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Abstract — Dexterous telemanipulation is crucial in advancing
human-robot systems, especially in tasks requiring precise and
safe manipulation. However, it faces significant challenges due
to the physical differences between human and robotic hands,
the dynamic interaction with objects, and the indirect control
and perception of the remote environment. Current approaches
predominantly focus on mapping the human hand onto robotic
counterparts to replicate motions, which exhibits a critical
oversight: it often neglects the physical interaction with objects
and relegates the interaction burden to the human to adapt and
make laborious adjustments in response to the indirect and
counter-intuitive observation of the remote environment. This
work develops an End-Effects-Oriented Learning-based
Dexterous Telemanipulation (EFOLD) framework to address
telemanipulation tasks. EFOLD models telemanipulation as a
Markov Game, introducing multiple end-effect features to
interpret the human operator's commands during interaction
with objects. These features are used by a Deep Reinforcement
Learning policy to control the robot and reproduce such end
effects. EFOLD was evaluated with real human subjects and
two end-effect extraction methods for controlling a virtual
Shadow Robot Hand in telemanipulation tasks. EFOLD
achieved real-time control capability with low command
following latency (delay<0.11s) and highly accurate tracking
(MSE<0.084 rad).

I. INTRODUCTION

Telemanipulation [1] is integral to advancing human-robot
systems in contexts where contact-intensive and safety-critical
manipulations are paramount, such as telesurgery,
extraterrestrial exploration, and remote assembly and repair
tasks. Compared with conventional teleoperation,
telemanipulation involves a human operator continuously
controlling a robot hand to apply dynamic and complex
interaction with external objects. Thus, telemanipulation tasks
exhibit significant challenges due to 1) the inherent physical
disparity between human and robotic hands, characterized by
differences in structure, size, and dexterity, 2) the complex
physical interaction between the robot hand and the object that
is difficult to be modeled and predicted, 3) the indirect control
and perception of the remote environment to the human that
cause delay, confusion and poor user experience.

Current telemanipulation methodologies predominantly
focus on mapping the human hand onto robotic counterparts to
replicate human hand motions through manually defined
joint-to-joint [2] or simplified synergy-based mapping [3].
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Proposed End Effects Extracting DRL Controller
Figure 1.  Compared with the current mapping-based telemanipulation, the
End-Effects-Oriented  Learning-Based  Dexterous  Telemanipulation
(EFOLD) framework interpret human operator’s interactive command with
the objects to end effect features, then input to a Deep Reinforcement
Learning policy that controls the robot to recreate such end effects.
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These approaches exhibit a critical oversight: they often
neglect the physical interaction with objects, which is the
priority of manipulation tasks. Consequently, the robot merely
emulates the human hand, relegating the interaction with
objects to the human’s capacity to adapt and make laborious
adjustments in response to the indirect and counter-intuitive
observation of the remote environment, which not only diverts
the operator’s focus from the primary task but also impairs the
overall task performance and potentially compromises the
safety of the manipulation process. As a result, current
approaches are neither sufficient to support real-time
telemanipulation nor achieve good performance.

Deep reinforcement learning (DRL) [4] methods have
demonstrated the ability to perform with high dexterity in the
autonomous manipulation domain akin to human-like
precision [5-7]. This approach excels in handling continuous
and dynamic interactions with objects, offering adaptability,
precise control, and robustness. Without dependence on
predefined models, DRL learns from experience, enabling it to
navigate complex dynamics and optimize manipulation
strategies over time. The adaptability and scalability of DRL
make it a potent solution for complex telemanipulation tasks.
Despite these advantages, the application of DRL in
telemanipulation faces significant challenges. A primary
obstacle is translating human manipulation commands so a
robot hand can comprehend and execute them. This translation
involves capturing the nuances of human intent and conveying
them so that the DRL system can process and act upon them
effectively. Another challenge lies in training and deploying
DRL-based controllers in real-world settings.

End-effect-oriented manipulation [8] prioritizes the
outcomes or ‘end effect’ of interactions between a robot and
the objects. This strategy focuses on understanding and
controlling the physical consequences of manipulation, such
as movement, tactile, force, and deformation, to achieve high
precision and minimal error. For example, [8] studied
force-based manipulation of deformable objects, the attempt



in [9] teaches the robot to grasp objects with the thermal
images of human demonstrations. End effects are crucial in
tasks that require delicate handling and interactions with
objects of varying fragility, size, and shape. Such advantages
make end effects perfect for bridging the gap between human
command and DRL policy in task-based telemanipulation.
This work develops the End-Effects-Oriented Learning-
Based Dexterous Telemanipulation (EFOLD) framework
(Fig. 1), which fundamentally redefines the roles of human
operators and robotic systems in telemanipulation to release
the human operator’s burden of control. The end effects are
defined as the information that describes the physical
consequences of manipulation, such as movement, tactile,
force, friction, and deformation. EFOLD prioritizes recreating
the end effects of interactions between a robot and the objects
in a learning-based control manner. EFOLD models
telemanipulation as a Markov Game [10] where the robot and
the human are considered agents. We propose to use the end
effect as the intermediary to interpret the human operation to
robot understandable command that covers the physical
interaction information. With this modeling process, the robot
control policy can be solved by training a DRL agent, which
uses the end effect as the manipulation goal. The key
innovation of this part is that we utilize the offline training
and online evaluation strategy, which trains a generalizable
DRL policy to track end-effect goals that are randomly

generated but follow specific rules to mimic human behaviors.

We assume that a well-trained generalizable end-effect-

oriented DRL policy covers the end-effect state space that the

human operator provides. In such a strategy, the human
operator only needs to join during testing.
The contributions of this work are summarized as follows:

1) Model the telemanipulation task as a Markov Game to
provide the mathematical foundation for the DRL-based
telemanipulation framework.

2) Categorize end effect extraction methods internally and
externally and analyze their practicability.

3) Develop human-offline training and human-online
testing strategies to free up human involvement in
training to save time and improve cost-effectiveness.

4) Evaluate the EFOLD framework with real human
subjects in telemanipulation tasks using a virtual Shadow
Dexterous hand and test the manipulated object as a
joystick to play a game.

II. RELATED WORK

A. Mapping-based Telemanipulation
Traditional mapping focuses on grasping tasks by projecting
the human hand pose to the robot [2]. Inverse kinematics
determines the empirical mapping of which human joints
control which robot joints [11]. This style of approach works
for less sophisticated robots. Recently, synergy-based
mapping has been studied through joint space [3], Cartesian
fingertip space [12], and virtual object [24], which further
simplifies the mapping space. However, the grasp may look
unnatural and lead to incorrect forces applied to the object.
Recent advancement in end-to-end mapping enables high-
performance human hand tracking. TeachNet [13] uses
shadow images and an autoencoder to control the robot to
recreate human gestures. DexPilot [2] uses point clouds and
deep neural networks to process the RGBD image of the
human hand to generate human hand configurations in real-
time. However, the ignorance of physical interaction still puts

the control burden on the human and significantly reduces the
manipulation speed (4x slower). Regardless of the mapping
strategy, the robot replicates and imitates the static poses a
human commonly generates. These forms of telemanipulation
essentially identify a human gesture and formulate a
corresponding robotic gesture and do not consider task
dynamics and physical interaction with the external object.
B. DRL-based Teleoperation

DRL-based methods are widely studied in general
teleoperation topics. Shared autonomy [14] models human
behavior as a Markov Decision Process (MDP) [15] and
focuses on the approaching/navigation phase of the task for
grasping tasks. In [14], a DRL-controlled robot assists the
user toward a goal position by predicting the user intent and
integrating their inputs. Recently, [16] proposed a human-in-
the-loop RL to achieve both following user commands and
deviating from the user’s actions when they are suboptimal
for the Lunar Lander game. Yet, these methods are for
navigating the robot toward a target position, so-called target
approaching, but not for in-hand object manipulation. Due to
the physical discrepancy of hand structures and interaction
between object and hand, DRL for target approaching is
unsuitable for in-hand object telemanipulation.

C. End-Effect-Oriented Autonomous Manipulation

End effects are studied in autonomous manipulation tasks
emphasizing the importance of the outcomes or 'end effects'
of the interactions with the objects. Deep learning models [17]
have recently been developed to predict the spatial end effects.
ContactDB [9] uses thermal images to train the robot to learn
grasping from human demonstrations. Soft object
manipulation also uses tactile information such as contact
points, force, and pressure [18]. Higher-level end effects such
as grasp quality [ 19] and affordance [20] are studied based on
contact points, coverage area, and distance to the object center.
These studies demonstrated the effectiveness and promise of
an end-effect-oriented strategy for autonomous manipulation.
However, how this can be used for in-hand object
telemanipulation where human inputs need to be considered
in the loop has rarely been studied.

III. END-EFFECTS-ORIENTED LEARNING-BASED
DEXTEROUS TELEMANIPULATION FRAMEWORK

This section introduces the modeling of the DRL-based
telemanipulation in III.A. The categorization of the potential
end effect features is discussed in III.B. The offline training
and online testing strategy is presented in III.C.

A. Multi-agent Modeling and Representation of DRL-based

telemanipulation

DRL methods have demonstrated their capability to handle
dexterous in-hand manipulation tasks such as rotating a block
to a goal pose [5] or solving a Rubik’s cube [6]. We start with
the mathematical modeling of the DRL-based
telemanipulation approach. Typically, a single-agent DRL
problem is modeled as a Markov Decision Process (MDP),
which is defined as a tuple {S, 4, R, v}, where S is the state
space of the environment, A is the set of available actions,
R:SxA—- R is the reward that is returned by the
environment, and y € [0,1] is the discount factor. The
purpose of DRL training is to maximize the reward during the
task. Unlike single-agent tasks, telemanipulation tasks
involve two agents: a human operator and a robot. Thus,
we model the telemanipulation problem as a Markov Game,



an extension of MDP with multiple agents. Specifically, a
telemanipulation task contains two MDPs shown in Fig. 2.
Each agent’s behavior follows an MDP and has its policy: the
human operator as an agent, who is interacting with the object
with state transition denoted as {H; = H;,,}, and an
autonomous agent following the human’s command to
manipulate the object. The Markov game is a tuple
{H, S, A4, R, y}. In the telemanipulation task, the robot is
following the human, so its policy z.S>H xR, which depends
on its state, the human command, and the operation reward.
However, in the real world, the human mind is a black box,
making the human MDP a Partially Observable MDP
(POMDP) [15], where the transition, action, and reward
cannot be directly assessed, and only the human’s physical
interaction with the object can be observed. The Markov
Game model leads us to the innovation of the end-effect-
oriented approach to transform partial observation into robot-
understandable end-effect goals and helps clear the
relationship between humans and robots to develop DRL
algorithms and training strategies.

B. End Effect Feature Categorization and Applicability

The Markov Game modeling reveals the necessity for an
interpretation layer to bridge Human POMDP and Robot
MDP. In this section, we utilize the end effects as the
interpretative link to describe how the human operator
interacts with the object. To ensure the viability of our
approach in real-world complex 3D space operation, we delve
into the categorization of end effect features.

In our telemanipulation setup, humans need to manipulate a
demonstrating object. The end effect information is extracted
from the sensors by tracking the object. We first identify
several potential sensory technologies from the literature that
can be used for end effect extraction for telemanipulation,
including IMU, accelerometer, gyroscope, tactile, pressure,
vibration, RGB/RGBD camera, data glove, IR Sensor, laser,
MM wave, and thermal image. Based on how the end effect
features are extracted, they are divided into two categories:
Internal extraction, which means that the sensors can be
integrated into the demonstrating object, and External
extraction, where the sensors are external devices set up
around the environment (Table I). This categorization aids in
selecting features for specific tasks involving confined spaces,
extra precision, and multi-model perceptions. We further
analyze the practicability of the categorized sensors based on
the following end-effect features:

Translational features. Translational information tells the
robot how humans want to place the object. The identified
translational end effect features in 3D space including but not
limited to the position, denoted as (x, y, z), the speed, denoted
as (x,y, Z), and acceleration, denoted as (%, ¥, 7). The internal

Human POMDP End Effect Target Robot MDP

St
@ Hy — Extract —» \ It
¢ ¢ v a v,

iy
[ EFe 1 Ve )
¢ St+2 w?

Sevr ldall
(5 Hyyq— Extract —»
: X
va— Hypq— Extract =\ / EF,
\ t+n

‘ann s

St+n “3‘4]

Fig.2. We model the telemanipulation tasks as a Markov Game that
involves two agents: a human operator and a robot. The robot’s MDP
depends on the operation command from the state of human’s POMDP
because the human’s mind is a black box and only the end effects that the
human applied to the object can be observed by the robot.

TABLE 1. END EFFECT FEATURES CATEGORIZATION

Internal External
MU RGB/RGBD
Accelerometer  Data glove
Gyroscope IR Sensor
Tactile Laser
Pressure MM wave
Vibration Thermal

sensors that extract these features include accelerometers and
gyroscopes. With Computer Vision [17], nearly all vision-
based external sensors can be used, including RGB/RGBD
cameras, reflective trackers, IR sensors, and Laser tracking.

Rotational features. Rotational information tells the robot
how humans want to rotate the object. The identified rotational
end effect features in 3D space including but not limited to the
rotational position, denoted as (1, 8, @), the rotational speed,
denoted as (1, 8, ¢), and rotational acceleration, denoted as
(), 8, $). The internal sensors include IMU, accelerometers,
and gyroscopes. Like translational features, nearly all vision-
based external sensors can be used.

Tactile features. Tactile information [21] can help the robot
to understand further the dexterous interaction between the
specific hand components (like fingertips and palm area) and
the object. It potentially constrains the DRL policy’s behavior
and drives the robot hand to behave like the human hand. The
identified tactile features including but not limited to the touch
position, denoted as (7, Ty, 7,), touch force vector, denoted as

F(x,y,z), and touch pressure, denoted as P. The internal
sensors that extract these features include tactile, pressure,
deformation, and skin sensors. External sensors include data
gloves that the human operator can wear.

C. Human-Offline Training and Human-Online Testing
Conventional training of autonomous DRL policy can usually
be accelerated with fast simulation and parallel training on a
supercomputer. However, the biggest challenge of adopting
DRL methods to human-robot systems is that the training of
DRL policy needs human involvement, and humans can only
operate in real-time, which brings high costs. The key
innovation of this part is that we utilize the human-offline
training and human-online testing strategy (Fig. 3), which
trains a generalizable DRL policy to track an end-effect’s goal
trajectory that is randomly generated to mimic human
behaviors. A well-trained, generalizable, end-effect-oriented
DRL policy can cover the goal state space from the human
operator. In such a strategy, the human operator only needs to
join during testing.
Human-Offline

Training

Randomly
Generated End
Effect Goal
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Fig. 3. Tllustration of the human-offline training and human-online testing
strategies. During training, the human operator is offline, the DRL policy is
trained with randomly generated end effect goal. After training, the DRL
policy will be generalizable to follow the target provided by real human
operators. Then the human operator can control the robot in testing.



IV. EXPERIMENTS DESIGN AND EVALUATION METRICS

A. Task Design

The EFOLD framework requires a capable test platform to
derive viable dexterous telemanipulation tasks. The
framework will be evaluated in a simulated environment for
easy training and testing. Specifically, we adopt the Shadow
hand environments from the OpenAI GYM Robotics platform
[5], which runs on the MuJoCo physics simulator [22]. The
telemanipulation scenario is designed to control the robot
hand to rotate a block placed on the hand’s palm with a
random initial pose (Fig 4). The task is manipulating the block
around the Z-axis to achieve the goal pose. Two reward
functions are designed to compare the performance of the
DRL policy under different rewards:

Sparse: the reward function gives a binary reward of 1, = 0
if the goal has been achieved and r;, = —1 if the task failed.
The sparse reward only evaluates if the goal is achieved at the
last time step, giving the policy more freedom to find ways to
achieve the end-effect goal.

Dense: the reward function is defined as:

R = —2-arccos(|q.q5]) + 7 ¢}
where q, is the object angle while g, is the goal, both in
quaternion form. arccos function calculates the minimal
angular distance between the current and goal positions. The
dense reward function provides a continuous reward signal
during the manipulation process, providing more guidance to
the target, but is harder to train. Thus, we set the criterion that
a goal is achieved if the angular distance is less than 0.1 rad
for the Sparse and 0.05 rad for the Dense.

The agents are running at a time step of 0.04s. The PC
hardware for training includes an Intel 12900K, a Nvidia
RTX3080ti, and 64 GB of RAM. The Deep Deterministic
Policy Gradient (DDPGQG) algorithm trains the DRL agent. The
Hindsight Experient Replay method is used to improve the
sample efficiency. A 5-layer fully connected neural network
is designed as the policy network (Fig. 3). The inputs consist
of 24 robot joint angular positions, and 24 angular velocities,
13 object states comprising Cartesian position and rotation
represented by a quaternion, along with its linear and angular
velocities, and an end effector goal in Cartesian position and
rotation represented by a quaternion, totaling 68 inputs. The
output is 20 joint actuators of the hand. Most hyperparameters
are from [24], but with changes to the total epoch to 200.

In the block telemanipulation task, the end effect feature is
defined as the block’s rotation angle ¢ around the Z-axis. Due
to limited resources and implementation difficulties in real-
world sensory setup, we selected IMU as the representative
sensor from the internal category and RGB camera as the
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Fig. 4.
robot hand to rotate a cube around the Z-axis. We used two extraction
methods: (a) a top-down camera and (b) a built-in IMU. The extracted end
effect goal will be used to control the robot hand. To evaluate the
applicability, the recreated object is used as a joystick to play Pong.

The experiment includes a human remotely controls a dexterous

external category. A wireless IMU is placed inside a 3D-
printed block to read the rotation angle. A top-down camera
is used to track an Aruco code [23] that is glued to the top of
the block (shown in Fig. 4) for ease of set up. To the best of
the author’s knowledge, there are no end-effect-based
telemanipulation methods that can be used as a baseline
comparison. The only comparable approach is a mapping
method, DexPilot [2]. However, directly comparing the
performance is inappropriate because of the significant
difference in experiment setup and non-real-time capability
(about 4x slower than our method). An extension test is
designed to evaluate EFOLD’s real-world performance. The
telemanipulated object is treated as a joystick to play the game
Pong. The game points and number of failures of direct
control by the human and telemanipulated control by the
object are recorded to assess the performance.

B. Evaluation Metrics and Quantitative Testing
During the human-offline training, the goal positions are
randomly generated within the range of (—m, ) rad. Instead
of logging the episode reward and average reward, the task
success rate of the policy is recorded at the end of each epoch
for a direct and unbiased comparison. The success rate is the
percentage of successful cases in a validation set with 50
trials. Each trial randomly generates an initial block position
and sequential end-effect goals. Each dense and sparse
configuration is trained 5 times with 200 epochs to obtain
statistical results. Because human commands are difficult to
repeat, we designed the following two-goal trajectories from
traditional control theory to acquire quantitative data for
performance evaluation:

Sinusoidal goal: The rotational end effect trajectory is
designed to follow the following Sinusoidal function:

G = asin(wx)

where a = (0.5,1) is the amplitude, and w = (0.1,0.05) is
the frequency. The Sinusoidal goal helps to measure the
performance under periodic commands. The following
metrics are designed for the Sinusoidal trajectory:
MSE: The mean square error is calculated as:

MSE = Z((pl —G)? )

where n is the number of steps @; is the object rotation angle
around the Z-axis, G; is the end-effect goal. MSE evaluates
the overall following performance during telemanipulation.
Average Latency: The average latency is calculated as

L=06,—6, 3)
where 0 is the phase of the actual trajectory of the object, 6,
is the phase of the end-effect goal trajectory, which are
obtained from the dominant frequency after Fourier
transform. The average latency evaluates the manipulation
delay, a critical measure to show real-time control capability.
Saturation: The proportion of instances where the robot
executes maximum magnitude movements to the total
executions is denoted as Sat. Saturation quantifies the extent
of exaggeration in the robot's movements, offering a
comprehensive evaluation of manipulation performance.
Average Energy Consumption: The average energy
consumption is calculated as:

i=1 j=1




where n is the number of steps, m is the number of Shadow
hand joints, a;; is the magnitude of motion for the j™ joint at
the i step. This measure enhances our understanding of
managing and optimizing energy consumption in
telemanipulation to improve energy efficiency.

Step goal: The end-effect goal is designed as a step signal
that sets the object's initial rotation to 0 and the end-effect goal
t0 Ggrep = 1 7ad at the 50t step. The step response helps to
evaluate the telemanipulation performance for commands that
change in a short time. The following metrics are designed for
the step trajectory based on the traditional control theory:
Steady State Error: This measure is calculated as

ess = lime(i) X 100% (5)

i-n
where error e(i) = @; — Ggep. It evaluates how accurately
the DRL policy can track the end-effect goal.

Overshoot: We calculate the max-percent overshoot:

x 100% (6)

0S = Pp — Gstep
Gstep

where ¢, is the peak object rotational angle. The overshoot
measures the aggressiveness of the DRL control policy.
Settling Time: The time t; took for the robot to reach and stay
within a range of 5% of the final goal. It measures how fast
the robot stabilizes after being subjected to perturbation.
Peak Time: The time required for the response to reach the
peak value for the first time, which is denoted by t,. It
indicates how quickly the control policy can react to the
human command. For all measures, the lower is better.

After the quantitative evaluation, the human operators will
join the operation of the DRL policy to control the Shadow
hand for the block manipulation task. We record the tracking
performance in temporal space to show the EFOLD’s real-
time tracking capability, and the tracking MSE will be
calculated to show the overall performance. The video of the
testing is included in the supplementary materials.

V. RESULTS AND DISCUSSION

A. Human-Offline Training

The results of the training process are shown in Fig. 5. The
policy performance increases at a similar speed in early
training for both sparse and dense rewards. On average, sparse
achieved a slightly higher success rate =~ 0.8 than dense
successrate = 0.7 when the training finished. This is
because the dense reward constrains the whole manipulation
process with a stricter success tolerance (0.05 rad) than Sparse,
which makes it more difficult to find an optimal solution in
the optimization view. In the next section, the sophisticated
performance evaluation metrics will help us to identify which
policy is more suitable for telemanipulation.

B. Quantitative Testing

The quantitative testing results for the sinusoidal goal
tracking are shown in Table II. Overall, the policies from
dense and sparse rewards can keep a good track of the end-
effect goal with the highest latency of 2.89 steps (each step is
0.04s) for Dense, which is around 0.11s on a real-world time
scale. More visualized results can be found in the
supplementary video. As a comparison, Dexpilot [2] needs to
accelerate their demo 4 times to achieve similar results as
ours. The tracking performance deteriorates as the sinusoidal
amplitude increases and improves as the sinusoidal frequency
decreases, owing to the alteration in task complexity.
Specifically, the policy trained with dense rewards (Dense)

Human-Offline Training Process
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Epoch
Fig. 5. The training process of dense and reward.
TABLE II. SINUSOIDAL GOAL TRACKING PERFORMANCE (200 TESTS)
o ®  MSE(rad) L(step) Sat(%) E
0.50 0.10 0.01 -1.93 6.75 666.92
Dense 0.50 0.05 0.01 -1.84 443 518.58
1.00  0.10 0.32 -2.89 23.69  720.02
1.00 0.05 0.03 -243 10.71  627.33
0.50 0.10 0.02 -1.61 20.59 24251
Sparse 0.50 0.05 0.01 -1.80 10.08  132.60
1.00  0.10 0.26 -0.28 19.99  499.79
1.00 0.05 0.08 -0.46 18.03  349.01

has higher latency, lower saturation, and higher energy
consumption than that trained with sparse rewards (Sparse).
This is because Dense is trained with continuous guidance
during the manipulation process, which teaches to follow the
goal trajectory precisely, so the saturation level is low.
However, such behavior slows the manipulation with higher
delay and increases energy consumption.

The results for the step goal tracking are shown in Table
III. Dense and Sparse have similar peak times (153 and 163)
and settling times (102 and 109) because these two measures
depend more on the dynamic systems, which are the same in
this testing. However, Dense achieved a much lower
overshoot and steady-state error than Sparse, which means
better performance. This corresponds to the training difficulty
explained in the sinusoidal tracking results.

Fig. 6 shows the best-performing sinusoidal and step goal-
tracking tests. Dense (MSE = 0.004 rad) outperforms Sparse
(MSE = 0.009 rad) in the sinusoidal goal but vice versa in the
step tracking. The results reveal the policy behavior
difference, where the Dense performs better with smooth and
continuously changing goals. Sparse performs better with
fast-changing goals. This is because Sparse reacts faster than
Dense, but it is also difficult to reduce the tracking error.

C. Human-Online Testing

In the human-online testing, a human operator conducted 5
tests in the block telemanipulation tasks with Dense and
Sparse, which have the best quantitative performance. The
results are shown in Table IV. Telemanipulation section. As
explained in section IV, we only calculated the MSE and Sat

TABLE III. STEP GOAL TRACKING PERFORMANCE (200 TESTS)

ip(siep) Tu(siep) OS(%) _en(%)
Dense 153 102 -0.57 -0.87
Sparse 163 109 -1.43 -1.51

(a) Sinusoidal goal tracking (b) Step goal tracking

\ — Target 1.0 —
i Dense MSE: 0.004 |
‘ —— Sparse MSE: 0.009 0.8 f

0.4

0.2 i i g
N | 0.6 ‘ —— Target
Dense MSE: 0.047

—— Sparse MSE: 0.020

Angle

0.0

-0.2

—0.4 0.0

0 25 50 75 100 125150 175 200
Timestep

0 50 100150200250 300 350 400
Timestep

Fig. 6. Tracking performance of (a) Sinusoidal Goal and (b) Step Goal



TABLE IV. REAL-WORLD TESTING IN A TELE-PLAYED GAME* (5 TESTS)

MSE (rad) Sat Drop Hit Failure
Telemanipulation Play Pong

Soare MU 175 2071% 60% 11 2
P Camera 025 17.75% 40% 13 7
b IMU 0.07 225% 20% 20 3
NS¢~ Camera 0.03 160% 0 23 2
. IMU - N - 25 0
Direct Camera - - - 25 0

*The total numbers of hit and failure are different because the robot drops
the block, causing a failure and end in the game early.

(b) Extraction with camera (c) Extraction with IMU

(a) Compare IMU and Camera
0.1

0,075 25
0.050
L
o 0025
2 0.000 21
< _0.025 1.0
-0.050 0,51 — Toreet
— Dense MSE0.015
—0.075 Camera 0.0} — sparse mse:0.034 2
~0.100

50 75 100 125 150 175 200 200 400 600 800 1000
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Fig. 7. Human-online testing: (a) extraction with IMU, (b) extraction with
camera, (¢) compare IMU and camera extraction performance.

measures due to the inconsistency of human behaviors.
Considering reward, Dense performs better than Sparse with
an MSE smaller than 0.07 rad and a saturation level 0.02%.
The percentage of tests when the object drops out of the hand
is calculated, denoted as drop. Dense achieved a lower drop
rate than Sparse. This is because Dense is more stable than
Sparse, as shown in Fig. 6. Considering sensors, the IMU
performs worse than the camera with much higher MSEs and
saturation levels. To find the reason, we recorded the
telemanipulation test for the IMU and camera extraction
methods in the best-performed human-online tests. Fig. 7(a)
first shows the comparison of IMU and camera tracking
performance when tracking a static object. The IMU has a
clear signal but drifted over time, which requires frequent
calibration during the experiment. On the contrary, the
camera tracking has higher noise level but also shows stable
and accurate tracking. For EFOLD telemanipulation, end-
effect tracking accuracy is the most critical factor for the DRL
policy to apply correct control. Thus, the IMU performs worse
than the camera, but still has acceptable performance. In Fig.
7(b, c), even the lower-performance IMU can telemanipulate
in real-time, with a the 0.08 rad MSE, which proves the real-
time and tracking performance of our EFOLD framework.

The results of Pong are shown in Table IV Play Pong
section. Overall, Dense achieved a higher number of
successful hits of the ball (43) than Sparse (24), showing
consistent advantage. Camera outperforms IMU with a higher
number of successful hits (36) than IMU (31) because IMU’s
low performance caused 60% in sparse and 20% in dense
object drop rates, higher than the camera (40% in sparse and
0 in dense), result in more failures than the camera.

In summary, the results show that dense reward is a better
option for EFOLD because the trained DRL policy has a more
stable manipulation behavior. But the internal and external
feature extraction methods can be applied to the EFOLD
framework in real-world applications. However, the sensor
performance will affect the overall system performance. Our
future work will extend the EFOLD framework to real-world
experiments with physical robot hands and study the selection
and optimization of sensors with multi-model perception for
safe operation and intelligent feedback for humans.
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