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Abstract. Functional bootstrapping seamlessly integrates the bene-
fits of homomorphic computation using a look-up table and the noise
reduction capabilities of bootstrapping. Its wide-ranging applications in
privacy-preserving protocols underscore its broad impacts and signif-
icance. In this work, our objective is to craft more efficient and less
restricted functional bootstrapping methods for general functions within
a polynomial modulus. We introduce a series of novel techniques, prov-
ing that functional bootstrapping for general functions can be essentially
as efficient as regular FHEW/TFHE bootstrapping. Our new algorithms
operate within the realm of prime-power and odd composite cyclotomic
rings, offering versatility without any additional requirements on input
noise and message space beyond correct decryption.

1 Introduction

Fully homomorphic encryption (FHE) has been identified as a powerful cryp-
tographic tool, allowing arbitrary computation over ciphertexts without first
decrypting it. Gentry pioneered FHE in his seminal work [33], sparking numer-
ous subsequent studies such as [5,12,13,15,16,21,22,30,35,44,45]. In addition
to theoretical progress, practical strides have been made with the development
of several useful FHE libraries along this research trajectory [3,20,24,56,57,73],
contributing significantly to potential real-world applications.

Bootstrapping with Polynomial Error Growth. As a pivotal breakthrough
introduced by Gentry in [33], bootstrapping plays a crucial role in achieving
“fully” homomorphic encryption. In a nutshell, the bootstrapping paradigm takes
as input an FHE ciphertext c ∈ Enc(m) and some bootstrapping key, and out-
puts another FHE ciphertext c′ ∈ Enc(Dec(c)) ⊂ Enc(m), with significantly
reduced noise. As homomorphic computations in current FHE schemes inevitably
incur noise, reaching a point where decryption becomes incorrect, bootstrapping
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becomes the critical key that enables an arbitrary number of homomorphic oper-
ations and thus “F”-HE.

Among various FHE schemes, the work [16] showed for the first time that
bootstrapping would only incur a polynomial error growth, though their method
requires very large polynomial runtimes due to the reliance on Barrington’s The-
orem [6]. Thereafter, the work (referred to as AP14) [5] showed how to bootstrap
with error growth and runtime being both small polynomials by treating decryp-
tion as an arithmetic function. The AP14 method critically relies on the GSW
schemes [35] (known as the third generation of FHE schemes), yet their explicit
method was in the plain lattice (i.e., LWE [63]) setting, which is not expected
to be concretely efficient. Subsequently, FHEW [30] and TFHE [23] refined and
optimized the AP14 method in the ring setting, introducing substantial new
insights. These optimizations resulted in bootstrapping achievements within sub-
seconds in practical implementations. Their impact is evident in the inclusion
of these methods in various libraries, such as OpenFHE [3] and TFHE [24,73],
highlighting their tangible real-world relevance to the community.

This work focuses on the setting of (functional) bootstrapping along the line
of FHEW/TFHE, i.e., methods with polynomial error growth, which implies
smaller FHE parameters and thus smaller FHE keys. We notice that the
FHEW/TFHE computation is suited for computation expressed by boolean cir-
cuits, e.g., comparisons and decision diagram computations [11,28], with smaller
memory requirements.

Functional Bootstrapping. Following the FHEW-like framework [53] (includ-
ing FHEW [30] and TFHE [23]), the works [8,10] identified that in the power-
of-2’s cyclotomic rings, the bootstrapping method can be slightly modified
with almost no additional cost, outputting c′ ∈ Enc(f(m)) for any negacyclic
f : Zp → Zp where p is the plaintext domain1. This is called functional boot-
strapping [10,27,36,42,47,48] (or programmable bootstrapping [7,25,26]), which
integrates noise reduction and (small) look-up table computation at comparable
efficiency as the bootstrapping. A trivial way to overcome the negacyclicity is
to use only half-domain of the plaintext space [10,11,36]. However, this signifi-
cantly limits the construction of applications. To support both full-domian and
general functions, several recent works [7,26,42,47,72] have aimed for efficient
designs, which can be broadly categorized into the following two types.

– Single Input/Output: In these schemes [26,42,47,72], both the input and
output are single LWE ciphertexts. They typically require more than two calls
to the regular FHEW/TFHE bootstrapping, and some even impose additional
constraints on the noise level of the input LWE ciphertext [47,72].

– Multiple Inputs/Outputs: This framework was first introduced in [36]
and later optimized in [7,26]. It decomposes the plaintext into multiple bits
or digits2 and encrypts each segment separately. As a result, the number of

1 For commonly used FHEW/TFHE parameters [53], the plaintext domain is roughly
3-bit to 5-bit. Also notice that f might be more general that works on Zp → Zp′ ,
i.e., the output ciphertext might be associated with a different plaintext domain.

2 Here, “digits” means decomposing by another integer base B, i.e., B > 2.
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ciphertexts and the invocations of regular bootstrapping in these schemes
increase with the precision of the input plaintext. Moreover, to support digits
rather than just bits, there must be constraints on the input ciphertexts [7].

As functional bootstrapping has many applications, such as privacy-
preserving machine learning [42,46,49], and it can serve as an important building
block of conversion between different types of FHE schemes with high preci-
sions [47,49], it becomes an important open problem to optimize the function-
ality and efficiency of functional bootstrapping designs, either theoretically or
practically. This motivates the main question of this work.

(Main Question). Can we simultaneously eliminate all constraints of functional
bootstrapping (within a polynomial modulus) for general functions and make it
as efficient as the regular FHEW/TFHE bootstrapping?

1.1 Our Contributions

To tackle the main question, this work designs a series of new full-domain func-
tional bootstrapping algorithms for general functions that are essentially as effi-
cient as the regular FHEW/TFHE bootstrapping. We summarize as follows.

Functionality. We design three new functional bootstrapping algorithms over
general cyclotomic rings with prime, prime-power, and odd composite indices3
for single LWE input4. All of them satisfy all the following desirable properties:

– Arbitrary plaintext modulus/encoding for input ciphertext.
– No additional input noise requirement beyond correct decryption.
– General functions f : Zp → Zp′ with arbitrary positive integers p and p′.

Briefly, all of them have no restrictions on the input LWE ciphertext (with a
fixed modulus), which implies the following result:

Functional bootstrapping for general functions works for inputs that are
any valid LWE ciphertext (i.e., correctly decryptable).

Efficiency. Let n be the dimension of the input LWE ciphertext. All of our
functional bootstrapping algorithms come at the cost of n + O(log n) homo-
morphic multiplications (i.e., FHE external products). Compared to the regular
FHEW/TFHE bootstrapping that requires n homomorphic multiplications (in
the dominating “Blind Rotation” procedure), this implies that the ratio of effi-
ciency achieves 1 + o(1). In Table 1, we present a summary of our results and a
comparison with prior full-domain designs.
3 In summary, we support cyclotomic rings for two general categories – (1) odd and

(2) power-of-2 indices.
4 Our algorithms directly follow the technical line of single input/output. However,

they can also be used to remove the constraints on input noise and encoding in
schemes with multiple inputs/outputs. In other words, our optimizations lie at the
core part of functional bootstrapping algorithms and can be applied to enhance the
functionality and efficiency of all existing functional bootstrapping designs.
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Table 1. Prior and our full-domain functional bootstrapping schemes for general func-
tions. The modulus of the input LWE ciphertext is q. The minimal cyclotomic index
stands for the smallest ring required for bootstrapping the input LWE ciphertext, which
directly determines the efficiency of basic ring operations. Note that Blind Rotation is
the core part that dominates the efficiency of FHEW/TFHE bootstrapping.

# of
Blind
Rotations

Minimal
Cyclotomic
Index

Type of
Cyclotomic
Index

Without
Restrictions on
Input Error

[26] 2 2q Power-of-2 Yes
3 q Power-of-2 Yes

[42] 1 + dg
† q Power-of-2 Yes

[47] 2 2q Power-of-2 No∗

3 4q Power-of-2 Yes
[7] O(βdg)

� O(q) Power-of-2 Yes/No∗∗

Ours 1 + o(1) q Prime-Power‡ Yes
1 + o(1) q Composite§ Yes

† dg is the gadget decomposition dimension satisfying dg > 1.
� β is the precision (bit-length) of the input plaintext modulus. The value O(βdg) could
be even larger for relatively large β (e.g., β > 28 as reported in [7]).
‡ We support arbitrary prime-power index (including pure prime and power-of-2).
§ We only support odd composite index (see Challenge 2 in Sect. 6).
* It requires the input noise to be less than roughly half of the maximal allowable bound
(i.e., the upper bound for correct decryption). This method was also independently
discovered in [72].
** “Yes” is only for the case where each input ciphertext encrypts only a single bit.
Encrypting digits in a single ciphertext would require plaintext-ciphertext multiplica-
tion and homomorphic subtraction of the input ciphertext, which leads to the constraint
on the input noise level.

1.2 Technical Overview

In this section, we highlight some critical insights in our designs. First, we briefly
review the FHEW/TFHE (functional) bootstrapping framework.

FHEW/TFHE Framework. As discussed before, this framework takes as
input an LWE ciphertext c ∈ Enc(m) and some bootstrapping key, and aims to
output another LWE ciphertext c′ ∈ Enc(m) or c′ ∈ Enc(f(m)) with reduced
noise. We further denote c = (b,a) ∈ Zq × Z

n
q and notice that the decryption

procedure is Round ((b − 〈a, s〉 mod q)), where s is the secret key and Round(·)
is some rounding function for decoding. To achieve (functional) bootstrapping,
the framework first uses the Blind Rotation technique that produces a RLWE

ciphertext that encrypts ζ
b−〈a,s〉
q := ζα

q where ζq is a primitive q-th root of unity,
and then extracts an LWE.Enc(Round(α)) of more general LWE.Enc(f(α)) given
RLWE.Enc(ζα

q ). As α is computed in the exponent of ζq’s power, it naturally
takes the modulo q.
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For the complexity, the Blind Rotation procedure takes n homomorphic mul-
tiplications (specifically the external products), dominating the overall complex-
ity of the bootstrapping procedure. In power-of-two cyclotomic rings, the extrac-
tion procedure can be efficiently achieved (almost free) for the cases of Round(·)
function and negacyclic functions. For general functions however, current meth-
ods use different design concepts that require more than two calls to the core
bootstrapping (Blind Rotation), and some of them even require ring extension
(see Table 1 for the minimal cyclotomic index).

Our Goal. To achieve a more efficient method, we aim to design a more powerful
and efficient function evaluation procedure than extraction, particularly at the
cost of o(n) homomorphic multiplications (external products). Combining with
one call to the Blind Rotation, this would imply the overall cost to be n + o(n)
homomorphic multiplications, meaning 1+o(1) times the regular FHEW/TFHE
bootstrapping. Below, we present our new insights on how we achieve our goal.

Our Blueprint. We aim to resolve the problem of the most general form where
the input noise is only required to be bounded by the maximal allowable value
of correct decryption, and the function has no restriction. Particularly, we first
observe that any discrete function can be expressed by the linear combination
of the equality test function: Define the equality test as EqT(ζα

q , β) that takes
some power of ζq and β ∈ Zq, and outputs 1 if α = β mod q or otherwise
outputs 0. Then any function f : Zq → Zh (for any positive integer h) can
be expressed as f(α) =

∑
β∈Zq

f(β) · EqT(ζα
q , β). Based on this idea, if there

exists such a homomorphic equality test, we can construct a function evaluation
algorithm that takes as input RLWE.Enc(ζα

q ) and outputs RLWE.Enc(f(α)). So,
our remaining task is to find an equality test function that can be efficiently
computed homomorphically. In this way, the desired function can be evaluated.
Our idea exploits the technique of homomorphic equality test and the algebraic
trace over three different types of cyclotomic rings, as we elaborate below.

The Case of Prime Cyclotomic Rings. In this setting, the algebraic trace
inherently possesses properties close to what we require. Particularly, when q is
prime, the algebraic trace function has exactly two branches as follows:

TrQ(ζq)/Q(ζ
α−β
q ) =

{
q − 1 if α = β mod q

−1 otherwise
.

Thus, we can use the function TrQ(ζq)/Q(·)+1 as the equality test function (scaled
by q) in the following way. Given RLWE.Enc(ζα

q ), we first multiply it by
∑

β f(β)·
ζ−β
q and then perform the homomorphic trace evaluation (then plus

∑
β f(β)),

resulting in a ciphertext of RLWE.Enc
(
Tr

( ∑
β ζα−β

q · f(β)
)
+

∑
β f(β)

)
. By the

linearity of trace, the resulting plaintext would be
∑

β

(
Tr(ζα−β

q ) + 1
) · f(β),

and by the equality test’s property, this would be equal to q · f(α), successfully
extracting the desired term (with the scaling factor q).

The Case of Prime-Power Cyclotomic Rings. In the prime-power setting,
i.e., q = pr where p is any prime number and r > 1, the previously discussed
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equality test method is no longer applicable. To handle this, we use the equality
test observed in [1] that works over arbitrary cyclotomic rings:

∑q−1
i=0 ζ

(α−β)i
q ,

which equals to q if α = β mod q or otherwise 0. To homomorphically evaluate
this equality test however, we need to overcome the following challenges.

Challenge 1. As suggested in [1], homomorphic evaluation of this equality test
requires O(q) homomorphic multiplications for a general q, which means directly
applying their method would not meet our pre-set goal. Moreover, we cannot
utilize the linearity of trace to evaluate all the equality tests in parallel, as
we did in the prime case. However, we found that in the prime-power case,
this equality test can be related to the algebraic trace and evaluated with only
O(log q) homomorphic multiplications. Our first key observation is a partition
for Zq = {0, 1, . . . , pr − 1}, which is Zq \ {0} =

⋃r
i=1 pr−i · Z

∗
pi . Then, we can

derive a new equivalent expression for the original equality test (see Lemma 5.2):

∑

i∈Zq

ζ(α−β)·i
q = 1 +

r∑

i=1

TrQ(ζpi )/Q

(
ζα−β
pi

)
, (1.1)

which relates the algebraic trace of sub-extensions to the original equality test.

Challenge 2. In the new formula, we need to compute encryptions of ζα−β
pi . How

to efficiently obtain these encryptions from RLWE.Enc(ζα
q ) is a new challenge,

e.g., using O(1) homomorphic-friendly operations. To address this issue, we
observe that ζα

pi = ζpr−i·α
q = ζ

(pr−i−1)·α
q · ζα

q . Thus, we can first perform an auto-

morphism evaluation of ζq �→ ζpr−i−1
q to get RLWE.Enc

(
ζ
(pr−i−1)·α
q

)
and then

use a homomorphic multiplication with RLWE.Enc(ζα
q ) to obtain RLWE.Enc(ζα

pi).

Challenge 3. If we compute all the trace of sub-extensions in the summation
separately, the overall computational complexity could become somewhat large.
Fortunately, we further observe that all the trace evaluations in the summation
are contained in the tower of field extensions Q(ζpr )/Q(ζpr−1)/ · · · /Q(ζp)/Q.
The summation can be computed by adding the encryptions of sub-ring elements
(e.g., RLWE.Enc(ζα−β

pi )) to the intermediate result during the evaluation of the
trace tower. Consequently, we only need to evaluate the trace once.

In Sect. 5, we elaborate on the new techniques we developed to overcome all
the abovementioned challenges.

The Case of Composite Cyclotomic Rings. In the composite setting, i.e.,
q = q1 · · · qk where the qi’s are distinct prime-powers pri

i for i ∈ {1, . . . , k},
we notice that all the prior methods based on algebraic trace cannot serve as
the equality test again. To achieve our goal, our key insight is to propose the
following equation with two branches for the (scaled) equality test:

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =

{
q if α = β mod q

0 if α �= β mod q
.
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Intuitively, this design captures the idea that α = β mod q if and only if α = β
mod qi for all the branches modulo qi by the Chinese Remainder Theorem, and
each parenthesis is an equality test from [1]. Since each qi is some prime-power,
we can combine it with Eq. 1.1 to get the following equivalent expression:

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =
k∏

i=1

⎛

⎝1 +
ri∑

j=1

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠

which relates the equality test to algebraic trace. To homomorphically compute
this equality test however, we need to tackle various challenges.

Challenge 1. While we can utilize our method for the prime-power case to handle
each branch, the outer product form seems to require additional homomorphic
multiplications on the results of several trace functions. This may incur signifi-
cant computational cost and noise blowup. To address this issue, we find a new
equivalent expression that is the sum of several trace functions (see Lemma 6.3):

k∏

i=1

⎛

⎝1 +
ri∑

j=1

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠ = 1 +
∑

w|q,w �=1

TrQ(ζw)/Q

(
ζα−β
w

)
.

Challenge 2. In the new formula, we need to compute encryptions of ζα−β
w . How

to efficiently obtain these encryptions from RLWE.Enc(ζα
q ) is a new challenge.

Similar to our solution to Challenge 2 for the prime-power case, we can write
ζα
w = ζ

(q/w)·α
q = ζ

(q/w−1)·α
q · ζα

q . Unfortunately, ζq �→ ζ
q/w−1
q may not be an

automorphism when q is general, so we use a more general formula that ζα
w =

ζ
(q/w)·α
q = ζ

(q/w−c)·α
q · ζc·α

q for some c ∈ Zq. If both q/w − c and c are in Z
∗
q , we

can use two automorphism evaluations plus one homomorphic multiplication to
obtain the encryption of ζα

w. We prove that we can always find such c for any
w | q, w �= 1, q when q is an odd composite number (see Proposition 6.4).

Challenge 3. There exist many different trace computations in the summation,
some of which may not contained in a consecutive tower. It seems that we need
to perform these trace evaluations individually. To further improve efficiency,
we identify a new algebraic equation (see Lemma 6.6) that allows one single
computation of TrQ(ζq)/Q, integrating all the intermediate trace computations.

In Sect. 6, we further describe our new techniques and designs to address all
the aforementioned challenges.

Computational Complexity. In our constructions, the computational com-
plexity is dominated by the homomorphic evaluation of the algebraic trace, which
would require N − 1 homomorphic automorphism evaluations in a trivial way
where N is the degree of field extension. It is currently known that there are
two typical cases where the trace evaluation can be completed with much fewer
(e.g., O(logN)) automorphism evaluations. The first case is when the exten-
sion Q(ζq)/Q exhibits a tower structure which is widely used in [4,19,44,45].
The second case is when the extension Q(ζq)/Q is a cyclic extension (i.e., the
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Galois group Gal(Q(ζq)/Q) is cyclic), which is first mentioned in [37] and gen-
eralized in [74]. These methods can be used to handle our prime-power case
(as Gal(Q(ζq)/Q) ∼= Z

∗
q is cyclic for an odd prime-power q, and a power-of-2 q

exhibits a base-2 logarithmic length tower of field extensions). It appears that
there is currently no efficient solution for the composite case.

To address this, we have found that these two approaches can be combined.
For example, suppose q = q1q2 where q1 and q2 are two distinct odd prime-
powers. Then we have the tower structure of extensions Q(ζq1q2)/Q(ζq2)/Q,
which fits the first case. Moreover, the Galois groups Gal(Q(ζq1q2)/Q(ζq2)) ∼= Z

∗
q1

and Gal(Q(ζq2)/Q) ∼= Z
∗
q2 are both cyclic, which matches the second case. Thus,

we can combine these two approaches to achieve a logarithmic complexity for
the trace evaluation of the composite case. Furthermore, we found that this
combination can be generalized to arbitrary cyclotomic extensions. We give an
informal theorem below and refer to Sect. 3.3 for details.

Theorem 1.1 (Informal). For a cyclotomic extension Q(ζm)/Q with [Q(ζm) :
Q] = N and m being an arbitrary positive integer, TrQ(ζm)/Q can be computed
with O(logN) automorphisms. In the FHE context, homomorphic evaluation of
TrQ(ζm)/Q only requires O(logN) homomorphic automorphism evaluations.

Why General Cyclotomic Rings?. Below, we discuss the rationale for con-
sidering general cyclotomic rings and further applications of our techniques.

– More Modulus/Secret Choices: In the FHEW/TFHE context, some
recent works [43,70] have explored general LWE secret key distributions (as
opposed to binary or ternary) to support more applications. In such cases,
modulus switching may cause noise explosion when the norm of the secret
key is relatively large. Hence, with the requirement that the LWE modulus q
must divide the cyclotomic index m (to ensure the embedding Zq → 〈ζm〉), a
flexible m allows for more options in the selection of q and secret key.

– Compatibility with Batch Bootstrapping: Our new algebraic insights
are compatible with the Batch Bootstrapping framework of [44,45]. As the
Batch paradigm crucially relies on tensor rings (including general cyclotomic
rings for their tensor decompositions), our findings illuminate new paths
for achieving SIMD functional bootstrapping for general functions within a
polynomial modulus. Moreover, our strategy for trace computation can be
employed in the framework to achieve the most flexible parameter choices.

– General Applications: Our new techniques are highly versatile and are
applicable to schemes like BGV [13]/BFV [12,31], which inherently require
general cyclotomic rings to support plaintext slots of finite fields or Galois
rings [34,39,65]. Additionally, our new strategies for trace computation and
new equality tests from insights on the structure of Zq and Z

∗
q may benefit

other applications that rely on related computational number theory.

1.3 Other Related Work

A recent work [48] constructs new functional bootstrapping methods based on
the BFV [12,31] scheme. However, their method would incur a super-polynomial
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noise growth and thus require a super-polynomial modulus, which is not within
the scope of the study in this work. Another recent work [52] improves the
parameter selection and concrete efficiency of [26,47]. However, regarding func-
tional bootstrapping for general functions, their algorithms do not show improve-
ments in asymptotic complexity and functionality. Notably, the work [41] first
discussed functional bootstrapping over general polynomial quotient rings, but
their method fails to support both full-domain and general functions.

2 Preliminaries

2.1 Notations

In this paper, we denote the set of the rational numbers by Q, the integers in
Q by Z, the real numbers by R, and the complex numbers by C. For an integer
modulus q, Zq = Z/qZ is the quotient ring of integers modulo q. We use the
representative set Zq = {0, 1, . . . , q − 1} for simplicity and let [x]q denote the
modulo q operation into Zq for an integer x. Let [n] = {1, . . . , n}, where n is
a positive integer. Notation log refers to the base-2 logarithm unless explicitly
specified otherwise. We denote [a, b] as the set [a, b] ∩ Z for any integers a ≤ b.
We denote a column vector by a bold lower-case letter, e.g. x, and xi to denote
the i-th entry of x. The transpose of x, namely the corresponding row vector, is
denoted by x	. We define the �∞-norm of x by ‖x‖∞ = maxi{|xi|}.

Given a set A and a distribution P over A, we use a ← A to denote that
a is uniformly chosen from A and a ← P to denote that a is chosen randomly
according to the distribution P.

2.2 Subgaussian Random Variables

We call a random variable X over R is subgaussian with parameter s > 0,
if for all t ∈ R, the (scaled) moment-generating function satisfies: E[e2πtX ] ≤
eπs2t2 . Especially, any B-bounded symmetric random variable X(i.e., E[X] = 0
and |X| ≤ B) is subgaussian with parameter B

√
2π. Subgaussians satisfy the

following properties as discussed in [5,30]:

– Homogeneity : If X is a subgaussian variable with parameter s, then cX is
subgaussian with parameter cs for any positive c ∈ R.

– Pythagorean additivity : For si ≥ 0, and random variables Xi for i ∈ [k], if Xi

is subgaussian with parameter si conditioning on any values of X1, ...,Xi−1,
then

∑
i∈[k] Xi is subgaussian with parameter (

∑
i∈[k] s

2
i )

1/2.
– Boundedness: For any subgaussian variable X with parameter s, we have the

probability bound Pr[|X| > t] < 2 · exp(−πt2/s2).

Remark 2.1. For a subgaussian variable X with parameter δx, we have
Pr[|X| > C · δx] < 2 · exp(−π · C2) by the boundedness. Hence, by setting C
to be a proper constant, we can deduce that |X| ≤ C · δx with overwhelming
probability. For another subgaussian variable Y with parameter δy that is inde-
pendent of X, we use a subgaussian variable with parameter O(δx · δy) as an
upper bound to demonstrate the asymptotic behavior of |X · Y | in this paper.
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2.3 Cyclotomic Rings

Let ζm be an m-th primitive root of unity. Then K = Q(ζm) is an algebraic
number field known as the m-th cyclotomic field, where the number m is referred
to as the cyclotomic index. From algebraic number theory, the ring of the integers
of the field K, which we usually denote by OK , is Z[ζm]. Note that we have
Z[ζm] ∼= Z[X]/(f(X)) where f(X) is the minimal polynomial of ζm with degree
N = φ(m) (the Euler’s totient of m). In the cyclotomic extension case, f(X) is
the m-th cyclotomic polynomial Φm(X) =

∏
i∈Z∗

m
(X − ωi

m) ∈ Z[X], where Z
∗
m

denotes the set of integers in Zm that are coprime to m, and ωm ∈ C is any
primitive m-th complex root of unity, e.g., ωm = e2π

√−1/m.
Let R = Z[ζm] and Rq = R/qR. Then the set {1, ζm, . . . , ζN−1

m } forms a
Z-basis of R and thus a Zq-basis of Rq. This basis is often called the power basis
of R. For a ∈ R, we can uniquely write it as a = a0 + a1ζm + · · · + aN−1ζ

N−1
m

where ai ∈ Z for i = 0, 1, . . . , N − 1. We call (a0, . . . , aN−1) the representation
or the coefficient embedding under the power basis.

Canonical Embedding.T he m-th cyclotomic number field K = Q(ζm) of
degree N = φ(m) has exactly N ring embeddings σi : K → C that fix every
element of Q. Let these embeddings be indexed by Z

∗
m. Then for i ∈ Z

∗
m, each

embedding σi is defined by σi(ζm) = ωi
m where ωm ∈ C is some fixed com-

plex primitive m-th root of unity (e.g., ωm = e2π
√−1/m). Then the canonical

embedding σ : K → C
N is defined as

σ(x) = (σi(x))i∈Z∗
m

.

Note that it is a ring homomorphism from K to C
N , where addition and mul-

tiplication in the latter are both component-wise. For a ∈ R, the canonical
embedding norm of a is defined as the �∞-norm of σ(a), namely, ‖σ(a)‖∞. It
possesses the following nice property: For a, b ∈ R, we have

– ‖σ(a + b)‖∞ ≤ ‖σ(a)‖∞ + ‖σ(b)‖∞,
– ‖σ(a · b)‖∞ ≤ ‖σ(a)‖∞ · ‖σ(b)‖∞.

Due to the independence of the representation of elements in R and the above
property, we can easily bound the canonical embedding norm for elements in
general cyclotomic rings. One can refer to [39,51] for the relation between the
canonical embedding norm and the norm under some Z-basis of R.

Algebraic Trace. For two number fields K ′ ⊂ K, suppose the field exten-
sion K over K ′ (denoted as K/K ′) is a Galois extension with the Galois group
Gal(K/K ′). Then for any element a ∈ K, the trace of a over K ′ is defined as

TrK/K′(a) =
∑

τ∈Gal(K/K′)

τ(a) ∈ K ′.

An important fact is that TrK/K′(OK) ⊆ OK′ . Moreover, the trace TrK/K′(·)
has the K ′-linearity as follows.



140 H. Xia et al.

– For a ∈ K, c ∈ K ′, we have TrK/K′(c · a) = c · TrK/K′(a).
– For a, b ∈ K, we have TrK/K′(a + b) = TrK/K′(a) + TrK/K′(b).

For a tower of number field extensions Kr/Kr−1/ · · · /K2/K1, the trace has the
following property, which is the so-called transitivity :

TrKr/K1(a) = TrK2/K1(· · · (TrKr−1/Kr−2(TrKr/Kr−1(a))) · · · )

for any a ∈ Kr. Moreover, we have the following useful fact for computation.

Lemma 2.2 ([51]). Let m be a power of a prime p and m′ = m/p, then for
i ∈ Z,

TrQ(ζm)/Q(ζi
m) =

⎧
⎪⎨

⎪⎩

ϕ(p) · m′ if i = 0 mod m

−m′ if i = 0 mod m′ and i �= 0 mod m

0 otherwise.

2.4 (Ring) Learning with Errors

The learning with errors (LWE) problem was first introduced by Regev [63].
Before the definition of LWE, we first introduce the distribution As,χ. For a
distribution χ over Z and a vector s ∈ Z

n
q , a sample from the distribution As,χ

is of the form (b,a) ∈ Zq × Z
n
q with b = [〈a, s〉 + e]q, where a ← Z

n
q and e ← χ.

Definition 2.3 (DLWE). For a security parameter λ, let n := n(λ) be an
integer dimension, let q = q(λ) ≥ 2 be an integer modulus, and let χ = χ(λ) be
an error distribution over Z. Given some independent samples from As,χ, the
decision version of LWE, denoted by DLWEn,q,χ, is to distinguish them from the
same number of uniformly random and independent samples from Zq × Z

n
q .

The DLWEn,q,χ problem defined above is known to be at least as hard as cer-
tain lattice problems [14,59,63]. To improve the efficiency of LWE-based schemes,
the ring version of LWE, namely RLWE, was introduced [50,66]. We use the pri-
mal version of RLWE where the secret is defined in the ring rather than its dual.
More discussions on different variants of RLWE can be found in [18,29,60,61].

For a distribution χ over R and a ring element z ∈ Rq, a sample from the
distribution Az,χ is of the form (b, a) ∈ R2

q with b = a · z + e where a ← Rq and
e ← χ.

Definition 2.4 (RLWE). For a security parameter λ, let N := N(λ) be the
degree of the ring, let q = q(λ) ≥ 2 be an integer modulus, and let χ = χ(λ) be
an error distribution χ over R. Given some independent samples from Az,χ, the
decision version of RLWE, denoted by R-DLWEN,q,χ, is to distinguish them from
the same number of uniformly random and independent samples from R2

q.

There are reductions showing that the R-DLWEN,q,χ problem defined above
is at least as hard as certain computational problems in ideal lattices [50,62].
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2.5 (Ring) LWE-Based Symmetric Encryption

We first review a symmetric encryption scheme based on LWE, which is the base
scheme to be bootstrapped. We use the most significant bits (MSBs) for the
plaintext encoding for ease of description. Note that the algorithms we propose
in this work are independent of the plaintext encoding methods for the input
LWE scheme. The basic definitions of LWE-based encryption are as follows.

– Encryption. Let Zt be the plaintext domain, and q be the LWE modulus.
Then the set of valid LWE ciphertexts for plaintext μ ∈ Zt under the secret
key s, denoted as LWEs(δ · μ)5 is defined as:

LWEs(δ · μ) = {([〈a, s〉 + e + δ · μ]q,a) ∈ Z
n+1
q },

where a ∈ Z
n
q and e ← χ for some typical error distribution χ over Z (e.g.,

Gaussian), and δ = � q
t � is the scaling factor.

– Decryption. A ciphertext c = (b,a) ∈ Z
n+1
q can be decrypted by computing

Dec(s, c) = Dcd([b − 〈a, s〉]q)
where Dcd : Zq → Zt is the decoding function Dcd(x) = [� t

q · x�]t.
The above notation can be extended to RLWE-based schemes. Let Rp be the
plaintext space and Q be the ciphertext modulus. Then, we define the following
set for valid RLWE encryptions of the plaintext μ ∈ Rp under the secret key z:

RLWEz(Δ · μ) =
{
([a · z + e + Δ · μ]Q, a) ∈ R2

Q

}
,

where a ∈ RQ and e ← χ for some typical error distribution χ over R (e.g.,
Gaussian), and Δ = �Q

p � is the scaling factor. Note that �·� and [·]Q for elements
in R mean coordinate-wise rounding to the nearest integer and coordinate-wise
modulo Q with respect to some fixed Z-basis of R, respectively. We use the
following notation to denote the error in a ciphertext.

Definition 2.5. For a ciphertext c ∈ RLWEz(μ), the error of c is defined as

Err(c) := 〈(1,−z), c〉 − μ.

3 Basic Homomorphic Computations

In this section, we review some necessary background on homomorphic encryp-
tion, encompassing homomorphic operations, along with some new techniques.

We start with the homomorphic operations on RLWE ciphertexts used in this
work. More operations, including the external product with Ring-GSW [23,30,
35] ciphertexts over general cyclotomic rings can be found in [44,45]. We assume
that the underlying ring for the RLWE scheme is R = Z[ζm] with N = φ(m),
and the ciphertext modulus is Q. The proofs of all lemmas, propositions, and
theorems in this section are provided in the full version.
5 An equivalent notation LWE

t/q
s (μ) is also used in the literature.
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3.1 BFV Homomorphic Multiplication

Let BFV.Mul(·) be a homomorphic multiplication algorithm [12,31] that takes
as input two RLWE ciphertexts ci ∈ RLWEz(Δ · μi) where i = 1, 2 and Δ :=
�Q/p�, and some relinearization key RelKey, and outputs a RLWE ciphertext
c′ ∈ RLWEz(Δ ·μ1 ·μ2). Since we will only encounter the case where the plaintext
is some root of unity, the following lemma is restricted to this case only for a
simpler error bound.

Lemma 3.1. Suppose c′ ← BFV.Mul(c1, c2) and both c1, c2 are encryptions
of roots of unity. If ‖σ(Err(c1))‖∞ and ‖σ(Err(c2))‖∞ are upper bounded by
subgaussian variables with parameter δ1, δ2, ‖σ(Err(RelKey))‖∞ = ‖σ(z)‖∞ =
O(

√
N). Then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable with

parameter O(
√
(p/Q)2δ21δ

2
2 + p2N2(δ21 + δ22) + N2 logQ).

3.2 Homomorphic Automorphism Evaluation

We also use homomorphic automorphism evaluation over general cyclotomic
rings as studied and used in [37,39,44,45]. Let EvalAuto(·) be a homomorphic
evaluation algorithm that takes as input a RLWE ciphertext c ∈ RLWEz(μ), an
automorphism τ ∈ Gal(Q(ζm)/Q) and some automorphism key AutKey, and out-
puts a RLWE ciphertext c′ ∈ RLWEz(τ(μ)). The following lemma demonstrates
the error growth in the homomorphic automorphism evaluation.

Lemma 3.2. Suppose that c′ ← EvalAuto(c, τ,AutKey). If ‖σ(Err(c))‖∞ and
‖σ(Err(AutKey))‖∞ are upper bounded by subgaussian variables with parameter
δc and δaut respectively, then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
δ2c + δ2autN logQ).

3.3 Homomorphic Trace Evaluation

By definition, the trace evaluation requires performing all automorphisms in the
Galois group Gal(Q(ζm)/Q) and summing the results, which trivially necessitates
N − 1 automorphism evaluations. However, it is currently known that there are
two typical cases where the trace evaluation can be computed with much fewer
(e.g., O(logN)) automorphism evaluations: (1) when the extension Q(ζm)/Q

exhibits a tower structure [4,19,44,45], and (2) when the extension Q(ζm)/Q is a
cyclic extension, i.e., Gal(Q(ζm)/Q) forms a cyclic group [37,74]. We first discuss
each case below in a more general style (i.e., using relative field extensions).

The Tower of Extensions Case. Suppose the tower of number field extensions
Q(ζm) = Kr/Kr−1/ · · · /K1/K0 = Q where each Ki/Ki−1 is a Galois extension
for all i ∈ [r]. For 0 ≤ j < i ≤ r, let EvalTrKi/Kj

(·) be a homomorphic evaluation
algorithm that takes as input a RLWE ciphertext c ∈ RLWEz(μ) and some auto-
morphism key AutKey, and outputs a RLWE ciphertext c′ ∈ RLWEz(TrKi/Kj

(μ)).
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Then, owing to the transitivity of the trace, TrQ(ζm)/Q(μ) = TrKr/K0(μ) can be
homomorphically evaluated as follows (we omit AutKey for simplicity):

EvalTrK1/K0

(
EvalTrK2/K1

(· · ·EvalTrKr/Kr−1(c) · · · )) .

Denote the degree of the extensions by [Ki : Ki−1] = di for i ∈ [r] (hence
N =

∏
i∈[r] di), thus the above sequence of homomorphic computation requires

only
∑

i∈[r](di−1) automorphism evaluations (−1 comes from the identity maps).
The following lemma provides the error growth of trace evaluation in this case.

Lemma 3.3. Suppose that c′ ← EvalTrKi/Kj
(c,AutKey). If ‖σ(Err(c))‖∞ and

‖σ(Err(AutKey))‖∞ are upper bounded by subgaussian variables with parameters
δc and δaut, respectively. Then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
dδ2c + (d − 1)δ2autN logQ) where d = [Ki : Kj ].

The Cyclic Extension Case. Suppose the Galois extensions Q(ζm)/K/F/Q

with [K : F ] = M and Gal(K/F ) being a cyclic group with generator τg, then
we can write Gal(K/F ) = {id = τ0

g , τg, τ
2
g , . . . , τM−1

g } where id is the identity
map. Let Tk(μ) =

∑
i∈[0,k−1] τ

i
g(μ) for μ ∈ F , then we have

Tk(μ) =

{
Tk/2(μ) + τ

k/2
g (Tk/2(μ)) if k is even

T(k−1)/2(μ) + τ
(k−1)/2
g

(
T(k−1)/2(μ)

)
+ τk−1

g (μ) if k is odd
.

Consequently, we can reduce the scale of the required automorphism summations
in a recursive way for the homomorphic evaluation of TrK/F (μ) = TM (μ). It has
been proved in [74] that the homomorphic evaluation of TM (μ) requires at most
2 logM (which is essentially O(logM)) automorphism evaluations. The following
useful fact captures the case of cyclotomic extensions.

Fact 3.4 ([69]) For a cyclotomic field extension K/F with K = F (ζt) and
[K : F ] = φ(t), we have Gal(K/F ) ∼= Z

∗
t , which is cyclic if and only if t =

1, 2, 4, pr, 2pr where p is an odd prime and r is some positive integer.

Let EvalTrK/F (·) be a homomorphic evaluation algorithm that takes as input
a RLWE ciphertext c ∈ RLWEz(μ) and some automorphism key AutKey, and out-
puts a RLWE ciphertext c′ ∈ RLWEz(TrK/F (μ)). The following lemma provides
the error growth of trace evaluation in the cyclic extension case.

Lemma 3.5 Suppose that c′ ← EvalTrK/F (c,AutKey). If ‖σ(Err(c))‖∞ and
‖σ(Err(AutKey))‖∞ are upper bounded by subgaussian variables with parameters
δc and δaut, respectively. Then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
Mδ2c + (M − 1)δ2autN logQ).

Our Combination. By integrating the above two methods, we can construct
efficient trace evaluation algorithms over arbitrary cyclotomic rings. Specifically,
let the cyclotomic index m be an arbitrary positive integer. By the fundamental
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theorem of arithmetic, we can write m =
∏

i∈[r] p
ei
i where pi’s are distinct primes,

and ei’s are positive integers. Then denote Ki = Q

(
ζ∏i

j=1 p
ej
j

)
for i ∈ [r], we

have the tower of extensions Q(ζm) = Kr/Kr−1/ · · · /K1/K0 = Q. To further
compute TrKi/Ki−1 in the tower, we have the following discussion that covers all
possible cases based on whether m is odd or even.

– Case 1: If pi �= 2 for all i ∈ [r], we have Ki = Ki−1

(
ζp

ei
i

)
which implies

Gal(Ki/Ki−1) ∼= Zp
ei
i

and thus Ki/Ki−1 is a cyclic extension by Fact 3.4.
Hence, each TrKi/Ki−1 can be computed with O (log φ(pei

i )) automorphisms,
yielding a total of

∑
i∈[r] O (log φ(pei

i )) = O(logN) for TrQ(ζm)/Q.
– Case 2: If pi = 2 for some i ∈ [r], suppose without loss of generality that p1 =

2 and K1 = Q(ζ2e1 ). Then we have a second layer of tower extensions: K1 =
Q(ζ2e1 )/Q(ζ2e1−1)/ · · · /Q(ζ2) = Q, which implies TrK1/Q requires O(log 2e1)
automorphisms. As discussed in Case 1, each TrKi/Ki−1 requires O (log φ(pei

i ))
automorphisms for i > 1, yielding a total of O(logN) for TrQ(ζm)/Q.

All these strategies can be naturally extended to homomorphic evaluations of
TrQ(ζm)/Q in the ciphertext domain for arbitrary cyclotomic index m. We use
the following theorem to summarize the above discussion.

Theorem 3.6 Suppose the underlying ring R = Z[ζm] with m being an arbitrary
positive integer. For a RLWE ciphertext c ∈ RLWEz(μ) and some automorphism
key AutKey, there exist efficient algorithms EvalTrQ(ζm)/Q(c,AutKey) that output
c′ ∈ RLWEz(TrQ(ζm)/Q(μ)) using only O(logN) automorphism evaluations.

Moreover, if ‖σ(Err(c))‖∞ and ‖σ(Err(AutKey))‖∞ are upper bounded by sub-
gaussian variables with parameters δc and δaut, respectively. Then, for both Case
1 and 2, the output error norm ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian
variable with parameter O(

√
Nδ2c + (N − 1)δ2autN logQ).

3.4 Computational Complexity

For the sake of comparison, we standardize the units of measurement for the com-
putational complexity of homomorphic operations. Same as the FHEW/TFHE
bootstrapping algorithms, the most time-consuming operation in our algorithms
is the external product [22,23,44,45]. Thus, we propose the following proposition
that demonstrates the relationship between the costs of the above homomorphic
operations and the external product.

Proposition 3.7 Suppose the same underlying ring R = Z[ζm] with the same
modulus for all homomorphic operations. We have the following approximations:

– For the same gadget decomposition base, both BFV.Mul(·) and EvalAuto(·)
require approximately 1/2 times the cost of the external product.

– For different gadget decomposition bases, both BFV.Mul(·) and EvalAuto(·)
require O(1) times the cost of the external product.

Consequently, EvalTrQ(ζm)/Q(·) requires O(logN) times the cost of the external
product for arbitrary positive integer m.
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4 Functional Bootstrapping: A Warm-Up

In this section, we first review the techniques in the FHEW/TFHE bootstrap-
ping framework, clarifying the context in which our algorithm will be opera-
tional. Then, we present the core building block of our functional bootstrapping
algorithm over prime cyclotomic rings, which constitutes the simplest case.

4.1 The Functional Bootstrapping Framework

Recall the task of the functional bootstrapping – basically, the algorithm takes
input an LWE ciphertext c with some bootstrapping key and returns an LWE
ciphertext c′ that encrypts f(Dec(c)) for some pre-determinded function f .

Parameters. We first describe parameters used in the FHEW/TFHE (func-
tional) bootstrapping and this work. Note that all the parameters with magni-
tudes (i.e., n, q, t,m,Q, h) are polynomially bounded in the security parameter.

– n: The dimension of the input LWE scheme.
– q: The modulus of the input LWE scheme.
– t: The plaintext modulus of the input LWE scheme.
– s: The secret key of the input LWE scheme.
– R: The underlying ring Z[ζm] of the RLWE scheme with q | m and N := φ(m).
– Q: The modulus of the RLWE scheme.
– z: The secret key of the RLWE scheme.
– h: The plaintext modulus of the output LWE ciphertext.

The FHEW/TFHE Framework. On input an LWE ciphertext c = (b,a) ∈
LWEt/q

s (μ), the bootstrapping algorithm first performs a Blind Rotation to obtain
a RLWE ciphertext c̃ ∈ RLWEz(v · ζϕ

q ) where ϕ = [b − 〈a, s〉]q and v ∈ RQ is
some encoding of the composite of a negacyclic function f : Zt → Zh and the
decoding function Dcd. The constant term (i.e., the coefficient of the basis 1)
of the plaintext of c̃ is actually Δ′ · f(Dcd(ϕ)) = Δ′ · f(μ) where Δ′ ≈ Q/h.
Thus, the algorithm proceeds a Sample Extract to obtain an LWE ciphertext
c′ ∈ LWEh/Q

z (f(μ)) where z is the coefficient vector of z. Finally, it performs a
sequence of modulus switching, key switching, and modulus switching to obtain
a ciphertext in LWEh/q

s (f(μ)). The framework is illustrated in Fig. 1. We state
the functionality and error analysis of the Blind Rotation in the following lemma
and refer to the details and proof in [23] and the full version of this work.

Lemma 4.1 (Blind Rotation [23], Adapted) For a ciphertext c = (b,a) ∈
LWEt/q

s (μ) where s ∈ {0, 1}n, there exists an algorithm BlindRotate that takes
input c and the bootstrapping key BK, and outputs a RLWE ciphertext c′ ∈
RLWEz(v · ζ

b−〈a,s〉
q ) for arbitrary v ∈ RQ, requiring n times external product.

If ‖σ(Err(BK))‖∞ is upper bounded by a subgaussian variable with parameter δbk
for all i ∈ [n], then ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable
with parameter O(δbk

√
nN logQ).
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Remark 4.2 The secret s can be ternary or general distributions as well. Sev-
eral recent results [9,43,53,70,71] show how to do Blind Rotation for these cases
with comparable (or slightly less) efficiency as the case of binary secrets.

Fig. 1. The relation of FHEW/TFHE bootstrapping framework and our algorithms.

Our Blueprint. As also depicted in Fig. 1, our approach broadly adheres to
the same line as the FHEW/TFHE framework. The sole distinction lies in that,
subsequent to obtaining the ciphertext through Blind Rotation, we construct a
series of new algorithms EvalFunc, each of which works over different cyclotomic
rings and only incurs polynomial error growth. The algorithms take as input
a ciphertext c ∈ RLWEz(v · ζϕ

q ) for some v ∈ RQ and some auxiliary keys,
and output a RLWE ciphertext c′ ∈ RLWEz(f(ϕ)) for an arbitrary function
f : Zq → Zh. Let f = g ◦ Dcd for an arbitrary function g : Zt → Zh, then c′

actually encrypts f(ϕ) = g(Dcd(ϕ)) = g(μ).
Our advantage of computational efficiency stems from the fact that the algo-

rithm EvalFunc requires only O(log φ(q)) times the cost of the external prod-
uct. By adopting the typical parameter setting in FHEW/TFHE bootstrapping
that q = O(n), the overall cost is approximately n + O(log n) times the cost
of the external product. Considering that regular FHEW/TFHE bootstrapping
requires n external products plus minimal overhead, our findings suggest that
functional bootstrapping for arbitrary functions is essentially as efficient as regu-
lar bootstrapping. In other words, the ratio of efficiency between functional and
regular FHEW/TFHE bootstrapping approaches 1 + o(1).

The functional superiority, such as the support for arbitrary input plaintext
modulus/encoding and general functions, is derived from our adoption of new
equality test techniques. Specifically, our constructions rely on the fact that any
discrete function can be expressed by a linear combination of the equality test
function. Define the equality test for the exponent of ζq as

EqT(ζα
q , β) =

{
1 if α = β mod q

0 if α �= β mod q
,

then for any α ∈ Zq, we have f(α) =
∑

β∈Zq
f(β) · EqT(ζα

q , β).

Remaining Tasks. Now, our remaining task is to find efficient solutions for the
homomorphic evaluation of EqT over cyclotomic rings, based on which we can
instantiate the algorithm EvalFunc. In the following subsection, we present an
instantiation of EvalFunc over prime cyclotomic rings, and subsequently, we will
delve into other instantiations for more general cases.
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Algorithm 4.1. EvalFunc(c,AutKey, f)
Parameters:

Δ: the scaling factor �Q/(h · q)� of the input encoding
Δ′: the scaling factor Δ · q ≈ Q/h of the output encoding
q: a prime number satisfying q | m
h: the plaintext modulus of the output ciphertext
v: an encoding of the function v := Δ · ∑

β∈Zq
f(β) · ζ−β

q ∈ RQ

Input:
A RLWE ciphertext c ∈ RLWEz(v · ζα

q )
The key for homomorphic automorphism evaluation AutKey
An arbitrary function f : Zq → Zh

Output: A RLWE ciphertext c′ ∈ RLWEz(Δ
′ · f(α))

1: c′ ← EvalTrQ(ζq)/Q(c,AutKey)

2: c′ ← c′ + (Δ · ∑
β∈Zq

f(β), 0)�

3: return c′

4.2 Arbitrary Function Evaluation over Prime Cyclotomic Rings

We first consider the simple case where q is prime. From Lemma 2.2, we identify
the following equation that can serve as the equality test: For any α, β ∈ Zq,

TrQ(ζq)/Q(ζ
α−β
q ) + 1 =

{
q if α = β mod q

0 if α �= β mod q
. (4.1)

Then, we present the instantiation of EvalFunc in Algorithm 4.1 and its correct-
ness together with analysis in Theorem 4.3.

Theorem 4.3 Algorithm 4.1 is correct, i.e., the input-output behavior satisfies
as described. Moreover, it possesses the following properties:

– Complexity: it requires O(log φ(q)) times the cost of the external product.
– Error growth: if ‖σ(Err(c))‖∞ and ‖σ(Err(AutKey))‖∞ are upper bounded by

subgaussian variables with parameters δc and δaut. Then ‖σ(Err(c′))‖∞ is
upper bounded by a subgaussian variable with parameter

O

(√
(q − 1)δ2c + (q − 2)δ2autN logQ

)

.

Proof. A simple calculation yields that in line 2 we have c′ encrypts

TrQ(ζq)/Q

⎛

⎝Δ ·
∑

β∈Zq

f(β) · ζα−β
q

⎞

⎠ + Δ ·
∑

β∈Zq

f(β)

= Δ ·
∑

β∈Zq

f(β) · (TrQ(ζq)/Q(ζ
α−β
q ) + 1

)
(by Q-linearity)

= Δ · f(α) · q (by Eq. 4.1)
= Δ′ · f(α) (by the definition of Δ′ := Δ · q)
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Since the errors can be upper bounded by subgaussian variables, we summarize
the corresponding subgaussian parameter in each line as follows.

– c′ in line 1: O
(√

(q − 1)δ2c + (q − 2)δ2autN logQ
)

by Lemma 3.5.
– c′ in line 2: Adding an error-free ciphertext does not affect the error.

This proves the claim of error growth. The claim of computational complexity
follows directly from Theorem 3.6 and Proposition 3.7. ��

5 The Case of Prime-Power Cyclotomic Rings

In this section, we focus on the case of prime-power cyclotomic rings, namely
q = pr for any prime number p and integer r > 1. In this case, the previously
discussed instantiation for the prime case based on trace plus one is no longer
applicable (see Lemma 2.2). Alternatively, we consider another instantiation of
equality test observed in [1] that works over arbitrary cyclotomic rings:

q−1∑

i=0

ζ(α−β)·i
q = 1 + ζα−β

q + · · · + ζ(q−1)(α−β)
q =

{
q if α = β mod q

0 if α �= β mod q
. (5.1)

To homomorphically evaluate this equality test however, we need to confront the
following challenges.

Challenge 1. As also suggested in [1], homomorphic evaluation of the above
equality test given an encryption of ζα−β

q requires O(q) homomorphic multipli-
cations for a general q (and also requires Ring-GSW encryptions), which means
directly applying their method would not meet our pre-set goal (Sect. 4.1). Addi-
tionally, this formula seems to preclude computing all the equality tests in par-
allel as we did for the prime case based on the linearity of the trace.

Solution. We will show that this goal can be achieved with only O(log φ(q))
homomorphic multiplications for the special case of prime-power cyclotomic
rings (and only requires RLWE encryption of ζα−β

q ). Our approach associates
the equality test with the trace to exploit its linearity and computational effi-
ciency. As the trace TrQ(ζq)/Q(ζ

α−β
q ) =

∑
i∈Z∗

q
ζ
(α−β)·i
q can handle the powers in

Z
∗
q , but the equality test requires the powers in Zq (we use the representative set

Zq = [0, q − 1]), we thus first establish the following relation between Z
∗
q (and

its subgroups) and Zq, which is actually a partition of Zq for a prime-power q.

Lemma 5.1 For any prime number p and positive integer r, we have

Zpr \ {0} =
⋃

i∈[r]

pr−i · Z
∗
pi

(
= Z

∗
pr ∪ p · Z

∗
pr−1 ∪ · · · ∪ pr−1 · Z

∗
p

)
.

Proof. By definition, Z
∗
pi is the set of all numbers in Zpi that are coprime to pi,

which is equivalent to the set of all numbers in Zpi that are not divisible by p.
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Since the set of all numbers in Zpi that are divisible by p is p · Zpi−1 , we have
Zpi = Z

∗
pi ∪ p · Zpi−1 for all i ∈ [r]. Thus, by induction, we have

Zpr = Z
∗
pr ∪ p · Zpr−1

= Z
∗
pr ∪ p · Z

∗
pr−1 ∪ p2 · Zpr−2

= · · ·
= Z

∗
pr ∪ p · Z

∗
pr−1 ∪ · · · ∪ pr−1 · Z

∗
p ∪ {0},

which completes the proof. ��
Now, we are able to establish the following lemma that relates the algebraic

trace to the equality test for the prime-power case.

Lemma 5.2 For any α, β ∈ Zq where q = pr and p is any prime, we have
∑

i∈Zq

ζ(α−β)·i
q = 1 +

∑

i∈[r]

TrQ(ζpi )/Q

(
ζα−β
pi

)

Proof. We can verify that
∑

i∈Zq

ζ(α−β)·i
q = ζ(α−β)·0

q +
∑

i∈[r]

∑

j∈pr−i·Z∗
pi

ζ(α−β)·j
q (by Lemma 5.1)

= 1 +
∑

i∈[r]

∑

j∈Z
∗
pi

ζpr−i·(α−β)·j
q (modify the index j)

= 1 +
∑

i∈[r]

TrQ(ζpi )/Q

(
ζα−β
pi

)
(by � and the definition of trace)

where “�” is the fact that ζpr−i

q = ζ
q/pi

q = ζpi ∈ Z[ζpi ]. ��
To homomorphically evaluate this new equation of equality test however, we
encounter the following new challenges.

Challenge 2. The input in each trace is of the form ζα−β
pi . We need to efficiently

compute this term from ζα
q , e.g., using O(1) homomorphic-friendly operations.

Solution: We present an efficient method that only takes two homomorphic-
friendly operations. Particularly, consider the automorphism τ : ζq �→ ζpr−i−1

q as

pr−i −1 ∈ Z
∗
q for i ∈ [1, r−1], and then we have ζα

pi = ζpr−i·α
q = ζ

(pr−i−1)·α
q ·ζα

q =
τ(ζα

q ) · ζα
q . For the homomorphic evaluation, this requires one homomorphic

automorphism and one homomorphic multiplication, which would be roughly
O(1) homomorphic multiplication.

Challenge 3. If we compute the trace computations in the summation separately,
the overall computational complexity is

∑
i∈[r] O(log φ(pi)) = O(log2 φ(q)).

Although this is already much better than the O(q) complexity of the method
in [1], it still does not meet the requirements outlined in our blueprint (Sect. 4.1).
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Algorithm 5.1. EvalFunc(c,AutKey,RelKey, f)
Parameters:

Δ: the scaling factor �Q/(h · q)� of the input encoding
Δ′: the scaling factor Δ · q ≈ Q/h of the output encoding
q: a prime power q = pr for some small prime p and integer r > 1
h: the plaintext modulus of the output ciphertext

Input:
A RLWE ciphertext c ∈ RLWEz(Δ · ζα

q )
The key for homomorphic automorphism evaluation AutKey
The relinearization key for BFV multiplication RelKey
An arbitrary function f : Zq → Zh

Output: A RLWE ciphertext c′ ∈ RLWEz(Δ
′ · f(α)).

1: c′ ← c ·
(∑

β∈Zq
f(β) · ζ−β

q

)

2: c′ ← EvalTrQ(ζq)/Q(ζ
pr−1 )(c

′,AutKey)
3: for i ∈ [1, r − 1] do
4: ctmp ← EvalAuto(c, ζq �→ ζpi−1

q ,AutKey)
5: ctmp ← BFV.Mul(c, ctmp,RelKey)

6: ctmp ← ctmp ·
(∑

β∈Zq
f(β) · ζ−β

pr−i

)

7: c′ ← c′ + ctmp
8: c′ ← EvalTrQ(ζ

pr−i )/Q(ζ
pr−i−1 )(c

′,AutKey)
9: end for

10: c′ ← c′ + (Δ · ∑
β∈Zq

f(β), 0)�

11: return c′

Solution: We further observe that all the trace evaluations in the summation
are contained in the tower of field extensions Q(ζpr )/Q(ζpr−1)/ · · · /Q(ζp)/Q.
Hence, we can directly evaluate the trace following the tower when p is small
(e.g., p = 2, 3, and see Remark 5.4 and Sect. 6 for solutions for large p). The
summation can be computed by adding the encryptions of

∑
f(β) · ζα−β

pi to the
intermediate result during the evaluation of the trace tower. Consequently, the
overall computational complexity is reduced to O(log φ(q)) since we only need
to evaluate the trace once following the tower of field extensions.

We are now ready to present our construction. We provide the formal descrip-
tion of EvalFunc over prime-power cyclotomic rings in Algorithm 5.1 and its
correctness along with analysis in Theorem 5.3.

Theorem 5.3 Algorithm 5.1 is correct, i.e., the input-output behavior satisfies
what is described. Moreover, it possesses the following properties:

– Complexity: it requires O(log φ(q)) times the cost of the external product.
– Error growth: if ‖σ(Err(c))‖∞, ‖σ(Err(AutKey))‖∞ and ‖σ(Err(RelKey))‖∞

are upper bounded by subgaussian variables with parameters δc, δaut and δr,
respectively. Let δaut, δr, δz = O(

√
N) and assume that δc < Δ, then we have

‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable with parameter

O
(
Nh2q2.5

√
2δ2c + N2 logQ

)
.
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Proof. We first analyze the ciphertext ctmp in the loop from line 3 to line 9.

– In line 4, we have ctmp ∈ RLWEz(Δ · ζ
(pi−1)·α
q ) by Lemma 3.2.

– In line 5, we have ctmp ∈ RLWEz(Δ ·ζpi·α
q ) ⊂ RLWEz(Δ ·ζα

pr−i) by Lemma 3.1.

– In line 6, we have ctmp ∈ RLWEz

(
Δ · ∑

β∈Zq

(
f(β) · ζα−β

pr−i

))
.

After line 9, we have the plaintext of ctmp in the i-th iteration (for i ∈ [1, r − 1])
goes through the evaluation of

TrQ(ζp)/Q

⎛

⎝· · ·TrQ(ζpr−i )/Q(ζpr−i−1 )

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pr−i

)
⎞

⎠ · · ·
⎞

⎠

= TrQ(ζpr−i )/Q

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pr−i

)
⎞

⎠ . (by transitivity)

Thus, after line 10, we have that c′ encrypts

Δ ·
∑

β∈Zq

f(β) +
∑

i∈[0,r−1]

TrQ(ζpr−i )/Q

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pr−i

)
⎞

⎠

= Δ ·
∑

β∈Zq

f(β) +
∑

i∈[r]

TrQ(ζpi )/Q

⎛

⎝Δ ·
∑

β∈Zq

(
f(β) · ζα−β

pi

)
⎞

⎠ (modify index)

= Δ ·
∑

β∈Zq

f(β) + Δ ·
∑

β∈Zq

f(β) ·
⎛

⎝
∑

i∈[r]

TrQ(ζpi )/Q

(
ζα−β
pi

)
⎞

⎠ (by Q-linearity)

= Δ ·
∑

β∈Zq

f(β) ·
⎛

⎝1 +
∑

i∈[r]

TrQ(ζpi )/Q

(
ζα−β
pi

)
⎞

⎠ (combine terms)

= Δ ·
∑

β∈Zq

f(β) ·
{

q if α = β mod q

0 if α �= β mod q
(by Lemma 5.2 and Eqs. 5.1)

= Δ · f(α) · q (only f(α) is multiplied by q, others are multiplied by 0)
= Δ′ · f(α), (by the definition of Δ′ := Δ · q)

which proves the correctness. Since the errors can be upper bounded by sub-
gaussian variables, we summarize the corresponding subgaussian parameter in
each line as follows.

– c′ in line 1: O(hδc
√

q) by the fact that ‖σ(
∑

β∈Zq
f(β) · ζ−β

q )‖∞ ≤ h
√

q.
– c′ in line 2: O(

√
pqh2δ2c + (p − 1)N2 logQ) by Theorem 3.6.

– ctmp in line 4: O(
√

δ2c + N2 logQ) by Lemma 3.2.
– ctmp in line 5: O(hqN

√
2δ2c + N2 logQ) by Lemma 3.1 and δc < Δ.
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– ctmp in line 6: O(Nh2q1.5
√

2δ2c + N2 logQ) by the fact that
∥
∥
∥
∥
∥
∥
σ

⎛

⎝
∑

β∈Zq

f(β) · ζ−β
pr−i

⎞

⎠

∥
∥
∥
∥
∥
∥

∞

= O(h
√

q),

which is obtained by modeling f(β) as a uniformly random variable in Zh.
– c′ after line 9: O(Nh2q2.5

√
2δ2c + N2 logQ) by Theorem 3.6.

– c′ in line 10: Adding an error-free ciphertext does not affect the error.

This proves the claim of error growth. For the computational complexity, we
have r = logp q = O(log φ(q)) for the loop from line 3 to 9, and each loop con-
tains one automorphism evaluation and one BFV multiplication, which implies
O(log φ(q)) times the cost of external product by Proposition 3.7. Moreover, all
the trace evaluation totally requires O(log φ(q)) times the cost of the external
product by Proposition 3.7, which implies our claim of computational complex-
ity. ��
Remark 5.4 The strategy for trace evaluation in Algorithm 5.1 can achieve a
logarithmic complexity only when p is small (e.g., p = 2, 3). For larger p, we
can employ a new general scaled equality test (see Lemma 6.6), allowing us to
perform the trace evaluation of TrQ(ζpr )/Q only once. The complexity in this case
corresponds to the trace evaluation of the cyclic extension case as discussed in
Sect. 3.3 and thus has a logarithmic complexity. Since this scenario is a special
case of the situations we will address in the next section, we omit its details here.

6 The Case of Composite Cyclotomic Rings

Now we move to the most general case where q is a composite number, i.e.,
q =

∏k
i=1 qi, and qi’s are distinct prime-powers. Below, we first describe some

critical intuitions and lemmas, and then present the final algorithm.
We first use the plaintext computation for an easier explanation of our idea.

Recall our high-level goal of equality test: given ζα−β
q (for some α, β ∈ Zq), we

can compute γ where γ = q if α = β mod q or otherwise γ = 0, using some
homomorphic-friendly operations. In the setting of composite q =

∏k
i=1 qi, we

identify several challenges where the techniques from the prior section do not
carry through easily. Particularly, Eq. 5.1 still holds, but we can not directly
apply Lemma 5.2 to relate it with algebraic trace. To tackle this, we identify the
following equation:

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =

{
q if α = β mod q

0 if α �= β mod q
. (6.1)

The intuition is clear: α = β mod q if and only if α = β mod qi for all the
branches modulo qi by the Chinese Remainder Theorem. As each

∑
j∈Zqi

ζ
(α−β)·j
qi
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can serve as the equality test for the branch modulo qi, one can easily verify the
validity of this formula. Denote qi = pri

i where pi is prime for i ∈ [k], we have

k∏

i=1

⎛

⎝
∑

j∈Zqi

ζ(α−β)·j
qi

⎞

⎠ =
k∏

i=1

⎛

⎝1 +
∑

j∈[ri]

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠ (6.2)

by Lemma 5.2, which serves as our new equality test. To homomorphically eval-
uate this new equation, here comes the first (and main) challenge.

(Main) Challenge 1. While we can utilize the method in Sect. 5 to compute the
trace summation, elegantly handling the outer product poses a challenging prob-
lem. Specifically, we need to avoid the direct consecutive use of BFV multiplica-
tion due to the rapid error growth it would introduce.

Solution. We elaborate a critical equivalent expression as Eq. 6.2. Before intro-
ducing our new equation, we need to first discuss several elegant properties we
have discovered regarding trace computations in some special cases.

Lemma 6.1 Suppose q = q1q2 where q1 and q2 are coprime, then for any i ∈ Z,

TrQ(ζq)/Q(ζ
i
q) = TrQ(ζq1 )/Q

(ζi
q1) · TrQ(ζq2 )/Q

(ζi
q2).

Proof. Using the linearity and transitivity of the trace, we can verify that

TrQ(ζq)/Q(ζ
i
q) = TrQ(ζq)/Q(ζ

i
q1 · ζi

q2) (by coprimality of q1, q2)

= TrQ(ζq2 )/Q

(
TrQ(ζq)/Q(ζq2 )

(ζi
q1 · ζi

q2)
)

(by transitivity)

= TrQ(ζq2 )/Q

(
ζi
q2 · TrQ(ζq)/Q(ζq2 )

(ζi
q1)

)
(by Q(ζq2)-linearity)

= TrQ(ζq)/Q(ζq2 )
(ζi

q1) · TrQ(ζq2 )/Q
(ζi

q2) (by � and Q-linearity)

= TrQ(ζq1 )/Q
(ζi

q1) · TrQ(ζq2 )/Q
(ζi

q2) (by �)

where “�” is the fact TrQ(ζq)/Q(ζq2 )
(ζi

q1) = TrQ(ζq1 )/Q
(ζi

q1) ∈ Z. ��
Corollary 6.2 Suppose q =

∏k
i=1 qi where all the qi’s are distinct prime-powers,

then for any j ∈ Z,

k∏

i=1

TrQ(ζqi )/Q
(ζj

qi) = TrQ(ζq)/Q(ζ
j
q )

(
= TrQ(ζ∏k

i=1 qi
)/Q

(
ζj
∏k

i=1 qi

))
.

Proof. By continuously using Lemma 6.1, we have

k∏

i=1

TrQ(ζqi )/Q
(ζj

qi) = TrQ(ζq1 )/Q
(ζj

q1) · TrQ(ζq2 )/Q
(ζj

q2) · · ·TrQ(ζqk )/Q
(ζj

qk
)

= TrQ(ζq1q2 )/Q
(ζj

q1q2) · TrQ(ζq3 )/Q
(ζj

q3) · · ·TrQ(ζqk )/Q
(ζj

qk
)

= · · · = TrQ(ζq1···qk )/Q
(ζj

q1···qk),

which is exactly TrQ(ζq)/Q(ζ
j
q ). ��
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Now, we can establish the following equivalent expression for Eq. 6.2.

Lemma 6.3 For any α, β ∈ Zq where q is any positive integer with prime-power
factorization q =

∏k
i=1 pri

i , we have

k∏

i=1

⎛

⎝1 +
∑

j∈[ri]

TrQ(ζ
p
j
i
)/Q

(
ζα−β

pj
i

)
⎞

⎠ = 1 +
∑

w|q,w �=1

TrQ(ζw)/Q

(
ζα−β
w

)
.

Proof. After the direct expansion of the equation on the left, we have the sum-
mation of all possible products of TrQ(ζ

p
j
i
)/Q

(
ζα−β

pj
i

)
for each i ∈ [k] and j ∈ [ri].

Since all pj
i ’s are distinct prime-powers, we can apply Corollary 6.2 to make the

products of trace “into” the products of the indices of primitive roots of unity.
These products actually traverse all the factors of q (except 1), so the result
exactly matches the equation on the right. ��

To homomorphically evaluate this new equation of equality test however, we
encounter the following new challenges.

Challenge 2. The input in each trace is of the form ζα−β
w . We need to efficiently

compute this term from ζα
q , i.e., using O(1) homomorphic-friendly operations.

Solution. Similar to our solution to Challenge 2 in Sect. 5, we can write ζα
w =

ζ
(q/w)·α
q = ζ

(q/w−1)·α
q · ζα

q . Unfortunately, ζq �→ ζ
q/w−1
q may not be an automor-

phism, so we need a more general formula that ζα
w = ζ

(q/w)·α
q = ζ

(q/w−c)·α
q · ζc·α

q

for some c ∈ Zq. We hope that both q/w−c and c are in Z
∗
q , then we can use two

automorphism evaluations plus one homomorphic multiplication to obtain the
encryption of ζα

w. However, we can not always find such c for all w | q, w �= 1, q
when q is an arbitrary number. Especially we can not choose an even q, the
intuition is straightforward: For any odd factor p of q, we will encounter the
case of computing ζp

q . Since p is odd, either p − c or c is an even number, which
implies either p − c or c is not in Z

∗
q as 2 | q. Instead, we can prove its existence

for any odd composite q as below.

Proposition 6.4 Let q be a odd number has factorization q =
∏k

i=1 pri
i where

pi’s are distinct odd primes and k > 1. For each v | q, v �= 1, q, there exists at
least one c ∈ Z

∗
q such that [v − c]q ∈ Z

∗
q .

Proof. Suppose all the prime factors contained in v are pi for i ∈ S � [k] and
S �= ∅. Then, we can construct c as c =

[∏
j∈[k]\S pj − v

]

q
. Now, we will prove

that both c and [v − c]q are in Z
∗
q .

– Write c =
∏

j∈[k]\S pj − v + q · I ∈ Zq for some I ∈ Z (in fact, I ∈ {0, 1}).
Suppose c /∈ Z

∗
q , which implies that c and q share at least one common prime
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factor p. Namely, p ∈ {pi}i∈[k] and p | c. Then

If p ∈ {pi}i∈S =⇒ p | v
p|q
=⇒ p | (v − q · I)

p|c
=⇒ p |

∏

j∈[k]\S

pj , a contradiction.

If p ∈ {pj}j∈[k]\S
p|q
=⇒ p |

∏

j∈[k]\S

pj + q · I
p|c
=⇒ p | v, a contradiction.

Hence, c and q share no common prime factor, which implies c ∈ Z
∗
q .

– Write [v − c]q = 2 · v − ∏
j∈[k]\S pj + q · J ∈ Zq for some J ∈ Z, we can easily

show [v − c] ∈ Z
∗
q by a quite similar argument as the prior proof of c ∈ Z

∗
q

since q does not contain the factor 2.

Now, the remaining case is S = [k], i.e., v contains all the prime factors of q. In
this case, we can easily verify that v − 1 ∈ Z

∗
q , which completes the proof. ��

Remark 6.5 Our proof of Proposition 6.4 is constructive and provides a direct
method to determine one desired c for any v. However, for many values of v,
we observe by experiments using SageMath [68] that c = 1 is also usable. We
prioritize a usable v − 1 as it saves one homomorphic automorphism evaluation.

Challenge 3. There exist many different trace computations in the summation
(Lemma 6.3), where some of them may not contained in a consecutive tower
down to Q. Thus, we can not apply the strategy in Sect. 5, and computing them
separately will not meet the pre-set goal in our blueprint (Sect. 4.1).

Solution. We present a new technique that “swaps” the order of summation and
trace, meaning that we can first aggregate the inputs and just compute the trace
once. Particularly, we prove the following lemma as our final equality test:

Lemma 6.6 For any positive integer q > 1 and any α, β ∈ Zq, we have

TrQ(ζq)/Q

⎛

⎝1 +
∑

w|q,w �=1

φ(w) · ζα−β
w

⎞

⎠ =

{
φ(q) · q if α = β mod q

0 if α �= β mod q
.

Proof. We can verify that

TrQ(ζq)/Q

⎛
⎝1 +

∑
w|q,w �=1

φ(w) · ζα−β
w

⎞
⎠

= φ(q) +
∑

w|q,w �=1

φ(w) · TrQ(ζq)/Q

(
ζα−β
w

)
(by Q-linearity)

= φ(q) +
∑

w|q,w �=1

φ(w) · φ(q)

φ(w)
· TrQ(ζw)/Q

(
ζα−β
w

)
(�)

= φ(q) ·
⎛
⎝1 +

∑
w|q,w �=1

TrQ(ζw)/Q

(
ζα−β
w

)⎞
⎠ (combine terms)

=

{
φ(q) · q if α = β mod q

0 if α �= β mod q
(by Lemma 6.3 and Eq. 6.1, 6.2)
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Algorithm 6.1. EvalFunc(c,AutKey,RelKey, f)
Parameters:

Δ: the scaling factor �Q/(h · q · φ(q))� of the input encoding
Δ′: the scaling factor Δ · q · φ(q) ≈ Q/h of the output encoding
q: an odd number satisfying q | m with prime-power factorization q =

∏
i∈[k] p

ri
i

{cv}: the automorphism index set {cv}v|q,v �=1,q ⊂ Z
∗
q obtained by Proposition 6.4

and Remark 6.5 such that {v − cv}v|q,v �=1,q ⊂ Z
∗
q .

h: the plaintext modulus of the output ciphertext
Input:

A RLWE ciphertext c ∈ RLWEz(Δ · ζα
q )

The key for homomorphic automorphism evaluation AutKey
The relinearization key for BFV multiplication RelKey
An arbitrary function f : Zq → Zh

Output: A RLWE ciphertext c′ ∈ RLWEz(Δ
′ · f(α)).

1: c′ ← c · φ(q) · ∑
β∈Zq

f(β) · ζ−β
q

2: for w | q and w �= 1, q do
3: ctmp ← EvalAuto(c, ζq �→ ζ

q/w−cq/w
q ,AutKey)

4: if cq/w = 1 then
5: ctmp ← BFV.Mul(c, ctmp,RelKey)
6: else
7: c′

tmp ← EvalAuto(c, ζq �→ ζ
cq/w
q ,AutKey)

8: ctmp ← BFV.Mul(c′
tmp, ctmp,RelKey)

9: end if
10: ctmp ← ctmp · φ(w) ·

(∑
β∈Zq

(
f(β) · ζ−β

w

))

11: c′ ← c′ + ctmp
12: end for
13: c′ ← c′ + (Δ · ∑

β∈Zq
f(β), 0)�

14: c′ ← EvalTrQ(ζq)/Q(c
′,AutKey)

15: return c′

where (�) follows from the fact that

TrQ(ζq)/Q

(
ζα−β
w

)
= TrQ(ζw)/Q

(
TrQ(ζq)/Q(ζw)(ζ

α−β
w )

)
(by transitivity)

= TrQ(ζw)/Q

(
ζα−β
w · TrQ(ζq)/Q(ζw)(1)

)
(by Q(ζw)-linearity)

= (φ(q)/φ(w)) · TrQ(ζw)/Q(ζ
α−β
w )

by TrQ(ζq)/Q(ζw)(1) = [Q(ζq) : Q(ζw)] = φ(q)/φ(w) and Q-linearity. ��

By using this form of the equality test, we are able to design Algorithm 6.1.
The following theorem demonstrates its correctness and analysis.

Theorem 6.7 Algorithm 6.1 is correct, i.e., the input-output behavior satisfies
what is described. Let r =

∏
i∈[k](ri + 1), it possesses the following properties:

– Complexity: it requires O(log φ(q) + r) times the cost of the external product.
– Error growth: if ‖σ(Err(c))‖∞, ‖σ(Err(AutKey))‖∞ and ‖σ(Err(RelKey))‖∞

are upper bounded by subgaussian variables with parameters δc, δaut and δr,
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respectively. Let δaut, δr, δz = O(
√

N) and assume δc < Δ, then the output
error ‖σ(Err(c′))‖∞ is upper bounded by a subgaussian variable with param-
eter O(rh2Nq4

√
δ2c + N2 logQ).

Proof. We start with a step-by-step analysis of the loop from line 2 to line 12.

– In line 3, we have ctmp ∈ RLWEz

(
Δ · ζ

(q/w−cq/w)·α
q

)
by Lemma 3.2.

– In line 5, if cq/w = 1, we have ctmp ∈ RLWEz

(
Δ · ζ

(q/w)·α
q

)
⊂ RLWEz (Δ · ζα

w)
by Lemma 3.1.

– In line 6−9, if cq/w �= 1, then ctmp ∈ RLWEz

(
Δ · ζ

(q/w)·α
q

)
⊂ RLWEz (Δ · ζα

w)
by Lemma 3.1 and 3.2.

– In line 10, we have ctmp ∈ RLWEz

(
Δ · φ(w) ·

(∑
β∈Zq

(
f(β) · ζα−β

w

)))
.

Hence, after line 14, we have c′ encrypts

TrQ(ζq)/Q

⎛

⎝Δ ·
∑

β∈Zq

f(β) +
∑

w|q,w �=1

Δ · φ(w) ·
( ∑

β∈Zq

(
f(β) · ζα−β

w

))
⎞

⎠

= Δ ·
∑

β∈Zq

f(β) · TrQ(ζq)/Q

⎛

⎝1 +
∑

w|q,w �=1

φ(w) · ζα−β
w

⎞

⎠ (by Q-linearity)

= Δ ·
∑

β∈Zq

f(β) ·
{

φ(q) · q if [α − β]q = 0
0 otherwise

(by Lemma 6.6)

= Δ · f(α) · φ(q) · q
(only f(α) is multiplied by φ(q) · q, others are multiplied by 0)

= Δ′ · f(α), (by the definition of Δ′ := Δ · q · φ(q))

which proves the correctness. Since the errors can be upper bounded by sub-
gaussian variables, we summarize the corresponding subgaussian parameter in
each line as follows.

– c′ in line 1: O(hδcφ(q)
√

q) by the fact that ‖σ(
∑

β∈Zq
f(β) · ζ−β

q )‖∞ ≤ h
√

q.
– ctmp in line 3: O(

√
δ2c + N2 logQ) by Lemma 3.2.

– ctmp in line 4−9: O(hNq2
√

δ2c + N2 logQ) by Lemma 3.1 and δc < Δ (we use
the worst case that cq/w �= 1).

– ctmp in line 10: O(h2Nq3.5
√

δ2c + N2 logQ) by plaintext-ciphertext multipli-
cation and the fact that

∥
∥
∥σ

(
φ(w) ·

(∑
β∈Zq

(
f(β) · ζ−β

w

)))∥
∥
∥

∞
= O(hq1.5),

which is obtained by modeling f(β) as a uniformly random variable in Zh.
– c′ in line 13: O(rh2Nq3.5

√
δ2c + N2 logQ) by the fact that we have r−2 loops

from line 2 to line 12.
– c′ in line 14: O(rh2Nq4

√
δ2c + N2 logQ) by Theorem 3.6.
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This proves the claim of error growth. For the computational complexity,
we have r − 2 for the loop from line 2 to 12, and each loop contains at most
two automorphism evaluations and one BFV multiplication, which implies O(r)
times the cost of the external product by Proposition 3.7. Finally, the final
trace evaluation requires O(log φ(q)) times the cost of the external product
by Proposition 3.7, which completes the proof of our claim of computational
complexity. ��
Remark 6.8 In the error analysis of Algorithm 6.1, we use rather loose esti-
mates, i.e., φ(w) < q for all w | q, w �= 1. These terms may be much smaller than
q in the concrete parameter settings. Moreover, there is a term r in the upper
bound of the overall error norm. As r is generally sub-linear in q [55,67], we note
that the overall term is still polynomially bounded (in the security parameter).

Asymptotic Setting. In the asymptotic setting, we can set r = O(log φ(q))
or fix r to some small constant. Then we have that the overall computational
complexity of EvalFunc is O(log φ(q)) as we desired in our blueprint in Sect. 4.1.

Parallel Computation. Our algorithm EvalFunc is friendly to the parallel com-
putation architecture, as the computation in each for loop (from line 2 to line
12) does not have a dependency on the others. Additionally, the homomorphic
trace is also parallel friendly, as pointed out by [38]. Thus, the overall throughput
can be easily improved on parallel-friendly (e.g., multi-core) platforms.

7 Conclusions and Future Work

In this work, we show for the first time that functional bootstrapping for general
functions within a polynomial modulus can work over a wide range of general
cyclotomic rings and simultaneously satisfy the following two properties:

– Supporting arbitrary correctly decryptable input LWE ciphertexts.
– Essentially as efficient as regular bootstrapping.

Based on the advantages and limitations of our current techniques, we also notice
two interesting directions that warrant further investigation:

– Theory: As mentioned in the solution to Challenge 2 of Sect. 6, our method
cannot handle cyclotomic rings with even composite indices, namely when
the cyclotomic index is composite and contains the prime factor 2. Overcom-
ing this limitation to support arbitrary cyclotomic rings while maintaining
functionality and efficiency presents a significant challenge.

– Practice: Note that our algorithms support cyclotomic rings with indices
that are powers of small primes (e.g., powers-of-2), which have been shown
to be concretely efficient due to their full compatibility with the standard
(or slightly twisted) Fast Fourier Transform (FFT) [24,30,73] and Number
Theoretic Transform (NTT) [3,20]. It is also promising for cyclotomic rings
with composite indices by combining the Batch framework of [44,45] with
insights from [51,56]. We leave it as an interesting follow-up work to determine
the concrete efficiency of our algorithms over different cyclotomic rings.
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