2024 IEEE Future Networks World Forum (FNWF) | 979-8-3503-7949-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/FNWF63303.2024.11028801

2024 IEEE Future Networks World Forum (FNWF)

Raman Tilt Prediction for Digital Twin Modelling of
ROADM-based Transmission Systems

Rishu Raj", Shuang Xie", Zehao Wang”, Tingjun Chen®, and Daniel Kilper"
*CONNECT Centre, Trinity College Dublin, Ireland; #Duke University, Durham, NC, USA.

Abstract — Fulfilling the anticipated demands of future
network technologies entails a plethora of challenges. Traditional
approaches to tackle these challenges struggle with scalability in
disaggregated systems, leading to a shift towards data-driven
methods, especially machine learning (ML). Digital twins offer a
cost-effective way to optimize network management and support
decision-making. However, accurately predicting physical
phenomena like stimulated Raman scattering (SRS) remains a
challenge, as conventional physics-based models may fail due to
variations in transmission spans. In this paper, we develop a deep
neural network (DNN) model to predict the SRS-induced Raman
tilt in optical fibers. The DNN is trained with data obtained from
experiments on the COSMOS testbed, and its performance is
benchmarked against established analytical models. Our results
demonstrate that the proposed DNN has a mean absolute error
between 0.03 dB — 0.12 dB.

Keywords—digital twins, Raman tilt, DNN, future networks.

I. INTRODUCTION

Future network technologies like 6G have unprecedented
needs for high bandwidth and low latency. These
requirements can be largely met by advanced optical
communication systems stretching from the network edge to
the core [1]. The components of such networks must meet a
variety of performance and control challenges with
complexities arising from various factors, including non-
linear impairments, component irregularities, and optical
power dynamics that are influenced by wavelength and
polarization-dependent effects in amplifiers and fiber spans
[2]. Traditionally, these challenges have been managed
through laboratory measurements, but with the adoption of
disaggregated systems, these traditional approaches become
inadequate and difficult to scale, as no single vendor oversees
or tests the entire system end-to-end. Consequently, there is
increasing interest in data collection and data-driven
methods, particularly those involving machine learning (ML)
[3], which are essential for advancing low-margin
engineering and managing the aggravated control
complexities in fully disaggregated systems [4]. To address
these challenges, it is crucial to develop experimental
platforms that can investigate the interactions between new
control and management systems and the physical
transmission effects they encounter.

Historically, optical networking experiments were
conducted with a small number of nodes over relatively short
distances such as a single transmission span. However,
modern optical networks have expanded dramatically,
enabling signal transmission across very long distances [5].
As the scale and cost of such experiments have grown, there
is a pressing need for new methods to study physical effects
on a larger scale and to understand how these effects interact
with novel software controls, ML algorithms, and control
hardware innovations. The shift towards data-driven controls
for improved management and automation has also
highlighted the need for new experimental emulation
techniques, such as digital twins.

A digital twin is a virtual replica of a communication
network that accurately replicates the devices,
communication links, operating conditions, and applications
found in the actual network [6]. By simulating various
settings within a controlled environment and running
multiple scenarios, digital twins provide a cost-effective way
to evaluate performance, forecast the impact of network
changes, optimize network management, and support
decision-making processes [7]. However, digital twins
require extensive datasets that accurately reflect the system’s
characteristics and performance under a wide range of
operating conditions [8]. One method for gathering data
involves using lab-based testbeds to collect datasets on
individual components and then developing models that can
be applied to the full system in the field. For example,
inference on a deep neural network (DNN) trained on
component data has already been applied to neural network
models of optical amplifiers, predicting end-to-end signal
power dynamics [9, 10]. Evidently, a critical decision in
digital twin modelling is to choose between physics-based
analytical models or data-driven ML models or a mixture of
both. The physics of optical transmission is well understood,
and physics-based models have been reliably used to manage
and control optical systems.

Stimulated Raman scattering (SRS) is a well-known
physical phenomenon in optical transmission systems, where
optical power from shorter wavelength signals is transferred
to longer wavelength signals via the fiber Raman interaction,
creating a tilted spectrum at the fiber output. Recent studies
have examined the effects of SRS in multi-band transmission
[11]. In earlier studies, the effects of SRS could be accurately
predicted for uniformly distributed wavelength division
multiplexed (WDM) channels using a straightforward
analytical formula based on a few basic assumptions [12 —
14]. However, variations in a transmission span—due to
factors like splices and other defects—can cause significant
deviations from these assumptions, particularly when WDM
channels are not uniformly distributed, and channel powers
vary because of wavelength-dependent power dynamics or
engineering rules for different modulation formats. These
factors can lead to considerable inaccuracies in predictions
made by analytical models. ML-based models offer an
alternative approach, but their ability to accurately predict
SRS in WDM transmission systems has not been fully
explored. In [15], the use of ML models for SRS prediction
in variable channel configurations has been proposed and
compared against the simplified analytical model of [13].

In this paper, we develop a DNN to predict the Raman tilt
in optical fibres deployed in communication networks. It
extends the work in [15] by simplifying the DNN model and
improving its prediction performance. Moreover, we provide
a more detailed analysis of different analytical models for the
prediction of Raman tilt. For training and testing the proposed
DNN-based prediction model, we collect data from WDM
signals with various channel configurations in the open-
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Fig. 1. (Left) The programmable optical network in the COSMOS tes
access COSMOS (Cloud-enhanced Open Software-defined
MObile wireless testbed for city-Scale deployment) testbed
[16]. The performance of this DNN model is then
benchmarked against that of established analytical models in
[12 — 14] to assess its accuracy and potential for applications
in digital twins.

II. METHODOLOGY

In this section, we elucidate the experimental set-up in the
COSMOS testbed which has been used for data collection,
and then describe the channel loading configurations used
therein.

A. Experimental Set-up

We conduct a series of experiments to collect extensive
fiber measurements using the COSMOS testbed, deployed in
Manhattan, New York City [16]. This state-of-the-art testbed
is equipped with eight Lumentum graybox units, which can
be interconnected through a variety of fiber spool lengths [16,
17]. The experimental setup within the COSMOS testbed is
depicted in Fig. 1. It involves the use of two reconfigurable
optical add-drop multiplexer (ROADM) units in conjunction
with a single fiber spool. To emulate a WDM spectrum within
the C-band, a comb source is employed to generate a total of
90 channels, each spaced at 50 GHz. These channels cover a
spectrum ranging from A; = 1,529.16 nm (196.05 THz) to
Agp = 1,564.68 nm (191.60 THz). The output from the comb
source is directed to the add port of the MUX wavelength
selective switch (WSS) in ROADM-1, which activates
specific channels based on the channel loading configurations
(described in Section II.B) by providing a very high
attenuation to other channel wavelengths. Besides channel
selection, ROADM-1 also ensures that the channel powers
are flattened at the booster output (line-out) [3]. The power
of each channel is adjusted to maintain an average power
level of Py, with a stringent condition that the deviation from
the mean value is < 0.2 dB. Once the WDM signal is
appropriately configured, it is transmitted through a 50 km
fiber spool. This signal is subsequently received at the pre-
amplifier input (line-in) of the second ROADM unit
(ROADM-2). At this point, the signal undergoes further
processing and is eventually dropped after passing through
the DEMUX WSS, which ensures that the relevant channels
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tbed. (Right) Block diagram of the experimental set-up in COSMOS.

are accurately isolated and analysed.

To characterize the optical fiber under test, we perform two
calibration tests before our main experiments. Firstly, we
conduct a low calibration test by setting the input channel
power to a very small value. This suppresses the non-linear
effects in the fiber. Specifically, over each channel
wavelength, a power of P, 20 dBm is launched into the
fiber. This test is essential for determining the wavelength-
dependent linear loss of the fiber, which is calculated by
analyzing the difference between the spectra S,,;(1) and
Sin (1) obtained during this test at the output and the input of
the fiber, respectively. Secondly, we perform a high
calibration test in which all 90 channels are fully loaded into
the input spectrum, i.e., the launch power of each channel is
set to a large value of P, = 3.5 dBm. The resulting output
spectrum from this test is then used to calculate the
normalized Raman gain coefficient y, which is a key
parameter in understanding the extent of Raman scattering
and its influence on the overall system performance. These
calibration experiments are crucial for establishing a baseline
understanding of the fiber’s performance characteristics.

For the primary experiments aimed at investigating the
Raman effect, we systematically vary the number of channels
loaded at the input of the fiber, testing a range of channel
counts, N € {2, 5, 10, 20, ..., 80, 90}. This approach allows
us to observe how the distribution of channels influences the
Raman tilt, providing valuable insights into the nonlinear
dynamics at play within high-capacity optical transmission
systems. To explore the phenomenon of Raman tilt in greater
depth, we set the launch power of each channel to Py = 3.5
dBm. This higher power level is chosen to maximize the
visibility of the Raman effect within the system, allowing for
amore detailed study of its impact on signal transmission. We
record the input and output spectra, Si,(1) and S,,:(1),
respectively, under various test conditions which are then
used to obtain the Raman tilt as explained in Section III. Note
that the measurement error for Raman tilt is + 0.028 dB.

B. Channel Loading Configurations

When the input spectrum is not fully loaded, i.e., N < 90,
the channels can be distributed in different configurations. In
the present work, we consider four such scenarios as
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Fig. 2. Spectral distribution of channels in various channel loading configurations for different values of N. Here, AA is the channel spacing
and Ay is the spectral bandwidth.

described below:
1) Step Configuration

Here, the channels are loaded from one end of the spectrum
(starting with the lowest wavelength) at a fixed channel
spacing of 50 GHz. However, as illustrated in Fig. 2, the total
spectral bandwidth depends on N and increases as more
channels are loaded.

2) Uniform Configuration

In this type of channel loading, the channels are distributed
uniformly across the spectrum such that the total spectral
bandwidth is fixed (refer Fig. 2). Consequently, when the
number of channels is increased, the channel spacing reduces
and the channels become more closely packed. Nevertheless,
for a given value of N, the spacing between any two adjacent
channels is always equal.

3) Goalpost Configuration

This is a type of bimodal configuration where channels are
loaded from both ends of the spectrum such that there are two
distinct bands, each containing equally spaced channels, as
depicted in Fig. 2. As N is increased, the two bands gradually
merge but the total spectral bandwidth remains fixed.

4) Random Configuration

The three scenarios elucidated above comprise systematic
loading of channels. However, in practice, the channels are
randomly distributed across the complete spectral band. For
N <90, the channels can occupy any N out of 90 possible
spectral locations. Hence, for each value of N, there are “°Cy
different conceivable channel distributions, where ™C,, is the
binomial coefficient defined as ™C, = m!/n!(m —n)!.
Here, the channel spacing is, in general, uneven although the
minimum channel spacing is bounded at 50 GHz. Moreover,
the total spectral bandwidth is fixed. In the experimental set-
up for random configuration, we generate 100 unique channel
distributions for each value of N, and record the observations
for all of them. Note that for N = 90, all four configurations
have the same spectral distribution of channels.

III. RAMAN TILT: EFFECTS AND PREDICTION

In this section, we briefly describe the Raman tilt and then
discuss the analytical models for Raman tilt prediction. In a
WDM system, Raman tilt occurs as a result of SRS which is
a nonlinear optical phenomenon where optical power from
higher frequency (shorter wavelength) channels is scattered
into lower frequency (longer wavelength) channels as light
propagates through the optical fiber. This energy transfer
causes an asymmetric power distribution across the WDM
spectrum, resulting in a spectral tilt, called Raman tilt, where
the channel powers increase progressively from the shorter to
the longer wavelengths. This tilt depends on the total power
of the aggregate signals, and the distribution of that power
across the spectrum (i.e., the wavelength locations of the
signals) [13] and is modified by the wavelength-dependent
(linear) fibre loss.

The tilt effect causes signal distortion, leading to signal
degradation and performance issues in WDM systems. In
particular, the spectral efficiency is degraded due to unequal
channel power distribution which limits the effective use of
available bandwidth. Moreover, the signal-to-noise ratio
(SNR) across channels is imbalanced, leading to variations in
service quality. Additionally, channels at lower wavelengths
(with gain depletion) experience increased bit error rate
(BER), necessitating more complex error correction and
reducing overall data throughput. Furthermore, the energy
efficiency is diminished due to higher pump power
requirements which also exacerbate other nonlinear effects.
As such, the prediction of Raman tilt in WDM systems is a
critical part of managing optical networks, particularly as
data rates increase and channels become denser.

Analytical prediction of Raman tilt in WDM systems
involves using mathematical models that describe the
nonlinear interactions within the fiber. These models provide
the power levels of individual channels across the WDM
spectrum which are then compared to obtain the Raman tilt.
Consider a WDM system with N channels at wavelengths
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A(k=1,..,N). The time-independent power evolution
along the fiber in this N-channel WDM system is denoted as

S@2) =) A=~ ) (1)
k=1

where p(z,4;) is the power carried by the channel
wavelength 4, at a distance z from the fiber input, such that
z =0 and z = L correspond to the input and output of the
fiber, respectively. Here, L is the total length of the optical
fiber, and &6(.) is the Dirac delta function or unit impulse
function. For discrete wavelengths in a WDM system, we can
write §(n) = 1, forn = 0, else §(n) = 0. Neglecting other
non-linearities like cross- and self-phase modulation, four-
wave mixing, and non-linear polarization; the power
exchange during SRS is denoted as [14]
N

d
—p( ) = —ap( A0 + ) g AP @)
j=1
where a is the attenuation coefficient of the fiber and g is
the Raman gain coefficient between two channels with
wavelengths 4; and 4. Here, we also assume that no energy
is lost when a short wavelength photon transforms into a
longer wavelength photon due to SRS. The Raman tilt is then
defined as the ratio of the output powers carried by the
longest and shortest channel wavelengths at the fiber output.
_ p(L,Ay) 3)
p(L! Al)
It is challenging to obtain the exact solutions of (2); ergo
some simplified models have been proposed based on
approximations and assumptions, as presented below.

R

1) Case I: Triangular Gain Approximation

Assuming that the Raman frequency shift is more than the
total WDM bandwidth, the Raman gain coefficient is
approximated to have a triangular profile expressed as g, =
ZyAeff(Ak - /’lj) where A is the effective core area of the
fiber, and y is a normalization constant [12]. This means that
the Raman gain is assumed to vary linearly with frequency
differences. Subsequently, in this case, the power of channel
wavelength 4, at the fiber output is given as [12]

p(0, ;) Prexp (—az)
1 p(0,2) explyPrLea(h — )} Y

where p(0, ;) is the input power carried by the channel
wavelength 4, and Pr = ¥¥_;p(0,1;) is the total power
input to the fiber. Moreover, Legs = (1 — exp(—al))/a is
the effective length of the fiber.

2) Case II: Rectangular Spectrum Assumption

In addition to the approximation in Case I, it is further
assumed that the spectrum of the WDM signal is rectangular
in shape. In other words, all channels have the same input
power, i.e., p(0,4;,) =P, Vk €{1,2,..,N}. Imposing this
on (4), we get the fiber output power in this case as

@) = Prexp (—az) 5
P S expy Pelealy — )] ©

Note that this simplification assumes a strictly flat input
spectrum.

p(z A) =

3) Case I1I: Equally Spaced Channels Assumption
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Fig. 3. Raman tilt obtained from experimental observations for different

channel loading configurations. The dotted lines are fitted curves.
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Fig. 4. Raman tilt for random channel loading configuration obtained using
experimental observations, various analytical prediction methods and the
proposed DNN prediction model.

In this case, the model is further simplified by assuming
that the spacing between any two adjacent channels is equal,
such that any channel 4; can be expressed in terms of the first
channel wavelength 4; as 4; = A; + (j — 1)AA where A7 is
the separation between two adjacent channel wavelengths.
Hence, in this case, the power at the fiber output is

1) = Prexp (—az) 6

PO A = o bl PrLen — 0B} ©

This model has been used in [13] where authors study the

uniform channel loading configuration as described in

Section II.B. Having obtained the powers of the first (k = 1)

and last (k = N) wavelengths at the fiber output (z = L)

using Eqns. (4), (5) and (6), we can predict the Raman tilts
for the three models in Cases I, II, and III, respectively.

IV. RESULTS AND DISCUSSION

In this section, we present the results obtained in our work
using the experimental methodology and prediction models
detailed in Sections II and III, respectively. We also introduce
the proposed DNN model for Raman tilt prediction and
evaluate its performance for use in digital modelling.

A. Experimental Results

We report values of Raman tilt determined using the data
obtained from experiments described in Section II.A. In Fig.
3, we depict the variation in Raman tilt with an increasing
number of activated channels, N for three different channel
loading configurations, viz. step, uniform and goalpost (refer
Section II.A). A quadratic curve fitting is performed on the
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experimental values, shown as dotted lines in Fig. 3. We
observe that the Raman tilt is aggravated as N is increased
because addition of more channels augments the Raman
effect. Moreover, the Raman tilt values for uniform and
goalpost configurations are similar, and these are higher than
those for step configuration. This is due to the smaller
channel spacings in the latter case. Specifically, the Raman
tilt increases from ~0.2 dB at N =2 to ~2.4 dB at N = 90,
for uniform and goalpost configurations, whereas it varies
from ~0 dB at N =2 to ~2.4 dB at N = 90 for the step
configuration. Evidently, for N = 90, all values overlap

TABLE L

DNN ARCHITECTURE

Input features

Total launch power, No. of
channels, Channel distribution

Output features

Raman tilt values

Optimization algorithm

Adam optimizer

Activation function

Exponential linear unit (ELU)

No. of hidden layers and neurons

5 with 64/64/2/64/64 neurons

Loss function

Mean squared error (MSE)

Weight initilaisation

Kaiming normalization

Learning rate

0.01

because the input spectra are the same for all three
configurations (refer Fig. 2). However, these systematic
channel loading configurations do not emulate practical
scenarios where the channel loading is random. Therefore, we
focus on the random channel configuration (refer Section
II.A) and obtain the Raman tilt for this case. Similar to other
configurations, the random configuration also exhibits an
increasing trend in Raman tilt when more channels are
activated.

B. Analytical Prediction of Raman Tilt

We now employ the analytical models described in Section
I to predict the Raman tilt with different channel
configurations. In Fig. 4, we also plot the Raman tilt values
predicted by the analytical models (Case-I, Case-II, and Case-
IIT) for the random channel configuration. We do a similar
analysis for step, uniform and goalpost channel loading
configurations in Fig. 5, where we also depict the fitted
curves obtained from experimental data. We deduce that, in
all four configurations, the plots of the analytical predictions

follow the same shapes and trends as the corresponding fitted
curve for observed results. However, the predictions are
considerably distinct from the actual values obtained from
experimental observations, with a maximum deviation of
~0.3 dB. While Case-II and Case-III provide optimistic
predictions of lower tilt values, Case-I presents a pessimistic
estimate of higher tilt values.

C. DNN-based Model for Raman Tilt Prediction

We design a DNN-based model to predict the Raman tilt
in optical fibers deployed in systems with arbitrarily loaded
channels. Table I lists the structural details of the proposed
DNN model. The dataset comprises observations recorded
from experiments on the COSMOS testbed with all four
channel loading configurations. The data from the random
configuration is split in the ratio 8:1:1 for training, validation,
and testing, respectively. The DNN model is trained for 100
epochs to ensure convergence. In Fig. 4, we present the
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Raman tilt values predicted by the proposed DNN model
using the test set with random channel loading configuration.
The analytical predictions are also generated using the same
test set. We infer that the predictions not only have the same
trend as the observed case, but they are also notably similar.

D. Performance Evaluation of the Proposed Digital Twin

We now evaluate the performance of the proposed DNN-
based model in terms of its prediction error and compare its
performance with those of the analytical models across
varying numbers of channels in the random configuration. In
Fig. 6, we present the mean absolute error (MAE) achieved
by the DNN-based model and the analytical models described
in Section III. Clearly, the DNN model achieves the lowest
MAE among all prediction models with a minimum of 0.03
dB at N = 80. The DNN’s performance is limited by the
measurement error (+£0.028 dB) in data collection. We also
plot the cumulative density functions (CDFs) of the absolute
error values for all prediction models, as depicted in Fig. 7.
For a quantitative comparison, in Table II, we list the
performance metrics (maximum values, percentiles and
medians) obtained from the CDFs of absolute errors. We infer
that the DNN model has the best error performance. Among
the analytical models, Case-I has superior performance which
is expected as this case has the least number of assumptions.

V. CONCLUSION

We design a DNN model to predict the Raman tilt in
ROADM-based transmission systems. For training,
validation and testing of the proposed DNN model, we collect
data through experiments involving WDM transmissions
with various channel distributions in the COSMOS testbed.
Additionally, we present a comprehensive analysis of the
physics-based analytical models for Raman tilt prediction.
We deduce that the Raman tilt varies from ~0 dB to ~2.4 dB
under different channel loading scenarios. We also analyse
the error performance of the prediction models to infer that
the prediction errors are satisfactorily low (< 0.3 dB).
Evidently, the proposed DNN model achieves the lowest
prediction error of 0.03 dB. Our results demonstrate the
DNN’s potential for enhancing the accuracy of digital twins
in optical communication networks, offering a promising
avenue for addressing the complex control challenges in next-
generation networks. As a future extension of this work, it
would be interesting to study the Raman tilt prediction in the

TABLE IL COMPARISON OF PREDCITION MODELS BASED ON CDFs
OF ABSOLUTE ERRORS
Performance Metrics (in dB)
Prediction 250 p o0 N

Model i ax
Percentile Median Percentile | Percentile | Value

Case-I 0.06 0.09 0.13 0.24 0.36
Case-I1 0.10 0.14 0.18 0.28 0.33
Case-III 0.06 0.10 0.16 0.29 0.33
DNN 0.03 0.06 0.10 0.18 0.26

presence of practical impairments like discrete fiber losses,
amplifier ripple etc.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CNS-1827923,
OAC-2029295, CNS-2112562, and CNS-2330333; SFI under grants
13/RC/2077 P2 and 22/FFP-A/10598; and EU under MSCA Grant
No. 101155602.

REFERENCES

[1] A. Fayad, T. Cinkler and J. Rak, “Toward 6G optical fronthaul: A
survey on enabling technologies and research perspectives,” [EEE
Communications Surveys & Tutorials, Jun. 2024 (Early Access).

[2] E. Akinrintoyo et al., “Reconfigurable topology testbeds: A new
approach to optical system experiments,” Optical Fiber Technology,
vol. 76, pp. 10324, 2023.

[3] Z. Wang, D. Kilper and T. Chen, “Open EDFA gain spectrum dataset
and its applications in data-driven EDFA gain modeling,” Journal of
Opt. Communications and Networking, vol. 15,n0. 9, pp. 588-99, 2023.

[4] F.Musumeci et al., “An overview on application of machine learning
techniques in optical networks,” [EEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1383-1408, 2019.

[5] A. Lord, “The future of optical transport: Architectures and
technologies from an operator perspective,” in Proc. Optical Fiber
Communication Conference, San Diego, USA, 2022, pp. 1-18.

[6] M. Rodrigo et al., “Digital twins for 5G networks: A modeling and
deployment methodology,” IEEE Access, vol. 11, pp. 38112-26, 2023.

[7]1 Y. Hui et al., “Digital twins for intelligent space-air-ground integrated
vehicular network: Challenges and solutions,” IEEE Internet of Things
Magazine, vol. 6, no. 3, pp. 70-76, 2023.

[8] S. Mihai er al., “Digital twins: A survey on enabling technologies,
challenges, trends and future prospects,” [EEE Communications
Surveys & Tutorials, vol. 24, no. 4, pp. 2255-2291, 2022.

[91 Z. Wang et al., “Multi-span optical power spectrum prediction using
ML-based EDFA models and cascaded learning,” in Proc. Optical
Fiber Communication Conference, San Diego, USA, 2024, pp. 1-3.

[10] A. Raj er al., “Self-normalizing neural network, enabling one shot
transfer learning for modeling EDFA wavelength dependent gain,” in
Proc. European Conference on Optical Communications, Glasgow,
UK, 2023, pp. 748-751.

[11] C. Lasagni, P. Serena, A. Bononi and J. -C. Antona, “A generalized
Raman scattering model for real-time SNR estimation of multi-band
systems,” Journal of Lightwave Technology, vol. 41, no. 11, pp. 3407-
3416, Jun. 2023.

[12] M. Zirngibl, “Analytical model of Raman gain effects in massive
wavelength division multiplexed transmission systems,” Electronics
Letters, vol. 34, no. 8, pp. 789-790, Apr. 1998.

[13] S. Bigo, S. Gauchard, A. Bertaina and J. -P. Hamaide, “Experimental
investigation of stimulated Raman scattering limitation on WDM
transmission over various types of fiber infrastructures,” IEEE
Photonics Technology Letters, vol. 11, no. 6, pp. 671-673, Jun. 1999.

[14] F. Vanholsbeeck et al., “Raman-induced power tilt in arbitrarily large
wavelength division multiplexed systems,” IEEE Photonics Technolo-
-gy Letters, vol. 17, no. 1, pp. 88-90, Jan. 2005.

[15] R. Raj e al., “Machine learning-based Raman tilt prediction in a
ROADM transmission system,” in Proc. European Conference on
Optical Communications, Glasgow, UK, 2023, pp. 1504-1507.

[16] COSMOS Testbed Main Site [online] Available: https://www.cosmos-
lab.org/ (accessed Aug. 10, 2024).

[17] T. Chen et al., “A software-defined programmable testbed for beyond
5G optical-wireless experimentation at city-scale,” IEEE Network, vol.
36, no. 2, pp. 90-99, 2022.

Authorized licensed use limited to: Northeastern University. Download%jsc%.]une 23,2025 at 16:20:34 UTC from IEEE Xplore. Restrictions apply.



