NSF under
agreement DMS-2055244.

The second author was partially supported by NSF of China (11971061) and the Fundamental
Research Funds for the Central Universities (No. 2233200015).

The third author was partially supported by NSF of China (12301141).

(©2024 American Mathematical Society

8477

Licensed to Brown Univ. Prepared on Mon Jun 23 11:17:08 EDT 2025 for download from IP 128.148.225.19.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8478 H. DONG, H. LI, AND L. XU

the past two decades. Bonnetier and Vogelius first [3] considered divergence form
second-order elliptic equations with piecewise constant coefficients:

(1.2) Dy (a(x)Dyu) =0 in D,
where a(z) is given by
a(x) = aplp,up, + Lp\(D,uDs)>

with 0 < ag < oo and 1, is the indicator function. They proved that the gradient of
the solution is bounded when the subdomains are circular touching fibers of com-
parable radii. Li and Vogelius [31] studied general elliptic equations in divergence
form:

Do(A*?Dgu) = Dy fo in D,

where the coefficients A*? and the data f, are C° (§ € (0,1)) up to the boundary in
each subdomain with C** boundary, p € (0,1], but may have jump discontinuities
across the boundaries of the subdomains. They established global Lipschitz and
piecewise C19" estimates of the solution with ¢ € (0, min{é, m}] This result
was extended to elliptic systems under the same conditions by Li and Nirenberg
[30] and the range of ¢’ was improved to ¢’ € (0, min{J, %}] Dong and Xu [14]
further relaxed the range to 6" € (0, min{d, ;47 }] by using a completely different
argument from [30,31]. Notably, the estimates in [14, 30, 31] are independent of
the distances between subdomains. For more related results, we refer the reader to
[5,9,10,34,35] and the references therein. The estimates were extended to the case
of parabolic equations and systems with piecewise continuous coefficients [16,20,29],
and stationary Stokes systems with piecewise Dini mean oscillation coeflicients [7].

Now let us discuss the topic of the higher regularity for solutions to partial dif-
ferential equations and systems with piecewise smooth coefficients. Significant pro-
gresses have been made on the second-order elliptic equations (1.2) with piecewise
constant coefficients. By using conformal mappings, Li and Vogelius [31] proved
that the solutions to (1.2) are piecewise smooth up to interfacial boundaries, when
the subdomains D; and D, are two touching unit disks in R2?, and D is a disk
Bpg, with sufficiently large Ry. Dong and Zhang [19] removed the requirement of
Ry being sufficiently large with the help of the construction of Green’s function.
Dong and Li [13] then applied the Green function method to obtain higher deriva-
tive estimates by demonstrating the explicit dependence of the coefficients and the
distance between interfacial boundaries of inclusions. Related results about higher
derivative estimates with circular inclusions were investigated in [18,25]. It is worth
noting that in all these works, the dimension is always assumed to be two and the
inclusions are circular. To the best of our knowledge, there is no corresponding
result available for Stokes systems.

Recently, Dong and Xu [17] tackled more general divergence form parabolic
systems in any dimensions with piecewise Holder continuous coefficients and data
in a bounded domain consisting of a finite number of cylindrical subdomains. By
using a completely different method from those in [13,18,19,25,31], they established
piecewise higher derivative estimates for weak solutions to such parabolic systems,
and the estimates are independent of the distance between the interfaces. This
result also implies piecewise higher regularity for the corresponding elliptic systems,
addressing the open question proposed in [31].
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In this paper, we study higher regularity for solutions to the Stokes system (1.1),
closely following the scheme in [17]. However, the presence of the pressure term p
introduces added difficulties in the proofs below.

To state our main result precisely, we first give Assumption 1.1 imposed on the
domain D.

Assumption 1.1. The bounded domain D in R¢ contains M disjoint subdomains
D;,j = 1,...,M, and the interfacial boundaries are C**1# where s € N and
€ (0,1]. We also assume that any point € D belongs to the boundaries of at
most two of the D;’s.

For 0 < § < 1, we denote the C° Holder semi-norm by

|u(z) — u(y)|
[U]C5 D) -= Sup )
B wen e =P
zFy
and the C% norm by
[ulsp = [ules(p) + lulop,  where [ulop = sup [ul.
D

By C°(D) we denote the set for all bounded measurable functions u satisfying
[u]cs(p) < oo. The function spaces CS"S(D),S € N, are defined accordingly. For
€ > 0 small, we set

D. := {x € D : dist(x,9D) > e}.
Assumption 1.2. The coefficients A%? are bounded and satisfy the strong ellip-
ticity condition, that is, there exists v € (0,1) such that

d d
AP (@) <vTh Y AP (@) baz v ) JEaf
a,B=1 a=1

for any x € R% and &, € R?, o € {1,...,d}. Moreover, A*? £, and g are assumed
to be of class C*%(D. ND;),j=1,..., M, where s € N and § € (0,1).

Here is our main result.

Theorem 1.3. Let e € (0,1) and q € (1,00). Assume that D satisfies Assumption
1.1, and A°P £, and g satisfy Assumption 1.2. Let (u,p) € WH4(D)? x LI(D) be
a weak solution to (1.1) in D. Then (u,p) € C*T19% (D, ND,,)? x C*%(D. ND;,)
and it holds that

ulsi1s,0.005; + 1Plss, .05

M M
< N(IDulls o) + Pl + 3l o + D 19l,.057 )
j=1 j=1
where jo =1,...,M, 6, = min{%,u,é}, N depends on d, M, q, v, ¢, |A|s_5.5j,
and the C*T1# characteristic of D;.
Remark 1.4. The piecewise Holder-regularity of (Du, p) for s = 0 was proved in [7]
with 6, = min{4, ;47 }. As mentioned in [7, p. 3616], the results in Theorem 1.3
can also be applied to anisotropic Stokes systems in the form
{div(TSu) + Dp = D,f,

. in D,
divu=g
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1

where 7 = 7(x) is a piecewise C*? scalar function satisfying v < 7 < v~! and

Su= 1(Du+ (Du)") is the rate of deformation tensor or strain tensor.

Remark 1.5. In view of [7, Remark 2.7 and Theorem 2.10] and [15, Corollary 1.2],
by using an induction argument, Theorem 1.3 can be extended to the stationary
Navier-Stokes systems
Da(AaﬁDgu) + Dp +u®Dou = D,f, D
in

divu=g

with piecewise smooth coefficients provided that g > d/2. In particular, the result
holds for any H'-weak solution when the dimension d = 2, 3, 4.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the notation, vector fields, and coordinate systems introduced in [17],
along with several auxiliary results. In Section 3, we derive a new Stokes system
for the case when s = 1. Sections 4 and 5 contain the key components of the proof
of Theorem 1.3 with s = 1. It is important to note that we encounter challenges
due to the presence of the pressure term p, as exemplified in the proof of Lemma
5.1. Finally, in Section 6, we conclude the proof of Theorem 1.3 with s = 1 by
utilizing the results from Sections 4 and 5. In Section 7, we extend the proof to
cover Theorem 1.3 for general s > 2.

2. PRELIMINARIES

In this section, we first review the notation, vector fields, and coordinate systems
in [17]. Then we give some auxiliary lemmas which will be used in the proof of our
results.

2.1. Notation, vector fields, and coordinate systems. We use z = (2/,z2%)
to denote a generic point in the Euclidean space R?, where d > 2 and 2/ =
(!, ..., 291 € R¥=1 For r > 0, we denote

Bi(x)={yeR*:[y—z|<r}, B.@a)={y eR" |y —2'|<r}

We often write B, and B, for B,(0) and B..(0), respectively. For ¢ € (0, 00], we
define
L§(D) ={f € LYD) : (f)p =0},

where (f)p is the average of f over D:

(o=, fdo= %'/Dfdx-

We denote by W4(D) the usual Sobolev space and by W&’q(D) the completion of
C§°(D) in WH4(D), where C§°(D) is the set of all infinitely differentiable functions
with a compact support in D.

For simplicity, we take D to be By. By suitable rotation and scaling, we may sup-
pose that a finite number of subdomains lie in By and that they can be represented
by

a? =h;(2"), 2’ €By,j=1,...,m(< M),
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where
—1<hi(@) < <hp(a) <1,

hj(x') € CTh#(B]) with s € N. Set ho(2’) = —1 and hy,41(2’) = 1. Then we have
m + 1 regions:

Dji={xe€D:hj_ (') <2 <hj(z))}, 1<j<m+1.

The interfacial boundary is denoted by I'; := {z¢ = h;(2')}, and the normal
direction of I'; is given by

(=Darhy(a’). )T
(L4 [ Dby () [2)1/2

(2.1) n; = (njl,,n;i) =

eRY j=1,...,m.

Asin [17, Section 2.3], we fix a coordinate system such that 0 € D;, for some iy €
{1,...,m~+1} and the closest point on 9D;, is x;, = (0', h;,(0)), and V, h; (0') =
0’. In this coordinate system, we shall use z = (2/,2¢) and D, to denote the point
and the derivatives, respectively.

The following vector field was introduced in [17]. For the completeness of the
paper and reader’s convenience, we review it here. For each k¥ = 1,...,d — 1,
we define a vector field /5 : R¢ — R¢ near the center point 0 of By as follows:
lro=(0,...,0,1,0,...,0{ ), where

00 =0k, i=1,...,d—1,

Ox; are Kronecker delta symbols, and

5,0 5d
Ca o
thm(x'), z? > hm,
d_h,_ hj—a? .
= zj—h;,kahj(x/> hjj—hj,leh'j_l(I,)’ h]‘_l Sil?d < hj,] = 1,...,m,
Dy.hy(2), % < hy.

Here, Dy := D,,. One can see that E%O = Dyhj(2’) on I'; and thus ¢4 is in a
tangential direction. Moreover, it follows from h; € CstL# that lrois C** on T'y.
Introduce the projection operator defined by

(@),
(a.a)"

where (a,b) denotes the inner product of the vectors a and b, and (a,a) = |a|?>. By
using the Gram-Schmidt process:

proj,b =

by =tg, 01=10/]0],
gg = fg,o - pfojglfzo, by = g2/|22|7

-2
lar =La10— Y projo,la10, Lar="La1/[lal,

=1
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the vector fields are orthogonal to each other. Now we define the corresponding
unit normal direction which is orthogonal to £ 0, k =1,...,d—1 (and thus also ¢):

1 ot (o=l D)7

2.3 nz)=m,...,n = .
2 =t ) (1+ 0210 )

Obviously, n(z) =n; on T';.
For any point zg € Bg/y N Dj,, jo = 1,...,m + 1, suppose the closest point on
dD;, to xg is yo = (Y, hj,(yp)). On the surface I';), the unit normal vector at

(Y0, Pijo (yp)) is

( - vf’hjo (yé))’ 1)T
(14 Varhjy (yo) )12

The corresponding tangential vectors are defined by

(2.4) n, = (n;O, . ,nCle)T =

(25) Tk:gk(ﬁUO% kzlv"'vd_la

where ¢, is defined in (2.2). In the coordinate system associated with xg with the
axes paralleled to n,, and 7,k = 1,...,d — 1, we will use y = (v/,y%) and D,
to denote the point and the derivatives, respectively. Moreover, we have y = Az,
where

A= (A1> ey Ad)T = (Aaﬁ)iﬁ:1

is a d X d matrix representing the linear transformation from the coordinate sys-
tem associated with 0 to the coordinate system associated with zg, and 7, =
(T 1) Tk =1,...,d — 1, n,, = (['*, ..., T9) 7 where I' = A~L. Finally,
we introduce m + 1 “strips” (in the y-coordinates)

Q; ::{yED:y?71<yd<y§l}, ji=1,....,m+1,

where y; := (A’yo,yjl) €ljand A = (A, ..., A 1)T. For any 0 < r < 1/4, we
have

(2.6) |(D; \ Q) N (By(Axo))| < Nrdt/2 5 =1, m+1.

See, for instance, [14, Lemma 2.3].

2.2. Auxiliary results. Here we collect some elementary results. The following
weak type-(1,1) estimate is almost the same as [6, Lemma 3.4].

Lemma 2.1. Let g € (1,00). Let (v,m) € Wy U(B,(Az))? x LI(B,(Azo)) be a
weak solution to

P&(Aaﬁ(yd)D,BV) + D= fﬂBr/Q(Awo) + Da(FaﬂBr/Q(Axo)) in BT(ACE()),
divv = H]IBT/2(AJUO) — (H]IBT/2(A9;O))B,,(A:EO)
where §,Fo, H € LY(B,/2(Axg)). Then for any t >0, we have
N
{y € B,j2(Azo) : [Dv(y)| + [7(y)| >t} < 7/ ([Fal + [H| + 7[f]) dy,

B,./2(Azo)

where N = N(d, q,v).
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Lemma 2.2 ([7, Theorem 2.4]). Let ¢ € (0,1), q € (1,00), A*?, £, and g satisfy
Assumption 1.2 with s = 0. Let (u,p) € Wh4(By1)? x LI(By) be a weak solution to
(1.1) in By. Then (u,p) € CY¥'(B,_.ND;,)% x C%(B,_. ND;,) and it holds that

1Dull Lo (B,,0) + [l 5.5, . mpy; + 1Pl 51,0 + Plss, Dy,

M M
< N(IDullpr sy + ol ) + Y Ifalsp; + > 1915:5,)
j=1 j=1

where jo=1,...,m+1, ¢ = min{J }, N > 0 is a constant depending only on

K
) THa
d,m,q,v,e, |Als5-, and the CY* norm of h;.

)

3. A NEW STOKES SYSTEM
This section is devoted to deriving a new Stokes system in B4 as follows:
Do (AP Dgtt) + Dp = f + D, f,,
(3.1) divi = Dyg + DO Dyu — Y74 1, DU Dyu(Pyxo)
- Z;Tll(]lp; DEi Dju(Pjo)) s,
where @ and p are defined in (3.16), f and f, are defined in (3.4) and (3.17),
respectively, and ¢7 := (¢% ... (%J) is a smooth extension of |p, to U;’”‘:ﬁ%k#jDk.

To prove (3.1), we first use the definition of weak solutions to find that the
problem (1.1) is equivalent to a homogeneous transmission problem

Do(A*’Dgu) + Dp = Dof,  in I D,

(3.2) ulp, =ulr, (A Dpu—fu) +pnglr, =0, j=1,...,m,
divu=g in U;":ll D;,
where

[n§(A*’ Dgu — £,) + pny]r,
= (n§ (A" Dgu — £a) + pry) [ — (n§ (A" Dgu — £,) + pn;); ,

n; is the unit normal vector on I'; defined by (2.1), u|f§J and ul, (n?AaﬁDguE
and n§ A*? Dgulr. ) are the left and right limits of u (its conormal derivatives) on
I';, respectively, j = 1,...,m. Here and throughout this paper the superscript
+ indicates the limit from outside and inside the domain, respectively. In the
proofs below, we assume that Du and p are piecewise C'. After we obtain the
corresponding a priori estimates, this assumption can be removed by using an
approximation argument.

Taking the directional derivative of (3.2) along the direction ¢ := ¢, k =

1,...,d —1, we get the following inhomogeneous transmission problem
(3.3)
Do(A*°DgDpu) + DDgp = f + Dofoy  in U} D;

Dgu\ifj = Dgu\lfj, [n?‘(A(’BDﬂDgu —fo1) +n;Deplr; = flj,j =1,....,m,
div(Dpu) = Dog+ DDju in ' D,
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where

5.4) f = (A“’DgDu + Dgxaﬂpﬂu — Df,)Dol + DEDp,
f.1 = Dif, + A (Dgl")Dyu — DyA*® D,

and

(3.5) h; = [Dn&(—A**Dgu + £,) — pDyny]r,;.

From (2.1), it follows that Dyn; is a tangential direction on I'; and thus we may
write h; = h;(2’') and Dyn; € C*.
Now by adding a term

ZDd( v e By (@) /("))

Jj=1

to the first equation in (3.3), where 1, is the indicator function, we can get rid of
h; in the second equation of (3.3) and reduce the problem (3.3) to a homogeneous
transmission problem:

Do(A*?DgDyu) + DDyp = f 4 Dyf, o in U“”*1 i
(36) Dgu|rj = D(u|rj, [ n; (AaﬁDBDgu f, 2) + n]Dgp]Fj =0,
div(Dgu) = Dyg+ D¢D;u in Um+1 iy

where

faQ = f a1 +5o¢dz]lxd>h (;c’)
j=1

0ad = 1if @« =d, and d,q = 0 if a # d. Note that D/ is singular at any point where
two interfaces touch or are very close to each other. To cancel out this singularity,
for xg € Bs;4 N Dj,, we consider

(3.7 u, :=u,(z;z9) = Dyu — uy,
where
m+1 o
(3.8) ug = ug(z;30) = Z 0" D;u(Pjxq),
j=1
To for j = jo,
(3.9) Pjxg = o (z(, hj(xp)) for j < jo,
(o, hj—1(xp))  for j > jo,
and the vector field £/ := (¢, ... %7) is a smooth extension of ¢|p, to UZZE{;C#D]@-
Then it follows from (3.6) that
Do (A’ Dgu,) + DDyp = f + Dofa s in U7 Dj,
(3.10) ¢ [n%(A*Dgu, —fa3) +n;Deplr, =0, j=1,...,m,
divu, = Dyg + D¢*D;u — Z;n:ll D03 Diju(Pjxo) in Um+1 s
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where
m—+1 o
fo3 = fo3(x;20) = fo,0 — AP Z Dgt"’ Diu(Pjo)
j=1
= Dyf, — DyA*’ Dgu+ A*?(Dgtl'Dyu — Y~ Dl Diu(Pjxy))
j=1
(3.11) +0aa Y Lyasp, @ (nd(a') " hy(2').
j=1
Note that the mean oscillation of
A*®(Dgl! Diu— > " Dl Diu(Pjap))
j=1

in (3.11) is only bounded. For this, we choose a cut-off function { € C§°(Bi)

satisfying

0<(<1, ¢(=1lin By, |[D¢<8.
Denote
(3.12) A = AP 4 (1 — )dupdij-

For j =1,...,m+ 1, denote D§ := D\ D;. From [8, Corollary 5.3], it follows that
there exists (u;(+;z0), 7j(+;20)) € Wh4(By)¢ x LE(By) such that

(3.13)
Da(AaﬁDﬁuj(';xo)) + Dﬂj(';xo) = —Da(]lveAaﬂDggi’jDiu(ijo)) in Bl,
div uj(-;:co) = —]].DEDZi’jDiu(ijo) + (]lD€ Dgi’jDiu(ijo))Bl in Bl,
u;(20) =0 on 0By,

where 1 < ¢ < co. Moreover, by using the fact that 1. Dgf” is piecewise C* and
J
the local boundedness estimate of Du in Lemma 2.2, it holds that

Huj(';CUO)HWl»q(Bl) + H7rj('§x0)||L4(Bl)
< NH]IDE AP Dl Dyu(Pimo) || La(s,) + N||]l7>; D0 Diju(Pjxo)|| Lacs,)

M M
(3.14) < N(IDullpasy) + Pl ) + Y Ealy s, + D 19h 557)s

j=1 j=1

where N > 0 is a constant depending on d, m, q, v, ¢, |A‘6~D7j’ and the C1'* norm of
hj. We also obtain from Lemma 2.2 that

(w; (5 20), 7 (5 20)) € CY' (DN By ) x C* (D;NBy_.), i=1,...,m+1,
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with the estimate
1Dl (81 0) + 151w B, .+ 1Tl 81,0 + 175kiim,
< N(1Da(5:20)) 13y + 155 20) 3 (1) + L A D3l Diu(to, Pyo), 7
+ 1, DI Diu(to, Pyo), 57)

M M
< N(I1Dullzr (o) + lpllrzy + 3 al o + 3 l9l5)-

j=1 j=1

where £/ := min{p, 1} and we used (3.14) in the second inequality.

Denote
m—+1 m—+1
w:i=u(z;x0) = u;(z;z0), wi=m(x;xe) = mi(x; o).
j=1 j=1
Then for each i = 1,...,m + 1, we have
||Du||L°°(Bl/4) + ‘u‘lﬂu,’;'D_,;ﬁBl_E + ||7T||L°°(Bl/4) + ‘ﬂ—|‘u,’;'D_,;ﬂBl_5
M M
(3.15) < N(|IDullpis) + [Pl + D aly sms + D 19k s57)-
j=1 j=1

We further define
(3.16) a:=u(z;z0) =u, —u=Dpu—ug—u, p:=p(z;z9) = Dep—m.

Then (1, p) satisfies (3.1), where

(3.17) f, = f‘a(:t; x0) = f'ayl(a:; x0) + fo2(2),

with

(3.18) fo1 (w;00) := AP (Dgl' Dyu = Y 1, Dt Diu(Pjxo)),
j=1

and

(3.19)  fao(2) = Defo — DeA*’ Dgu+ 6aa Y Lyasp, @ (nd(@') " hy ().

j=1
Compared to (3.11), such data f, is good enough for us to apply Campanato’s
method in [4,21], since the mean oscillation of f, vanishes at a certain rate as the
radii of the balls go to zero (see the proof of (4.14) below for the details).
4. DECAY ESTIMATES

Let us denote

(4.1) U = U(z;20) = n®(A*’ Dga — £,) + np,
where n® and n are defined in (2.3), & = 1,...,d, and G is defined in (3.16). Denote
(4.2)
2
O(zg,r) := inf ][ (|D¢k,ﬁ(x;x0) — qk1|% + |I~J(x;m0) — Q|%) der | .
a,QER? \ J B,.(20)
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We shall adapt the argument in [17] to establish a decay estimate of

(4.3)
1 o~ 1 2
Azo,r) = inf D v(y; Axg) —qu |2 +|V(y; Azg) — Q|2) dy )
¢(Azo,7) qk/}geu%d(]ir(mo) (| v V(s Azo) — qu IV(y: Azo) = Qf ) y)
where
(4.4) V(y, Axg) = AdﬁDyﬂ{f(y; Axgy) — fd(y; Azo) + ply; Azo)eq,

eg is the d-th unit vector in R%, fa = (Ew ... ,fg)—r with o =1,...,d,
(4.5)
A (y) = AAFA® (@) NPT, V(y; Awo) = At(z;20),  B(y; Azo) = p(w;a0),
§7 (y; Amo) = AT™ACF (2 ag), T=1,...,d,
f* (w5 20) is the m-th component of fy,(z;20) defined in (3.17) with k in place of

o,y =Az, A = (Aaﬁ)iﬁz1 is defined in Section 2 (see p. 8482), and I' = A~!.
Denote

(4.6) G :=G(x;x0)

m+1 m—+1
= Dyg+ DU'Dju— Y 1, DV Dau(Pzg) — » (1, DI Diu(Pjxo)) s,
= =t

and set
(4.7) G = G(y; Awo) = Gw520), F=(F,.. . ,f) ", F (y) = A7 ™ ().

Then it follows from (3.1) that v satisfies

(4.8) in A(Bs4),

Da('AaﬁDB‘N’) + ij = f+ Da;a
divv=¢g

where f, = (f.,...,§%)T. From (4.5), the 7-th component of fml and fa)Q is
(4.9) fo1(y: Ao) = AT"AR I (2520),  Ta2(y) = ATTAR [T (2),

where f,q’l(x;a:o) and fﬂQ(a:) are the m-th component of fi 1 (z;x0) and fy o(x)
defined in (3.18) and (3.19), respectively. Then fa,l + fa,Q = §,, which is defined in
(4.5).

Recalling that f,, A%? € C1°(D;), Dyn§ € C*, the assumption that Du and p
are piecewise~C'17 and the fact that the vector field ¢ is C'*/2 (see [17, Lemma 2.1]),
we find that f, o is piecewise C%, where 0, = min {%, 1, (5}. Now we denote

F, :=F.(y; Azop)
(4.10) = (AP (y") — AP () Dy (y; Ao) + ot (U3 Az0) + T2 (y) = T2 (%),

F=(F',....,FY), H:=G-¢,
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where §, »(y%) and G are piecewise constant functions corresponding to faa(y) and
G, respectively. For the convenience of notation, set

m+1 m—+1
Cri= Y D%l (B, oynmy) + Y, [faly 557
j=1 j=1
(4.11) i
+ > ly o5 + 1Dullzi sy + IpllL(81);
j=1
and
m—+1
(412) CO =Cy + Z ||DpHL°°(Br(:Eo)ﬂDj)'
j=1
Lemma 4.1. Let §, £, and H be defined as in (4.7) and (4.10), respectively. Then
we have
(4.13) 7122 (. (o)) < NCor,
(414) ||FHL1(BT(A$0)) < NCo’f'dJr&“,
and
(4.15) #1122 (8, (Awoy) < NC2r4H0n,

where Cy and Cy are defined in (4.12) and (4.11), respectively, J,, = min {%,u,é},
N depends on \A|1)6;D—j, d,q,m,v, and the C** norm of h;.

Proof. Note that

1

(4.16) / |Dl| dz < Nri—z,
Br(azo)ﬁDj
see [17, (3.26)]. Here, N depends only on the C** norm of h;. Then together with

f7(y) = A7 f"(z), Lemma 2.2, and (3.4), we obtain (4.13).
Since f, »(y) is piecewise C®, we have

/ s () = Fan ()]
B, (Azo)

m—+1 m+1
(4.17) < NrdM“( Z I1D*ul| L (B, (z0)p,) + Z | Dpll o= (B, (20)nD;)
j=1 j=1
m—+1
+ 3 aliomy + 1Dl + Il s )
j=1

where §, = min {%,u,é}, and N depends on d,m, and the C*# norm of h;. By
using (3.8) and (3.16), we have

m—+1
Dyii(x;29) = ¢'DyDin — Dau+ D' Din — Y Dyl Dyu(Pjay).
j=1
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Then combining with (4.5), we have
(A9 (y?) = A% (y)) Dys ¥ (y; Ao)
= (A°B(y") — A% (y)) AT D, (w; o)

m—+1
= (A°B(y*) — A°P(y))AT?* ((' DDiu — Dou+ D' Diu — Y~ Dol Diu(Pjag)).
j=1
Using (3.18), (4.9), and A% (y) = AA“*A*$(x)A*FT in (4.5), we have for each
T=1,...,d,
fr1(y; Azo) = AT™AF i, (; )
) m—+1 .
= AT"AM AR (2) (Dol D" = Y 1, Dyl Diu” (Piag))
j=1
= A2 (y) AT (Dot D™ = Y~ 1, Dot Diu™(Pyo)).
j=1
Thus,
B ) m+1 )
fa,l(y; AJ?()) = Aaﬁ(y)Arﬁs (DselDiu - Z ]1737 Dsngiu(ijO))
j=1
and
(AP (y?) — AP () Dys ¥ (y; Azo) + Fa,1 (45 Azo)
m+1
= (A (y?) — AP (y))AT?* (' DDiu — Dow— Y 1, Dol Dyu(Pjag))
=1 7
_ . m+1 )
+ AB (y AT (D' Din = Y 1, Do’ Dyu(Pjag)).
j=1

Together with A € C1(D.ND;), (2.6), (3.15), (4.16), and the fact that 1, D4l
J

is piecewise C*, we have
— . - 1
(A28 (yh) — Aaﬁ(y))DyﬁV(% Axo) + Fo 1 (s Azo) | 1 (B, (Azo)) < NCyrite,

Combining with (4.17), we derive (4.14).
Finally, recalling G := G(y; Azo) = G(z;20), where G(2;20) is defined in (4.6),
using (2.6), Lemma 2.2, and the fact that 1, D1 s piecewise C* again, we have

(4.15). The proof of the lemma is complete. |

Lemma 4.2. Let ¢ € (0,1) and q € (1,00). Suppose that A*®, £, and g satisfy
Assumption 1.2 with s = 1. If (V,p) is a weak solution to (4.8), then for any
0<p<r<1/4, we have

5,
¢(Axo, p) < N(g) ¢(Azg,7/2) + NCop’,

where ¢(Axg,r) is defined in (4.3), Cy is defined in (4.12), §, = min{%,,u,é}, N
depends on d,m,q,v, the C** norm of h;, and |A|175;D—j.
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Proof. Let vo = (v(l)_,. .. ,vg) and po be functions of y?, such that v = G, Addvy +
po€d = f42, where G and §, 5 are piecewise constant functions corresponding to G
and §d,27 respectively. Set
~ yd ~
Ve:V_/ vo(s)ds, pe=p — po.

d
Az

Then according with (4.8), we have

B (o =
{Da (A (y )D/gVe) + Dpe f+ DaFa in Br(Ax0)>

divv, =H

where H = G — G, and F,, is defined in (4.10). Now we decompose (Ve,p.) =
(v,p1) + (W, p2), where (v,p;) € Wol’q(Br(Aaso))d x L{(B,(Ax)) satisfies

{Da(Aa/B(yd)Dﬁv) + Dp1 = flp, ,,(Aze) + Da(Falp,,,(Ax)) in B, (Azy).

divv =H1p, ,(Az0) — (H1B, 5(Az0)) B (Azo)

Then by Lemmas 2.1 and 4.1, we have

2
(4.18) fUDvl+Imdy) <Nt
B2 (Azo)

where Cp is defined in (4.12). Moreover, (w, py) satisfies

“AaB (/4 =
{Da(A (y“)Dgw) + Dpz =0 in B, /2(Axo).

divw = (Hlp_,,(Az)) B, (Azo)

Then it follows from [6, (3.7)] that

2
1 1
<][ ) (1D, w(y; Azo) = (Du W) 5, (Aae) |2 +W (45 Azo) = (W) 5., (A20) | ?) dy>
Byr(Azg

(4.19)
2
1 1
= A (7[ (1D, w(y; Azo) — aw |2 + W (y; Azo) — Q|2) dy) ,
B2 (Azo)
where W := W (y; Azg) = A% (y?)D,sw(y; Azg) + paeq and £ € (0,1/2) to be
fixed later. Set
V.= W(yd)Dyﬁve(y; AxO) + De€q.

Then

V -V, = -F4(y; Axy),
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where V and Fy are defined in (4.4) and (4.10), respectively. Thus, combining the
triangle inequality, (4.18), (4.19), and (4.14), we obtain

2

( ][ - (1D ¥ (3 Awo) = (D W) 5, (ra) |2 + |V (3 Az0) = (W) 5, (0 |?) dy)

B,ﬂ- xXo

2
< Nk <][ (1D, ¥ (y; Azo) — aw|? + [V (y; Azg) — Q|?) dy)
By./2(Azo)
2
+ Ng—2d ][ |Faly; Azo)|2 dy | + Nk—29Cr
B,./2(Azo)

2
< Nk ][ (1D, ¥(y; Ao) — o |+ V(35 Aro) —QIF) dy |+ N2,
By./2(Azo)

Using the fact that qi/, Q € R? are arbitrary, we deduce
d(Axo, k1) < Nokg(Axo,/2) + Nk~24Cor0.

Choosing « € (0,1/2) small enough so that Nyx < &7 for any fixed v € (§,,1) and
iterating, we get

(Axg, K1) < Hj‘;“(b(AxO, r/2) 4+ NCO(/ijr)‘s"'.

Therefore, for any p with 0 < p <r < 1/4 and k’r < p < /17, we have

Ou
é(Azo,p) < N(2) " o(Aao,7/2) + NCop'™.
The lemma is proved. (Il

Now we are ready to prove the decay estimate of ®(zg,r) defined in (4.2) as
follows.

Lemma 4.3. Let ¢ € (0,1) and q € (1,00). Suppose that A*®, £, and g satisfy
Assumption 1.2 with s = 1. If (0,p) is a weak solution to (3.1), then for any
0<p<r<1/4, we have

AN 5
(4.20) Bz, p) < N(;) ®(z0,7/2) + NCop™,

where Co is defined in (4.12), 6, = min {%, Ly 5}, N depends on d,m,q,v, the C*H
norm of hj, and |A\175;D—j.
Proof. The proof is an adaptation of [17, Lemma 3.4]. Let yo be as in Section 2.
Note that

Dy, u(z;20) — PDyev(y; Awg) = (b(x) — 73) - Da(z;20),
(4.21)  Ulw;zo) — D(A% (y)Dys ¥ (y; Azo) — F4(y; Amo) + ply; Azo)eq)

= (n® = ng (A (2) Dgii(w; o) — fu(w;20)) + (n — my )23 70),

where 71, and ng are defined in (2.5) and (2.4), respectively. For any x € B,.(zo) N
D;, where r € (|zg —yo|,1) and j =1,...,m + 1, we have

|£k(x) - Tkl < N\/F7 |1’1(.’L‘) - nyo' < N\/Fv
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where k = 1,...,d — 1. See the proof of [17, Lemma 3.4] for the details. Then
coming back to (4.21), we obtain

| Dy, (5 20) — TDyw v (y; Azo)| < Nv/r[Da(; a0),

(4.22) U (w; 20) — DA™ (y) Dys ¥ (y; Azo) — Falys Awo) + B(y; Azo)eq)]
< NV/r(|Da(a; o)| + [fa (a3 20)| + [B(x; 20)])-

By using (3.16), (3.8), and (3.15), we have

(4.23)
f (ol ) da
Br(mo)
m—+1 m—+1
<> D%l LB, @o)py) + Y 1Dl (B, (wo);) + 1 DUl Lo (B, (20))
j=1 j=1
m—+1 .
+ (17| oo (B (o)) +][ ) |DexDu— > DE Du(Pjao)| da
\Z0o j:1
m—+1 m—+1
< Z ||D2u|\L°°(B,,.(xo)ij) + Z ”Dp”LOO(BT(mo)ﬂDj)
Jj=1 j=1
M M
+ N(IIDull iz, + Iplers + D el 55 + D l9l1575;)
j=1 j=1
m+1 .
+ ][ |DexDu — >~ DE Du(Pjz) | da.
By (o) =1

To estimate the last term on the right-hand side above, on one hand, using the fact
that 7 is the smooth extension of €|Dj to Ukm:fk ) jDk and the local boundedness
of Du in Lemma 2.2, we obtain

m—+1 )
| > piiDuP)
=14 Ll(Br,»(LEo)ﬁ'Di)
M M
(4.24) < Nrt(||[Dullpi (s, + Pl sy + Z Ifaly 557 + Z |9\1,5;D_j)7

Jj=1 j=1
where i = 1,...,m + 1. On the other hand, it follows from (4.16) that
| Dlx(Du — Du(P;xqg
(4.25)

))HLl(BT(:co)F‘IDi)

1
< Nr||D*u| 1o (B, (20)D:) / |Dey| dz < Nr?t2 || D?ul| o (B, (20)nDs) -
Br(mo)ﬂDi

Thus, coming back to (4.23), and using (4.24) and (4.25), we obtain

(4.20 f (Dl + gz < N
Br(x(l)
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where Cp is defined in (4.12). It follows from (3.17) that
M

F o Ralds < N(Y laly s+ [IDulrcs,)
Br(20) j=1
) m—+1 )
+ N ’DﬁZZDiu — Z ]le DﬂElDiu(ijoﬂ dx
Br(ro) j=1

m
1 AN 0D SR G PR
r(Zo j=1
Then by using (4.16) and (3.5), we derive
(4.27) ][ If, | dz < NCy,
B, (zo)

where C; is defined in (4.11).
Using the triangle inequality and (4.22)—(4.27), we have

2
(. 0Pt~ auld + 0020 - @)
Bp(xo)

< ][ (ID(D,e ¥ (y; Awo) = T~ aw)|2
Bp(Axo)

8493

2
+ ID(A% () D% (y; Ao) = Fulys Ao) + Blys Azo)ea — T7'Q) ) dy)

+ NCo/p

< ][ (1D ¥(y: Ag) — T Lo
BP(ALE()) ’

2
+ | A% (y) Do ¥ (y; Awo) — Faly; Azo) + Py; Azo)ea — F”QI%) dy)

+ NCoy/p,

where 0 < p < r < 1/4 and Cy is defined in (4.12). By using the fact that

qr, Q € R? are arbitrary, we obtain
® (20, p) < ¢(Azo, p) + NCoy/p-
Combining with Lemma 4.2, we derive
6!‘4
(4.28) B(z0, p) < N(g) d(Azo,7/2) + NCop».
Similarly, we have
¢(Awo,1/2) < ®(20,7/2) + NCo/T.
Substituting it into (4.28) and using 6,, < 1/2, we obtain
6“
D(zg, p) < N(g) O(x0,7/2) + NCopPr.

The lemma is proved.
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5. THE BOUNDEDNESS OF ||D?u||p~ AND || Dp| =

For convenience, set

m+1 m—41
(5.1) Co == ||Dul|z1(m,) + [IPllLr(B)) + Z \faly 55, + Z 911,557
j=1 j=1

We first prove the estimates of |\D1~1('§330)||L2(BT/2(10)) and ||[)(';:1:0)HL2(BT/2(300)) in
Lemma 5.1.

Lemma 5.1. Under the same assumptions as in Lemma 4.3, we have

1 Du(; 20)lL2(B, /5 (20)) + 1B(5@0)l L2(B, )2 (20)

m—+1 m+41
a+1 d_
< Nr> ( Z | D*ul| L (8B, (0)nD;) + Z ||Dp\|Loc(B,,.(wo)ij)) + NCyr2~,
i=1 i=1

where xg € D.ND;,, r € (0,1/4), @ and p are defined in (3.16), the constant N > 0
depends on d,m, q,v,¢, |A|176;D—j, and the C** norm of hj.

Proof. We start with proving the estimate of || DU(+;z0)|L2(B, )y (x0))- By using the
definition of weak solutions, the transmission problem (3.10) is equivalent to

(5.2)

{Da(AaﬁDﬁue) +D(Dep = (Dep) B, () = £+ Dafas B

divu, = Dyg + D€' Diu — Y7 DI Diu(Pag)

By [2, Lemma 10], one can find ¥ € Hg(B,(x0))? satisfying
d1V1/J = Dép - (Dfp)Br(xo) in BT(IO)a

and

(5.3)  9llL2(B,(wo)) + TPl 12(B,(20)) < N7l|Dep = (Dep) B, (wo) | L2(B, (20))

where N = N(d). Then by applying v to (5.2) as a test function, and using Young’s

inequality and (5.3), we obtain

[ 10w (D)

Br(mo)

_ _/ A Dgu, Dot d — / fop da + / £, Dot) da
By.(z0) B (z0) B, (z0)

<co [ D Dip)p et N) [ (D g af) do
By (z0) B

r(wO)

Taking ¢ = %, we have

(5.4)  1Dep — (Dep) B, (20) || L2 (B, (z0))
< N(IDw, |22, o)) + TllEllz2(B, o)) + a3l L2(B, (0))) -
Now we choose n € C§°(B,(x¢)) such that

. N(d
(5:5) 0<n<1 m=1 i Bl D < D
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Then we apply n%u, to (5.2) as a test function to obtain
/ n? A’ Dgu, D, da
Br(x(l)

— —2/ nuZAa’BD/guZDan do — 2/ nu, Dn(Dep — (Dep) B, (o)) d
By (z0) B (z0)

m—+1
- / ( )ﬁz(Dep = (Dep) B, (20))(Deg + D' Diu — Z D Dya(Pjxo)) dz
BT o

j=1

— / f772u2 dx + / 772fa,3Do,u,Z dx + 2/ nfa3Donu, dz.
B..(z0) By (z0) By (w0)

Using the ellipticity condition, Young’s inequality, (5.4), and n = 1 in B, (), we
derive

[ Du, (s 20) || L2(B, »(x0))

< N(r i, (20l L2, (20)) + TIEl 2208, (20)) + a3 (520) | L2(B, (20))
m—+1
+ ||Deg + DﬂzDiu - Z DezJDiu(ijO)HL2(BT(zO)))
=1
+ e1l|Du, (520) | L2(B, (20))

where ¢; > 0. This, in combination with a well-known iteration argument (see, for
instance, [22, pp. 81-82]), yields

D, (s 20) | 22(B, 5(x0))
< N(r (i zo)ll 2B, wo)) + TIENL2(By(wo)) + a3 (5 20) | L2(B, (20))
(56) m+1
+ [ Deg + D Diu =y~ DI Dia(Piwo) | 125, (20))) -

Jj=1

Next we estimate the terms on the right-hand side above. By using (3.7) and
the local boundedness estimate of Du in Lemma 2.2, we obtain
(5.7)
M M
d
I, (320)ll 23, wopy < N1 (1Dl + Pl a0+ D falysm; + D Lo
Jj=1 Jj=1

175;D7j) .

From the definition of ¢ in (2.2), it follows that

in{2r, h; — h;—
(5.8) / |D€k|2 de < N min{2r, h; i—1} dz' < N1,
B, (20)ND; Biay) i —hioa

See [17, lemma 2.1] for the properties of ¢. Using this and recalling the definition
of f in (3.4), we get

d—1
(5.9) Il z2(B, (o)) < NCor 2,

Licensed to Brown Univ. Prepared on Mon Jun 23 11:17:08 EDT 2025 for download from IP 128.148.225.19.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8496 H. DONG, H. LI, AND L. XU

where Cy is defined in (4.12). Similarly, we have

+1 12
][ |DEDyu— 3" DIV Dyu(Pyao)|” de
Bi(z0) j=1
m+1
< Nrt/2 3 | D*ul| L (5, (oo)my) + NCo,
j=1
where C is defined in (5.1). According to (3.11), we have
m+1 .
(5:10)  lfas(20)llr2(B,woy < N7 2 D7 1Dl (8, o)1) + NCar®.
Jj=1

Thus, substituting (5.7), (5.9), and (5.10) into (5.6), we obtain

HDue ('; ‘TO)HLz(Br/’z(IO))

(5.11)
a1 A ml .
= Nr (Z |D2ull (s, @) + D DRI (5, zo)my) ) + NCar# !
j=1 j=1

Combining (5.11) with (3.15) and (3.16), the estimate of || Du(+;20)(|12(B, s (x0))

follows.
Next we proceed to estimate |\13||L2(BT/2(10)).
directly, and using the integration by parts and n € C5°(B(z)), we obtain

/ (De(pn?) + pn* div ) dz = 0.
B;-(z0)

Integrating Dy(pn?) over B, (zo

Then by using [2, Lemma 10] again, there exists a function ¢ € Hg (B, (z))? such

that
div = D¢(pn?) + pn®dive in B,(z),

and

lellL2(B, o)) + TIIPPIL2(B, (50)) < NI De(pn?) + pn® div €] 125, (20))

where N = N(d). Moreover, combining (5.5), the local boundedness of p in Lemma

2.2 and (5.8), we have

lell2(B, (20)) + TIIDPl L2(B, (20))
< N7 Depnll 22(B, (z0)) + NTIpnDenl| 2B, (x0)) + Nrllpn” div €| 125
(512) < NTHDan”Lz(BT(xO)) + NCor /2,

Applying ¢ to (5.2) as a test function, we have

/ n?|Dypl? da
Br(zo)

_ _/ AaﬁDﬁuzDacpdac—/ fcpdac—l—/ £ Docp do
BT(CEO) Br(z()) Br(z())

- / Dyp(2pnDen + pn? div £) dz.
Br.(z0)
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By Young’s inequality and (5.12), we have

7Depll 2B, (w0)) < €2]nDepll 2B, (z0)) + N (€2) (DU, || L2(B, (20)) + Ifa.3]l L2(B, (z0))
+ 7)€l L2(B, (20))) + NCar2 ™1

Taking €2 = 3, and using 7 = 1 in B, 2(z0), (5.9)—(5.11), we obtain

m—+1 m—+1
d+1
1Dipll 125, ooy < N7 E (Y ID2 (. @,y + D 1DPl(s,oym) )

J=1 J=1
—+ NCQT'%_I.

This together with (3.15) gives the estimate of ||p|| .2 (p,

+/2(0))- The lemma is proved.

O

Lemma 5.2. Let £ € (0,1) and q € (1,00). Suppose that A3, £, and g satisfy
Assumption 1.2 with s = 1. If (u,p) € WH9(By)? x LY(By) is a weak solution to

D, (A*PD Dp = D,f,
{_( su) + Dp n B
divu=g
then we have
m+1 m—+1
Z ||D2u||Loo(Bl/4mBj) + Z HDPHLoc(Bl/mﬁj) < NCs,
j=1 j=1

where Cy is defined in (5.1), N > 0 is a constant depending only on d,m,q,v,e,
Al 5,5, and the C*# norm of h;.
2
%)dx> ,

1 ~ 1 ~ 1
‘qk’;zo,s/2 - qk’;wo,s|2 S |ng,u($;l‘o) - qk’;mo,s/2‘2 + |ng,u($;l‘o) - qk’;w07s|2

Proof. For any s € (0,1), let Qr’.z0,5 Qug,s € R¢ be chosen such that

¢@m$_<ﬁm>OD%ﬁuww—quA?Hﬁuww—QM§
s\Zo

where k' = 1,...,d — 1. It follows from the triangle inequality that

and

[Quous/2 = Qup.sl? < [0(:20) = Qugyo2l® + [U(320) = Qug.s
Taking the average over x € By /5(70) and then taking the square, we obtain

‘qk/;mo,s/Q - qk/;xo,s| + |Qmo7s/2 - Q;co,s| < N(‘I’(l’o, 5/2) + ‘1>($07 5))

By iterating and using the triangle inequality, we derive

L
(5'13) ‘qk/UUo,Q*LS — Qk’smo,s| T |Qwo,2*Ls - Qa:o,sl < NZ‘I)(x()’Q*js),
7=0
Using (3.16) and (4.1), we have
(514) le/ﬁ(x; 1'0) = ngi/Dszu + D[k,ngill — Z ng,ZWDiu(ijo) — ng,u
j=1
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8498 H. DONG, H. LI, AND L. XU

and
U(z; 0) = n° (AQBDBDiue;; — Dy, + Dy AP Dgu — A**Dgu
m ~ m+1 o
(5-15) = Gaa > Myasn, @y (nf(2)) 'Ry (a') — A% D ﬂDgDﬁfz’jDiu(Pj%))
j=1 j=1 ’

+ H(sz - 7T).

Recalling the assumption that Du and p are piecewise C', A*? and £, are piecewise
C™9 and using (3.15), it follows that Dy, u(x;z0), 0(x; 20) € C°(D.ND;). Taking
p=2"Lsin (4.20), we have

lim ®(xg,27Ls) = 0.

L—oo

Thus, for any z¢ € D, ND;, we obtain

Bm qprpg2-2s = Do, U(xo;20), lim Qg o1, = U(zg; o).
L—o0 L—oco

Now taking L — oo in (5.13), choosing s = r/2, and using Lemma 4.3, we have for
re(0,1/4), k' =1,...,d—1, and z9 € D. N D;,

|ka/ﬁ($0; IO) - qk’;azo,r/Q‘ + |ﬁ(I07IO) - on,r/2|

o0
(5.16) <N ®(20,2797"r) < No(ao,r/2) + NCor's,
=0

where J,, = min {%, 1, (5}, and Cy is defined in (4.12). By averaging the inequality
|ri’;wo,r/2| =+ |Qw07r/2| < |D@k,l~1(17, IO) - qk’;mo,r/Q‘ + |fJ(I, IO) - Qwo7r/2|
+ [ Dy, (3 20)| + [U(2; 20)]
over xr € BT/Q(:BO) and then taking the square, we have

|qk’;x0,r/2‘ + |Qac0,r/2|

N

2
< N®(xo,7/2) + N (][ (1De, (w3 20)|> + [O (a5 20| )dx>
By /2(x0)

< Nr_d<||D£k/ﬁ(';$0)||L1(B,,,/2(x0)) + Hfj(';$0)\|L1(B,,./2(x0))>~
Therefore, combining (5.16) and the triangle inequality, we obtain

| De, (o3 20)| + [Ulo; o)
(517) < Nr’d(HDZMﬁ(';xo)HLl(B,,/z(xo)) + ||fj(';$0)||L1(B,,,/2(;c0))) + NCor=.
By using Holder’s inequality and Lemma 5.1, we have

[Da(;z0)l L1 (B, s (x0)) + 1PIL1(B, 2(20))

m—+1 m—+1
1 —
<NPE (Y ID*ull L, woypy) + D 1PPl (5, (woypy)) + NCr® ™
=1 =1
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Recalling (4.1) and (3.16), and using (3.15), we have
||ﬁ('5$0)”L1(Br/2(ro))
< 1Duls2o)llLr (s, s o)) + IEC; 20)l L1 (B, 2 (20)) + 1Pl 22 (B, )2 (20))

m—+1 m—+1
1 —
<NEE (Y ID*ull L, woymy) + D PPl (5, (woymy)) + NCr® ™!
=1 =1

These estimates together with (5.17) imply that
|Dy,, @(20; w0)| + |U(z0; 20)|

m—+1 m—+1
(5.18) < NT(S“( Z ||D2UHL°°(BT(9¢0)OD]-) + Z ”DPHLOO(BT(:EO)F‘IDJ-)) + NCQTil.
j=1 j=1
It follows from (1.1) that
(5.19) AP D,pu+ Dp = Dofy — Dy A%’ Dgu
and
(5.20) D(divu) = Dy,

in B._.NDj, 5 =1,...,M. To solve for D?u and Dp, we need to show that
the determinant of the coefficient matrix in (5.14), (5.15), (5.19), and (5.20) is not
equal to 0. To this end, let us define

y=Az, v(y)=Au(z), =(y)=p), A*(y)=AA"AF(2)A*T,

where I' = A™1, A is the linear transformation from the coordinate system associ-
ated with 0 to the coordinate system associated with the fixed point x € B, (o),
which is defined in Section 2 (see p. 8482). A direct calculation yields
(5.21) n®A*? Dy Djuli + nDyp = TAY Dy Dyv 4+ nDy7.
Using the definitions of A and n in Section 2 (see p. 8482), we have
An = (O,...,O,I)T =: eq.
Then (5.21) becomes
A(n*A*’DgD;uli, + nDyp) = A DgDyv + eq Dy
Similarly, we obtain '
607, D;Dju =TDyDpv
and
A*’Dysu+ Dp =T(A*’D,pv + D7), D(divu) = D(divv)A.
Thus, in view of (5.14), (5.15), (5.19), and (5.20), we obtain the equations for D?v
and D as follows:
DkaIV = Rl,
AdﬁDﬂDkV + eqg D = RQ,
AaﬁD(yBV + Dm ="Rg,
D(div V) = R4,
where k, k' =1,...,d — 1, Ry, m = 1,2,3,4, is derived from the terms in (5.14),
(5.15), (5.19), and (5.20), respectively. It follows from the first and last equations
in (5.22) that DyDyv and DyDgv? are solved, where k, k' = 1,...,d — 1. If we

(5.22)
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8500 H. DONG, H. LI, AND L. XU

solve for DyD;v? and Dgr, i =1,...,d, 5 =1,...,d — 1, and (i,5) = (d,d), then
Dy are obtained from the second equation in (5.22), k = 1,...,d— 1. For this, we
rewrite the last three equations in (5.22) as, i =1,...,d—1,k=1,...,d — 1,
(5.23)

Ed_l .AddDde’Uj 75,2,

Em LAY Dagv? + Zag L AS Do g +Adch2zU’: -y A DaDiv’ = R,

DO .Angd/gv] + 30 L A Dogvd + AN D30 + Dy = R,

DdD]’Uj R 45
where
B d—1
Ry =Ry — ZA ﬁD,@DkUj .A?ngDkUdv

=1

d—1 d—1 d—1

SR S A Dt~ RE S DD Y A D
a,8=1 p=1 p=1

—ZA Dogv® + AJ4DyDiv",

d—1 d—1 d—1
j d
= Y AW Dag! =AY Dagv® = AGI Dogv?,
a,B=1 B=1 a=1

and R¢, is the i-th component of R,,, m = 2,3,4. A direct calculation yields the
determinant of the coefficient matrix in (5.23) is (cof(A%4))¢ # 0, where cof (A9%) is
the cofactor of (Add). This implies that DyD;v? and Dgm can be solved by Cramer’s
rule and thus D?u and Dp. Moreover, using (5.18) and (3.15), we obtain

[D%u(ao)| + [ Dp(o)
< N(1Ds,, 8(w0:20)] + [U(ao20)| + | Do)

m—+1 m—+1
( Z Ifaly 557 + Z 191155, + 1Dall L1 (s, + [Pl (5)))
j=1 j=1
m—+1 m—+1
(5.24) < Nrou( Z | D*ul| L (B, (s0)D;) + Z | Dpll Lo (B, (wo)nD;)) + NCor ™
=1 =1

For any z; € B4 and r € (0,1/4), by taking the supremum with respect to
xo € Br(z1) ND;, we have

m+1 m+1

> 1Dl e (B, @)y + Y 1Dl (5, (21)0))

j=1 j=1
m+1 m—+1

< N (YD 1 (Bay (an)oy) + Y 1Pl L% (B (w1)1p;)) + NCar ™
j=1 j=1
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Applying an iteration argument (see, for instance, [14, Lemma 3.4]), we conclude

that
m+1 m—+1
2
Z 1D “”Lw(Bl/mﬁj) T Z |‘Dp‘|L°°(Bl/m5j> < NC.
j=1 j=1
We finish the proof of the lemma. O

6. PROOF OF THEOREM 1.3 WITH s = 1

In this section, we first estimate |Dy,,U(z;20) — Dy, U(z;x1)| and U (2; 20) —
U(x,x1)|, where xg,x1 € Bi_.. Then we establish an a priori estimate of the

modulus of continuity of (Dy,, 1, fJ’) by using the results in Sections 4 and 5, which
implies Theorem 1.3 with s = 1.

Lemma 6.1. Let ¢ € (0,1) and q € (1,00). Suppose that A3, £, and g satisfy

Assumption 1.2 with s = 1. If (0,p) is a weak solution to (3.1), then for any
To,T1 € Bi_., we have
(6.1) |Dy,, (x;x0) — Dy, 0(x; 21)| + |U(x Zo) — U(x;zl)\ < NCar,

where Co is defined in (5.1), N depends on d,m,q,v,e, |A|15_D—j, and the C*#
characteristic of D;.

Proof. We first note that for any zo € By/g N D,, and 1 € ByignN Dj,, by using
(3.9) and h; € C**,
‘PjIO — le‘1| S N‘IQ — Il‘.
Combining with Lemma 5.2, we have
(6.2) |Du(Pjzo) — Du(Pjz1)| < Nr||D2u||Loo(Bl/4@j) < NCyr.
By (3.13), one has
Do(A*PDgttj)+Di; = =Dy (1, A*P Dl (Dyu(Pjxo) — Diu(Pjr1))) in By,
-~ . J
divﬁj = ]IDC. DI (Diu(PjIl)—Diu(Pon))
+(Lpe D0 (Dyu(Pjxo)—Dya(Pjz1))) B, in By,
=0 on 0By,
where
u; = u(zyx0) —wi(zs ), 7 =iz xo) — ().
Then by using Lemma 2.2, (6.2), and the fact that 1. Dﬁgi’j is piecewise C*,
i=1,...,m+ 1, we obtain
W11 Bnm,
m—+1 B
< NIIDw;llpr gy + sl o ) + N Z |]lD;AaﬂD6£Z’j(Diu(Pj$o)
j=1
= Diu(Pjz1))lwp, + Nl DI (Dyu(Pjay) — Diu(Pjzo))| s,
< N||]lD; AP Dl (Dyu(Pjwo) — Dyu(Pja)) || pags,y + NCor
S chﬁ
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where 1/ = min{yu, 1}. Thus,

m—+1

‘u(';'rO) _u(';x1)|1,p/;’D_iﬂBl,E < Z ‘ﬁj|1’ul;503175 < NCor.
j=1

This combined with (3.16), (3.8), and (6.2) yields

|De,, (x5 20) — Dg,, 0(z;71)]

(6.3)
m—+1

= ‘ Z le,gi’j (Dill(ijo) — Diu(ijl)) + ng,u(x; QC()) — ng,u(x;:cl) < NCQ?“.
j=1

Similarly, we have the estimate of |U(z; zo) —U(x; #1)| and thus the proof of Lemma
6.1 is finished. O

Together with the results in Sections 4 and 5, we obtain an a priori estimate of
the modulus of continuity of (Dg,, 0, U) as follows.

Proposition 6.2. Let ¢ € (0,1) and q € (1,00). Suppose that A8, £, and g
satisfy Assumption 1.2 with s = 1. If (u,p) € WH4(B;)? x LI(By) is a weak

solution to
D, (A*3D Dp = D,f,
{ ( ﬂU) +op m Bl,

divu=g
then for any xg,x1 € B1_c, we have

(6.4)
|(Dy,, (z0; x0) — Dy, 0(z1;21)] + |U(z0; 20) — U(21;21)| < NCalzo — 21|,

where k' = 1,...,d— 1, Cy is defined in (5.1), 1 and U are defined in (3.16) and
(4.1), respectively, §,, = min {%,u,é}, N depends on d,m,q,v,¢, |A\175;ij, and the
C%# characteristic of Dj.

Proof. It follows from (5.14) that

(65) ng, (:E(), 1‘0)
m—+1
= 0 (x0) 0L, (x0) D; Dju(wo) — Z Dy,, 049 (20) Diu(Pjao) — Dy, , u(zo).
J=1.37#jo
For any 1 € Byjs N D;,, where j1 € {1,...,m 4 1}, if |zg — x1| > 1/16, then by
using (6.5), Lemma 2.2, Lemma 5.2, and (3.15), we have

| Dy, G(x0; 20) — Dy, U(x1;21)]|
m—+1
<N Y D%l s, ;) + NIDull (s, ,.) + NC
j=1
< NC2|:L‘0 — :L‘1|6“.
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Similarly, by using (5.15) and equation (1.1), we have

U(z0: 20) = n®(z0) (Aaﬁ(xo)pﬁpiu(xo)e;;(xo) — Dyfa(z0) + DeA* (20) Dgu(zo)

- AQB(mO)Dﬁu '/EO adz]lmd>h (x’) ( )) 1h (‘/EO)

m—+1
— AQB (z0) Z ]lDCDgfz j(;vo)D u(Pp; x0)>
Jj=1,3#jo
+ n(l‘o)e(l‘o) (Dafa (1‘0) — DaAaﬁDgu(Io) — Aaﬁ(fbo)Dalgu(Io))
(6.6) —n(xg)m(zo; o),

[U(20; 20) — U(z1;21)| < NCalzg — 21 |%.

If |zg — 21| < 1/16, then we set r = |zg — z1|. By the triangle inequality, for any
x € By(z9) N By(z1), we have
(6.7)
|Dy,, 0(x0;20) — Dy, 1t a(zy;21)|? + |U2o; 20) — U(ml;m)\%
< | De,, 0(05 20) = A0, -2 +|De,, 0(x; 20) — Ak’ 20, |2 +|De,, (x5 21) — Qs | 2
+ Doy, 0(w: 20) — Doy, (01| + Doy, 615 21) — Qs |2
+ [0 (@05 70) = Quor|? +[0(@30) = Qugr|? + [Ula31) = Qoo
+[U(300) = Ulw; )| + [Uai521) — Qo |2,

d r_ :
where qk’;zo,r> Qwo,raqk/;xl,rv le,r eR 5 E = P .,d - 17 SatISfy

2
®(z0,7) = (]{B . (IDg,, a(a; w0) — Aiaor? + [O(2320) — Quo.r|?) dﬂ?) ;
r(Zo

and

2
Pl = (7{3 (z1) (‘ka/ (z;01) — q}’c’;w1,r|% + |ﬁ(m,as1) - Qw17r|%) d$> 7
r(T1

respectively. Taking the average over © € B,.(x9) N B.(x1) and then taking the
square in (6.7), we obtain

(6.8)

|Dg,, U(x0; 20) — De,, U(x1;21)| + |U(z0;20) — Ula1;21)|

< | Dy, U(05 20) — Aktszg,r| + [U (205 %0) — Quo | + (20,7) + ®(21,7)
|D£k’ (.’L’],ﬂ?l) qk’;xl,r| + |fj(.’L’1;$1) - Q:L’l,’l"l

N

)dx>2.

+ f (\ng,ﬁ(ac;xo)—ng,ﬁ(ac;xl)ﬁ—l—\ﬁ(m;azo)—ﬁ(ac;xlﬂ
B, (zo)NB,(z1)
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It follows from Lemmas 4.3 and 5.2, (3.15), (4.26), and (4.27) with B /g in place of
B, (x) that

sup P(zg,r)
z0€B /8

m—+1 m+1

< Nvo (32 1Dl ey iy + D IRl L,y + 1D 21 (3,0
=1 =1
’ m—i—lj m+1

Il By + 1Bl By + D alysm; + D 19l s, + 1Dl pas,)
j=1 j=1

+ ||pHL1(B1)) < NCor'e.

Applying (5.16) and using (6), we derive

(6.9) sup  (|De,, 0(20;T0) — Airiwo,r| + [U(20; 20) — Qug,r|) < NCorfs.
z0€B; /8
Substituting (6), (6.9), (6.3), and (6.1) into (6.8), we obtain (6.4). O

Proof of Theorem 1.3 with s = 1. By using (5.19) and (5.20) at the point z = z,
(6.5), (6.6), and Cramer’s rule, we get that D?u(zg) and Dp(zg) are combinations

of
(6.10) Dg(x0), Dafa(x0) — Do A% (x0) Dgu(z),
m—+1 o
(6.11) Dy, , t(xo; z0) + Z Dy, , 0" (x0)Dju(Pjxo) 4+ Dy, , u(x0),
J=1,j#3j0
and

U(zo; x0) + n“(x0) (D(fa (o) — Dy AP (xo)Dpu(zo) + AP (z0)Dpu(zo)

m m—+1
b ) Lo, oy (0 (20)) By () + A% (w0) 3 W Dal™ (w0) Diu(Pya) )
Jj=1 Jj=1,j#jo

(6.12)
— n(z0)l(z0) (Dafa(zo) — DaAO‘BDgu(xO)) + n(zo)m(x0; x0).

Similarly, for any &g € B1_.ND,,, D*u(Z) and Dp(F,) are combinations of (6.10)—
(6.12) with xq replaced with Zo. It follows from (6.4) and (3.15) that

2
[D u]au;Blfsmﬁjo + [Dp]au;Bl,Emﬁjo < NGy

for any jo=1,...,m+ 1. Theorem 1.3 is proved. (]

7. THE CASE WHEN s > 2

7.1. Main ingredients of the proof. We first use an induction argument for
s > 2 to obtain

(7.1) D+ Dpa =102 (' D; Dy, - D; u+ R(u),
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HIGHER REGULARITY OF STOKES SYSTEMS 8505
where we used Dy(fg) = gD f+ fDyg and the Einstein summation convention over
repeated indices, '* :=¢7 , 7=1,...,5, k., =1,...,d—1,i, =1,...,d, and

R(a) = Dyi, (£ -+ -£')Dy, -+ D; u

s

+ Dy, (DM (- )Dy, - D; u+ Dy, (Dm (614 YDy, -~ D; u

+ Dyis (Dygia (€% -+ 09Dy -+ Dy w+ -+ Dyiy 5 (Dyis s éiSDiSu))>> ,

which is the summation of the products of directional derivatives of £ and derivatives
of u. Taking Dy --- Dy to the equation Da(AaﬁDgu) + Dp = D,f, and divu = g,
respectively, we obtain in U;n:ll D,
Do (A*°Dg(Dy -+~ Dpu)) + D(Dy - -~ Dyp) = Dofayr +f,
(72) diV(D[ s Dgu) = (2. (0 D;, Dy, -- -Disg + D, (R(uo‘))
+Dqo (0002 - 0's) Dy, Dy, -+ - D;_u®,

where f, ; = (foal, . fil)T, f= (/... /97, for the i-th equation, i = 1,. .., d,
ng .= ("¢ ... (s D; Dy, .-D;. fi4 A?jﬁpﬁ(gilgiz o li)Dy, Dy, - Disuj
+ A Ds(R(u?)) + 0aiR(p) — 0102 - £ (Dyy AS DDy, - D; !

s—1
(7.3) +> Dy, Dy (Di, AP DDy, - D ul)),
=1

and
fli= Do (107 - 0%)(Dyg, Dy, -+ Dy (AS Dgu? — fi + 8aip))
(7.4) + R(Da(f3, = A’ Dgu’) = Dip).

Similarly, by taking D, --- D, to [n;-l(A‘ngu — f,) + pn;]r;, = 0, we obtain the
boundary condition

(7.5) (A’ Dg(Dy -+ Dpu) — fo.1)]r, = hy,

where

h; = [ — 012 (3N DS Dy - Dy, Dy, - Dy (A Dgu — £2)
T=1

+ Z Di.n;Diy -+ Dy, Di_yy - Diyp
T=1

+ Z DiTlDifzn?Dil “'Diﬂ*lDiT]‘Fl"'DifgleiTzﬂLl“'Dis(AaBDﬁuifﬂ)
1<11<712<s

+ > Di,Di,n;Ds - Di, 1Di, 41+ Diy 1Di 41 Dip

1<11<72<s

4o 4 Dy, Diy - DinS (A D — £.) + Dy, Diy - -Disnjp)] )

J

— [R(nf (A" Dgu — £a)) + R(n;p)]r,
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By adding a term
S Da(Lyasn, oy (n(@)) "y ()
=1

to the first equation in (7.2), then (7.2) and (7.5) become

Do (AP Dg(Dy - - Dgu)) + D(Dy - - Dgp) = Dofas + 1,
div(Dy -+ Dpu) = €142 - .- s Dy Dy, -+ D;_g + Do(R(u®))

7.6 o )
(7.6) Do (042 - £') Dy, Dy, - - D;_u®,
[’n?(AO"BD@(Dz s Dgu) — fa,g)]pj = 0,
where

m
% d e
fa,Q =141+ dad Z ]lwd>hj(x/)(nj (x/)) 1hj (x’)
j=1
As mentioned above (3.7), since Dg (¢4 ... ¢%) and R(u’) are singular at any
point where two interfaces touch or are close to each other, we cannot prove the
smallness of the mean oscillation of (7.3). To cancel out the singularity, we choose
Up = uo(:z:; Io)

m—+1
_ Z Jivd fized | .@isijilDiz -+ D;_u(Pjo)

-1

m+1 s
+ Z ZDZH,J'DZQJ T 'DZiT,j(EZTJrlJ n 'E%J)(Di.,url o 'Disu(ijO)
=1 =1

+ (.’IZ‘—J}Q) 'Dl)i,rJrl leu(PJ.To)) 4+

m—+1
+ Z Gioo1 g 0 0) 03 020 i3 (D Dy, -+ Dy D u(Pjag)

(7.7) n (x —29) - DDy, Dy, --- D, Di_u(Pya)),

where Pjxg is defined in (3.9), 29 € B3y N Dy, r € (0,1/4), 7 is the smooth
extension of /|p, to Uzl:f?k#Dk. Denote

(7.8) u’ = uz(:v; 2o) = Dy -+ - Dyu — uyg.

Then by using (7.6), we obtain

Da (AaﬁDﬁue) + DDZ ce sz = D(xf.a,B + f.v
[n$(A*P Dgu’ — £, 3) +n;D; - - Dyplr, =0,

7.9 o i

( ) divul = ¢irpiz ... fis DilDiz s Disg + DQ(R(UQ)) — divug
D, (00 gz .. 05 Dy D, - - - D; u®,

where f.(:»4,3 = (f(}c,ﬁi? LR fg,?))Ta and

(7.10) fég) = féﬁ(x;xo) = f;Q - A%ﬁDgué, i=1,...,d.

Finally, we consider the following problem:

D, (A% D Dr = —D,(A*PF
(7.11) { a(A*"Dgu) + Dr o (4%F5) in B,

divu = —-E + (E)B1
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where (u(-;z0), 7(-;20)) € Wy'?(B1)? x LI(By), the coefficient A*# is defined in

(3.12),
m+1 ~ ~ . ~.

Fgi=>_ Ly Dg(€ 7029 - 01=9) Dy, D, + -+ Dj u(Pjao) + -
j=1

m+1
+ > 1, Dp((Dgiumy s 9) 03029 o f1+=23) (D, Dy, - D;. D u(Pjao)
j=1

+ (JJ — LL'()) . DDilDi2 . 'Di572DiS U.(Pji[)o))

(7.12)
m+1

+ Z 1, (Déis_lngimj)gil,jgiz’j ... ZZ.S_M.DBD“DZ.Q . DiHDiSU(PjSEo),
=1
which is the summation of the products of 1 . and derivatives of the terms on the
J
right-hand side of (7.7), and

m—+1
E = Z ]1D§D(gil’jgi2’j . 'gis’j)DilD

Jj=1

. Dis u(Pj:cO) =+

iy "
m—+1

+ Z ]lDC_D((Déi371,jgis’j)gil’jgh’j oo gis_Q’j) (DilDig v Di572DiS u(szo)
j=1

+ (iE — .’bo) . D.DZ1 DiQ ce Di572DiS U(ijo))
+ 3" 1, (D, 1y B9 13 fid  fie=20 DD, Dy, - D; _ D; u(Pyao).
J 5= °
Jj=1

Define

v

(7.13) wi=u(z;xg) =u’ —u, pi=p(x;z0) =Dy Dpp—m.
Then it follows from (7.9) and (7.11) that in Bs,4, i and p satisfy

(7.14)
Do (A’ Dgt) + Dpp = D, f, +f,
divia = 02 ... (% D Dy, -+ D;_g—divug+Dg (0147 - - ') D; Dy, - - - D;_u®
+E — (E)Bw
where f, = (“;,...,fg)T, and fori=1,...,d,

(7.15)

= filmsmo) = foy 4 0aa Y Dgasny @ (n§ (@) HRE(a") — ASP Dgul + ASPFJ,
j=1

and f;l is defined in (7.3).
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The general case s > 2 will be proved by induction on s. If A*?, f,, and g are
piecewise C*~1% and the interfacial boundaries are C**, then we have

|u|s,§H;DEﬂ'D_jO + |p|571,6,‘,;DaﬂD_jo

M M
(7.16) < N(HDUHLI(D) +lpllziy + D ol 150 + D |9\s_1,5;D7>’

j=1 j=1
where jo = 1,....,m+1, 9§, = min{%,,u,é}, and N depends on d,m,q,v,¢, the
C** characteristic of D;, and \A|s_1+5;ij. Now assuming that A%?, f,, and g are
piecewise C*%, and the interfacial boundaries are C**%#, we will prove that u is
piecewise C5t1:9% and p is piecewise O,

Recalling that £ is the smooth extension of |p, to UL”ZTk#Dk and using (7.16),

one can see that the right-hand side of (7.11) is piecewise C%+. Then by applying
Lemma 2.2 to (7.11), we have

|u|1+5u§EmBl—E + ‘W|6M§EQB175
M M

(7.17) < N(|Dull 1y + Il L1 (p) + Z fals—1,55; T Z 19ls—1,55;)

j=1 j=1

where i = 1,...,m + 1. Therefore, combining with (7.13), to derive the regularity
of Dy---Dyu and Dy --- Dyp, it suffices to prove that for & and p. For this, by
replicating the argument in the proof of Lemma 4.3, we obtain the decay estimate
of W(xg,r) as follows, where

2

U(zg,r):= inf ][ (|Dg,, 0 (; o) — aw|? + [U(z;20) — Q|%) dx |
A, QERT \ J B, ()

and

(7.18) U(z; 20) = n® (A’ Dgtr — £,) + np.

Lemma 7.1. Let ¢ € (0,1) and ¢ € (1,00). Suppose that A*®, £, and g satisfy
Assumption 1.2 with s > 2. If (0,p) is a weak solution to (7.14), then for any
0<p<r<1/4, we have

O
U(x0,p) < N(§> U(z0,7/2) + NCsp»,

where
m—+1 m+1
Cs:= > ID*™M || (5, (wo)npy) + D ID*PllLee(B, (@)D, + Cas
j=1 j=1
M M
(7.19) Ca = [IDullLa(sy) + IPlLr (s + Y fals s + D 19]e 5
j=1 j=1

d, = min {%,u,é}, N depends on d,m,q,v, the C*TH* norm of hj, and |A\575;D—j.

By the definitions of f, ug, and f‘a73 in (7.4), (7.7), and(7.10), respectively, using
(5.8), and mimicking the proof of Lemma 5.1, we obtain the following result.
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Lemma 7.2. Under the same assumptions as in Lemma 7.1, we have

1DA(s20)llL2(B,5(20)) + 1P(5@0)l L2(B, 2 (20))

4i m—+1 m—+1 .
SNr> ( D ID Nl p (5, o)) + Y ||DSP||L°°<BT(zo)ij>) + NCar2 ™,
Jj=1 j=1

where xg € D.ND;,, r € (0,1/4), 4 and p are defined in (7.13), the constant N > 0
depends on d,m,q,v,€, |A|, 5D and the C*T4# norm of h;.

Lemma 7.3. Under the same assumptions as in Lemma 7.1, if (u,p) € WH4(B;)9 x
L1(By) is a weak solution to

D, (A*3D Dp = D,f,
{ . ( s+ Dp mn By,
divu=g
then we have
m—+1 m—41
YDl s, ey + D0 0Pl (5, 40,y < NCa
=1 =1

where Cy is defined in (7.19), N > 0 is a constant depending on d,m,q,v,¢,
|A], 5p;» and the C*TL8 norm of h;.

Proof. The proof is similar to that of Lemma 5.2. Tt follows from (7.1), (7.8), (7.13),
and (7.15) that

Dy, u(x;20) = €4% 0% Dy, Dy, Dy, - - Dy u+ Dy, (04 - 0")D;, Dy, -+ D; u
(7.20) + Dy, (R(u)) — Dy, ug — Dy, u
and

(7.21)

U(a;20) = n®(A*’ Dgit — £,) + np
=n* (AP0 . (s DDy Dy, -+ Dy u— AP Dgu— 4% ... ('« D; Dy, -+ D; f,
+ 00" - 0 (D, AP DDy, - Dy u

Di,u))

(PETI

s—1
+> Di, - Di (D, A*’ DD
T=1

m
- 5ad Z ]lwd>hj(m/)(n?(a$/))71hj (.’13/) — AaﬁFB)
j=1

+ I'l([iléi2 s éis DilDiz s Disp — 7T).
Then using Lemmas 7.1, 7.2, and the argument that led to (5.18), we have

| Dy, 1(z0; 20)| + [U(20; 20)|

(7.22)
m+1 m+1
<N (DI Ml (5, woyemy) + D 1Pl (5, woyimy)) + NCar ™.
j=1 j=1
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8510 H. DONG, H. LI, AND L. XU

Note that Dst1u and D®p have d(d+s) and (d"'z_l) components, respectively. To
solve for them, we first take the (s — 1)-th derivative of the first equation (1.1) in

each subdomain to get the following d(d+s 2) equations
(7.23) A“’D,sD*"'u+ D°p
s—1
=D 'Dafo = (*;1) D' A’ D Dypu — DN (Do AP Dgu).
i=1

Here, it follows from (7.16), the assumption on A%’ and f, in Assumption 1.2
that the right-hand side of (7.23) is of class piecewise C%. Next, by taking the

s-th derivative of the second equation (1.1) in each subdomain, we obtain (d+§71)
equations
(7.24) D?(divu) = D?g.

Finally, by the d(d;rjl Y —l—d(dJrs %) equations in (7.20) and (7.21), and using (7.23),

(7.24), and Cramer’s rule, we derive D*T'u and D®p. Furthermore, combining
(7.17) and (7.22), we obtain

| D> u(wo)| + [Dp(a)]
m—+1 m—+1

<Ne (Y 1D Ml (5, ooy + D 1D Pl (5, @oynm,)) + NCar™
j=1 j=1

Finally, following the argument below (5.24), Lemma 7.3 is proved. ]

7.2. Proof of Theorem 1.3 with s > 2. Using Lemmas 7.1-7.3, and following
the argument in the proof of (6.4), we reach an a priori estimate of the modulus of
continuity of (Dy,, 0, 1) as follows:

(7.25)
|(De,, t(zo; 20) — De,, u(1;21)| + [U(20; w0) — Ular;21)| < NCa|zo — z1|%%,

where Cy is defined by (7.19), 9,21 € B1—, k' =1,...,d—1, w and U are defined
n (7.13) and (7.18), respectively, §, = min{%,u,é}, N depends on d,m,q,v,¢,
| Al 5:5;, and the C*T1# characteristic of D;.

For any xg € B1_.ND;,, it follows from (7.1) and (7.7) that the terms containing
(directional) derivatives of £ at z¢ in (7.20) are cancelled. Then using (7.20), (7.21),
(7.23), and (7.24) with # = 29 and Cramer’s rule, one can solve for D**!u(zy) and
D*p(x¢). For any z1 € B1_. N D;,, D" u(x1) and D*p(x1) are similarly solved.

Jo>
Thus, combining (7.16), (7.17), (7.25), and Assumption 1.2, we derive

s+1 $
[DH_ u](su§Bl—sm5jo T [DQP]‘;AL?Bl—Emﬁjo < NC4

for jo=1,...,m+ 1. Theorem 1.3 with s > 2 follows.
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