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Abstract

Motivation: The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling
and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolu-
tion hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled
from nature.

Results: We introduce TraitTrainR, an R package designed to facilitate efficient, large-scale simulations under complex models of continuous
trait evolution. TraitTrainR employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and
exhibits flexibility in defining input parameter space and model stacking. Moreover, TraitTrainR permits measurement error, allowing for investi-
gation of its potential impacts on evolutionary inference. We envision a wealth of applications of TraitTrainR, and we demonstrate one such
example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstra-
tions of applying TraitTrainR to explore problems in model selection underscores its utility and broader promise for addressing key questions,
including those related to experimental design and statistical power, in comparative biology.

Availability and implementation: TraitTrainR is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/,

which includes detailed documentation, quick-start guides, and a step-by-step tutorial.

1 Introduction

Modern comparative studies are flooded with biological trait
data of varying scope, scale, and complexity. This deluge is
due in part to advances in high-throughput phenotyping and
sequencing for generating trait data across levels of biological
organization—from single cells (Church et al. 2024) and tis-
sues (Tirosh et al. 2007) to entire organisms (Ellegren 2014),
populations (Hoban et al. 2012), and species (Hudson 2008).
New large-scale trait databases are also rapidly coming on-
line to curate a great deal of biodiversity (e.g. Tobias et al.
2022, Blackburn and Hughes 2024). The types of traits that
can be measured and the questions that can be assessed with
this information seem almost endless. However, as the com-
plexity and breadth of comparative data continue to expand,
so do the computational demands for analyzing them (De
Los Campos et al. 2018, Adams et al. 2021, Pennell and
Harmon 2013; Dimayacyac et al. 2023).

In the wake of these advances, the last few decades have
seen a resurgence in the sophistication of probabilistic models
for studying trait evolution. A number of software tools exist
for simulating and fitting models of continuous trait

evolution according to Brownian motion (BM) and related
processes, including the popular packages ape, geiger, and
phytools (Revell 2013, Pennell et al. 2014, Paradis and
Schliep 2019). These approaches represent marked progress
in simulation, inference, and mathematical modeling of evo-
lution, which have been extended to incorporate additional
considerations, features, and processes of evolution (e.g.
Jhwueng and Maroulas 2016, Mazel et al. 2016, Ho and
Dinh 2022, Jhwueng 2023, Vu et al. 2023), including exten-
sions of BM, such as Ornstein-Uhlenbeck (OU; Hansen 1997,
Beaulieu et al. 2012, Rohlfs et al. 2014, Blomberg et al.
2020), Early-Burst (EB; Harmon et al. 2010, Ingram et al.
2012), and Pagel's Lambda, Delta, and Kappa models (Gould
and Eldredge 1977, Pagel 1999, Lepage et al. 2007, Ho and
Dinh 2022). These models have been tailored to address a
broad spectrum of biological questions (Bomprezzi et al.
2003, Sinoquet and Mourad 2014, Sukumaran and Knowles
2018), statistical challenges (Ho and Ané 2014), and data
types (Butler and King 2004). Built upon the principles pro-
posed in Felsenstein (1985), these models have emerged as a
cornerstone of modern phylogenetic comparative methods
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(PCMs) central to comparative biology in the 21st century.
While such advances hold great promise for improving evolu-
tionary inference, a persistent question exists: how accurately
do current models capture evolutionary processes in nature?
Addressing this question requires a deeper understanding of
current models and their alignment with empirical trait data.

Fortunately, a promising approach for learning about a
model involves simulating many replicate datasets under that
model (Arenas et al. 2012, Diniz-Filho et al. 2012, Hoban
et al. 2012, Martin et al. 2023). Simulation-based strategies
can help us better understand expected model outcomes, their
predicted trait distributions, and other considerations for
studying real trait data collected from nature (Kutsukake and
Innan 2013, Boucher and Démery 2016). We can leverage
large-scale simulations to understand theoretical and practi-
cal applications of model inference and the performance of
statistical procedures in certain experimental and evolution-
ary conditions (e.g. Kutsukake and Innan 2013). Moreover,
such strategies can be especially helpful when likelihood func-
tions are expensive to compute or unavailable (Kutsukake
and Innan 2013), and for methods that make use of simula-
tions directly for inference, including machine learning tech-
niques (Voznica et al. 2022), Bayesian approaches such as
posterior prediction (Boettiger et al. 2012, Pennell et al.
2014) and approximate Bayesian computation (Bollback
2002, Gutmann et al. 2018), and maximum likelihood-based
methods (Zhu et al. 2016).

Yet, the computational demands of conducting effective
and well-organized simulations under complex evolutionary
models can quickly become infeasible (e.g. Smith and Hahn
2023) or at least burdensome (e.g. Kutsukake and Innan
2013) as the scale of analysis increases, imposing a significant
barrier. Moreover, it is often desirable (if not necessary) to in-
corporate variability in the evolutionary processes and
parameters that affect trait distributions across replicates to
accommodate uncertainty or limit conditions to an expected
range, rather than fixing them to a constant value for all rep-
licates (Freckleton 2009). For instance, many models of trait
evolution are based on principles of BM (Felsenstein 19835,
Hopkins and Lidgard 2012), which includes an ancestral
state zo (i.e. trait value at the root node of a phylogeny) and
evolutionary rate parameter o2. Conducting many replicate
simulations with the same fixed values for 2y and 6> may be
neither helpful nor realistic. Instead, we may prefer sampling
parameter values from a particular distribution to accommo-
date evolutionary variation across replicates. This can be ac-
complished, e.g. by sampling values of o> from an
exponential, uniform, or other applicable continuous distri-
butions. Likewise, we can sample values of other relevant
evolutionary parameters when conducting simulation under
other models (e.g. sampling the « parameter of the
OU model).

Clearly, probabilistic trait models thus provide valuable
frameworks for understanding evolution. However, what is
sometimes less clear or accessible is the expected trait distri-
bution under some complex models (such as those incorpo-
rating non-Brownian processes), how large-scale simulations
can be conducted efficiently with phylogenetic transforma-
tions, and perhaps how current approaches to model fit and
inference behave in realistic conditions. What also remains
uncertain is model inference performance for diverse phylo-
genetic backgrounds and in the presence of trait measurement
error. Moreover, recent modeling efforts include complex
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evolutionary processes known to present statistical chal-
lenges, including an “ancestral shift model” (termed
“AncShift” here), which prompted discussions about the
need to reassess current models and assumptions (Uyeda
et al. 2018), and yet, straightforward simulation frameworks
under this model are lacking. This model incorporates instan-
taneous jumps in the mean trait value on ancestral branches
of the phylogeny, which violates continuous trait evolution
assumed by models based on BM (Uyeda et al. 2018; Adams
et al. 2024). Additionally, local rates model (termed “Irates”
here) refers to a model that allows for the evolution of traits
at different rates across different branches of the phylogeny,
which can further complicate model fitting and inference
(Adams 2014, Castiglione et al. 2018). Because many canoni-
cal models of trait evolution are based on principles and
extensions of BM, they can be reformulated as phylogenetic
transformations, holding promise for incorporating more
complex models and novel simulations that include multiple
process levels, such as a “stacked” BM+AncShift model that
integrates features of both processes. Regardless of whether
model understanding, model inference, or both are the de-
sired goals, the capability to conduct large-scale simulations
under a set of target models is therefore imperative.

2 Methods
2.1 Streamlined simulations and model stacking
with TraitTrainR

Here, we introduce the package TraitTrainR, which is devel-
oped in R 4.4.0 and includes a comprehensive suite of func-
tions trailed for organized, flexible, and large-scale
simulations of trait evolution (Fig. 1). To facilitate effective
and efficient simulation experiments, TraitTrainR incorpo-
rates great flexibility in experimental and evolutionary
parameters chosen by users (see Section 2.2), automated com-
putation of phylogenetic transformations, and incorporation
of measurement error directly into the simulation process.

Models included in TraitTrainR (Fig. 1) represent exten-
sions of the BM model, which can be reformulated as phylo-
genetic transformations that define the outcome of trait
evolution as multivariate normal according to the ancestral
states, evolutionary parameters, tree topology, and branch
lengths, and TraitTrainR can also “stack” certain evolution-
ary models on top of a BM-based model. Specifically,
TraitTrainR  currently includes four different potential
“stacking” options: “standard” (BM model or extension
only), “lrates”, “AncShifts”, or both “lrates” and
“AncShifts” combined. These variations of combined models
have not been included within comparable simulation soft-
ware packages, and thus, allow the user to explore novel
modeling scenarios by combining processes. TraitTrainR first
transforms the input phylogeny according to the primary
model type, followed by any stacked model settings. This
strategy allows users to simulate trait evolution under more
complex evolutionary scenarios that are not available in cur-
rent simulation software; e.g. a BM model with multiple an-
cestral shifts, an OU model with localized rate shifts, an EB
model with both stacked processes, or perhaps some other
combination.

Another advance of TraitTrainR is the extensive customi-
zation options for both input and output settings, enabling
variability in evolutionary models across replicates as well as
flexibility in returned output formats. For example, values of
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Figure 1. Overview of TraitTrainR highlighting its scope and implementation, and options for inputs and outputs. Boxes on the left represent the choice
of target phylogeny, the potential for multi-trait simulations for list. Rmatrix, and the number of replicates. The polygon in the center depicts the choice of
11 potential primary models and their associated vectors for evolutionary parameter values. Customized options for the three stack models are shown in

the right boxes, followed by output options and the list of output results.

the o2 rate can be fixed for all replicates (e.g. 6> = 1), or sam-
pled from any number of applicable continuous distributions,
including a uniform (with some minimum and maximum),
exponential (with some rate), gamma distribution (with some
shape and scale), or most any other appropriate distribution,
or set of user-specified values. For models that include dis-
tinct rate shifts, the user provides a matrix of rate values and
shift locations (time intervals or lineages), which permits rep-
licates generated with different shift locations and rates.
Likewise, the AncShift model can be specified to include mul-
tiple shifts in the ancestral state across the tree, which can be
varied or fixed across replicates. Variability in among-trait
associations can be incorporated by using a custom among-
trait covariance matrix for each replicate for multi-trait simu-
lations. A key advantage of TraitTrainR is flexibility in out-
put formats, including: raw trait measurements, phylogenetic
independent contrasts (PICs; Felsenstein 1985) computed us-
ing the input tree, PICs computed using the input tree scaled
to unit depth, phylogenetic transformations using phyloge-
netic generalized least squares (PGLS) principles (Garland
1992), and PGLS-based transformations using the depth-
scaled input tree.

2.2 Scope and implementation

The scope of TraitTrainR currently includes a total of 44 mod-
els, spanning 11 primary models each with four options for
model stacking (Fig. 1). The TraitTrainR package includes a de-
tailed manual, quick-start guide, and tutorial (see
Supplementary Material and the TraitTrainR website), and de-
pendencies include ape (Paradis and Schliep 2019), geiger
(Pennell et al. 2014), and phytools (Revell 2013) employed for
various simulation functions and phylogenetic transformations.
The primary inputs required by TraitTrainR are a phylogeny
for simulation and a ModelSimulationSettings list object that
encompasses all user-defined options, including the desired
model(s), their parameter values (or vector of parameter values),
ancestral states of replicates (or vector of ancestral states),
among-trait covariance matrices (for multi-trait simulations),
output formats, options for automatically simulating normally
distributed measurement error, and information for model
stacking if desired. Thus, TraitTrainR allows users to specify an
array of experimental and evolutionary settings to define the
scope of simulation sessions. The primary function that users in-
teract with is termed TraitTrain which requires the input

phylogeny and the list ModelSimulationSettings detailed below,
alongside any additional options requested by the user.

3 Results

3.1 Demonstrating TraitTrainR: how well does
model selection perform in the presence of trait
measurement error?

Selecting a model of trait evolution is fundamental to phylo-
genetic comparative studies and provides insight into the
mode and tempo of trait change expected on a phylogeny
(Johnson and Omland 2004). Thus, correctly predicting the
true model of evolution for a given studied trait is therefore a
critical step toward our understanding of evolutionary and
comparative biology (Johnson and Omland 2004, O’Meara
2012, Cornwell and Nakagawa 2017). We applied
TraitTrainR to investigate the problem of model selection us-
ing three empirical phylogenetic case studies: (i) a phylogeny
of 76 Arthropods (Thomas et al. 2020), (ii) 34 Penicillium
fungi (Steenwyk et al. 2019), and (iii) nine eutherian mam-
mals (Brawand et al. 2011). Varying the tree sizes allowed us
to explore applications of TraitTrainR to large (Athropod),
moderate (fungal), and small (primate) trees. We envision
many potential applications of TraitTrainR (e.g. Bollback
2002, Kutsukake and Innan 2013, Pennell et al. 2014), and
through these examples we aimed to demonstrate the use of
TraitTrainR for tackling a critical question: how does model
selection perform with and without trait measurement error,
and how might that manifest in statistical power (or lack
thereof) to find the true evolution model in empirical phylo-
genetic trait studies?

Each phylogeny was obtained from its respective publica-
tion and subsequently used as input by TraitTrainR to simu-
late 10* replicates for each of seven primary focal models
(model details provided in Table 1). Specifically, we down-
loaded the Newick formatted phylogeny from each respective
study. Values for all parameters were sampled from probabil-
ity distributions to incorporate variability in evolutionary
processes across replicates and set to reflect the bounds of
model parameter values used by the function fitContinuous
in geiger (Pennell et al. 2014). Distributions for each parame-
ter of the seven models are shown in Table 1. After simula-
tion, maximum likelihood estimation was conducted using
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Table 1. Summary of the evolutionary models available in the TraitTrainR.
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Model Parameters Evolutionary process Distributions used in biological
applications (Fig. 1)*
Brownian motion (BM) 20} 6> A random-walk model of trait change: zp mean trait o> ~ Exp(1);

value at the root; 62 is the rate of trait evolution

20 ~ N(0, 1); (standard normal)

(variance) (Felsenstein 1985)

Ornstein—Uhlenbeck (OU) 205 6% a Stabilizing selection: a is the strength of selection o* ~ Exp(1); 2o ~ N(0, 1);
pulling the trait towards a stationary optimal a ~ Ulexp(=500), exp(1))
value at the ancestral state z (Butler and
King 2004)

Early-burst (EB) 2030734 Adaptative radiation: a describes the rate at which o> ~ Exp(1);
evolutionary rates decline over time (Harmon 20 ~ N(0, 1);
et al. 2010) a ~ U(-5/depth, 107°)

Lambda 205 0% A Phylogenetic signal scaling: 4 measures the degree to o> ~ Exp(1);
which trait evolution follows the phylogeny 20 ~ N(0, 1);

(Pagel 1999) A~ U(exp(-500), 1)

Delta 20; 6% 8 Time-dependent evolutionary rate: § modifies the 6% ~ Exp(1);
rate of evolution over time, allowing for 20 ~ N(0, 1);
acceleration or deceleration (Pagel 1999) & ~ Ulexp(-500), 3)

Kappa 205 075 K Branch length scaling in phylogeny: & scales branch o” ~ Exp(1);
lengths, affecting the rate of trait change over 20 ~ N(0, 1);
evolutionary time (Pagel 1999) k ~ U(exp(-500), 1)

Rate trend 203 073 slope Linear change in trait evolution over time: slope o* ~ Exp(1);
indicates the direction and magnitude of change 20 ~ N(0, 1);
in trait evolution over time (Pennell et al. 2014) slope ~ U(-100, 100)

White noise 203 6% Non-phylogenetic model

Depth 203 0% depth Scaling tree to a specific evolutionary depth: depth
scales the evolutionary time to a specific depth in
the tree (Pennell ez al. 2014)

Lrates 203 0% rates shifts; Rate changes across local clades: rates shifts indicate

clades changes in evolutionary rates across different
clades or time intervals (Pennell et al. 2014)
Nrates 203 6% rates shifts; Rate shifts across different time intervals: rates shifts

intervals

indicate the specific intervals where evolutionary

rates change (Pennell et al. 2014)

* The first seven listed models were assessed in our empirical phylogenetic case studies (bottom of Fig. 1) with parameters sampled from the distributions

shown in the fourth column.

fitContinuous to fit the models and calculate Akaike informa-
tion criterion (AIC; Akaike 1973). That is, for each replicate
generated by TraitTrainR, a trait dataset was simulated
according to one of seven models with varying parameter val-
ues (Table 1), and model selection was then conducted using
AIC to find the best-fit model. This approach allows us to
evaluate whether the true data-generating model would in-
deed be recovered as the lowest model AIC among the seven
candidate models for each replicate. AIC is a gold standard in
evolutionary studies for likelihood-based model selection that
seeks to balance the goodness of fit (likelihood) with model
complexity by penalizing the likelihood by the number of
parameters. For example, many studies seek to compare the
fit of a simple BM process, or alternatively, a more complex
OU model that includes an attraction toward an optimum, or
similar questions (e.g. Hansen 1997, Ho and Ané 2014,
Rohlfs et al. 2014, Blomberg et al. 2020, Ho and Dinh 2022,
Vu et al. 2023). By constructing confusion matrices, we sum-
marized the accuracy of AIC model selection across replicates
generated by TraitTrainR.

The framework of TraitTrainR incorporates flexibility for
multiple trait simulations, and thus, we sought to apply
TraitTrainR to also understand the performance of AIC-
based model selection when two traits are analyzed using
multivariate model selection (Ripplinger and Sullivan 2008,
Arnold and Nunn 2010, Chakrabarti and Ghosh 2011,
Clavel et al. 2015, Brewer et al. 2016, Adams and Collyer
2018). Specifically, we used TraitTrainR to simulate 10*

replicates for each of three models (BM, OU, and EB) for
analyses of two traits based on the larger Arthropod phylog-
eny. As with our seven model applications described above,
we also varied the amount of measurement error (variance),
and AIC was used to assess the relative fit of each model us-
ing the R package mvMORPH (Clavel et al. 2015).

Our applications of TraitTrainR highlight challenges in
selecting the correct model that generated the trait data in all
three phylogenetic case studies; these findings are apparent
for simulations both with and without measurement error
(Fig. 2). Generally, we find the highest accuracy for the larg-
est analyzed tree (bottom row; Fig. 2), which is expected
given the increased sample size, followed by the fungal (mid-
dle row; Fig. 2) and primate (top row; Fig. 2) case studies, re-
spectively. Yet, measurement error had a major effect on
reducing model selection accuracy, and allowing standard er-
ror to be estimated during model fitting helped little in many
cases (Fig. 2a—i versus j—r). This finding may result from ele-
vated noise-to-signal ratios when introducing measurement
error (Ives et al. 2007, Felsenstein 2008, Silvestro et al. 2015,
Bartoszek et al. 2024). Estimation of error requires an addi-
tional parameter, which may explain why simpler models
(i.e. BM) tended to be favored by lower AIC (Fig. 2j-r).
However, accuracy to recover the OU model was highest for
the medium-sized fungal phylogeny (Fig. 2b), suggesting that
tree size is not the only determinant of model selection accu-
racy, and that model selection accuracy differs depending on
the structure of the empirical tree. For this case study,
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Figure 2. Demonstration an application of TraitTrainR to explore aspects of evolutionary model selection with three phylogenetic case studies. Confusion
matrices illustrate results of AlC-based model selection for nine mammals (top row), 34 Penicillium fungi (middle row), and 74 Arthropods (bottom row).
Within each case study, results are shown for TraitTrainR simulations with no measurement error (a—c; j-I), moderate measurement error (d—f; m-o), and
high error (g—i; p-r) and for when error is assumed absent when computing AIC (a—i) and when error is estimated (j-r). Darker shades indicate a higher
fraction of replicates under a true model (rows of confusion matrices) assigned to a particular predicted model (columns of confusion matrices).
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Figure 3. Exploring model selection for two-trait simulations on the
Arthropod phylogeny. Confusion matrices illustrate results of AlC-based
model selection (assuming no error) for TraitTrainR simulations without
measurement error (left), moderate measurement error (middle), and
high error (right). Darker shades indicate a higher fraction of replicates
under a true model (rows of confusion matrices) assigned to a particular
predicted model (columns of confusion matrices).

measurement error influenced model selection toward the
lambda model (Fig. 2e and h), whereas allowing the model to
estimate error resulted in a preference for the simpler BM
model (Fig. 2n and q). For these seven model demonstrations,
all analyses and case studies struggled to recover the trend
model for these single trait simulations. Our two-trait simula-
tions also found evidence of relative reductions in model se-
lection accuracy as measurement error increased (Fig. 3),
which reflect similar patterns found in OU-based multivariate
studies (Ives et al. 2007, Felsenstein 2008, Silvestro et al.
2015, Bartoszek et al. 2024).

Collectively, our applications reveal inherent challenges of
evolutionary model selection and impacts of measurement er-
ror (and lack of robustness when such error is estimated),
underscoring the applicability of TraitTrainR for investigating
important statistical and evolutionary questions under realistic
expectations of trait data quality. Our findings also highlight
the value of simulation studies for investigating the feasibility
and power for discerning trait models for any empirical

system, which can be examined even prior to data collection.
Finally, we also emphasize that our results reflect only a spe-
cific set of case studies and explored parameter values
(Table 1). Though other studies have identified similar chal-
lenges with model selection and interpretation (e.g. Ives et al.
2007, Felsenstein 2008, Silvestro et al. 2015, Grabowski et al.
2023; Bartoszek et al. 2024), such findings may be relevant to
other datasets, trees, and values of evolutionary parameters.
Future studies will clarify the challenges of model selection un-
der various evolutionary and experimental settings.
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Supplementary data are available at Bioinformatics
Advances online.
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