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Abstract — Fulfilling the anticipated demands of future 
network technologies entails a plethora of challenges. Traditional 
approaches to tackle these challenges struggle with scalability in 
disaggregated systems, leading to a shift towards data-driven 
methods, especially machine learning (ML). Digital twins offer a 
cost-effective way to optimize network management and support 
decision-making. However, accurately predicting physical 
phenomena like stimulated Raman scattering (SRS) remains a 
challenge, as conventional physics-based models may fail due to 
variations in transmission spans. In this paper, we develop a deep 
neural network (DNN) model to predict the SRS-induced Raman 
tilt in optical fibers. The DNN is trained with data obtained from 
experiments on the COSMOS testbed, and its performance is 
benchmarked against established analytical models. Our results 
demonstrate that the proposed DNN has a mean absolute error 
between 0.03 dB – 0.12 dB.  

Keywords—digital twins, Raman tilt, DNN, future networks. 

I. INTRODUCTION 

Future network technologies like 6G have unprecedented 
needs for high bandwidth and low latency. These 
requirements can be largely met by advanced optical 
communication systems stretching from the network edge to 
the core [1]. The components of such networks must meet a 
variety of performance and control challenges with 
complexities arising from various factors, including non-
linear impairments, component irregularities, and optical 
power dynamics that are influenced by wavelength and 
polarization-dependent effects in amplifiers and fiber spans 
[2]. Traditionally, these challenges have been managed 
through laboratory measurements, but with the adoption of 
disaggregated systems, these traditional approaches become 
inadequate and difficult to scale, as no single vendor oversees 
or tests the entire system end-to-end. Consequently, there is 
increasing interest in data collection and data-driven 
methods, particularly those involving machine learning (ML) 
[3], which are essential for advancing low-margin 
engineering and managing the aggravated control 
complexities in fully disaggregated systems [4]. To address 
these challenges, it is crucial to develop experimental 
platforms that can investigate the interactions between new 
control and management systems and the physical 
transmission effects they encounter. 

Historically, optical networking experiments were 
conducted with a small number of nodes over relatively short 
distances such as a single transmission span. However, 
modern optical networks have expanded dramatically, 
enabling signal transmission across very long distances [5]. 
As the scale and cost of such experiments have grown, there 
is a pressing need for new methods to study physical effects 
on a larger scale and to understand how these effects interact 
with novel software controls, ML algorithms, and control 
hardware innovations. The shift towards data-driven controls 
for improved management and automation has also 
highlighted the need for new experimental emulation 
techniques, such as digital twins. 

A digital twin is a virtual replica of a communication 
network that accurately replicates the devices, 
communication links, operating conditions, and applications 
found in the actual network [6]. By simulating various 
settings within a controlled environment and running 
multiple scenarios, digital twins provide a cost-effective way 
to evaluate performance, forecast the impact of network 
changes, optimize network management, and support 
decision-making processes [7]. However, digital twins 
require extensive datasets that accurately reflect the system’s 
characteristics and performance under a wide range of 
operating conditions [8]. One method for gathering data 
involves using lab-based testbeds to collect datasets on 
individual components and then developing models that can 
be applied to the full system in the field. For example, 
inference on a deep neural network (DNN) trained on 
component data has already been applied to neural network 
models of optical amplifiers, predicting end-to-end signal 
power dynamics [9, 10]. Evidently, a critical decision in 
digital twin modelling is to choose between physics-based 
analytical models or data-driven ML models or a mixture of 
both. The physics of optical transmission is well understood, 
and physics-based models have been reliably used to manage 
and control optical systems. 

Stimulated Raman scattering (SRS) is a well-known 
physical phenomenon in optical transmission systems, where 
optical power from shorter wavelength signals is transferred 
to longer wavelength signals via the fiber Raman interaction, 
creating a tilted spectrum at the fiber output. Recent studies 
have examined the effects of SRS in multi-band transmission 
[11]. In earlier studies, the effects of SRS could be accurately 
predicted for uniformly distributed wavelength division 
multiplexed (WDM) channels using a straightforward 
analytical formula based on a few basic assumptions [12 – 
14]. However, variations in a transmission span—due to 
factors like splices and other defects—can cause significant 
deviations from these assumptions, particularly when WDM 
channels are not uniformly distributed, and channel powers 
vary because of wavelength-dependent power dynamics or 
engineering rules for different modulation formats. These 
factors can lead to considerable inaccuracies in predictions 
made by analytical models. ML-based models offer an 
alternative approach, but their ability to accurately predict 
SRS in WDM transmission systems has not been fully 
explored. In [15], the use of ML models for SRS prediction 
in variable channel configurations has been proposed and 
compared against the simplified analytical model of [13]. 

In this paper, we develop a DNN to predict the Raman tilt 
in optical fibres deployed in communication networks. It 
extends the work in [15] by simplifying the DNN model and 
improving its prediction performance. Moreover, we provide 
a more detailed analysis of different analytical models for the 
prediction of Raman tilt. For training and testing the proposed 
DNN-based prediction model, we collect data from WDM 
signals with various channel configurations in the open-
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access COSMOS (Cloud-enhanced Open Software-defined 
MObile wireless testbed for city-Scale deployment) testbed 
[16]. The performance of this DNN model is then 
benchmarked against that of established analytical models in 
[12 – 14] to assess its accuracy and potential for applications 
in digital twins. 

II. METHODOLOGY 

In this section, we elucidate the experimental set-up in the 
COSMOS testbed which has been used for data collection, 
and then describe the channel loading configurations used 
therein.  

A. Experimental Set-up 

We conduct a series of experiments to collect extensive 
fiber measurements using the COSMOS testbed, deployed in 
Manhattan, New York City [16]. This state-of-the-art testbed 
is equipped with eight Lumentum graybox units, which can 
be interconnected through a variety of fiber spool lengths [16, 
17]. The experimental setup within the COSMOS testbed is 
depicted in Fig. 1. It involves the use of two reconfigurable 
optical add-drop multiplexer (ROADM) units in conjunction 
with a single fiber spool. To emulate a WDM spectrum within 
the C-band, a comb source is employed to generate a total of 
90 channels, each spaced at 50 GHz. These channels cover a 
spectrum ranging from 𝜆ଵ = 1,529.16 nm (196.05 THz) to 
𝜆ଽ଴ = 1,564.68 nm (191.60 THz). The output from the comb 
source is directed to the add port of the MUX wavelength 
selective switch (WSS) in ROADM-1, which activates 
specific channels based on the channel loading configurations 
(described in Section II.B) by providing a very high 
attenuation to other channel wavelengths. Besides channel 
selection, ROADM-1 also ensures that the channel powers 
are flattened at the booster output (line-out) [3]. The power 
of each channel is adjusted to maintain an average power 
level of 𝑃଴, with a stringent condition that the deviation from 
the mean value is ≤  0.2 dB. Once the WDM signal is 
appropriately configured, it is transmitted through a 50 km 
fiber spool. This signal is subsequently received at the pre-
amplifier input (line-in) of the second ROADM unit 
(ROADM-2). At this point, the signal undergoes further 
processing and is eventually dropped after passing through 
the DEMUX WSS, which ensures that the relevant channels 

are accurately isolated and analysed. 
To characterize the optical fiber under test, we perform two 

calibration tests before our main experiments. Firstly, we 
conduct a low calibration test by setting the input channel 
power to a very small value. This suppresses the non-linear 
effects in the fiber. Specifically, over each channel 
wavelength, a power of 𝑃଴ = − 20 dBm is launched into the 
fiber. This test is essential for determining the wavelength-
dependent linear loss of the fiber, which is calculated by 
analyzing the difference between the spectra 𝑆௢௨௧(𝜆)  and 
𝑆௜௡(𝜆) obtained during this test at the output and the input of 
the fiber, respectively. Secondly, we perform a high 
calibration test in which all 90 channels are fully loaded into 
the input spectrum, i.e., the launch power of each channel is 
set to a large value of 𝑃଴ = 3.5 dBm. The resulting output 
spectrum from this test is then used to calculate the 
normalized Raman gain coefficient 𝛾 , which is a key 
parameter in understanding the extent of Raman scattering 
and its influence on the overall system performance. These 
calibration experiments are crucial for establishing a baseline 
understanding of the fiber’s performance characteristics. 

For the primary experiments aimed at investigating the 
Raman effect, we systematically vary the number of channels 
loaded at the input of the fiber, testing a range of channel 
counts, 𝑁 ∈ {2, 5, 10, 20, …, 80, 90}. This approach allows 
us to observe how the distribution of channels influences the 
Raman tilt, providing valuable insights into the nonlinear 
dynamics at play within high-capacity optical transmission 
systems. To explore the phenomenon of Raman tilt in greater 
depth, we set the launch power of each channel to 𝑃଴ = 3.5 
dBm. This higher power level is chosen to maximize the 
visibility of the Raman effect within the system, allowing for 
a more detailed study of its impact on signal transmission. We 
record the input and output spectra, 𝑆୧୬(𝜆)  and 𝑆୭୳୲(𝜆) , 
respectively, under various test conditions which are then 
used to obtain the Raman tilt as explained in Section III. Note 
that the measurement error for Raman tilt is ± 0.028 dB. 

B. Channel Loading Configurations  

When the input spectrum is not fully loaded, i.e., 𝑁 < 90, 
the channels can be distributed in different configurations. In 
the present work, we consider four such scenarios as 

 

 
Fig. 1. (Left) The programmable optical network in the COSMOS testbed. (Right) Block diagram of the experimental set-up in COSMOS. 
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described below: 

1) Step Configuration 
Here, the channels are loaded from one end of the spectrum 

(starting with the lowest wavelength) at a fixed channel 
spacing of 50 GHz. However, as illustrated in Fig. 2, the total 
spectral bandwidth depends on 𝑁  and increases as more 
channels are loaded. 

2) Uniform Configuration 
In this type of channel loading, the channels are distributed 

uniformly across the spectrum such that the total spectral 
bandwidth is fixed (refer Fig. 2). Consequently, when the 
number of channels is increased, the channel spacing reduces 
and the channels become more closely packed. Nevertheless, 
for a given value of 𝑁, the spacing between any two adjacent 
channels is always equal. 

3) Goalpost Configuration 
This is a type of bimodal configuration where channels are 

loaded from both ends of the spectrum such that there are two 
distinct bands, each containing equally spaced channels, as 
depicted in Fig. 2. As 𝑁 is increased, the two bands gradually 
merge but the total spectral bandwidth remains fixed.  

4) Random Configuration 
The three scenarios elucidated above comprise systematic 

loading of channels. However, in practice, the channels are 
randomly distributed across the complete spectral band. For 
𝑁 < 90, the channels can occupy any 𝑁 out of 90 possible 
spectral locations. Hence, for each value of 𝑁, there are 𝐶ே 

ଽ଴  
different conceivable channel distributions, where 𝐶௡ 

௠  is the 
binomial coefficient defined as 𝐶௡ 

௠ = 𝑚!/𝑛! (𝑚 − 𝑛)! . 
Here, the channel spacing is, in general, uneven although the 
minimum channel spacing is bounded at 50 GHz. Moreover, 
the total spectral bandwidth is fixed. In the experimental set-
up for random configuration, we generate 100 unique channel 
distributions for each value of 𝑁, and record the observations 
for all of them. Note that for 𝑁 = 90, all four configurations 
have the same spectral distribution of channels. 

III. RAMAN TILT: EFFECTS AND PREDICTION 

In this section, we briefly describe the Raman tilt and then 
discuss the analytical models for Raman tilt prediction. In a 
WDM system, Raman tilt occurs as a result of SRS which is 
a nonlinear optical phenomenon where optical power from 
higher frequency (shorter wavelength) channels is scattered 
into lower frequency (longer wavelength) channels as light 
propagates through the optical fiber. This energy transfer 
causes an asymmetric power distribution across the WDM 
spectrum, resulting in a spectral tilt, called Raman tilt, where 
the channel powers increase progressively from the shorter to 
the longer wavelengths. This tilt depends on the total power 
of the aggregate signals, and the distribution of that power 
across the spectrum (i.e., the wavelength locations of the 
signals) [13] and is modified by the wavelength-dependent 
(linear) fibre loss. 

The tilt effect causes signal distortion, leading to signal 
degradation and performance issues in WDM systems. In 
particular, the spectral efficiency is degraded due to unequal 
channel power distribution which limits the effective use of 
available bandwidth. Moreover, the signal-to-noise ratio 
(SNR) across channels is imbalanced, leading to variations in 
service quality. Additionally, channels at lower wavelengths 
(with gain depletion) experience increased bit error rate 
(BER), necessitating more complex error correction and 
reducing overall data throughput. Furthermore, the energy 
efficiency is diminished due to higher pump power 
requirements which also exacerbate other nonlinear effects. 
As such, the prediction of Raman tilt in WDM systems is a 
critical part of managing optical networks, particularly as 
data rates increase and channels become denser. 

Analytical prediction of Raman tilt in WDM systems 
involves using mathematical models that describe the 
nonlinear interactions within the fiber. These models provide 
the power levels of individual channels across the WDM 
spectrum which are then compared to obtain the Raman tilt. 
Consider a WDM system with 𝑁  channels at wavelengths 

 

Fig. 2. Spectral distribution of channels in various channel loading configurations for different values of 𝑁. Here, ∆𝜆 is the channel spacing 
and 𝜆୆ is the spectral bandwidth. 
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𝜆௞(𝑘 = 1, … , 𝑁) . The time-independent power evolution 
along the fiber in this 𝑁-channel WDM system is denoted as 

𝑆(𝑧, 𝜆) = ෍ 𝑝(𝑧, 𝜆௞)𝛿(𝜆 − 𝜆௞) 

ே

௞ୀଵ

 (1)

where 𝑝(𝑧, 𝜆௞)  is the power carried by the channel 
wavelength 𝜆௞ at a distance 𝑧 from the fiber input, such that 
𝑧 = 0 and 𝑧 = 𝐿 correspond to the input and output of the 
fiber, respectively. Here, 𝐿 is the total length of the optical 
fiber, and 𝛿(. ) is the Dirac delta function or unit impulse 
function. For discrete wavelengths in a WDM system, we can 
write 𝛿(𝑛) = 1, for 𝑛 = 0, else 𝛿(𝑛) = 0. Neglecting other 
non-linearities like cross- and self-phase modulation, four-
wave mixing, and non-linear polarization; the power 
exchange during SRS is denoted as [14]  

𝑑

𝑑𝑧
𝑝(𝑧, 𝜆௞) = −𝛼𝑝(𝑧, 𝜆௞) + ෍ ℊ௝௞𝑝൫𝑧, 𝜆௝൯𝑝(𝑧, 𝜆௞) 

ே

௝ୀଵ

 (2)

where 𝛼 is the attenuation coefficient of the fiber and ℊ௝௞ is 
the Raman gain coefficient between two channels with 
wavelengths 𝜆௝ and 𝜆௞. Here, we also assume that no energy 
is lost when a short wavelength photon transforms into a 
longer wavelength photon due to SRS. The Raman tilt is then 
defined as the ratio of the output powers carried by the 
longest and shortest channel wavelengths at the fiber output. 

ℛ =
𝑝(𝐿, 𝜆ே)

𝑝(𝐿, 𝜆ଵ)
 (3)

It is challenging to obtain the exact solutions of (2); ergo 
some simplified models have been proposed based on 
approximations and assumptions, as presented below. 

1) Case I: Triangular Gain Approximation 
Assuming that the Raman frequency shift is more than the 

total WDM bandwidth, the Raman gain coefficient is 
approximated to have a triangular profile expressed as ℊ௝௞ =

2𝛾𝐴ୣ୤୤൫𝜆௞ − 𝜆௝൯ where 𝐴ୣ୤୤ is the effective core area of the 
fiber, and 𝛾 is a normalization constant [12]. This means that 
the Raman gain is assumed to vary linearly with frequency 
differences. Subsequently, in this case, the power of channel 
wavelength 𝜆௞ at the fiber output is given as [12] 

𝑝(𝑧, 𝜆௞) =
𝑝(0, 𝜆௞)𝑃୘exp (−𝛼𝑧)

∑ 𝑝൫0, 𝜆௝൯ exp൛𝛾𝑃୘𝐿ୣ୤୤൫𝜆௝ − 𝜆௞൯ൟே
௝ୀଵ

 (4)

where 𝑝(0, 𝜆௞)  is the input power carried by the channel 
wavelength 𝜆௞  and 𝑃୘ = ∑ 𝑝(0, 𝜆௞)ே

௞ୀଵ  is the total power 
input to the fiber. Moreover, 𝐿ୣ୤୤ = (1 − exp(−𝛼𝐿))/𝛼  is 
the effective length of the fiber. 

2) Case II: Rectangular Spectrum Assumption 
In addition to the approximation in Case I, it is further 

assumed that the spectrum of the WDM signal is rectangular 
in shape. In other words, all channels have the same input 
power, i.e., 𝑝(0, 𝜆௞) = 𝑃଴ ∀ 𝑘 ∈ {1, 2, … , 𝑁}.  Imposing this 
on (4), we get the fiber output power in this case as 

𝑝(𝑧, 𝜆௞) =
𝑃୘exp (−𝛼𝑧)

∑ exp൛𝛾𝑃୘𝐿ୣ୤୤൫𝜆௝ − 𝜆௞൯ൟே
௝ୀଵ

 (5)

Note that this simplification assumes a strictly flat input 
spectrum. 

3) Case III: Equally Spaced Channels Assumption 

In this case, the model is further simplified by assuming 
that the spacing between any two adjacent channels is equal, 
such that any channel 𝜆௝ can be expressed in terms of the first 
channel wavelength 𝜆ଵ  as 𝜆௝ = 𝜆ଵ + (𝑗 − 1)∆𝜆 where ∆𝜆 is 
the separation between two adjacent channel wavelengths. 
Hence, in this case, the power at the fiber output is  

𝑝(𝑧, 𝜆௞) =
𝑃୘exp (−𝛼𝑧)

∑ exp{𝛾𝑃୘𝐿ୣ୤୤(𝑗 − 𝑘)∆𝜆}ே
௝ୀଵ

 (6) 

This model has been used in [13] where authors study the 
uniform channel loading configuration as described in 
Section II.B. Having obtained the powers of the first (𝑘 = 1) 
and last (𝑘 = 𝑁)  wavelengths at the fiber output (𝑧 = 𝐿 ) 
using Eqns. (4), (5) and (6), we can predict the Raman tilts 
for the three models in Cases I, II, and III, respectively. 

IV. RESULTS AND DISCUSSION 

In this section, we present the results obtained in our work 
using the experimental methodology and prediction models 
detailed in Sections II and III, respectively. We also introduce 
the proposed DNN model for Raman tilt prediction and 
evaluate its performance for use in digital modelling. 

A. Experimental Results 

We report values of Raman tilt determined using the data 
obtained from experiments described in Section II.A. In Fig. 
3, we depict the variation in Raman tilt with an increasing 
number of activated channels, 𝑁 for three different channel 
loading configurations, viz. step, uniform and goalpost (refer 
Section II.A). A quadratic curve fitting is performed on the 

 
Fig. 3. Raman tilt obtained from experimental observations for different 
channel loading configurations. The dotted lines are fitted curves. 
 

     
Fig. 4. Raman tilt for random channel loading configuration obtained using 
experimental observations, various analytical prediction methods and the 
proposed DNN prediction model. 
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experimental values, shown as dotted lines in Fig. 3. We 
observe that the Raman tilt is aggravated as 𝑁 is increased 
because addition of more channels augments the Raman 
effect. Moreover, the Raman tilt values for uniform and 
goalpost configurations are similar, and these are higher than 
those for step configuration. This is due to the smaller 
channel spacings in the latter case. Specifically, the Raman 
tilt increases from ~0.2 dB at 𝑁 = 2 to ~2.4 dB at 𝑁 = 90, 
for uniform and goalpost configurations, whereas it varies 
from ~0 dB at 𝑁 = 2 to ~2.4 dB at 𝑁 = 90 for the step 
configuration. Evidently, for 𝑁 =  90, all values overlap 
because the input spectra are the same for all three 
configurations (refer Fig. 2). However, these systematic 
channel loading configurations do not emulate practical 
scenarios where the channel loading is random. Therefore, we 
focus on the random channel configuration (refer Section 
II.A) and obtain the Raman tilt for this case. Similar to other 
configurations, the random configuration also exhibits an 
increasing trend in Raman tilt when more channels are 
activated.  

B. Analytical Prediction of Raman Tilt 

We now employ the analytical models described in Section 
III to predict the Raman tilt with different channel 
configurations. In Fig. 4, we also plot the Raman tilt values 
predicted by the analytical models (Case-I, Case-II, and Case-
III) for the random channel configuration. We do a similar 
analysis for step, uniform and goalpost channel loading 
configurations in Fig. 5, where we also depict the fitted 
curves obtained from experimental data. We deduce that, in 
all four configurations, the plots of the analytical predictions 

follow the same shapes and trends as the corresponding fitted 
curve for observed results. However, the predictions are 
considerably distinct from the actual values obtained from 
experimental observations, with a maximum deviation of 
~ 0.3 dB. While Case-II and Case-III provide optimistic 
predictions of lower tilt values, Case-I presents a pessimistic 
estimate of higher tilt values.  

C. DNN-based Model for Raman Tilt Prediction 

We design a DNN-based model to predict the Raman tilt 
in optical fibers deployed in systems with arbitrarily loaded 
channels. Table I lists the structural details of the proposed 
DNN model. The dataset comprises observations recorded 
from experiments on the COSMOS testbed with all four 
channel loading configurations. The data from the random 
configuration is split in the ratio 8:1:1 for training, validation, 
and testing, respectively. The DNN model is trained for 100 
epochs to ensure convergence. In Fig. 4, we present the 

TABLE I.  DNN ARCHITECTURE 

Input features 
Total launch power, No. of 
channels, Channel distribution 

Output features Raman tilt values 

Optimization algorithm Adam optimizer 

Activation function Exponential linear unit (ELU) 

No. of hidden layers and neurons 5 with 64/64/2/64/64 neurons 

Loss function Mean squared error (MSE) 

Weight initilaisation Kaiming normalization 

Learning rate 0.01 

 

 
Fig. 5. Raman tilt obtained from experimental observations and predicted using different analytical models (Case-I, Case-II, Case-III) for channels loaded in 
(a) Step configuration, (b) Uniform configuration, and (c) Goalpost configuration. 

 

 
Fig. 6. Mean absolute error (MAE) values achieved by the analytical and DNN-based prediction models for the random channel configuration. 
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Raman tilt values predicted by the proposed DNN model 
using the test set with random channel loading configuration. 
The analytical predictions are also generated using the same 
test set. We infer that the predictions not only have the same 
trend as the observed case, but they are also notably similar. 

D. Performance Evaluation of the Proposed Digital Twin 

We now evaluate the performance of the proposed DNN-
based model in terms of its prediction error and compare its 
performance with those of the analytical models across 
varying numbers of channels in the random configuration. In 
Fig. 6, we present the mean absolute error (MAE) achieved 
by the DNN-based model and the analytical models described 
in Section III. Clearly, the DNN model achieves the lowest 
MAE among all prediction models with a minimum of 0.03 
dB at 𝑁 =  80. The DNN’s performance is limited by the 
measurement error (±0.028 dB) in data collection. We also 
plot the cumulative density functions (CDFs) of the absolute 
error values for all prediction models, as depicted in Fig. 7. 
For a quantitative comparison, in Table II, we list the 
performance metrics (maximum values, percentiles and 
medians) obtained from the CDFs of absolute errors. We infer 
that the DNN model has the best error performance. Among 
the analytical models, Case-I has superior performance which 
is expected as this case has the least number of assumptions.   

V. CONCLUSION 

        We design a DNN model to predict the Raman tilt in 
ROADM-based transmission systems. For training, 
validation and testing of the proposed DNN model, we collect 
data through experiments involving WDM transmissions 
with various channel distributions in the COSMOS testbed. 
Additionally, we present a comprehensive analysis of the 
physics-based analytical models for Raman tilt prediction. 
We deduce that the Raman tilt varies from ~0 dB to ~2.4 dB 
under different channel loading scenarios. We also analyse 
the error performance of the prediction models to infer that 
the prediction errors are satisfactorily low ( ≤  0.3 dB). 
Evidently, the proposed DNN model achieves the lowest 
prediction error of 0.03 dB. Our results demonstrate the 
DNN’s potential for enhancing the accuracy of digital twins 
in optical communication networks, offering a promising 
avenue for addressing the complex control challenges in next-
generation networks. As a future extension of this work, it 
would be interesting to study the Raman tilt prediction in the 

presence of practical impairments like discrete fiber losses, 
amplifier ripple etc. 
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Fig. 7. CDFs of absolute errors achieved by the analytical and DNN-based 
prediction models for the random channel configuration. 
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TABLE II.  COMPARISON OF PREDCITION MODELS BASED ON CDFS 
OF ABSOLUTE ERRORS 

Prediction 
Model 

Performance Metrics (in dB) 

25th 
Percentile Median 75th 

Percentile 
90th 

Percentile 
Max 

Value 

Case-I 0.06 0.09 0.13 0.24 0.36 

Case-II 0.10 0.14 0.18 0.28 0.33 

Case-III 0.06 0.10 0.16 0.29 0.33 

DNN 0.03 0.06 0.10 0.18 0.26 
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