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Figure 1: StreetNav is a system that explores the concept of repurposing existing street cameras to support precise outdoor
navigation for blind and low-vision (BLV) pedestrians. It comprises two components: (i) a computer vision (CV) pipeline, and
(ii) a companion smartphone app. The computer vision pipeline processes the street camera’s video feeds and delivers real-time
navigation feedback via the app. StreetNav offers precise turn-by-turn directions to destinations while also providing real-time,
scene-aware assistance to alert them of nearby obstacles and facilitate safe street crossings.
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ABSTRACT
Blind and low-vision (BLV) people rely on GPS-based systems for
outdoor navigation. GPS’s inaccuracy, however, causes them to
veer off track, run into obstacles, and struggle to reach precise
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destinations. While prior work has made precise navigation pos-
sible indoors via hardware installations, enabling this outdoors
remains a challenge. Interestingly, many outdoor environments are
already instrumented with hardware such as street cameras. In this
work, we explore the idea of repurposing existing street cameras
for outdoor navigation. Our community-driven approach considers
both technical and sociotechnical concerns through engagements
with various stakeholders: BLV users, residents, business owners,
and Community Board leadership. The resulting system, StreetNav,
processes a camera’s video feed using computer vision and gives
BLV pedestrians real-time navigation assistance. Our evaluations
show that StreetNav guides users more precisely than GPS, but
its technical performance is sensitive to environmental occlusions
and distance from the camera. We discuss future implications for
deploying such systems at scale.

CCS CONCEPTS
• Human-centered computing → Accessibility systems and
tools.
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1 INTRODUCTION
Outdoor navigation in unfamiliar environments is amajor challenge
for blind and low-vision (BLV) people. Among the many navigation
systems that have been developed to assist BLV people outdoors,
GPS-based systems are the most popular [30, 33, 44, 63, 68]. These
systems, such as BlindSquare [44] and Microsoft Soundscape [30],
guide users to a destination and notify them of surrounding points
of interest (POIs). Despite GPS’s undeniable impact in making out-
door environments navigable, its imprecision is a major limita-
tion [61]. GPS precision can range from 5 meters at best to over
tens of meters in urban areas with buildings and trees [23, 46, 69].
This imprecision causes BLV people to veer off track [53], run
into unexpected obstacles [8, 54, 56], and struggle to reach precise
destinations [61] when navigating outdoors.

Prior work on indoor navigation, on the contrary, has made pre-
cise navigation assistance possible for BLV people [2, 21, 36, 48, 62].
Most approaches do so by installing a dense network of Blue-
tooth [2] or WiFi [21] beacons. However, extending this approach
for outdoor navigation is not feasible due to the vast scale and
complex nature of outdoor spaces. Interestingly, many outdoor
environments of interest, such as urban districts and downtown ar-
eas, are already instrumented with hardware that has the potential
to help, including street cameras, traffic sensors, and other urban
infrastructure components.

Street cameras, in particular, have the potential to support BLV
pedestrians’ outdoor navigation. The video feed from these cameras
could be processed using computer vision to track BLV pedestrians
and perceive their visual environment with greater precision and
fidelity compared to GPS-based systems. The profound potential of
street cameras for assistive technology is accompanied by signifi-
cant challenges and concerns — both technical and sociotechnical.

On the technical front, there is a lack of understanding regarding
the precise capabilities of street cameras to track BLV pedestri-
ans and how camera-based systems should be designed to effec-
tively support BLV people’s outdoor navigation. Sociotechnically,
a major concern revolves around privacy due to cameras’ capa-
bility to collect pervasive data, not only affecting BLV users but
also other pedestrians and vehicles in the vicinity [17]. Moreover,
street cameras are often deployed by governments to force surveil-
lance [4, 12, 20, 38, 42], which exacerbates people’s privacy con-
cerns. Limited work has been done to explore how camera-based
technologies can respect people’s privacy concerns and directly
serve their interests, rather than solely serving government-defined
purposes [17, 28, 41, 74].

In this work, we take a community-driven approach to explore
the concept of leveraging street cameras to support outdoor navi-
gation for blind pedestrians. To this end, we engage with various
stakeholders including BLV users, local residents, local business
owners, and Community Board leadership. We aim to address both
the technical and sociotechnical aspects of this concept through
the following research questions:

RQ1. What are stakeholders’ privacy concerns toward camera-
based assistive technology, and howmight they be respected?

RQ2. How might a street camera-based navigation assistance sys-
tem be designed?

RQ3. To what extent do street camera-based systems support BLV
people’s outdoor navigation?

To answer RQ1, we interviewed various stakeholders, including
two BLV users, two local residents, a local business owner, and a
Community Board leader. We discovered stakeholders’ differing
perspectives on privacy concerns towards camera-based assistive
technology. All stakeholders expressed that repurposing existing
cameras to help BLV people, rather than installing new cameras, sig-
nificantly alleviates their privacy concerns. Participants also shared
that regulating data storage, anonymization, and access policies
could further enhance their sense of comfort around privacy.

To answer RQ2, we developed StreetNav, a system that lever-
ages a street camera to support precise outdoor navigation for BLV
pedestrians. StreetNav’s design is informed by BLV people’s out-
door navigation challenges (Section 3) and by various stakeholders’
privacy concerns toward camera-based assistive technology (Sec-
tion 4). As Figure 1 illustrates, StreetNav comprises two components:
(i) a computer vision pipeline, and (ii) a companion smartphone app.
The computer vision pipeline processes the street camera’s video
feed and delivers real-time navigation assistance to BLV pedestrians
via the smartphone app. StreetNav offers precise turn-by-turn di-
rections to destinations while also providing real-time, scene-aware
assistance to prevent users from veering off course, alert them of
nearby obstacles, and facilitate safe street crossings.
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StreetNav supports BLV pedestrians’ outdoor navigation by re-
purposing an existing street camera. Through StreetNav, we explore
the feasibility of street camera-based systems at a single street inter-
section as a first step. We chose to use a camera from the NSF PAWR
COSMOS testbed [60, 72] because it is available to researchers after
an approval process and IRB review. We considered other publicly
available testbeds, such as Mobintel [45] and DataCity SMTG [14],
but chose COSMOS due to its location in a major city (New York)
with high pedestrian and vehicle traffic. Anonymized video samples
from the COSMOS cameras, including the one used in this work,
can be found online [13].

To answer RQ3, we conducted both a user evaluation and a
technical evaluation of StreetNav. Our user evaluation involved
eight BLV pedestrians who navigated routes with both StreetNav
and BlindSquare [44], a popular GPS-based navigation app specially
designed for BLV people. Our findings reveal that StreetNav offers
significantly greater precision in guiding pedestrians compared to
BlindSquare. Specifically, StreetNav guided participants to within
an average of 2.9 times closer to their destination and reduced
veering off course by over 53% when compared to BlindSquare. This
substantial improvement was reflected in a forced ranking, where
all participants unanimously preferred StreetNav over BlindSquare.

Despite an improved user experience, StreetNav’s technical eval-
uation exposes certain limitations. We found that although Street-
Nav tracks pedestrians with an 82% precision and 65% recall at 0.5
IOU threshold, the accuracy drops significantly as the pedestrian’s
distance from the camera increases. The false negative rates goes
up from 1% at a distance of 5 meters to 74% at a distance of 40
meters from the camera. Additionally, StreetNav’s performance is
sensitive to occlusions and distance from camera. We discuss fu-
ture implications of our findings in the context of deploying street
camera-based navigation systems at scale.

In summary, we contribute (1) a study of various stakeholders’
privacy concerns toward camera-based assistive technology, (2)
the StreetNav system through which we explore the concept of
repurposing existing street cameras for precise outdoor navigation
assistance, and (3) both a user and technical evaluation of StreetNav.

2 RELATED WORK
Our work builds on the following three main research threads: (i)
outdoor navigation approaches, (ii) overhead camera-based robot
navigation, and (iii) indoor navigation approaches.

Outdoor Navigation Approaches. Existing approaches for out-
door navigation primarily rely on GPS-based navigation systems for
guiding users to the destination and providing information about
nearby POIs [30, 33, 44, 63, 68]. BlindSquare[44], for instance, uti-
lizes the smartphone’s GPS signal to determine the user’s location
and then provides the direction and distance to the destination,
gathered from Foursquare and Open Street Map. The GPS signal,
however, offers poor precision with localization errors as big as tens
of meters [2, 23, 46, 73]. The accuracy is lower in densely populated
cities [70], which is even more concerning given that a dispropor-
tionately high percentage of BLV people live in cities [27]. Despite
GPS-based systems’ undeniable impact on helping BLV people in
outdoor navigation, their low precision and inability to provide
real-time support for avoiding obstacles and veering off the path

limits their usability as a standalone navigation solution. Our work
attempts to investigate street cameras’ potential as an alternative
solution for providing precise and real-time navigation assistance.

Another approach for outdoor navigation has explored devel-
oping personalized, purpose-built, assistive devices that support
BLV people with scene-aware aspects of outdoor navigation, such
as crossing streets [26, 39, 66], recording routes [73], and avoid-
ing obstacles [16, 18, 34, 40, 59, 71]. While these solutions address
some of the precise and real-time aspects of BLV people’s outdoor
navigation, support for point-to-point navigation is missing. Conse-
quently, they do not offer a comprehensive, all-in-one solution for
outdoor navigation. Furthermore, these systems place the burden
of purchasing devices onto the BLV users. Our work, by contrast,
explores the possibility of using existing street cameras to provide
a comprehensive solution for outdoor navigation. We investigate
repurposing existing hardware in outdoor environments to support
accessibility applications, thus directly imbuing accessibility within
the city infrastructure at no additional cost to the BLV user.

OverheadCamera-basedRobotNavigation. Aparallel research
space to street cameras for blind navigation is robot navigation
using overhead cameras. One common subspace within this field is
sensor fusion for improved mapping. Research in this space focuses
on fusing information between sighted “guide” robots and overhead
cameras [11], fusing multiple camera views for improved track-
ing [11, 52, 55], and improving homography for robust mapping,
independent of camera viewing angle [64, 65]. Another challenge
tackled within this space is robot path planning. Research in this
space aims to improve path planning algorithms [11, 52, 65], assign
navigational tasks to robot assistants [11, 52], and address the bal-
ance between obstacle avoidance and path following [11, 65]. While
prior work on robot navigation using fixed cameras explores the
research space of automating “blind” robot navigation, our work
explores how fixed cameras, specifically street cameras, could be
repurposed to support navigation for blind pedestrians. Our prelim-
inary work [31] explores an initial system concept that considers
street cameras for blind navigation. This concept was not evalu-
ated, however, nor were community issues considered. In this work,
we perform both a technical and user evaluation to holistically
explore the concept of leveraging street cameras for blind naviga-
tion. Moreover, we take a community-driven approach to consider
both technical and sociotechnical challenges in developing street
camera-based navigation systems, engaging with not only BLV
users but also various stakeholders.

Indoor Navigation Approaches. Prior work in indoor naviga-
tion assistance has made significant progress through the utiliza-
tion of various localization technologies, which usually relies on
hardware like WiFi or Bluetooth beacons [2, 21, 36, 48, 62]. These
solutions have proven highly effective within indoor environments.
NavCog3 [2], for example, excels in indoor navigation by employ-
ing Bluetooth beacons for precise turn-by-turn guidance. Nakajima
and Haruyama [48] exploit the use of visible lights communica-
tion technology, utilizing LED lights and a geomagnetic correction
method to localize BLV users. However, extending these approaches
to support outdoor navigation is not feasible. This is particularly
evident when considering the substantial effort in hardware setup
that these systems typically require, making them ill-suited for the
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larger, unstructured outdoor environment. Furthermore, most of
these methods lack the capability to assist with obstacle avoidance
and to prevent users from veering off course — both of which are
less severe issues indoors compared to outdoors [53]. Our explo-
ration of using existing street cameras is better suited to address
the largely unaddressed challenges of outdoor navigation. This
approach has the potential to offer precise localization without re-
quiring dense hardware installations. It can harness existing street
cameras for locating a pedestrian’s position. Additionally, it holds
the potential to tackle the distinctive challenges posed by the un-
structured nature of outdoor environments, including real-time
obstacle avoidance and safe street crossing.

3 BLV PEOPLE’S CHALLENGES IN OUTDOOR
NAVIGATION USING GPS-BASED SYSTEMS

We conducted semi-structured interviews with six BLV partici-
pants to identify challenges that they face when navigating out-
doors using GPS-based systems. Our interviews found three major
challenges, C1: following routing instructions through complex en-
vironment layouts, C2: avoiding unexpected obstacles while using
GPS-based systems, and C3: crossing streets safely. While these
challenges are well-documented within existing literature [8, 53,
54, 56, 61], our findings highlight areas that could be prioritized for
resolution through the implementation of a street camera-based
navigation system. Appendix A provides additional detail on partic-
ipant demographics, interview procedure, and interview findings.

4 STAKEHOLDERS’ PRIVACY CONCERNS
TOWARD CAMERA-BASED SYSTEMS

We conducted five semi-structured interviews with various stake-
holders from Harlem, New York City, where the COSMOS testbed
is located. Harlem is a diverse community within a major city that
has become sensitive to government surveillance and overreach.
The interviews were with two BLV users (B1, B2), two local resi-
dents (R1, R2), a local business owner (O1), and a Community Board
leader (CB1). Our objective was to understand stakeholders’ privacy
concerns regarding camera-based assistive technology and explore
ways to address these concerns (RQ1).

4.1 Methods
Participants. Table 3 (Appendix B) reports participant demograph-
ics. Each interview lasted for about 45-60 minutes, except for the
interview with the Community Board leader that lasted for 15 min-
utes. Three interviews (B1, B2, R1) were conducted online over
Zoom, two (O1, R1) were conducted in person, and one (CB1) was
conducted over phone. All participants, except for CB1, were com-
pensated $50 for their participation in this IRB-approved study. CB1
refused to accept the compensation.

Procedure. We began by giving participants a short presentation
describing an initial system concept. The presentation illustrated
how street cameras could capture street intersections, use computer
vision to track pedestrians and vehicles, and deliver navigation in-
structions to BLV users via smartphones. We verbally described
visuals to BLV participants during the study. We then asked par-
ticipants questions about their perceived benefits and concerns,

preferences around data collection and use scenarios that may raise
privacy concerns: e.g., Does it matter to you who has access to the
camera feed? During interview with the Community Board leader,
we inquired about the feasibility of such a system: e.g., How feasible
would it be to use street cameras for assistive technology purposes?
We concluded interviews by discussing strategies for how such
systems might respect their privacy concerns.

Interview Analysis. We used thematic analysis [10] to analyze
the interviews, similar to our methodology described in Section 3.
This analysis involved three researchers independently generating
initial sets of codes, which were then collaboratively iterated to
identify emerging themes.

4.2 Findings: Privacy Concerns
Our participants, irrespective of their stakeholder category, held
differing perspectives on privacy concerns toward camera-based
assistive technology. While some had no privacy concerns what-
soever, others felt uncomfortable with the concept of a camera
monitoring them. When asked if there was anything that could sat-
isfy their concerns, concerned participants identified two strategies:
(i) regulating data storage, anonymization, and access policies; and
(ii) repurposing existing cameras rather than installing new cameras
to assist BLV people. The following sections detail our findings on
stakeholders’ differing viewpoints on privacy and strategies that
this assistive technology could employ to respect those viewpoints.

Stakeholders’ differing perspectives on privacy concerns.
Nearly half of the participants (B1, R2, O1) expressed no concerns
about being recorded by the camera. In fact, they highlighted the
added benefits of street cameras in enhancing public safety, partic-
ularly aiding in crime investigation. These participants expressed
the willingness to sacrifice some privacy in exchange for societal
benefits such as accessibility and public safety. This finding aligns
with earlier findings by Profita et al. [57]. Additionally, B1 pointed
out that complete privacy should not be expected in public spaces:
“If you’re on a public street, you pretty much could expect for anyone
to see you at any time. So it’s no more invasive than anything else on
a public street. A public street is pretty much fair game for anybody.”

In contrast, other participants (B2, R1) expressed discomfort with
cameras’ capability not only to track people’s movements but also
to “know what [they] look like” (B2). R1 compared a camera’s pres-
ence to an “overarching shadow that’s always looking over [and]
monitoring their everyday moves.” These participants voiced con-
cerns against the use of such cameras for public safety purposes.
They feared that the ability to determine individuals’ identities from
the video feed could result in the targeting of marginalized groups
such as people of color (R1) and BLV individuals (B2). As B2 stated:
“The fact that I’m being surveilled even more as a blind person, and
knowing that police disproportionately target the disabled whenever
things are going wrong, that just makes me feel even less safe.”

Regulating data storage, anonymization, and access policies.
We inquired about participants’ preferences regarding the collec-
tion and storage of the video feed. Those without privacy concerns
(B1, R2, O1) expressed indifference regarding the duration and form
(e.g., anonymized vs. raw footage) of video footage storage, assert-
ing they had “nothing to hide” (O1). B1 elaborated: “It really doesn’t
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matter to me. I’m not the person who is going to commit the crime,
so I don’t care if they keep [the data] forever.” Conversely, partici-
pants with privacy concerns (B2, R1) expressed discomfort with any
long-term data storage if such storage was not necessary for the
functionality of the assistive technology. They proposed anonymiz-
ing the video footage by techniques such as blurring faces (R1) or
representing individuals with “dots” (B2) or avatars akin to those
used in GPS-based applications. However, complete anonymization
would negate safety benefits desired by some individuals. A com-
promise was reached in favor of limited storage duration, up to
a week, alongside clear guidelines regarding access and legal use
of the video footage. Most participants expressed greater trust in
government entities than in corporations to manage these cameras,
citing concerns about potential data exploitation by the latter.

Repurposing existing cameras rather than install new cam-
eras. During the interview, R2 highlighted the ubiquity of cameras
in urban areas: “It’s New York, there’s going to be a camera every
other block. There’s no way that these cameras can’t pick you up.” We
pursued this observation with other participants and discovered
that assisting BLV pedestrians with existing cameras rather than
install new cameras significantly alleviated their privacy concerns.
B2 affirmed this, saying, “I would be okay with that because, you
know, it’s a dual purpose thing. [The Dept. of Transportation] is al-
ready putting the speeding cameras there, so at least it does something
nice for people while the camera is in place.” The business owner,
O1, consented to lending the cameras at their restaurant’s entrance,
overlooking the street, under two conditions: (i) it should be used
solely and responsibly to assist people, and (ii) it should not record
any views inside their restaurant.

We consulted with the Community Board leader (CB1) to under-
stand the feasibility of repurposing existing street cameras. CB1
emphasized the need for collaboration among various government
entities to effectively enable this technology. This collaboration
would not only involve granting access to the cameras but also en-
suring that they possess the necessary capabilities to support this
application. CB1 identified several key institutions that could play
vital roles in this effort: the Department of Transportation, responsi-
ble for providing camera access and relevant technical support; the
Department of Buildings or the Metropolitan Transportation Au-
thority (MTA), tasked with granting camera access and permissions
to house any required computational resources; and the National
Security Agency (NSA), tasked with ensuring that camera access
maintains security protocols. Additionally, CB1 highlighted the
importance of implementing processes to monitor the impact of
this technology on local communities. For instance, public outreach
initiatives would help the public understand the purpose of the
technology, ensuring transparency and accountability throughout
the deployment process.

5 THE STREETNAV SYSTEM
StreetNav is a system that explores the concept of repurposing ex-
isting street cameras to support outdoor navigation for BLV pedes-
trians (RQ2). The following sections describe StreetNav’s design
rationale (Section 5.1), the computer vision pipeline (Section 5.2),
and the smartphone app’s user interface (Section 5.3).

Figure 2: Street camera used for StreetNav’s development
and evaluation. The camera is (a) mounted on the building’s
second floor and (b) faces a four-way intersection.

5.1 StreetNav: Design Rationale
Our design and development of StreetNav considers prior work on
navigation assistance, functions of traditional mobility aids, and
insights gathered from our interviews with BLV people (Section 3)
and with various stakeholders (Section 4)

To address challenges that BLV people face when navigating out-
doors using existing GPS-based systems, StreetNav provides users
precise turn-by-turn navigation instructions to destinations and
prevents veering off track (C1); gain awareness of nearby obstacles
(C2); and assist in crossing streets safely (C3). StreetNav enables
these affordances through its two main components: (i) computer
vision pipeline, and (ii) companion smartphone app. The computer
vision pipeline processes the street camera’s video feeds to give
BLV pedestrians real-time navigation feedback via the app.

To ensure that StreetNav respects stakeholders’ privacy concerns,
we explore how an existing camera may be repurposed, rather than
installing a new camera, to support BLV people’s outdoor navigation
(Section 4). For this reason, we chose a camera that faces a four-way
street intersection—the most common type of intersection—and
is mounted on a building’s second floor, offering a typical street-
level view of the intersection. Figure 2 shows the street camera
and its view of the street intersection. StreetNav eliminates the
requirement of storing any video data by processing the camera
feed in real-time to generate navigation instructions.

Appendix C describes StreetNav’s technical setup which enables
the real-time navigation assistance.

5.2 StreetNav: Computer Vision Pipeline
StreetNav’s computer vision pipeline processes the street camera’s
video feed in real time to facilitate navigation assistance. It consists
of four components: (i) localizing and tracking the user : locating
user’s position on the environment’s map; (ii) planning routes: gen-
erating turn-by-turn navigation instructions from user’s current
position to destinations; (iii) identifying obstacles: predicting po-
tential collisions with other pedestrians, vehicles, and objects (e.g.,
trash can, pole); and (iv) recognizing pedestrian signals: determining
when it is safe for pedestrians to cross (walk vs. wait) and calcu-
lating the duration of each cycle. Next, we describe the computer
vision pipeline’s four components in detail.

Localizing and tracking the user. To offer precise navigation
assistance, a system must first determine the user’s position from
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Figure 3: Gesture-based localization for determining a user’s
position on the map. (a) A study participant (P1) is (c)
prompted to wave one hand above their head, enabling the
computer vision pipeline to distinguish them from other
pedestrians in (b) the camera feed view and (d) the map.

the camera view and then project it onto the environment’s map.
Figure 3d shows the map representation we used, which is a snap-
shot from Apple Maps’ [5] satellite view of the intersection where
the camera is deployed.

StreetNav tracks pedestrians from the camera’s video feed using
Nvidia’s DCF-based multi-object tracker [49] and the YOLOv8 ob-
ject detector [67]. The tracker detects all pedestrians and assigns
them a unique ID. However, the system needs a way to differentiate
between the BLV user and other pedestrians.

Figure 3 shows the gesture-based localization approach we in-
troduced to address this issue. To connect with the system, BLV
pedestrians must wave one hand above their head for 2–3 seconds
(Figure 3a), enabling the system to determine the BLV pedestrian’s
unique tracker ID. We chose this gesture after discussions with
several BLV individuals, including our BLV co-author, and most
agreed that this single-handed action was both convenient and
socially acceptable to them. Moreover, over-the-head gestures such
as waving a hand can also be detected when users are not directly
facing the street camera.

We implement hand gesture-based localization by first creating
image crops of all detected pedestrians, then classifying them as
‘waving’ or ‘walking’ pedestrians using CLIP [58]. CLIP classifies
each pedestrian by computing visual similarity between the pedes-
trian’s image crop and two language prompts: ‘person walking’ and
‘person waving hand.’ We experimentally fine-tuned the confidence
thresholds and these language prompts.

We estimate the user’s feet position to be the mid-point of bound-
ing box’s bottom edge. Finally, we transform the user’s feet position
from the street camera view (Figure 3b) to the map (Figure 3d) us-
ing a simple feed-forward neural network trained on data that we

Figure 4: StreetNav’s internal graph representation for route
planning. The user’s current position is added dynamically
as a start node to the graph upon choosing a destination. The
shortest path, highlighted in green, is then calculated as per
this graph representation.

manually annotated. The network takes as input the 2D pixel coor-
dinate from the street camera view and outputs the corresponding
2D coordinate on the map.

Planning routes. To plan routes, a street camera-based systems
require a map of the environment, internally represented as a graph
with waypoints and connections between them. For StreetNav, one
of the researchers manually annotated a satellite view image of the
street intersection to create this graph, a process that took roughly
10 minutes. This process could be automated by integrating with
OpenStreetMap [51] map data in the future.

Figure 4 shows the internal graph structure that StreetNav uses
for planning routes. Similar representations have been used in
prior work on indoor navigation systems [2, 25, 62]. In the graph,
nodes correspond to POIs and sidewalk corners, whereas edges
correspond to walkable paths. Once the user chooses a destination
from the POIs, StreetNav adds the user’s current position as a start
node to this graph representation and computes the shortest path
to the chosen POI using A∗ algorithm [15].

Identifying obstacles. StreetNav provides users with information
about an obstacle’s category and relative location. This gives users
context on the size, shape, and location of an obstacle; enabling them
to confidently apply their mobility skills to go around unexpected
obstacles.

Figure 5 illustrates how the system identifies obstacles in the
user’s vicinity. StreetNav’s multi-object tracker is used to track
other objects and pedestrians. Examples of other objects include
cars, bicycles, poles, and trash cans. The computer vision pipeline
then projects the detected objects’ positions onto the map. To iden-
tify obstacles in the BLV user’s vicinity, StreetNav computes the
distance and angle between the user and other detected objects with
respect to the map (Figure 5b). Any object (or pedestrian) within
a fixed radial distance from the BLV user is flagged as an obstacle.
Through a series of experiments with our BLV co-author, we found
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Figure 5: Identifying obstacles in the user’s vicinity. (a) A
vehicle turning left yields to the BLV pedestrian (detected
in purple) crossing the street. (b) StreetNav identifies the ob-
stacles’ category and relative location on the map to provide
real-time feedback via the app.

Figure 6: Recognizing pedestrian signal states. StreetNav com-
pares the number of white and red pixels in the signal crops
to determine its state: (a) walk vs. (b) wait.

that a 4 foot radius works best for StreetNav to provide users with
awareness of obstacles in a timely manner.

Recognizing pedestrian signals. To determine the pedestrian
signals’ state (i.e., walk vs. wait), we leverage the fact that walk
signals are always white and wait signals are always red in color.
A street camera-based system would first need to detect pedestrian
signals from the camera feed before detecting its state. For Street-
Nav’s implementation, one of the researchers manually annotated
the pedestrian signals’ screens in the camera feed. Future itera-
tions could scale this process by automatically detecting signals by
training custom object detectors.

Figure 6 shows pedestrian signals in the camera’s video feed.
StreetNav applies pixel-thresholding onto the pedestrian signal
crops to filter all white and red pixels. Then, it compares the number
of white and red pixels to determine signal state: walk (Figure 6a)
vs. wait (Figure 6b). We experimentally fine-tuned the thresholds
to identify the signal state.

Our formative interviews revealed that BLV pedestrians struggle
with pacing themselves while crossing streets (C3). To assist them,
StreetNav informs users of the remaining crossing time. Its com-
puter vision pipeline tracks signal cycle durations and maintains

Figure 7: Audiohaptic cues for preventing users from veering
off track. Sample user trajectories showing feedback when
users (a) veers to the left, (b) do not veer, and (c) veer to the
right.When the user’s heading coincideswith the route to the
destination, within a tolerance angle 𝜃 (highlighted in green),
users receive (b) subtle haptic vibrations to reinforce them.
When they veer off the route, outside the tolerance angle 𝜃 ,
they hear spatialized beeping sounds that are rendered from
the (a) right speaker when veering left, and from the (c) left
speaker when veering right.

a timer that records signal state changes. By observing full cycles,
StreetNav accurately monitors signal states and timings. Periodic
timer updates ensure adaptability to changes in signal durations
due to traffic management.

5.3 StreetNav App: User Interface
The StreetNav iOS app interacts with the computer vision pipeline
to allow BLV pedestrians to choose a destination and receive real-
time navigation feedback that guides them to it. BLV users first
initiate a connection request through the app, which activates
the gesture-based localization (Section 5.2) in the computer vision
pipeline. The app prompts the user to wave one hand over their
head (Figure 3b), enabling the system to begin tracking their precise
location on the map (Figure 3d). BLV users can then select a desti-
nation from nearby POIs and begin receiving navigation feedback
through the app.

Figure 8 shows the StreetNav app’s user interface, which uses
audiohaptic cues for (i) providing routing instructions, (ii) prevent-
ing veering off track, (iii) notifying about nearby obstacles, and
(iv) assisting with crossing streets. Upon reaching the destination,
the app confirms their arrival. The following sections describe the
app’s interface in detail.

Providing routing instructions. The app provides routing in-
structions to users by offering a route overview before they start
walking, as shown in Figure 8a. This helps users prepare for their
journey [1, 24, 32]. During navigation, the app announces instruc-
tions based on the user’s location and provides continuous audio-
haptic feedback to guide them.

Figure 8b–f show how the app dynamically updates instructions
based on the user’s location. Users can access the path overview
and current instructions on demand via VoiceOver [7].

Figure 7 illustrates the app’s audiohaptic feedback. Based on
the user’s position, heading, and destination, StreetNav computes
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Figure 8: The StreetNav App’s user interface. It provides routing instructions to their destination via (a) a path overview and (c,
e) real-time feedback that updates their current instruction based on their location. Upon reaching a sidewalk, (b) the app
informs the user about when it is safe to cross and (d) how much remains for them to cross over. It also (d) notifies the user of a
nearby obstacle’s category and relative location to help them avoid it. The app (f) confirms the user’s arrival at the destination.
Throughout the journey, the app provides (g) continuous audiohaptic feedback to prevent users from veering off track.

the direction and extent of veering. We initially used the Kalman
filter to predict the user’s heading based on their trajectory, but this
proved inaccurate due to noisy tracking data. Instead, we used the
smartphone’s compass, offset by a fixed value to align its zero with
the map’s horizontal direction, allowing us to perform all heading
computations relative to the map’s frame of reference.

For directional guidance, we used stereo sound: beeping from
the right speaker when users veer left (Figure 7a) and from the left
speaker when users veer right (Figure 7c). The frequency of beeps
increases with the extent of veering, allowing users to navigate
effectively without headphones. To prevent overwhelming users
with continuous audio feedback, a tolerance angle (𝜃 ) of 50 degrees
was introduced. Within this angle, subtle haptic vibrations guide
users in the correct direction, while beeping sounds indicate veering,
balancing audio as negative reinforcement and haptic feedback as
positive reinforcement.

Notifying about nearby obstacles. Figure 8d shows how Street-
Nav alerts the user of obstacles nearby. The app announces the
obstacle’s category, distance, and relative location. For example,

when a car approaches the user, the app announces: “Caution! Car,
4 ft. to the left.” Similar to veering feedback, the relative location is
computed using both the computer vision pipeline’s outputs and
the smartphone’s compass reading.

We tried feedback formats with varying granularity to convey
the obstacle’s relative location. First, we experimented with clock-
faced directions: “Car, 4 ft. at 1 o’clock.” Clock-faced directions are
commonly used in many GPS-based systems such as BlindSquare to
convey directions. We learned from pilot evaluations with our BLV
co-author that this feedback format was too fine-grained, as it took
them a few seconds to decode the obstacle’s location. This does not
fare well with moving obstacles, such as pedestrians, that may have
already passed the user before they are able to decode the location.
Moreover, StreetNav’s goal with obstacle awareness is to give users
a quick idea that something is nearby them, which they can then
use to circumnavigate via their mobility skills. To address this, we
tried the more coarse format with just four directions: left, right,
front, and back. This was found to give users a quick intimation,
compared to the clock-faced directions.
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Assisting with crossing streets. The StreetNav app helps users
cross streets by informing them when to cross and how much time
remains before the signal changes.

Figure 8b and Figure 8d illustrate the feedback. Upon reaching
a sidewalk corner, the app checks for the signal state recognized
by the computer vision pipeline. If the signal is ‘wait’ when the
user arrives, the app informs the user to wait along with the time
remaining before the signal changes. If the signal is ‘walk’ when the
user arrives, the app informs the user to begin crossing only if the
time remaining is sufficient for crossing. For the intersection used
in our user studies, this was experimentally found to be 15 seconds.
Otherwise, the user is advised to wait for the next cycle. Once the
user begins crossing on the ‘walk’ signal, the app announces the
time remaining for them to cross over. This feedback is repeated at
fixed intervals until the user reaches the other sidewalk corner. We
experimentally fine-tuned this interval with feedback from our BLV
co-author. We tried several intervals, such as 5, 10, and 15 seconds,
and found that shorter intervals overwhelmed the users, whereas
longer intervals practically would not be repeated enough times
to give them meaningful information. We settled on repeating the
feedback every 10 seconds for our implementation.

6 USER STUDY
Our user study had two goals, related to RQ3. First, we wanted to
evaluate the extent to which StreetNav addressed BLV pedestrians’
challenges in navigating outdoor environments when using existing
GPS-based systems (Section 3). Second, we wanted to analyze BLV
pedestrians’ experience of navigating outdoors using StreetNav
compared to existing GPS-based systems.

6.1 Study Description
Participants. We recruited eight BLV participants (five males,
three females; aged 24–52) by posting to social media platforms
and by snowball sampling [22]. Participants identified themselves
with a range of racial identities (Asian, Black, White, Latino, and
Mixed), and all of them lived in a major city in the US. Participants
also had diverse visual abilities, onset of vision impairment, and
familiarity with assistive technology (AT) for navigation.

Table 2 summarizes participants’ information. All but three par-
ticipants (P1, P7, and P8) reported themselves as being moderately–
extremely experienced with AT for navigation (3+ scores on a
5-point rating scale). Only P3 reported minor hearing loss in both
ears and wore hearing aids. All participants except two (P2, P9)
used white cane as their primary mobility aid. P2 did not use any
mobility aid, while P9 primarily used a guide dog for navigation.
The IRB-approved study lasted for about 120 minutes, and partici-
pants were compensated $75 for their time. We obtained informed
consent from all study participants.

Experimental Design. In the study, participants completed three
navigation tasks at a street intersection in two conditions: (i) Street-
Nav and (ii) BlindSquare [44], a popular GPS-based navigation app
specially designed for BLV people. We selected BlindSquare as the
baseline because it emerged as one of the most frequently used apps
among our BLV participants for outdoor navigation, as identified
during the formative interviews (Section 3). We evaluated the two
systems via their respective iOS apps on an iPhone 14 Pro. Both

Figure 9: The routes used in the navigation tasks. (A) 12 me-
ters, stationary person to avoid on the sidewalk. (B) 30meters,
cross street, and moving person to avoid on the sidewalk. (C)
38meters, a 90◦ turn, cross street, andmoving person to avoid
on the crosswalk. To mitigate learning effects, routes for the
two conditions are symmetrically designed, situated on op-
posite sides of the street.

systems’ apps seamlessly integrated with VoiceOver, and all eight
participants had a high level of familiarity with using iPhones and
VoiceOver, with ratings of 3 or higher on a 5-point scale.

Note that our study objective is to compare StreetNav against
BLV people’s current navigation methods using GPS-based systems.
Since such apps, including BlindSquare, do not offer any assistance
with obstacle awareness or crossing streets, the comparison ef-
fectively becomes StreetNav vs. participants’ own abilities with
mobility aids and non-visual senses.

Our study followed a within-subjects design, in which partic-
ipants tested the two navigation systems in a counter-balanced
order to minimize potential order bias and learning effects. In each
condition, participants were tasked with completing three distinct
navigation challenges corresponding to three specific routes. Fig-
ure 9 illustrates these three navigation routes.We deliberately chose
the routes to lie within the street camera’s field of view and include
a range of difficulty levels for each task: (A) a short route, 12 meters,
that involved avoiding a stationary person on the sidewalk; (B) a
long route, 30 meters, that involved crossing a street and avoiding
a moving person on the sidewalk; and (C) a complex route, 38 me-
ters, that involved making a 90 degree turn, crossing a street, and
avoiding a moving person on the crosswalk. For each of these tasks,
one of the researchers assumed the role of an obstacle. None of the
participants were familiar with the study location.

Given that participants navigated the same intersection in both
conditions, the potential for learning effects as a confounding factor
was carefully considered. To address this concern, we took deliber-
ate measures by creating distinct routes for each condition. Specifi-
cally, we designed the routes in both conditions to be symmetric—
rather than being identical—with the starting and ending points of
each route strategically positioned on opposite sides of the street
intersection, as illustrated in Figure 9. The symmetry of routes
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ensured that participants encountered the same challenges in both
conditions. To ensure participants’ safety, the researchers accom-
panied them at all times during the study, prepared to intervene
whenever necessary.

Procedure. We began each study condition by giving a short tuto-
rial of the respective smartphone app for the system. During these
tutorials, participants were taught how to use the app and how to
interpret the various audiohaptic cues it offered. To accommodate
potential challenges arising from ambient noise at the street inter-
section, participants were given the option to wear headphones
during the study. Only two participants, namely P3 and P5, exer-
cised that option; rest of the participants relied on the smartphone’s
built-in speaker to hear the audiohaptic cues.

After completing the three navigation tasks for each condi-
tion, we administered a questionnaire comprising four distinct
parts. These parts were designed to assess participants’ experiences
around challenges faced by BLV pedestrians in outdoor navigation,
specifically addressing the following aspects: routing to destina-
tion (C1), veering off course (C1), avoiding obstacles (C2), and
crossing streets (C3). It included questions about how well each
system assisted with the challenges, if at all. Participants rated their
experience on a 5-point rating scale, where a rating of “1” indicated
“not at all well,” and a rating of “5” indicated “extremely well.” After
each part of the questionnaire, we asked follow-up questions to
gain deeper insights into the reasons behind their ratings and their
overall experiences.

Following their experience with both navigation systems, par-
ticipants were asked to complete a post-study questionnaire. This
questionnaire required them to rank the two navigation systems in
terms of their preference for outdoor navigation. Subsequently, we
directed our discussion toward StreetNav, engaging participants in
a conversation about potential avenues for improvement. We also
inquired about the specific scenarios in which they envision using
this system in the future.

In addition to questionnaires capturing participants’ subjective
experiences, we also analyzed system usage logs and video record-
ings to assess participants’ actual performance in the navigation
tasks.We note that willingness to be video-recorded was completely
voluntary. All eight participants still agreed to be video-recorded,
providing us with written consent to do so.

Analysis. We report participants’ spontaneous comments that best
represent their overall opinions, providing further context on the
quantitative data we collected during the study. We analyzed the
transcripts for participants’ quotes and grouped them according to
the (i) questionnaire’s four parts: routing to destination, veering
off course, avoiding obstacles, and crossing streets; (ii) overall sat-
isfaction and ranking preferences, and (iii) how users’ individual
experiences influenced their preferences.

6.2 Results
Our results show that StreetNav guided participants to destinations
with greater precision and reduced veering, improved obstacle
awareness, and increased confidence in street crossing. For the
statistic analysis of each measure, we first used a Kolmogorov-
Smirnov test to determine if the data was parametric. Then, for

Figure 10: Results for participants’ experiencewith routing to
the destination. Participants rated the (1) usefulness of rout-
ing instructions, and (2) the system’s ability to track them en
route to the destination. Participants found StreetNav’sturn-
by-turn instructions significantly more useful and precise
than BlindSquare’s “as the crow flies”-style routing instruc-
tions. Pairwise significance is depicted for 𝑝 < 0.01 (∗) and
𝑝 < 0.05 (∗∗). The error bars indicate standard error.

parametric data, we used a paired t-test to compare the two condi-
tions. Additionally, we analyzed video recordings, annotating routes
that participants took during the study. We report key results below,
with additional findings in Appendix D.

Routing to Destination. Figure 10 shows participants’ average
rating for their experience following routes to the destination in
each condition. The mean (± std. dev.) rating for participants’ per-
ceived usefulness of the routing instructions in guiding them to
the destination was 4.13 (±0.64) for StreetNav and 2.38 (±0.91) for
BlindSquare. The condition had a significant main effect (𝑝 = 0.014)
on participants’ experience reaching destinations with the routing
instructions. The mean (± std. dev.) rating for participants’ expe-
rience with the system’s ability to track them was 4.50 (±0.76)
for StreetNav and 2.88 (±1.13) for BlindSquare. The condition had
a significant main effect (𝑝 = 0.001) on participants’ perception
of how well the system tracked them en route to the destination.
This indicates that participants found StreetNav more useful than
BlindSquare for guiding them to the destination.

Figure 11 illustrates our analysis of the video recordings, plotting
the typical paths taken by participants in the third route across
both conditions. We computed various metrics from their paths,
that provide insights into participants’ self-reported ratings.

We found that when using BlindSquare, participants covered
greater distances to reach the same destinations compared to when
using StreetNav. On average, participants traveled a distance ap-
proximately 2.1 times longer than the shortest route when relying
on BlindSquare. In contrast, when using StreetNav, they covered a
distance of only about 1.1 times the shortest route to their destina-
tion. This represents a 51% reduction in the unnecessary distance
traveled with StreetNav in comparison to BlindSquare. Figure 11b
shows how participants using BlindSquare often exhibited an os-
cillatory pattern near their destinations (P1, P8) before eventually
reaching close to them.

Additionally, StreetNav’s routing instructions displayed a no-
tably higher level of precision, guiding participants to their destina-
tions with 2.9 times greater accuracy than BlindSquare. Figure 11
clearly shows this trend for the third route. On average, across
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(a) StreetNav (b) BlindSquare

Figure 11: Comparison of paths traveled by three participants (P1, P3, P8) for route ‘C’ using (a) StreetNav, and (b) BlindSquare.
StreetNav’s routing instructions consistently guided participants to the destination via the shortest path. BlindSquare, however,
caused participants to take incorrect turns (P1, P3, P8), oscillate back and forth near destinations (P1, P8), and even go around
the whole intersection before getting close to the destination (P8).

the three study routes, participants using StreetNav concluded
their journeys within a tighter radius of 12.53 feet from their in-
tended destination. In contrast, participants relying on BlindSquare
concluded their journeys within a radius of 35.94 feet from their
intended destination. Two study participants, P4 and P5, even re-
fused to navigate to the destination in two of the three tasks with
BlindSquare. This was primarily attributed to BlindSquare’s low
precision in tracking the participants and often guiding them to
take incorrect turns. Figure 11b highlights how BlindSquare caused
P8 to go around the intersection before finally getting close the
destination.

Participants preferred StreetNav over BlindSquare for its audio-
haptic cues for turn-by-turn navigation instructions, which they
found to be more useful and precise than BlindSquare’s “as the
crow flies”-style clock face and distance-based instructions. P3’s
comment encapsulates this sentiment:

“When it’s time for me to turn right and walk a certain
distance, [StreetNav] is very, very, very precise.” –P3

Although all participants preferred StreetNav’s routing feedback
over BlindSquare’s, distinct patterns emerged in their preference
and utilization of these cues. StreetNav delivers a combination
of audiohaptic and speech feedback for routing, and participants
adopted varying strategies for utilizing this feedback. Some indi-
viduals placed greater reliance on the veering haptic feedback as
their primary directional guide, while reserving speech feedback
as a fallback option. Conversely, some participants prioritized the
speech feedback, assigning it a higher level of importance in their
navigation process compared to audio-haptic cues.

Maintaining a straight walking path is crucial for effective rout-
ing. Thus, we separately analyzed the extent to which each system
prevented veering, with findings reported in Appendix D.1.

Obstacle Awareness. Figure 12 shows participants’ average rating
for their perceived awareness of obstacles across the two conditions.
Specifically, participants rated their ability to (1) avoid obstacles,
(2) identify its category (e.g., person, bicycle, trash can), and (3)
determine its relative location. The mean (± std. dev.) rating for
participants’ perceived ability to avoid obstacles was 4.38 (±0.74) for

Figure 12: Results for participants’ perceived obstacle aware-
ness. Participants rated their ability to (1) avoid obstacles, (2)
identify its category (e.g., person, bicycle), and (3) determine
its relative location; on a scale of 1–5. StreetNav significantly
improved participants’ awareness of nearby obstacles during
navigation. Pairwise significance is depicted for 𝑝 < 0.01 (∗)
and 𝑝 < 0.05 (∗∗). The error bars indicate standard error.

StreetNav and 2.88 (±0.99) for BlindSquare, to identify its category
was 4.50 (±0.76) for StreetNav and 3.13 (±1.46) for BlindSquare,
and to determine obstacle’s relative location was 4.13 (±0.64) for
StreetNav and 2.88 (±1.25) for BlindSquare. A paired t-test revealed
that the condition had a significant main effect on participants’
perceived ability to avoid obstacles (𝑝 = 0.030), identify its category
(𝑝 = 0.037), and relative location (𝑝 = 0.004). This suggests that
StreetNav offered users a heightened awareness of nearby obstacles
compared to the baseline condition of BlindSquare.

With StreetNav, participants had the option to use obstacle avoid-
ance audio feedback in conjunctionwith their conventionalmobility
aids. However, in the case of BlindSquare, the system itself did not
offer any obstacle-related information. Consequently, participants
primarily relied on their traditional mobility aids in this condition,
as is typical when using GPS-based systems. Our analysis of the
video recordings found that in both experimental conditions, par-
ticipants encountered no instances of being severely hindered by
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Figure 13: Results for participants’ perceived comfort in cross-
ing streets. Participants rated their perceived comfort in (1)
making the decision onwhen to begin crossing the street, and
in (2) pacing themselves when crossing. Participants were
significantly more comfortable crossing streets with Street-
Nav in comparison to BlindSquare. Pairwise significance is
depicted for 𝑝 < 0.01 (∗) and 𝑝 < 0.05 (∗∗). The error bars
indicate standard error.

obstacles. Instead, they adeptly navigated around obstacles with
the assistance of their white canes or guide dogs.

Although participants generally had a positive perception of
obstacle avoidance when using StreetNav, their opinions on the
utility of obstacle awareness information varied. Some participants
found this information beneficial, emphasizing its role in preventing
“awkward bumping into people” (P2) and boosting their confidence,
resulting in greater “speed in terms of walking” (P3). Conversely, par-
ticipants who felt confident avoiding obstacles with their mobility
aids regarded StreetNav’s obstacle information to be extraneous. P8
also expressed concerns about the potential information overload
it could cause in dense urban areas:

“To know where people are, is a bit of overkill, because,
especially in a city like this, if you turn this thing on in
Times Square, it would have your head go upside down...
If I’m around a lot of people, I’m not really thinking
about avoiding them. I have a cane for a reason. They
can see and I can’t, so I’m relying on them to see me
and get out of my way.” –P8

Many participants proposed an alternative use case for Street-
Nav’s obstacle awareness information, highlighting its potential
for providing insights into their surroundings. They suggested that
this information could unlock environmental affordances, including
the identification of accessible light signals and available benches
for resting: “knowing there was a bench was top-notch for me” (P8).
Therefore, StreetNav’s obstacle awareness information served a
dual purpose, aiding in both obstacle avoidance and environmental
awareness, allowing users to “know what’s around” (P8) them.

Crossing Streets. Figure 13 shows participants’ average rating for
their perceived comfort in crossing streets. The mean (± std. dev.)
rating of participants’ perceived comfort in making the decision on
when to begin crossing the street was 4.50 (±0.76) for StreetNav
and 2.88 (±1.64) for BlindSquare. The mean (± std. dev.) rating of
participants’ perceived comfort in safely making it through the
crosswalk and reach the other end was 4.63 (±0.52) for StreetNav
and 2.00 (±1.41) for BlindSquare. A paired t-test showed that the
condition had a significant main effect on participants’ comfort in

beginning to cross streets (𝑝 = 0.029) and in safely making it to the
other side (𝑝 = 0.001).

As BlindSquare does not provide feedback for crossing streets,
participants reported relying on their auditory senses by listening
for the surge of parallel traffic. However, during the semi-structured
interviews, some participants highlighted challenging scenarios
that can make this strategy less reliable. P4, for instance, pointed
out that ironically, less traffic can complicate street crossings:

“I don’t always know when to cross because it’s so quiet.
And sometimes two, three light cycles go by, and I’m
just standing there.” –P4

This issue has been exacerbated by the presence of electric cars,
which are difficult to hear due to their quiet motors. For P3, their
hearing impairments made it challenging to listen for traffic. Thus,
most participants appreciated StreetNav’s ability to assist with
crossing streets:

“When it’s quiet, I would cross. But now with hybrid
cars, it’s not safe to do that. [StreetNav] app telling you
which street light is coming on is really helpful.” –P7

Participants made decisions to cross the streets by combining
StreetNav’s feedback with their auditory senses. Many participants
emphasized that having information about the time remaining to
cross significantly boosted their confidence, especially when this
information aligned with the sounds of traffic: “I thought it was
great because I could tell that it matched up” (P8). This alignment
between the provided information and their sensory perception
inspired confidence in participants:

“Relying on my senses alone feels like a gamble about
90 percent of the time, so a system like [StreetNav] that
accurately displays the amount of time I have to cross
the street is great.” –P2

P4 compared StreetNav with the Oko App [9]. While P4 found Oko
effective in identifying signal state, they appreciated StreetNav’s
seamless integration, which does not require pointing the camera
at the pedestrian signal.

7 TECHNICAL EVALUATION
We evaluate StreetNav’s technical performance to compare its effec-
tiveness against the status quo of GPS-based systems. StreetNav’s
main advantage is its precise user localization. Thus, this evaluation
aims to answer the question: How precisely does StreetNav localize
the user, and what factors impact this precision?

In comparing overall accuracy, StreetNav’s localization error was
0.41 (± 1.49) meters in estimating the user’s feet position and an
additional 0.65 (± 0.26) meters in transforming this position from
the camera view to the map. This error is significantly lower than
GPS, which achieves localization errors in excess of 10-15 meters
in urban areas [23, 46, 69].

We independently analyzed technical performance of the three
steps in StreetNav’s computer vision pipeline for user localization:
(i) CLIP-based gesture recognition, (ii) pedestrian feet position esti-
mation, and (iii) camera to map-view transformation. Key results for
each step are reported here, with detailed discussion in Appendix E.

StreetNav’s CLIP-based gesture recognition achieves 83% ac-
curacy in identifying the hand-waving gesture, with a 24% false
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positive rate and a 10% false negative rate. For pedestrian feet posi-
tion estimation, the root mean squared error (± std.) is 0.41 (± 1.49)
meters. Although StreetNav detects pedestrians with 82% precision
and 65% recall at a 0.5 IOU (intersection over union) threshold,
accuracy decreases as the pedestrian’s distance from the camera in-
creases, with the false negative rate rising from 1% at 5meters to 74%
at 40 meters. The root mean squared error (± std.) for transforming
points from camera view to map view is 0.65 (± 0.26) meters.

Appendix E elaborates on the evaluation procedure and provides
additional detail on factors that impact performance for each step.

8 DISCUSSION
Our goal with StreetNav was to explore the idea of repurposing
existing street cameras to support precise outdoor navigation for
BLV pedestrians. We reflect upon our findings to discuss how street
camera-based systems might be deployed at scale, privacy concerns
with camera-based assistive technology, implications of a street
camera-based navigation approach for existing GPS-based navi-
gation systems, and the affordances enabled by precise, real-time
outdoor navigation assistance.

Deploying street camera-based navigation systems at scale.
StreetNav demonstrates that street cameras have the potential to
be repurposed for supporting precise outdoor navigation for BLV
pedestrians. Our study results show that street camera-based navi-
gation systems can guide users to their destination more precisely
and prevent them from veering off course (Figure 11). Our results
also show that street camera-based systems can support real-time,
scene-aware assistance by notifying users of nearby obstacles (Fig-
ure 12) and giving information about when to cross streets (Fig-
ure 13). These benefits of a street camera-based approach over
existing GPS-based systems underscore the need for deploying
such systems at scale. Although StreetNav was deployed at a single
intersection, we learned insights on potential challenges and con-
siderations that must be addressed to deploy street camera-based
systems at scale.

Several internal and external factors need to be considered be-
fore street cameras can be effectively leveraged to support blind
navigation at scale. External factors, including lighting conditions
and occlusions on the street, may affect system performance. For in-
stance, we noticed that StreetNav’s ability to track pedestrians was
affected severely in low-light conditions (e.g., at night) and by occlu-
sions due to the presence of large vehicles (e.g., trucks, buses) and
the installation of scaffolding for construction (Figure 17d). Such
challenges affect the reliability of street camera-based systems and
may limit its operational hours. Internal factors, including the posi-
tioning of cameras, their field of view, and variability in resolution,
may affect the extent to which such systems can promise precise
navigation assistance. For instance, the visibility of the pedestrian
signals from the camera feed could affect how much such systems
can assist users with crossing streets. With StreetNav, we observed
a drop in tracking accuracy as pedestrians moved further away
from the camera.

Therefore, deploying street camera-based systems at scale would
require future work to investigate the extent to which both external
factors (e.g., lighting, occlusions) and internal factors (e.g., camera
resolution) affect system performance and reliability. To address

some of the technical limitations around tracking performance and
field of view limitations, future research could explore integrating
multiple cameras at various elevations and viewing angles. Prior
work on robot navigation has explored the fusion of multiple cam-
eras to improve tracking performance [11, 52, 55]. Future work
could also explore an ecosystem of accessible street cameras that
can share information to automatically manage hand-offs across
street intersections, providing users with a seamless experience
beyond a single street intersection. Such ecosystems, which span
beyond one intersection to a whole district or city, could enable
new affordances, such as automatically sensing pedestrian traffic
to inform traffic signals and vice versa [37].

Privacy concerns with camera-based assistive technology.
Privacy is a significant consideration for the practical deployment
of street camera-based assistive technology. Our study with various
stakeholders (Section 4) revealed differing perspectives on privacy
and identified strategies for respecting those perspectives. Recall
from Section 4 the two strategies that our stakeholders identified:
(i) regulating data storage, anonymization, and access policies; and
(ii) repurposing existing cameras rather than installing new ones.
Concerning the first strategy, StreetNav’s implementation does
not necessitate any data storage for facilitating outdoor naviga-
tion assistance. The video feed is processed in real-time on a local
server, and only navigation instructions are shared with the BLV
user’s smartphone. Furthermore, StreetNav employs a map view
representation—as depicted in Figure 3d—for computing routes
and identifying obstacles, inherently enabling data anonymization.
The questions regarding who should have access to these cameras
and for what other purposes, including public safety, they might
be used for, still require further investigation. As for the second
strategy, although StreetNav repurposes a camera from an exist-
ing publicly available testbed, the feasibility of securing camera
access and resources of already existing street cameras at scale re-
mains an open question. From our interview with the Community
Board leader (Section 4), collaboration among different government
entities emerged as a potential next step. Future research could
investigate the roles of different government entities and the im-
plementation of policies that ensure responsible and transparent
use of street cameras.

Implications for GPS-based navigation systems. When cam-
eras are available, and conditions align favorably, street camera-
based systems offer BLV individuals a valuable source of fine-
grained, high-precision information, significantly enhancing their
navigational experience and environmental awareness. These capa-
bilities are currently beyond the reach of conventional GPS-based
systems. All eight study participants unanimously chose StreetNav
over BlindSquare as their preferred navigation system due to its
precise, scene-aware navigation assistance (Section D.2). However,
it’s important to acknowledge that street camera-based systems
have their own set of limitations. The widespread availability of
street cameras is not yet a reality, and ideal conditions may not
always be met for their effective use. In contrast, GPS-based sys-
tems, while lacking in precision and environmental awareness, are
universally accessible and resilient in varying conditions, includ-
ing low light. A harmonious integration of these two approaches
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is a promising solution. Users can tap into street-camera infor-
mation when conditions permit, seamlessly transitioning to GPS
data when necessary. This can be facilitated through sensor fu-
sion or information hand-offs, creating a synergy that ensures a
smooth and reliable navigational experience. Future approaches
could explore how these two systems can effectively complement
each other, addressing their respective limitations and enhancing
overall performance.

Affordances of precise outdoor navigation assistance for BLV
people. Previous research in indoor navigation has demonstrated
the advantages of accurately pinpointing users’ locations [2, 36,
62] and providing scene-aware navigational information [25, 35].
However, achieving such precision has remained a challenge in
outdoor environments, primarily due to the limited accuracy of GPS
technology [23]. StreetNav’s approach of leveraging existing street
cameras demonstrates that precise outdoor navigation support for
BLV pedestrians is possible. Our study reveals the advantages of
precise, fine-grained navigation for BLV individuals. These benefits
include a substantial reduction in instances of veering and routing
errors, such as deviation from the shortest path or missing intended
destinations, as well as augmented environmental awareness.

StreetNav offered our participants a glimpse into the potential
of precise outdoor navigation. Several participants desired even
greater precision, including the ability to discern the exact num-
ber of steps remaining before reaching a crosswalk’s curb. Future
research could delve into exploring how to best deliver such granu-
lar feedback to BLV users, alongside the necessary technological
advancements needed to achieve this level of precision. These ad-
vantages, as our findings suggest, extend beyond merely improv-
ing navigation performance. Participants shared insights into how
precise navigation could enhance their independence when navi-
gating outdoors. It could empower BLV people to venture outdoors
more frequently, unlocking new travel opportunities, as exempli-
fied by P3’s newfound confidence in using public transportation
with StreetNav-like systems:

“I don’t really use the city buses, except if I’m with
somebody, but [StreetNav] would make me want to get
up, go outside, and walk to the bus stop.” –P3

This newfound confidence is particularly noteworthy, considering
the unpredictable nature of outdoor environments. Future research
could explore new affordances that street camera-based systems
can enable for people, in general.

9 LIMITATIONS
Our work revealed valuable insights into the benefits and effec-
tiveness of a new approach that uses existing street cameras for
outdoor navigation assistance. At the same time, we acknowledge
that our work has several limitations.

StreetNav was developed using a camera from an existing cloud-
networked testbed that is publicly available to the researchers [13,
60, 72], situated at a specific street intersection. It is important to
note that our development process may not have encountered all
potential technical challenges and design considerations, given the
constraints of this setup. Additionally, StreetNav’s use of the testbed
camera instead of a regular security cameramay yield slightly differ-
ent performance due to factors like camera perspective, resolution,

availability, and even the layout of the intersection. Future research
could expand upon our design and investigate how street camera-
based systems can be adapted to different environments.

Furthermore, to ensure the safety of participants and to fit the
user study within a 120-minute timeframe, we designed the study
routes to be less complex and dangerous. Real-world outdoor en-
vironments can vary significantly across regions, and our study
location may not fully capture the diversity of scenarios BLV people
encounter when navigating outdoors.

Lastly, it is important to note that our design of StreetNav was
guided by interviews with six BLV individuals, six stakeholders
from New York City, and was evaluated in a study with only eight
BLV individuals. While our participants’ insights are valuable, their
preferencesmay not represent the general population’s perspectives
on BLV people’s navigation challenges and various stakeholders’
privacy concerns. There could be additional challenges and design
possibilities that we did not explore because of the cultural and
regional context. Future research should consider a more exten-
sive and diverse participant pool to gain a more comprehensive
understanding of BLV people’s challenges and privacy preferences
of various stakeholders.

10 CONCLUSION
We explored the idea of leveraging existing street cameras to sup-
port precise outdoor navigation for BLV pedestrians. Our resulting
system, StreetNav, investigates both technical and sociotechnical
concerns with a street camera-based navigation system. Our eval-
uations revealed StreetNav’s potential to guide users more pre-
cisely to destinations compared to existing GPS-based systems. It
also demonstrated camera-based system’s ability to offer real-time,
context-aware navigation assistance, aiding in obstacle avoidance
and safe street crossings. However, we also identified challenges
and opportunities for deploying street camera-based navigation
systems at scale. These challenges suggest areas for future research
to enhance system robustness and reliability while addressing pri-
vacy concerns. Our work highlights the potential of embedding
accessibility into urban infrastructure using existing resources like
street cameras. We envision a future where these systems seam-
lessly integrate into urban environments, providing BLV people
with safe, precise navigation capabilities and empowering them to
navigate their surroundings confidently.
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APPENDIX
A FORMATIVE INTERVIEWSWITH BLV

PEOPLE
We provide details on the semi-structured interviews with BLV
participants that we conducted to identify challenges that they face
when navigating outdoors using GPS-based systems.

A.1 Methods
Participants. We recruited six BLV participants (three males, three
females; aged 29–66) by posting on social media platforms and snow-
ball sampling [22]. Table 1 summarises the participants’ informa-
tion. All interviews were conducted over Zoom and lasted about 60
minutes. Participants were compensated $25 for this IRB-approved
study. We obtained informed consent from all study participants.

Procedure. To identify the specific challenges that BLV people
face when navigating outdoors, we used a recent critical incident
technique (CIT) [19], in which we asked participants to recall and
describe a recent time when they navigated outdoor environments
using GPS-based assistive technology (AT). For example, we first
asked participants to name the AT they commonly use and then
asked them to elaborate on their recent experience of using it: “So,
you mentioned using BlindSquare a lot. When was the last time you
used it?” Then, we initiated a discussion by establishing the scenario
for them: “Now, let’s walk through your visit from the office to this
restaurant. Suppose, I spotted you at your office.What would I observe?
Let’s start with you getting out of your office building.” We asked
follow-up questions to gain insights into what made the aspects of
outdoor navigation challenging and what additional information
could help address them.

InterviewAnalysis. To analyze the interviews, we first transcribed
the study sessions in full and then performed thematic analysis [10]
involving three members of our research team. Each researcher first
independently went through the interview transcripts and used
NVivo [50] to create an initial set of codes. Then, all three iterated
on the codes together to identify emerging themes.
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Table 1: Self-reported demographics of our participants. Gender information was collected as a free response; our participants
identified themselves as female (F) or male (M). Participants rated their assistive technology (AT) familiarity on a scale of 1–5.

PID Age Gender Race Occupation Vision ability Onset Mobility aid AT familiarity (1–5)

F1 29 Female White Claims expert Totally blind At birth White cane 3: Moderately familiar
F2 61 Female White Retired Light perception only Age 6 Guide dog 1: Not at all familiar
F3 66 Female White Retired Totally blind Age 58 Guide dog 2: Slightly familiar
F4 48 Male Black Unemployed Light perception only Age 32 White cane 3: Moderately familiar
F5 27 Male Mixed Unemployed Totally blind At birth White cane 3: Moderately familiar
F6 38 Male White AT instructor Totally blind At birth White cane 5: Extremely familiar

A.2 Findings
We found three major themes around challenges that BLV pedes-
trians face when navigating outdoors using GPS-based systems.

C1: Routing through complex environment layouts. Partic-
ipants reported difficulties in following routing instructions pro-
vided by GPS-based systems. These instructions, as explained by the
participants, often did not match their current location. Many partic-
ipants cited problems such as making wrong turns into unexpected
“alleyways” (F1, F2, F4) that landed them in dangerous situations
with “cars coming through” (F2). Participants cited examples of how
these instructions caused them to veer off course—a common issue
for BLV individuals in open, outdoor spaces [53]—and end up in the
middle of the streets. This problem was particularly pronounced
in complex environment layouts, as F3 recalled: “I didn’t know if
crosswalks were straight or curved or if they were angled. [It was
hard] to figure out which way you needed to be to be in the crosswalk.”
Since "not everything is organized in the ideal grid-like way” (F1),
participants were hesitant to act on the navigation instructions
without a clear understanding of the layout.

C2: Avoiding unexpected obstacles while using GPS-based
systems. BLV people’s challenges relating to obstacles during nav-
igation are well researched [54, 56]. However, we found specific
nuances in their difficulties, particularly when they rely on their
conventional mobility aids in conjunction with GPS-based naviga-
tion systems. Participants commonly reported the use of mobility
aids like white canes alongside GPS systems for guidance. During
this combined navigation process, they encountered difficulties in
maintaining their focus on avoiding obstacles, often resulting in
collisions with objects that they would have otherwise detected
using their white canes. For instance, F2 shared an incident where
they remarked, “there were traffic cones [and] I tripped over those”
while following directions from BlindSquare [44]. Notably, mov-
ing obstacles such as pedestrians and cars, as well as temporarily
positioned stationary obstacles like triangle sandwich board signs,
posed significant challenges for navigation. F4 expressed this senti-
ment, stating, “You know how many times I’ve walked into the sides
of cars even though I have the right of way. Drivers have gotten angry,
accusing me of scratching their vehicles. It can spoil your day [and
make] you feel insecure.”

C3: Crossing street intersections safely. Consistent with prior
research [3, 26, 43], our study participants highlighted that crossing

streets remained a significant challenge for them. Since GPS-based
systems do not help with street-crossing, most participants relied
on their auditory senses and apps like Oko [9]. Regarding the use
of auditory senses, they mentioned the practice of listening to ve-
hicular sounds to gauge traffic flow on streets running parallel and
perpendicular to their position. This auditory technique helped
them assess when it was safe to cross streets. However, participants
also reported instances where this method proved inadequate due
to external factors: “yeah, it can be tricky, because [there may be] re-
ally loud construction nearby that can definitely throw me off because
I’m trying to listen to the traffic” (F1). Furthermore, their confidence
in street-crossing decisions was affected by their inability to as-
certain the duration of pedestrian signals and the length of the
crosswalk. This uncertainty led to apprehension, as they expressed
a fear of becoming stranded mid-crossing, as exemplified by one
participant’s comment: “I don’t want to be caught in the middle [of
the street]” (F4). Regarding the use of Oko [9], participants found
it cumbersome to point their phone’s camera toward a pedestrian
signal and to switch between this app and others during navigation.

B PARTICIPANT DEMOGRAPHICS
Table 3 summarizes demographics of various stakeholders we in-
terviewed (Section 4), and Table 2 summarizes our user study par-
ticipant demographics (Section 6).

C STREETNAV: TECHNICAL SETUP
Figure 2 shows the street camera we used for developing and eval-
uating StreetNav. The camera is part of the NSF PAWR COSMOS
wireless edge-cloud testbed [60, 72], and is available to researchers
after an approval process and IRB review. We considered other
publicly available testbeds such as Mobintel [45] and DataCity
SMTG [14], but chose COSMOS due to its location in a major city
(New York) with high pedestrian and vehicle traffic. Anonymized
video samples from the COSMOS cameras, including the one used
in this work, can be found online [13]. StreetNav’s computer vi-
sion pipeline takes the real-time video feed from the camera as
input. For this purpose, we deployed the computer vision pipeline
on one of the testbed servers, which captures the camera’s video
feed in real time. This server runs Ubuntu 20.04 with an Intel Xeon
CPU@2.60GHz and an Nvidia V100 GPU.

StreetNav’s two components—the computer vision pipeline and
the app—interact with each other via a cloud server, sharing infor-
mation using the MQTT messaging protocol [47]. Since MQTT is
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Table 2: Self-reported demographics of our user study participants. Gender information was collected as a free response.
Participants rated their familiarity with assistive technology (AT) on a scale of 1–5.

PID Age Gender Occupation Race Vision ability Onset Mobility aid AT familiarity (1–5)

P1 24 Male App developer Asian Low vision Age 19 White cane 2: Slightly familiar
P2 28 Male Data manager White Low vision At birth None 3: Moderately familiar
P3 48 Male Not employed Black Totally blind Age 32 White cane 3: Moderately familiar
P4 46 Female Social worker Latino Totally blind Age 40 White cane 4: Very familiar
P5 43 Female Not employed Asian Totally blind At birth White cane 4: Very familiar
P6 52 Male Mgmt. analyst Mixed Light perception only Age 9 White cane 5: Extremely familiar
P7 26 Female Writer Mixed Low vision At birth White cane 2: Slightly familiar
P8 51 Male Not employed Black Light perception only Age 26 Guide dog 3: Moderately familiar

Table 3: Self-reported demographics of our formative interviews with various stakeholders.

PID Stakeholder Category Gender Age Notes

B1 BLV individual Female 62 Light perception only
B2 BLV individual Gender Neutral 41 Limited vision in only left eye
R1 Local resident Female 29 Lived in Harlem for 12+ years
R2 Local resident Female 35 Lived in Harlem for 13+ years
O1 Local business owner Male 58 Running for 7+ years
CB1 Community Board leader Male 53 Serving as leader in Harlem

a lightweight messaging protocol, it runs efficiently even in low-
bandwidth environments. The computer vision pipeline only sends
processed navigation information (e.g., routing instructions, ob-
stacle’s category and location) to the app, rather than sending
video data. This alleviates the privacy concerns around streaming
the video feed to the users and avoids any computational bottle-
necks that may happen due to smartphones’ limited processing
capabilities. The StreetNav app’s primary purpose is to act as an
interface between the user and the computer vision pipeline. We de-
veloped StreetNav’s iOS App using Swift [6], enabling us to leverage
VoiceOver [7] and other built-in accessibility features.

D ADDITIONAL USER STUDY RESULTS
D.1 Results for Veering Prevention
Figure 14 shows participants’ average rating for their perceived
ability to (1) maintain a straight walking path, i.e., prevent veer-
ing off course, and (2) intuitiveness of the feedback they received
regarding direction to move in. The mean (± std. dev.) rating of
participants’ perceived ability to maintain a straight walking path
with StreetNav was 4.63 (±0.52) and with BlindSquare was 2.75
(±1.17). The condition had a significant main effect (𝑝 = 0.001)
on participants’ perceived ability to prevent veering off course.
The mean (± std. dev.) rating for intuitiveness of the feedback that
helped them know which direction to move in was 4.63 (±0.52) for
StreetNav and 3.00 (±0.76) for BlindSquare. The condition had a
significant main effect (𝑝 = 0.006) on intuitiveness of feedback that
helped participants prevent veering off path.

Our examination of the video recordings aligns closely with par-
ticipants’ ratings. It reveals that StreetNav minimized participants’
deviations from the shortest path to the destinations in comparison
to BlindSquare. Over the course of the three routes, participants
displayed an average deviation from shortest path, that was reduced
by 53% when using StreetNav as opposed to BlindSquare.

With BlindSquare, many participants reported difficulty main-
taining awareness of their surroundings, including both obstacles
and navigation direction, which frequently led to deviations from
their intended paths. For instance, P2 reported challenges in main-
taining their orientation with the need to avoid obstacles:

“[BlindSquare] basically demanded me to keep track of
my orientation as I was moving, which is pretty difficult
to do when you’re also trying to keep other things in
mind, like not bumping into things.” –P6

In contrast, StreetNav effectively addressed this challenge by pro-
viding continuous audiohaptic feedback for maintaining a straight
walking path, instilling a sense of confidence in participants. P3,
who tested StreetNav before BlindSquare, reflected on their desire
for a similar continuous feedback mechanism within BlindSquare,
akin to the experience they had with StreetNav:

“[with BlindSquare] even though I couldn’t see the phone
screen, my eyes actually went towards where I’m hold-
ing the screen. It is almost as if on a subconscious level,
I was trying to get more feedback. With [StreetNav] I
had enough feedback.” –P3



StreetNav: Leveraging Street Cameras to Support Precise Outdoor Navigation for Blind Pedestrians UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 14: Results for participants’ perceived ability to pre-
vent veering off path. Participants rated their ability to (1)
maintain a straight walking path, and (2) intuitiveness of
the feedback regarding direction they should be moving in;
on a scale of 1–5. StreetNav’saudiohaptic feedback was sig-
nificantly more intuitive than BlindSquare’s in preventing
participants from veer off path. Pairwise significance is de-
picted for 𝑝 < 0.01 (∗). The error bars indicate standard error.

Many participants appreciated StreetNav’s choice of haptic feed-
back for veering. Some participants envisioned the haptic feedback
to be especially useful in environments with complex layouts:

“In the [areas] where the streets are very slanted and
confusing. I think haptic feedback will be especially
helpful.” –P5

Other participants highlighted the advantage of haptic feedback
in noisy environments where audio and speech feedback might be
less effective.

However, both P4 and P6 exclaimed that StreetNav’s haptic feed-
back would only work well when holding the phone in their hands.
This meant that hands-free operation of the app may not be pos-
sible, which is important for BLV people since one of their hands
is always occupied by the white cane. P4 proposed integrating the
app with their smartwatch for rendering the haptic feedback to
enable hands-free operation.

D.2 Forced Ranking Results
All eight participants unanimously chose StreetNav over Blind-
Square as their preferred navigation assistance system. We asked
participants to also rank their preferred type of routing instructions.
All eight participants strongly preferred StreetNav’s turn-by-turn
routing instructions compared to BlindSquare’s “as the crow flies,”
direction and distance-style routing instructions.

In the semi-structured interview, participants were asked to
elaborate on their rankings. Participants pointed out multiple nav-
igation gaps in BlindSquare, with P2 summarizing participants’
sentiment:

“If you’re only getting somebody 90 percent of the way
there, you’re not really achieving what I would consider
to be the prime functionality of the system.” –P2

In contrast, participants praised StreetNav for its precision and real-
time feedback, emphasizing the importance of granular and holistic
information to support all facets of navigation. However, partici-
pants did acknowledge occasional “glitchiness” (P7) with StreetNav,
which occurred when they moved out of the camera’s field of view
or were occluded by other pedestrians or vehicles, resulting in lost

tracking. Nevertheless, participants still regarded StreetNav as a
significant enhancement to their typical navigation experiences,
expressing increased confidence in exploring unfamiliar outdoor
environments in the future.

“It would encourage me to do things that I would not
usually... It would make me more confident about going
out by myself.” –P4

Participants also appreciated StreetNav’s ability to identify them
in near real-time:

“What I found very interesting about the connection
part is how quickly it identifies where I am, as soon as I
waved my hand, it senses me.” –P3

Participants also provided suggestions for improving StreetNav.
Some participants wanted a hands-free version that would allow
them to hold a white cane in one hand while keeping the other
free. Additionally, while they found the gesture of waving hands for
connecting with the system socially acceptable, they acknowledged
that it might be perceived as somewhat awkward by others in the
street.

“[Waving a hand] may seem kind of weird to people
who don’t understand what is going on. But for me
personally, I have no issue.” –P3

Some participants highlighted that waving a hand might be misin-
terpreted by others on the street as a call for help, and may even
cause security issues if a malicious person becomes aware that they
were blind. P1 highlighted the role of public education in addressing
this concern:

“If [others] see someone with a white cane, they know
that’s a blind person traveling. But if they see someone
with their hand raised, they might think someone needs
help or hailing a cab. So, I think it’s going to be education
to other people as much as to the person who is using
this navigation system.” –P1

D.3 How Individual Experiences Influenced
Participants’ Preferences

Throughout the study, participants offered feedback based on their
unique backgrounds. We observed distinct patterns in their prefer-
ences, affected by their (i) onset of vision impairment, (ii) level of
vision impairment, and (iii) familiarity with assistive technology.

Onset of vision impairment. Participants with early onset blind-
ness preferred nuanced, concise feedback with an emphasis on
environmental awareness. They used the system as an additional
data point without complete reliance. In contrast, participants with
late onset blindness trusted the system more and relied heavily on
its feedback.

Level of vision impairment. Totally blind participants appreci-
ated the veering feedback, while low-vision users, having more
visual information, relied on their senses and needed less assistance
with veering. Low-vision participants preferred the street-crossing
feedback to interpreting pedestrian signals across the street. Totally
blind participants primarily listened for parallel traffic, their usual
method, using StreetNav’s feedback for confirmation.
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Figure 15: Illustration of StreetNav’s localization steps an-
alyzed in the technical evaluation: (a) CLIP-based gesture
recognition, (b) pedestrian feet position estimation, (c) cam-
era to map-view transformation.

Familiarity with assistive technology (AT). We noticed that
participants who commonly use AT for navigation quickly adapted
to StreetNav, while those with less experience hesitated in trusting
StreetNav’s feedback and had a slightly steeper learning curve. Still,
all participants mentioned feeling more comfortable with Street-
Nav as the study progressed. Both groups also expressed increased
confidence in exploring new areas with StreetNav.

E TECHNICAL EVALUATION
We independently analyzed the technical performance of each of
the three steps that enable StreetNav’s computer vision pipeline to
localize the user. Figure 15 illustrates the three steps: (i) CLIP-based
gesture recognition (Figure 15a), (ii) pedestrian feet position esti-
mation (Figure 15b), and (iii) camera to map-view transformation
(Figure 15c). Recall from Section 5.2, StreetNav first distinguishes
the BLV pedestrians from other pedestrians by recognizing the
hand-waving gesture, then estimates their feet position as the mid-
point of bounding box’s bottom edge, and finally transforms their
feet position from the camera view to the map.

E.1 Procedure
We recorded a 15-minute evaluation video (22500 frames) from the
camera feed to perform the technical evaluation. While recording
this video, researchers posed as users navigating through the street
intersection and played out different scenarios, such as waving
hands and crossing streets. We also analyzed the errors for each of
the three steps, revealing factors that impact StreetNav’s ability to
precisely determine a user’s position.

E.2 Results
CLIP-based gesture recognition. To evaluate the first step, we
randomly sampled a balanced dataset of 140 image crops from the

evaluation video. Figure 15a highlights the pedestrian image crops
from each class. The CLIP-based gesture recognition module clas-
sifies each crop as waving or non-waving (i.e., walking, standing)
pedestrian.

Figure 16: Confusion matrix for StreetNav’s CLIP-based ges-
ture recognition module. StreetNav distinguishes waving
pedestrians from non-waving (i.e., walking, standing) ones
with an 83% accuracy.

Figure 17: Failure cases in StreetNav’s CLIP-based gesture
recognition module. False positives occur when other pedes-
trians perform actions similar to waving their hand, such
as (a) talking over phone or (b) casually resting their hand
on forehead. False negatives occur when (c) users are too
far from the camera and (d) due to foreground occlusions
and background overlaps with vehicles, scaffolding, or other
pedestrians.

Figure 16 shows the confusion matrix for CLIP-based gesture
recognition module’s performance. StreetNav achieves an 83% accu-
racy in recognizing the hand-waving gesture, with a false positive
rate of 24% and a false negative rate of 10%. We analyzed the failure
cases to identify specific scenarios that lead to the errors.

Figure 17 shows instances of the most common scenarios leading
to false positives and false negatives. The false positives occur when
other pedestrians perform actions similar to waving their hand,
such as talking over a phone (Figure 17a) or casually resting their
hand on their forehead (Figure 17b). The false negatives occur when
users are too far from the camera (Figure 17c) or due to foreground
occlusions and background overlaps such as vehicles, scaffolding,
and other pedestrians (Figure 17d). While false negatives may result
in users needing to wave their hands for a longer duration until
recognized, false positives can lead them to follow incorrect instruc-
tions based on another pedestrian’s location. StreetNav’s approach
to mitigating false positives is to announce the relative location of
the detected pedestrian (e.g., ‘southwest corner’), providing users
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Figure 18: False negative rate (FNR) for pedestrian detection
over distance from the camera in meters. StreetNav’s error
rates in detecting pedestrians increases significantly as they
get further away from the camera. The FNR goes up from 1%
at 5 meters to 74% at 40 meters distance from the camera.

with additional contextual information to confirm whether they
were recognized. The idea is that if this information does not align
with the user’s perception, they could then choose to re-establish
the connection. Fine-tuning the CLIP model for this purpose could
potentially enhance accuracy even further.

Pedestrian feet position estimation. To evaluate the second
step, we manually annotated the ground truth pedestrian bounding
boxes for 250 frames, randomly sampled from the evaluation video.
Figure 15b shows the ground truth bounding box and StreetNav’s
predicted bounding box for a pedestrian. We report the root mean
square errors between the feet positions estimated using the ground
truth and predicted bounding boxes.

The root mean squared error (± std.) in estimating pedestri-
ans’ feet position is 0.41 (± 1.49) meters. The pixel distances were
converted to physical distances to obtain the error in meters. We
observed larger error rates for scenarios where pedestrians are
occluded by other pedestrians or objects such as trash cans and fire
hydrants. Future approaches could explore filtering abrupt changes
in pedestrians’ bounding boxes, caused by occlusions, to reduce
this error.

While analyzing the feet positions from the bounding boxes, we
also noticed a trend in StreetNav’s pedestrian detection pipeline.

Recall from Section 5.2, StreetNav uses Nvidia’s DCF-based multi-
object tracker [49] and the YOLOv8 object detector [67] for tracking
pedestrians. We found that although StreetNav detects pedestrians
with an 82% precision and 65% recall at 0.5 IOU (intersection over
union) threshold, the accuracy drops significantly as the pedes-
trian’s distance from the camera increases. This is attributed to
the relatively smaller size of pedestrians, low resolution, and high
chances of occlusion as pedestrians move further away from the
camera.

Figure 18 shows the false negative rate over distance from the
camera. The false negative rate increases from 1% at a distance of 5
meters from the camera to 74% at a distance of 40 meters from the
camera. Note that the distances were calculated between the pedes-
trian’s feet estimations and the camera position’s projection on the
ground. Future approaches could combine detections from multiple
cameras, such as two cameras positioned diagonally across a street
intersection, to address this drop in accuracy. Alternatively, using
training strategies that can detect both small and large pedestrians
could also improve performance [29].

Camera to map-view transformation. To evaluate the third
step, we selected a dataset of 50 points in the camera view and we
manually annotated their corresponding position on the map. We
chose these specific points for evaluation as they correspond to
visual landmarks on the street and are evenly spread across the
street intersection. For example, we selected points on the crosswalk
edges and road signs. As a result, annotating their ground truth
position on the map view could be done with reasonable accuracy
by simply comparing the camera and map view images. For these
50 points, we also generated StreetNav’s predicted transformations
from the camera view to the map view. Figure 15c shows the points
we selected and their corresponding ground truth and predicted
transformations.We computed the rootmean square errors between
the transformed ground truth positions and StreetNav’s predicted
positions.

The root mean squared error (± std.) in transforming points
from the camera view to the map view, averaged across the points
shown in Figure 15c, is 0.65 (± 0.26) meters. The pixel distances
were converted to physical distances to obtain the error in meters.
These errors occur due to the curvature in the camera lens.
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