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Abstract—The gain spectrum of an Erbium-Doped Fiber
Amplifier (EDFA) has a complex dependence on channel loading,
pump power, and operating mode, making accurate modeling dif-
ficult to achieve. Machine Learning (ML) based modeling meth-
ods can achieve high accuracy, but they require comprehensive
data collection. We present a novel ML-based Semi-Supervised,
Self-Normalizing Neural Network (SS-NN) framework to model
the wavelength dependent gain of EDFAs using minimal data,
which achieve a Mean Absolute Error (MAE) of 0.07/0.08 dB
for booster/pre-amplifier gain prediction. We further perform
Transfer Learning (TL) using a single additional measurement
per target-gain setting to transfer this model among 22 EDFAs in
Open Ireland and COSMOS testbeds, which achieves a MAE of
less than 0.19 dB even when operated across different amplifier
types. We show that the SS-NN model achieves high accuracy for
gain spectrum prediction with minimal data requirement when
compared with current benchmark methods.

Index Terms—Optical Networks, Machine Learning, Erbium
Doped Fiber Amplifier

I. INTRODUCTION

Optical networks play a crucial role in supporting new
services, due to their ability to meet the high bandwidth,
low latency, and reliability requirements [1]. In addition, they
are increasingly important for supporting access and metro
optical convergence due to their ability to unify different
network layers, enhance efficiency, and meet the growing
demands for high-speed connectivity [2]. To transfer data over
long distances and across access and metro domains, optical
networks are amplified with Erbium-Doped Fiber Amplifiers
(EDFAs) to boost optical signals to overcome fiber and link
losses. The end-performance metrics such as Optical Signal-
to-Noise Ratio (OSNR), depends on the accumulated noise
through the network. Thus, characterizing gain spectrum of
EDFAs is one of the key factors to design low margin optical
networks, and efficient physical layer control and management.

The gain spectrum of an EDFA has a complex dependence
on channel loading, pump power, and operating mode, which
makes it difficult to achieve high accuracy with a theoretical
model. Recently, Machine Learning (ML) techniques such as
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Neural Networks (NNs) have been used to build EDFA gain
models [3], [4]. Other work [5] has produced generalized
ML-based EDFA models using training datasets collected
from multiple EDFAs of the same make and model, which
are shown to achieve lower Mean Absolute Error (MAE) of
the gain spectrum prediction across multiple devices of the
same make. Although these models achieve high prediction
accuracy, they do require a large number of measurements,
which can be time-consuming and difficult to obtain if the
EDFA is in a live network. Due to the complexity of the
model, deep learning methods such as NN also suffer from
non-convex training criteria and local minima, which compli-
cate the training process especially with limited number of
measurements.

Transfer Learning (TL) is a promising method to reduce the
required number of measurements for gain spectrum modeling.
TL is a machine learning technique to improve the learning
in a new task through the transfer of information from a new
domain [6]. Specifically, for modeling the gain spectrum of
EDFAs, a base model can be trained on one EDFA which can
then be retrained to characterize different devices by using
a reduced number of measurements from the new device.
Recently, it was demonstrated [7] that a single EDFA model
can be transferred between different EDFAs of the same type
using only 0.5% of the entire dataset, showcasing the potential
for efficient model transfer in this domain. However, the
application of transfer learning across amplifiers of different
types (i.e., from an EDFA Booster base model towards an
EDFA Preamp target model) requires further investigation. In
addition, work to date has mostly relied on training data from
external features, such as input power levels and output gain
spectra, which may not fully capture the complex behavior of
EDFAs.

In this paper, we implement and study a novel semi-
supervised, self-normalizing NN approach (hereafter referred
to as the SS-NN model) that characterizes the wavelength-
dependent gain of an EDFA using just 256 labeled mea-
surements along with additional unlabeled data (which are
easier to obtain). By incorporating internal EDFA features
that are typically available in commercial telecom equipment,
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Fig. 1. Measurement setup for the Booster/Pre-amplifier EDFA in COSMOS
and Open Ireland testbeds.

our model can be transferred to different EDFA types with
only a single new measurement through transfer learning. We
have reported our SS-NN model previously [8]. In this paper,
we have updated the model to perform better in higher error
configurations. Furthermore, we describe in more detail the
architecture of the SS-NN model, and report the performance
analysis. We evaluate our approach on 22 different EDFAs
across the Open Ireland [9] (based in Dublin, Ireland) and
PAWR COSMOS [10], [11] (based in Manhattan, USA)
testbeds, achieving a MAE within 0.13 dB for same-type
transfers and 0.19 dB for cross-type transfers.

II. MEASUREMENT SETUP AND DATA COLLECTION

In this section, we describe the experimental setup and data
collection strategy of EDFAs from Open Ireland testbed and
PAWR COSMOS testbed. Open Ireland testbed [9] is a re-
configurable optical-wireless testbed in Dublin, Ireland. PAWR
COSMOS testbed [10], [11] is a city-scale optical-wireless
programmable testbed deployed in Manhattan, USA.

A. Experimental Setup

We carry out gain spectrum measurements across multiple
wavelengths in the C-band from 3 commercial grade Lumen-
tum ROADM-20 units deployed in the Open Ireland testbed
and 8 similar units deployed in the PAWR COSMOS testbed.
With each Lumentum ROADM-20 unit containing 2 EDFAs,
we collect data from 11 Boosters and 11 Pre-amplifier EDFAs
in total. Figure 1 shows the experimental topology. An Am-
plified Spontaneous Emission (ASE) broadband source is used
to generate 95 X 50 GHz Wavelength Division Multiplexing
(WDM) channels in the C-band according to the International
Telecommunication Union (ITU) Dense Wavelength Division
Multiplexing (DWDM) 50 GHz grid specification. To ensure
consistency, we followed a similar measurement setup and data
collection pipeline for both testbeds [12].

Fig. 2. SS-NN model structure with 5 layers.

In the data collection for Boosters, the MUX Wavelength
Selective Switch (WSS) is used to flatten the channels, and
control the power and channel loading configuration. For
preamps, the broadband source output is connected to Line-
IN port of an auxiliary Reconfigurable Optical ADD-DROP
Multiplexers (ROADMs), whose DEMUX controls the power
and channel loading configuration. The output of this auxiliary
ROADM is forwarded to the Line-IN of the ROADM under
test. The input and output power spectra for each of the 95
channels are collected through the built-in Optical Channel
Monitors (OCMs). Additionally the total input/output power
through the EDFAs are collected through built-in Photo-
Diodes (PDs).

B. Measurement Configuration

In the Open Ireland testbed, all EDFAs were measured at
target gains of 15/20/25 dB, while in the COSMOS testbed, the
target gains were 15/18/21 dB for Boosters and 15/18/21/24/27
dB for Pre-Amplifiers in high gain mode with 0 dB gain
tilt (we adopt different gain setting to emulate diversity of
operation in different networks). The dataset includes 3,168
gain measurements (at multiple wavelengths) for each EDFA,
for each given target gain settings, across 95×50 GHz channels
in the C-band, for a total of 202,752 measurements from the
COSMOS testbed, and 57,024 measurements from the Open
Ireland testbed. In addition, measurements for each EDFA
are collected under two channel loading modes: Random and
Goalpost allocation [12] (i.e., loading groups of channels in
different spectrum bands).

III. MODEL ARCHITECTURE

In this section, we describe the Semi-Supervised Self-
Normalizing Neural Network model for characterizing the gain
spectrum of EDFAs.

A. SNN Model

Figure 2 shows the SS-NN model architecture, which
consists of an input layer, four hidden layers with
200/200/100/100 neurons, and an output layer. The out-
put layer consists of 95 neurons, predicting the wavelength
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Fig. 3. SS-NN model training framework. Step 1(a) and (b) show the greedy layer-wise pretraining of hidden layers using unsupervised pretraining. This
pre-trained model forms the basis for Step 2, where supervised fine-tuning is performed with 256 labeled measurements.

dependent gain output. The input features to the SS-NN
model includes the EDFA target gain setting at constant-
gain configuration (G0), total EDFA input power (Pin, total
EDFA output power (Pout, input power spectrum P (λi) =
[P (λ1), P (λ2), P (λ3), ...P (λ95)]; and a binary vector indicat-
ing the channel-loading configuration denoted by C = [ci]

95
i=1,

with

ci =

{
1, if the ith wavelength channel is switched on
0, otherwise.

(1)
In addition, we utilize three additional features related to the
value of the internal Variable Optical Attenuator (VOA) in
the EDFA, namely total VOA input and output power (PV

in

and PV
out), and attenuation (PV

attn). VOAs are an internal
component of EDFAs, which indirectly influence the shape of
the gain profile by acting on the signal’s input powers. This
is done to ensure the EDFA operates in its design average
inversion for a flat spectrum gain profile which matches
the Gain Flattening Filter (GFF) attenuation [13]. The VOA
attenuation is controlled automatically in the EDFA based
on the model’s gain dynamic range, and it grants intrinsic
information on the operation of each EDFA. Typically, ML
models for gain spectrum prediction rely only on input and
output power spectra information to predict the gain spectrum.
However, this choice also treats every EDFA like a black box,
which leads to poor performance in transfer learning.

The output layer predicts the gain spectrum G(λi) =
[G(λ1), G(λ2), G(λ3), ...G(λ95)].

Typically, batch normalization is used to normalize hidden
layer outputs [7]. However, batch normalization does not
perform well when training models with lesser data [14].
Given our objective is to utilize minimal additional measure-
ments for model training, and subsequent transfer learning;
we utilize Self Normalizing Neural Networkss (SNNs) with
Scaled Exponential Linear Unit (SELU) [15] activation func-
tion within layers to render the model as self normalizing.

This choice enables us to effectively normalize the hidden
layer outputs with a small amount of data, while maintaining
the benefits of hidden layer normalization and preserving high
accuracy. This step is the key enabling factor of our developed
NN architecture to achieve effective one-shot training and
transferability between models. The SELU activation function
is given by:

selu(x) = λ

{
x if x > 0

αex − α if x ≤ 0
(2)

with α = 1.673 and λ = 1.050.

B. Training Process

We use a two-step process to train this model, which
includes unsupervised pre-training [16], [17] and supervised
fine-tuning [18]. The training process has been selected with
2 key points:

1) Unsupervised pre-training utilizes unlabeled data points,
which in this case is the input power spectrum of the
measurements. These unlabeled measurements are easier
to obtain and can also be simulated in cases of flat
spectrum cases. This leads to much lower requirement
of labeled measurements which are time consuming.

2) Unsupervised pre-training leads to a better initial weight
initialization than random initialization, and captures
more intricate dependency between parameters [17].
Additionally, neural networks with pre-training exhibit
properties of a regularizer which leads to better gener-
alization [19]. This is especially beneficial for transfer
learning from one EDFA to other EDFAs.

Figure 3 shows the training process in detail. In the un-
supervised pre-training step, we incrementally initialize the
weights of each layer in the model in a greedy manner. First
we take 512 unlabeled measurements for each target gain
setting. Gaussian noise is added to the measurements. We
utilize an auto-encoder layer, with the same number of neurons
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Fig. 4. Boxplot distribution of absolute errors across all 11 Booster and 11 Pre-amplifier EDFAs for goalpost and random channel loading. The boxes denote
the inter-quartile range, and the whiskers denote the min/95th percentile

as the dimensions of the feature set, for reconstructing the
input features. Starting incrementally from the bottom, the
autoencoder layer takes the outputs from the noised inputs, and
has the task to predict the denoised inputs. This is achieved by
training the layer under test, and autoencoder layer with Mean
Squared Error (MSE) to evaluate how good the model is at
reconstructing the input even in the presence of noise. Each
layer is trained in a greedy manner for 1,800 epochs with a
Learning Rate (LR) of 1e−03, along with MSE loss function.
After the weights of one layer are initialized, its weights are
frozen for training of subsequent layer. After all the layers are
pre-trained in this manner, the weights are frozen and used as
the base model for the next step.

Next is the supervised fine-tuning step, where we utilize
512 measurements to train and fine-tune the model. We use
fully and randomly loaded measurements for this step. The
model is trained using a modified MSE loss function, where
the error for any kth measurement is calculated as below:

MSEk =
1∑95

i=1 c
k
i

·
95∑
i=1

cki .
[
gkpred(λi)− gkmeas(λi)

]2
(3)

The model is fine-tuned using Adam Optimizer, with a LR
of 1e−03 over 1,200 epochs, and a gradient clipping threshold
of 1.0 for stable training.

1) Usage of less data for training.
2) Better generalization for transfer learning.

C. Training and Test Sets

We compare the SS-NN model with a benchmark state-of-
the-art method [7], [12]. For equivalent comparison, we follow
the same dataset selection criteria. For each gain setting, we
split the dataset into a training/test set ratio of 0.86/0.14. The
test set contains 436 gain spectrum measurements per gain
setting. This test set contains a mixture of random and goalpost
channel loading measurements, which represent a diverse set
of channel loading configurations. Note that although the SS-
NN model uses less data for training, we allocate a larger
portion of training data for the benchmark model, which uses
2,732 measurements per gain setting.

D. SNN Model Performance

We compare the SS-NN model with the benchmark model
using the same set of features to highlight the benefits of

our approach. Additionally, we demonstrate the advantage of
incorporating internal EDFA features by comparing the SS-NN
model with and without including these additional features.

Figure 4 shows the distribution of absolute errors of gain
spectrum predicted by the benchmark model, SS-NN model
using same set of features, and SS-NN model with additional
internal VOA features. The errors are calculated across 11
boosters and pre-amplifier EDFAs in the Open Ireland and
COSMOS testbeds on the test set with random and goal-
post channel configurations. For boosters, the SS-NN model
achieves a mean absolute error of 0.07 dB and 0.05 dB
under the goalpost and random channel configurations. This is
comparable to the performance of the benchmark model which
uses a considerably higher number of measurements (8196
measurements), compared to a total of 1,792 measurements
utilized by the SS-NN model. Importantly, the SS-NN models
exhibit a superior error distribution, with a narrow inter-
quartile range, and a 95th percentile error of 0.25/0.14 dB,
compared to 0.38/0.16 dB by the benchmark model, across
the goalpost/random test sets.

For preamps, the SS-NN model achieves a mean absolute
error of 0.08/0.05 dB using the same set of features, and
0.07/0.05 dB using additional internal features across goal-
post/random channel configurations. This is marginally better
than the benchmark model which achieves a 0.09/0.05 dB error
across goalpost/random test sets. Additionally, the distribution
of errors for SS-NN models are more stable, with a narrow
inter-quartile range, and a 95th percentile error within 0.3 dB
across both channel configurations, showing that the SS-NN
model generalizes well to unseen channel configurations even
when trained with reduced measurements. It should be noted
that using additional internal features when directly training
EDFA models i.e., training on the source EDFA’s measure-
ments without TL does not provide additional performance.
Note that since the resolution of the OCM readings is 0.1 dB
per channel, the model is achieving the limit of ±0.05 dB
quantization error in some cases.

IV. TRANSFER LEARNING

Transfer Learning (TL) is a method to improve the learning
in a task through the transfer of information from an existing
but related domain. Specifically for ML algorithms, TL can
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Fig. 5. Boxplot distribution of absolute errors across all 22 EDFAs for (a) Booster to Booster TL, (b) PreAmp to Preamp TL, (c) Booster to Preamp TL and
(d) Preamp to Booster TL, for random and goalpost channel loading configurations. The boxes denote the inter-quartile range, and the whiskers denote the
min/95th percentile

Fig. 6. Transfer Learning MAE matrix of SS-NN model with internal features on random loading. The (i, j) entry corresponds to the TL-based EDFA model,
where the ith and jth EDFA serve as the source and target models, respectively. EDFA #1-8 are deployed in COSMOS, while EDFA #9-11 are deployed in
Open Ireland.

be used to model a new domain, by transferring a model
existing in a related domain [6]. TL is a viable and useful
strategy for modeling the gain spectrum in EDFAs, reducing
the measurement times. In this section, we show that TL for
SS-NN models can be used to model the gain spectrum across
different EDFAs with minimal additional data.

A. TL Training Process

To transfer an existing model from a source EDFA to a
target EDFA, we re-train the source model using a single fully-
loaded measurement for each target gain setting. This model
is trained using the Adam Optimizer for 10,000 epochs using
the same MSE loss function as Eq. (3) and a gradient clipping
threshold of 1.0 for stable training. However, a differential
Learning Rate (LR) is applied across layers instead of a
flat LR. Specifically, the output layer has a larger LR of
1e−03 compared to the subsequent hidden layers which have

progressively decreasing LRs, with each layer’s rate being
10% of the next layer’s LR. In this way, the weights of the
output layer are modified more aggressively, allowing it to
capture the specific characteristics of the target EDFA more
effectively. At the same time, the lower levels of the SS-
NN model are fine-tuned more gradually to avoid overfitting,
ensuring that the model can be generalized to new inputs.

B. Results

Figure 5 shows the boxplot of absolute errors of TL models
for all possible source-target model pairs, for both same
type transfer (Booster → Booster, and Preamp → Preamp),
as well as cross type transfer (Booster → Preamp, Preamp
→ Booster); across random and goalpost channel loading
configurations. As earlier, we show the comparison for the
benchmark model, SS-NN model using same set of features
and SS-NN model using additional internal features.
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For the goalpost channel loading configuration, TL based
SS-NN models achieve a MAE less than 0.10/0.13 dB for
same-type/cross-type transfers. For the random configuration,
the SS-NN models achieve a MAE less than 0.07/0.09 dB for
same-type/cross-type transfers, respectively. Using additional
internal features further improves the performance with a MAE
less than 0.10/0.13 dB for same-type/cross-type transfers. The
TL based SS-NN models also outperform the benchmark
model, with a better error distribution.

The results show that SS-NN based TL models achieve
comparable MAE with respect to a directly trained SS-NN
model. However, the 95th percentile error of TL based models
is higher than directly trained models. We believe using more
measurements for TL, if available, will further improve the
performance of TL models in high error configurations. It
should also be noted that when directly training a SS-NN
model on an EDFA, including additional internal VOA features
does not provide much of a performance boost. However,
these variables provide a large boost in performance in TL,
indicating that these extra variables contain distinctive infor-
mation about behavior of a particular EDFA, which improves
the performance in TL.

Fig. 6 shows the MAE matrices (in dB) of SS-NN model in-
corporating internal features across 11 EDFAs under goalpost
channel loading for both same-type and cross-type transfers.
In each matrix entry, entry (i, i) corresponds to a directly
trained model (without TL), and entry (i, j) corresponds to
the transferred EDFA model where the ith and jth EDFA
serve as the source and target models, respectively. The results
show that the TL performance on each jth EDFA is similar,
irrespective of the source EDFA model used. The SS-NN
based TL models achieve a consistent performance for each
EDFA, close to its directly-trained counterpart even with
different source models. Specifically, the SS-NN based TL
models with internal features under goalpost channel loading
achieve a per-EDFA MAE less than 0.14 dB for same type
transfers, and MAE less than 0.19 dB for cross type transfers.

V. CONCLUSIONS

In this paper, we show a novel Semi-Supervised Self-
Normalizing Neural Network (SS-NN) architecture to model
the wavelength dependent gain of EDFAs. The SS-NN model
uses a mix of labeled and unlabeled measurements to predict
the gain spectrum in a diverse set of channel configurations
and target gain settings with high accuracy. Furthermore,
the SS-NN model can be transferred to EDFAs of different
types using a single new measurement for each target gain
setting with a comparable performance. This demonstrates
that a single EDFA can be used to characterize multiple
EDFAs using minimal measurements, significantly reducing
the amount of data collection. We also find that internal EDFA
features provide distinctive information about each EDFA’s
mechanism. Using these internal features provide enchanced
performance in both same-type and cross-type EDFA transfers,
showing potential for improvement by incorporating internal
features. We aim to analyze other available internal EDFA

features, as well as exploring the performance of Transfer
Learning when transferring with In-Line Amplifiers (ILAs)
and cross-vendor EDFAs.
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