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Abstract. This paper studies the hardness of decision Module Learn-
ing with Errors (MLWE) under linear leakage, which has been used as a
foundation to derive more efficient lattice-based zero-knowledge proofs
in a recent paradigm of Lyubashevsky, Nguyen, and Seiler (PKC 21).
Unlike in the plain LWE setting, it was unknown whether this problem
remains provably hard in the module/ring setting.

This work shows a reduction from the standard search MLWE to deci-
sion MLWE with linear leakage. Thus, the main problem remains hard
asymptotically as long as the non-leakage version of MLWE is hard. Addi-
tionally, we also refine the paradigm of Lyubashevsky, Nguyen, and Seiler
(PKC 21) by showing a more fine-grained tradeoff between efficiency and
leakage. This can lead to further optimizations of lattice proofs under the
paradigm.

1 Introduction

Ring/Module Learning with Errors (RLWE/MLWE) is an important foundation
in the category of lattice-based cryptography, which is a plausible direction for
post-quantum cryptography. RLWE/MLWE facilities more efficient constructions
of public-key encryption, e.g., several candidates in the NIST PQC call, as well
as advanced crypto systems including identity-based encryption [1,27,45,46] and
fully homomorphic encryption [16], in comparison to those based on the plain
LWE [2,3,14]. Due to the efficiency advantage, this problem has drawn a lot of
attentions since its proposal [29,37,38,44].

Zero-knowledge proof (ZKP) is a key technical tool in many applications
with strong privacy requirements. Towards quantum-safe solutions, researchers
have put a lot of efforts in the direction of lattice-based ZKP [7,9,11,19,20,23,
32,35,36,39]. Despite feasibility results (though not practical) in the standard
common reference string (CRS) model [43], many new highly efficient solutions
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are constructed in the random oracle model in recent years, using the technique of
Fiat-Shamir with aborts [32]. In recent years, tremendous progress has been made
to optimize the concrete efficiency, e.g., improving the proof sizes for showing
knowledge of an s with small coefficients satisfying As = t, from 384 KB [11] to
47 KB [23]. Additionally, research in this line has deep impacts on the design of
efficient lattice-based signatures [19,20,34] and as well other privacy-preserving
protocols [24,25,30].

Recently, Lyubashevsky, Nguyen, and Seiler [36] identified a new paradigm
that can improve the proof size by roughly 30% over the prior best construc-
tions [23,35], by using leakage to trade efficiency. More specifically, they derive a
novel modified rejection sampling strategy, called subset rejection sampling, that
leaks one bit of the randomness of a one-time commitment, which is used in the
commit-and-prove paradigm. This key technique to the efficiency improvements,
is allowing smaller proofs. For security, as long as the one-time commitment is
leakage resilient against this class of leakage, then the overall scheme is secure.

Now, the question turns to whether we can prove that the one-time com-
mitment is leakage resilient to one bit. To do this, the work [36] showed that
this task can be reduced to a leakage version of the decisional MLWE problem
against linear functions,1 i.e., as long as the decisional MLWE problem is leakage
resilient for linear functions (over the coefficients of the secret and the error),
then so is the one-time commitment against the same class, implying security
against the bit leakage applied to any linear function.

Despite the fact that there are reduction results showing positive results in
the plain-LWE settings [4,36,41], it was identified as an important open question
in [36] whether the same results carry to the ring setting. On the other hand, the
work [36] speculated that one-bit leakage will not hurt security, at least under
the currently best known attacks. However, it is not clear whether the leakage
version of RLWE/MLWE is inherently hard or we just have not found an attack
yet by exploiting the ring structure with the leakage. This motivates the main
research goal of the work:

(Main Research Goal) Determine whether the leakage version of deci-
sional RLWE/MLWE against linear functions (as required in [36]) is inher-
ently hard (as RLWE/MLWE).

The new rejection sampling paradigm [36] provides a promising opportunity for
achieving more practical lattice proofs, with numerous identified applications.
Therefore, it is crucial to thoroughly investigate the underlying hardness foun-
dations, to ensure that using leakage to trade efficiency does not hurt security in
a provable manner. This would enhance the confidence in the practical adoption
of this emerging paradigm. Our main goal is the key to achieve this.

1.1 Our Results

This work provides an affirmative answer to the main task. Particularly, our
main result is to prove the following informal theorem.
1 In fact, the work [36] only needs a slightly weaker version known as extended

(R)LWE.
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Theorem 1.1 (Main Result, Informally Stated). Under the hardness of
search RLWE (for appropriate parameters), the decisional RLWE under leakage
of linear functions (required as [36]) is hard.

In summary, our result provides stronger theoretical justification, increasing con-
fidence in the foundation of the design paradigm [36]. This result has practical
implications, as it can be applied to enhance the efficiency of Zero-Knowledge
Proofs (ZKP) and other lattice-based cryptographic systems. Additionally, our
reduction can be generalized to the module setting, i.e., MLWE, offering more
flexibility in terms of design choices.

An important aspect of our contribution is that our reduction works in the
full-splitting setting, where qR completely splits into linear factors. Before this
paper, as far as we know, there is limited knowledge regarding MLWE/RLWE
with leakage in the full-splitting setting, as compared to the low-splitting set-
ting [31]. Given that the full-splitting structure plays a crucial role in various
efficient lattice proofs, including some recent works of [7,23,33] for establishing
more general relations and improving efficiency, our advances in this setting are
significant.2 We present further details in the technical overview (Sect. 1.2) and
Sect. 4.

Our second contribution is to refine the subset rejection sampling strategy
of [36], showing a more fine-grained tradeoff between efficiency and leakage, in
the case of full-splitting underlying ring. Particularly, as listed in Table 1, if we
allow log2 6 bits of leakage, the rejection sampling parameter α can be slightly
improved from 175.67 to 171.42, which slightly reduces the proof size from 16.56
KB to 16.48 KB. This can be further stretched – using log q bits of leakage to
improve the parameters by a factor of 52% (83.138 versus 175.67), which reduces
the proof size by a factor of 10% (14.96 KB versus 16.56 KB). Here, q is the
underlying modulus. By Theorem1.1, the problem remains hard in these leakage
settings, at least asymptotically. An interesting open problem is to determine
concrete security of �-bit leakage and the efficiency tradeoff, finding the optimal
parameters for the best efficiency. We present more details later in the technical
overview and Sect. 4.3.

1.2 Technical Overview

In this section, we present an overview of our techniques. First we describe the
computational problem of the main focus – decisional Module Learning with
Errors (MLWE) with linear leakage, and then the hardness results and applica-
tions.

Problem Statement. Let Rq denote some (polynomial) residual ring of degree
d and modulus q, e.g., Rq = Zq[X]/(Xd+1), and later on R refers the underlying
ring and q is the modulus. We notice that the MLWE problem can be stated as the

2 In the very recent work [33], while the full-splitting structure is not required to
prove the �2 norm, it is still necessary to prove the �∞ norm or the knowledge of the
component-wise product of two vectors.
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Table 1. Rough comparison of efficiency under different rejection sampling algorithms
for the opening protocol with full-splitting underlying ring in Fig. 2. Here rep. denotes
prover’s expected repetition times, l the number of leakage bits, α the derivation of the
discrete Gaussian, which will influences the proof size of zi. The concrete parameters
are listed using the following example setting: the dimension η of zi is 3, the ring
dimension d is 1024, the modulus q is roughly 232, and the boosting parameter k̂ is 4.

rep. α Size of zi: k̂ηd log2(12 · α) l

Rej1 ≈ 6 175.67 16.56 KB 1

Rej2 ≈ 6 171.42 16.48 KB log2 6

Rej3 ≈ 6 83.138 14.96 KB ≈ 32

following: given a ring matrix/vector A ∈ Rm×n
q and a ring vector b = A · s + e

where s ∈ Rn
q is some secret ring vector and e ∈ Rm

q is some small error ring
vector, the search problem asks to find the secret s and the decision version asks
to distinguish b from a uniformly random vector. The module setting captures
both the RLWE and plain LWE as special cases – if the module rank is one, i.e.,
n = 1, then the problem is RLWE. On the other hand, if the underlying ring has
degree d = 1, then this is the plain LWE. All these variants have been extensively
studied [29,37,42] and we have strong confidence in their hardness.

To study the leakage version of the MLWE, we first define the leakage function
of our interests, which is the class required in [36]. Let La,a′(s,e) be defined as
〈φ(a), φ(s)〉 + 〈φ(a′), φ(e)〉 ∈ Zq, where φ is the coefficient embedding function,
i.e., it maps a ring element into a vector of Z

d
q that represents the coefficient

vector with respect to the power basis (1,X,X2, . . . , Xd−1), and maps ring vec-
tors Rn

q to Z
nd
q , analogously. In this work, we consider the class that contains

all such functions regarding the inner product of the coefficient embeddings over
both the secret s and the error e.3 Again, we would emphasize that leakage over
both the secret and error is a critical requirement in the paradigm of [36].

Given the above context, MLWE with linear leakage can be defined in a
simple way – the adversary/solver is given La,a′(s,e) in addition to the regular
MLWE samples. The task of the problem then becomes to find the secret s or
distinguish b from the uniform vector, given the leakage. We notice that this
problem is very related to another notion called extended MLWE [12] with the
following difference: the extended MLWE chooses a,a′ from a small discrete
Gaussian distribution, yet our leakage version of MLWE allows the adversary to
specify a,a′ in the beginning of the experiment. Thus, our leakage version of
MLWE is stronger than the extended MLWE.

3 In fact, our leakage class in the main body is slightly more general, i.e., the leakage
function can include slight multiplicative shifts. Nevertheless, this simplified version
is sufficient to demonstrate our core ideas in the introduction.
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For the application need, we consider the case where the secret s is sampled
according to the discrete Gaussian distribution, the same as the error e.

Some Prior Results. We first review previous works and then discuss their lim-
itations, particularly the obstacles they face in analyzing the foundation of [36].

– In the context of plain LWE, it was demonstrated that the extended LWE is
provably as hard as LWE [4,41]. However, as highlighted in [36], this technique
does not extend to the ring/module setting due to either a loss of exponential
reduction or a dimension mismatch during the reduction transformation.

– The work [12] (and the later journal version [13]) studied a version of extended
MLWE. Their leakage function takes the form 〈z,e〉, where the inner product
is defined according to the ring vectors. It should be noted that there exists
a gap between the reduction in [13] and the application of ZKP in [36], as
the latter requires the leakage is over both the secret and error, and the inner
product is defined according to the vectors over Zq (under the coefficient
embeddings). Besides, their reduction limits to the MLWE (i.e. module rank
k ≥ 2), and is unable to capture the case of RLWE.

– Two recent and concurrent works [22,28] considered the case of MLWE with
leakages. Among them, [22] examined a scenario where the leakage is applied
to the error but not the secret, and [28] examined the scenario where the
leakage is applied to both the secrete and error. However, these two works
both have several limitations. Specifically, the leakage function in [22] takes
the form e · Z + e′, where Z is a low-norm ring matrix specified by the
adversary and e′ is an independent Gaussian error hidden to the adversary.
As their analysis relies on the inclusion of e′, their results are not expected
to be applicable to our setting and are therefore insufficient for analyzing the

framework of [36]. [28] specified the leakage function with the form c·
(

s
e

)
+y,

where y is a gaussian vector hidden to adversary. The analysis of [28] is also
unable to be directly applied for the framework of [36], as the latter requires

to analyze the leakage function with the form
〈

φ

(
s
e

)
, φ(z)

〉
, which can not

be simulated by the function in [28].
We note that it is unknown whether our results can be inferred from those
of [22,28] or vice versa, so we consider them as incomparable results.

– Another approach to analyze leakage is by employing the lossy-matrix tech-
nique [5,15,31], yet the current developments have several limitations. For
instance, the work [5] is only applicable to the plain LWE setting due to the
absence of the leftover hash lemma in the ring setting at that time. The
work [15] is limited to the search version, and it was unclear how to extend
their techniques to the decision version. The work [31] derived a ring-leftover
hash lemma (LHL), and generalized the analysis of [5] to the module set-
ting, i.e., MLWE. Nonetheless, there are subtleties where their analytical tech-
niques [31] cannot be applied, as elaborated below.
Particularly, let n be the module rank, d be the ring dimension, and qR splits
into c factors for 1 ≤ c ≤ d. Their result (particularly the ring LHL) requires
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that n = ω(c) in order to guarantee the required entropy lower bound. Thus,
in the low-splitting setting (e.g., c = 2), the techniques [31] can be used to
analyze for n = O(1), e.g., n = 2. However, for the high-splitting (e.g., c = d),
then their technique requires n > d. To choose more competitive parameters
in many practical works, n is set to be O(1) (even 1 for the RLWE), e.g., [23].
Thus, the technique of [31] is not sufficient to analyze these practical param-
eter choices in the full/high splitting setting.

– Besides the reductions of several versions of MLWEwith leakages, the work [18]
also considers the concrete security estimation of (M)LWE with side informa-
tion. We note that the reduction and concrete security estimation are two dif-
ferent perspectives for studying the hardness of (M)LWE with leakages. Com-
bining the two ways provides us more comprehensive understanding about
the hardness of this problem.

To summarize, we observe that the setting involving low module rank and
high-splitting is not well understood compared to other settings. As many
efficient lattice proofs rely on specific algebraic advantages in this setting,
e.g., [7,23], and [33] for more general relationships, there is a strong motiva-
tion to address the challenges and develop new analytical techniques for the
foundation and applications.

Our New Analysis. To achieve this, we prove a new reduction from search
MLWE (without leakage) to decisional MLWE with linear leakage, meaning that
the linear leakage does not decrease the hardness up to a polynomial factor.
Our proof structure is similar to that of [29,31,37], consisting of six steps as
Fig. 1. Below we briefly elaborate on the intermediate problems and the technical
advances over the prior work, i.e., why prior analyses do not go through directly
and how our new techniques solve the challenges.

Our reduction works in the case where qR splits completely into d ideals with
linear degree, i.e., qR = q1 . . . qd. Next we describe the notations in the diagram
– S and D to denote search and decision version. LE denotes leakage of linear
error and LS denotes leakage of linear secret (and error), and (A)/(W) denotes
average-case/worst-case over the secret distribution. The qi-MLWE problem asks
the solver to find s mod qi. The decisional MLWELEi is to distinguish b + h
where h is either from Ai or Ai−1 defined as follow. Ai is uniformly random
mod qjR for all j ≤ i, and 0 mod all the other ideals, i.e., qjR’s for j > i.

In our reduction route, we introduce an intermediate problem denoted as
MLWELE, for which the leakage function is only applied to the error. We first
establish the one-way hardness of MLWELE on the hardness of search MLWE.
The idea of this step is directly from a random guess of leakage, resulting 1/q
reduction loss. Then we further show a search-to-decision reduction of MLWELE,
which follows the framework from [31,37], but makes several important changes.
Finally, we show a reduction from the intermediate problem MLWELE to our
target MLWE-LS problem.
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Fig. 1. Our reduction route

Now we briefly discuss each step in the figure. As Steps (1), (3), (4) and (5)
follow essentially the same idea from the prior work [31,37], we do not repeat
the ideas. So next we focus on Steps (2) and (6).

For Step (2), we would like to prove the following – if we can find s mod qi

for some i, then we can find s (given leakage of error). To achieve this, we
first try to apply the automorphism argument of [31,37] – finding σ(s) mod qi

implies finding s mod qj for another j. By going through all the automorphisms,
we would recover s modulo every ideal, and thus by the Chinese Remain-
der Theorem recover s. This idea faces a subtlety in the presence of leakage
– the reduction needs to simulate Lσ(a)(σ(e)) faithfully in order to call the
underlying solver that finds σ(s) mod qi. For general leakage functions, this
task is unclear. Fortunately for the linear leakage in our case, we can prove
〈φ(a), φ(e)〉 = 〈φ(σ(a)), φ(σ(e))〉 under the coefficient embedding in the cyclo-
tomic rings of two’s powers. This implies that the linear leakage is invariant
under automorphism, and thus our reduction can faithfully simulate the leakage
and complete the process as in the prior work.

We remark that this invariance of linear leakage under automorphism is non-
trivial. Particularly, it requires that the bases corresponding to the coefficient
embeddings are invariant (up to some re-ordering and sign) under automor-
phisms. This requirement however, does not always hold, and even for some
rings such a basis does not exist. Currently, we only know that the Normal Inte-
gral Basis (NIB) mentioned in [31] and the power basis of cyclotomic rings with
2’s powers considered in this paper meet this requirement.

For Step (6), our target is to show a reduction from MLWE with linear leakage
of error to MLWE with linear leakage of both secret and error – if we can trans-
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form an instance of MLWELE to a valid instance of MLWE-LS or a random sam-
ple to another random sample, then we can distinguish the instance of MLWELE
from random sample by invoking the distinguisher of MLWE-LS. Our idea is
somehow similar to the hardness reduction of HNF-MLWE in prior works [6,29],
but needs very subtle analysis due to the introduced hints and leakage. Briefly, let
(a, b,z, (c1, · · · , ck), 〈φ(z), φ(c1e, · · · , cke)〉 be the instance of MLWELE, where z
and (c1, · · · , ck) are the hints of leakage. The goal is to simulate an instance of
MLWE-LS with the form: (a′, b′,z′, (c′

1, · · · , c′
k), 〈φ(z′), φ(c′

1(s, e), · · · , c′
k(s, e))〉.

We can use the similar approach of the hardness reduction of HNF-MLWE to
transform b to b′ = 〈a′, ē〉 + e, where ē is the error vector corresponding to the
invoked instances, and e is the error of the initial instance. Thus the leakage in
MLWE-LS can be simulated by the linear combination of the leakages of error
obtained during calling the MLWELE oracle.

We would like to point out a subtle issue involved in this transforma-
tion where the hints z′, (c′

1, · · · , c′
k) should be consistent with the leakage. As

described above, our reduction is similar to the approach of the hardness reduc-
tion of HNF-MLWE, and thus requires to sample n + 1 instances of MLWELE.
Therefore, we need to determine the hint vectors (z′, c′

1, · · · , c′
k) of MLWE-LS

from n+1 tuples of hints of MLWELE. We tackle this barrier by a precise design
of hints z′ and (c′

1, · · · , c′
k), which makes use of the linearity of our leakage func-

tion and the ability of the adversary of MLWELE. The details can be referred to
the proof of Lemma 3.16 in the full version of our paper.

Our Second Contribution. Under the hardness of MLWE with linear leakage,
our second contribution shows how to further improve the generalized rejec-
tion sampling paradigm of [36], deriving a more fine-grained tradeoff between
efficiency and leakage. We elaborate on the high level ideas below.

Briefly speaking, the rejection sampling-style lattice proofs have the follow-
ing structure: z = y + cs, where c is some small ring element, s is some small
secret, y is some Gaussian mask, and z is the proof message sent to the veri-
fier. To achieve zero-knowledge, y must wipe out the information of s. If y is
super-polynomially larger than cs, then this is the well-known smudging noise
technique [41]. However, this would require a very large proof z. To reduce the
size, Lyubashevsky [32] introduced the rejection sampling technique where z
might be set to ⊥ with a certain probability. In this way, the dependency on s
can be removed with a much smaller y. To further improve the size, [36] identi-
fied a new way – by imposing an additional condition on 〈φ(z), cφ(s)〉 ≥ 0 (or
rejecting the case when the inner product is negative), one can further reduce
the size of y. This comes at the price of leaking one bit, i.e., the sign bit. If
MLWE under linear leakage is hard, then leaking this bit would not hurt security
of the protocol.

To further improve the size of y, we observe that we can use a stronger
condition 〈φ(z), cφ(s)〉 ≥ T for some parameter T > 0. Intuitively, a larger T
can result in smaller proof, yet at the cost of more leakage. If we completely leak
〈φ(z), cφ(s)〉, the size of y can be minimized. However, if the whole Zq element
is leaked, then the concrete hardness might be affected by the attack of [18].
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Even though [18] does not solve the MLWE asymptotically, leaking log q-bits
(i.e., one element in Zq) might decrease the concrete security by a noticeable
amount, whereas leaking one or two bits might not (as the framework of [18]
does not apply). Therefore, stretching the leakage too much might be worse
in practice. We leave it as an interesting open problem to determine the best
tradeoff between leakage and concrete security.

A recent work [28] developed new ideas to improve the proof of knowledge
protocols in [36]. Specifically, their approach can remove the computational over-
head from repetition (abort) in the framework of [36]. We clarify that same as
[36], our framework also requires more computational overhead compared with
[28]. However, our framework can achieve better communication overhead than
[28]. Concretely, the output size of our improved algorithm is smaller than [28].
As a fair comparison, we calculate the parameters under the same benchmark
defined in [28]. By accurate calculation, we can achieve output size that is approx-
imately 3.6x smaller than their output size. More details of comparison can be
referred to the end part of Sect. 4.3.

2 Preliminaries

Notations. In this paper, Z and R denote the sets of integers and real numbers.
We use λ to denote the security parameter, which is the implicit input for all
algorithms presented in this paper. A function f(λ) > 0 is negligible and denoted
by negl(λ) if for any c > 0 and sufficiently large λ, f(λ) < 1/λc. A probability is
called to be overwhelming if it is 1−negl(λ). A column vector is denoted by a bold
lower case letter (e.g., x). A matrix is denoted by a bold upper case letter (e.g.,
A). For a vector x, its Euclidean norm (also known as the �2 norm) is defined to
be ‖x‖ = (

∑
i x2

i )
1/2. For a matrix A, its ith column vector is denoted by ai and

its transposition is denoted by A�. And the norm of an element in Rq will be
the norm of its unique representative with coefficients in [−(q − 1)/2, (q − 1)/2].
For positive β ∈ R, we use Sβ to denote the set of all polynomials of infinity
norm less than β, i.e., Sβ = {a ∈ R | ‖a‖∞ ≤ β}.

For positive integers n, q, let [n] denote the set {1, ..., n} and Zq denote the

ring of integers modulo q. For a distribution or a set X, we write x
$←− X to

denote the operation of sampling an uniformly random x according to X. We
denote as Supp(X) the support of a distribution X. For two distributions X,Y ,
we let SD(X,Y ) denote their statistical distance. We write X

s≈ Y to mean that
they are statistically close, and X

c≈ Y to say that they are computationally
indistinguishable.

2.1 Cyclotomic Rings

Throughout this paper, we use R to denote a polynomial ring of the form
Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial. For an inte-
ger q ∈ Z, we also consider the quotient ring Rq = R/qR. We recall that for d
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being a power of 2, the 2d-th cyclotomic polynomial is given as Φ2d(x) = xd +1.
Then the ring of integers of the 2d-th cyclotomic field R = Z[x]/(xd + 1). Thus,
we can use the coefficients of an integer polynomial modulo (xn +1) to represent
a ring element.

Embedding and Rotation. In this work, we view elements of R as Zd through
certain embeddings. For example, for R = Z[x]/(xd +1) with d a power of 2, we
view any a = a0 + a1x + · · · + ad−1x

d−1 ∈ R for ai ∈ Z as the coefficient vector
(a0, · · · , ad−1), and denote φ(a) = (a0, · · · , ad−1); and for R = Z[x]/Φm(X)
with m a prime, we view any b = b0 + b1ζ + · · · + bm−1ζ

m−1 ∈ R for bi ∈ Z as
(b0, · · · , bd−1), where ζ is the m-th root of unity. Similarly, we denote Rot(a) as
rotation matrix of a, i.e.,

Rot(a) =

⎡
⎢⎢⎢⎣

φ(a mod qR)�

φ(a · x mod qR)�

...

φ(a · xd−1 mod qR)�

⎤
⎥⎥⎥⎦ .

It’s easy to verify φ(sr) = φ(s) ·Rot(r) = φ(rs) = φ(r) ·Rot(s) for any s, r ∈ Rq.

Ideal Factorization. An ideal I ⊂ R is an additive subgroup that is closed
under multiplication by R. For an integer prime q ∈ Z, qR is an ideal of R, and
the factorization of qR is as qR = Πiq

e
i , where qi are distinct prime ideals, each

of norm q
d
te with t the number of distinct ideals.

The number field Q[X]/(Φm(X)) has ϕ(m) automorphisms σk, which are
defined by σk(ζ) = ζk for k ∈ Z

∗
m. Particularly, for Q[X]/(Xd + 1), σk are

defined by σk(X) = Xk. The following lemma says that the automorphisms σk

“act transitively” on the prime ideals qi, i.e., each qi is sent to each qj by some
automorphism σk.

Lemma 2.1 ([37], Lemma 2.16). For any i, j ∈ Z
∗
m, we have σj(qi) = qi/j.

Next we recall the Chinese Remainder Theorem (CRT) for R.

Lemma 2.2 (Chinese Remainder Theorem). Let qi be pairwise coprime
(qi + qj = R for any i �= j) ideals in R = Z[X]/(Φm(X)), then natural ring

homomorphism is an isomorphism: R/
( ∏

i qi

)
R → ⊕

i(R/qiR).

2.2 Discrete Gaussian Distribution

For a ring R of degree d, we can define the discrete Gaussian distribution over
it in the following way.

Definition 2.3. For any positive integer �, the discrete Gaussian distribution
over R� centered around v ∈ R� with standard deviation σ > 0 is given by

D�·d
v ,σ(z) =

e−‖z−v‖2/2σ2

∑
z ′∈R� e−‖z ′‖2/2σ2 .

When v = 0, we just write D�·d
σ for simplicity.
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We also need to use the following facts about the discrete Gaussian distribu-
tion.

Lemma 2.4 (Generalize of [8]). For any positive integer � and any real σ > 0,
a sample sampled from D�·d

σ defined as above has norm at most σ
√

�d except with
probability at most 2−2�d.

Lemma 2.5 (Lemma 4.3 in [32]). For any vector v ∈ R
m and any σ, r > 0,

Pr[|〈z,v〉|>r : z
$←− Dm

σ ] ≤ 2e
− r2

2‖v ‖2σ2 .

2.3 MLWE

Now we introduce the hard problems discussed in this paper, which are denoted
as S-MLWE and D-MLWE, and we consider the “non-dual” version problems.

Definition 2.6 (S-MLWE [29]). The search MLWE problem with parame-
ters n,m, q, and an error distribution χ such that Supp(χ) ∈ R denoted as

S-MLWEn,m,q,χ is defined as follows. For s
$←− Rn, use Aq,s to denote the dis-

tribution of (a, 〈a, s〉 + e) ∈ Rn
q × Rq, where a

$←− Rn
q and e

$←− χ. The goal is to
find secret s from m samples.

Definition 2.7 (S-MLWE in HNF [29]). The search MLWE problem with
parameters n,m, q, and an error distribution χ such that Supp(χ) ∈ R denoted

as S-MLWEn,m,q,χ is defined as follows. For s
$←− χn, use Aq,s to denote the

distribution of (a, 〈a, s〉 + e) ∈ Rn
q × Rq, where a

$←− Rn
q and e

$←− χ. The goal is
to find secret s from m samples.

Definition 2.8 (D-MLWE in HNF [29]). The decision MLWE problem with
parameters n,m, q, and an error distribution χ such that Supp(χ) ∈ R denoted

as D-MLWEn,m,q,χ is defined as follows. For s
$←− χn, use Aq,s to denote the

distribution of (a, 〈a, s〉 + e) ∈ Rn
q × Rq, where a

$←− Rn
q and e

$←− χ. The goal is
to distinguish m samples from either Aq,s or U(Rn

q ,Rq).

We notice that the latter two types MLWE problems defined above are the
so-called “Hermite Normal Form” version, which can be easily reduced to the
standard MLWE via the approach in [6]. For standard MLWE, it is known to
be at least as hard as certain standard lattice problems over ideal lattice in the
worst case [29]. It should be pointed out that RLWE is the special case of n = 1.

3 Hardness: MLWE with Linear Leakage

In this section, we present our main result for the MLWE under linear leakage.
First we describe a table of parameters used in this section. Then we define the
class of linear leakage in the ring/module setting, and Module Learning with
Errors, i.e., MLWE in the leakage setting of this class. Finally we present the
reduction result.
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Table 2. Notation of parameters in this section

Parameters Description

n MLWE rank

m number of MLWE samples

q modulus of MLWE

d ring dimension

� number of prime ideal factors of qR
k number of computing inner product times

Definition 3.1. Let l, q, d, k > 0 be integers, R = Z[X]/(Xd + 1). For z =
(zi)i∈[k] ∈ Rkl

q , c = (c1, . . . , ck)� ∈ Rk
q , we define the function Lz ,c : Rl

q → Zq

as Lz ,c(x) =
∑k

i=1〈φ(zi), φ(cix)〉, where φ is a “coefficient embedding” map
from Rl

q to Z
dl
q , i.e., embeds each ring element in Rq as a vector in Z

d
q .

Here we can think of x as the secret, and the linear leakage is regarding the inner
product of the coefficients as specified above. Additionally, the parameter l is the
dimension of the secret key that can be set as m or n, or m + n, the parameter
k is a dynamic parameter that is related to the latter applications (boosting
soundness of ZKP protocol in Sect. 4), the leakage can also multiplicatively shift
the secret to φ(cix) specified by the parameters ci’s.

Next we define the search and decision versions of MLWE, with linear leakage.
We note that, the hard problems we focus on in this work are with the “Hermite
Normal Form”. Particularly, the leakage function is defined over both secret and
noise. Besides, in our hard problems, the leakage hints (z and c) can be specified
by the solver (adversary). The adversary in our definition is less restricted than
prior “Extended LWE” assumptions for which the hints need to be designated
by the challenger, and thus makes our hardness result stronger.

Definition 3.2 (MLWE with Linear Secret Leakage, HNF, Search). Let
m,n, q, k, d > 0 be integers, R = Z[X]/(Xd + 1), χ be error distribution over
R. We define the search problem S-MLWE-LSm,n,k,q,χ by the experiment between
the adversary A and the challenger C as:

– A specifies k pairs {(zi, ci)}i∈{1,··· ,k}, where zi ∈ Rm+n
q , ci ∈ Rq, and sends

{(zi, ci)}i∈{1,··· ,k} to C.

– C first samples x ← χn+m, A $←− Rm×n
q , and computes b = [A|Im] · x ∈ Rm

q .
Then, for z = (zi)i∈[k], c = (c1, · · · , ck)�, C computes y = Lz ,c(x). Finally,
C returns (A, b, y) to A.

– A finally attempts to find s.

The search problem S-MLWE-LSm,n,k,q,χ is hard, if it holds: for any z =
(z�

1 , . . . ,z�
k )� ∈ Rk(n+m)

q , (c1, · · · , ck)� ∈ Rk
q and every PPT adversary A that

Pr
[A(A, b,z, (c1, · · · , ck), y) = s

] ≤ negl(λ).
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Definition 3.3 (MLWE with Linear Secret Leakage, HNF, Decision).
Let m,n, q, k, d > 0 be integers, R = Z[X]/(Xd + 1), χ be error distribution
over R. We define the decision problem D-MLWE-LSm,n,k,q,χ by the experiment
between adversary A and challenger C as:

– A specifies k pairs {(zi, ci)}i∈{1,··· ,k}, where zi ∈ Rm+n
q , ci ∈ Rq, and sends

{(zi, ci)}i∈{1,··· ,k} to C.

– C first samples x ← χn+m, A $←− Rm×n
q , and computes b = [A|Im] · x ∈ Rm

q ,

and also samples u
$←− Rm

q . Then, for z = (zi)i∈[k], c = (c1, · · · , ck)�, C
computes y = Lz ,c(x). Finally, C samples a random bit b ∈ {0, 1}, and sends
(A, b, y) to A if b = 1, or sends (A,u, y) to A if b = 0.

– A finally outputs a bit b′ as the guess of b.

The advantage of A in the game is defined as AdvD-MLWE-LS
A,m,n,q,k,d,χ = |Pr[b′ = b

]− 1
2 |.

The decision problem D-MLWE-LSm,n,k,q,χ is hard, if it holds: for any z ∈
Rk(n+m)

q , (c1, · · · , ck)� ∈ Rk
q and every PPT adversary A that

AdvD-MLWE-LS
A,m,n,q,k,d,χ ≤ negl(λ).

In addition, we present two intermediate hard problems, denoted as
S-MLWELE and D-MLWELE, which will be used in the hardness reduction of
D-MLWE-LSm,n,k,q,χ.

Definition 3.4 (MLWE with Linear Error Leakage, Search). Let
m,n, q, k, d > 0 be integers, R = Z[X]/(Xd + 1), χ be error distribution over
R. We define the search problem S-MLWE-LSm,n,k,q,χ by the experiment between
adversary A and challenger C as:

– A specifies k pairs {(zi, ci)}i∈{1,··· ,k}, where zi ∈ Rm
q , ci ∈ Rq, and sends

{(zi, ci)}i∈{1,··· ,k} to C.

– C first samples s
$←− Rn, e ← χm, A $←− Rm×n

q , and computes b = A ·s+e ∈
Rm

q . Then, for z = (zi)i∈[k], c = (c1, · · · , ck)�, C computes y = Lz ,c(e).
Finally, C returns (A, b, y) to A.

– A finally attempts to find s.

The search problem S-MLWELEm,n,k,q,χ is hard, if it holds: for any z =
(z�

1 , . . . ,z�
k )� ∈ Rkm

q , (c1, · · · , ck)� ∈ Rk
q and every PPT adversary A that

Pr
[A(A,As + e,z, (c1, · · · , ck), y) = s

] ≤ negl(λ).

Definition 3.5 (MLWE with Linear Error Leakage, Decision). Let
m,n, q, k, d > 0 be integers, R = Z[X]/(Xd +1), χ be error distribution over R.
We define the decision problem D-MLWELEm,n,k,q,χ by the experiment between
adversary A and challenger C as:
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– A specifies k pairs {(zi, ci)}i∈{1,··· ,k}, where zi ∈ Rm
q , ci ∈ Rq, and sends

{(zi, ci)}i∈{1,··· ,k} to C.

– C first samples s
$←− Rn, e ← χm, A $←− Rm×n

q , and computes b = A ·s+e ∈
Rm

q , and also samples u
$←− Rm

q . Then, for z = (zi)i∈[k], c = (c1, · · · , ck)�, C
computes y = Lz ,c(x). Finally, C samples a random bit b ∈ {0, 1}, and sends
(A, b, y) to A if b = 1, or sends (A,u, y) to A if b = 0.

– A finally outputs a bit b′ as the guess of b.

The advantage of A in the game is defined as AdvD-MLWELE
A,m,n,q,k,d,χ = |Pr[b′ = b

]− 1
2 |.

The decision problem D-MLWELEm,n,k,q,χ is hard, if it holds: for any z ∈
Rkm

q , (c1, · · · , ck)� ∈ Rk
q and every PPT adversary A that

AdvD-MLWELE
A,m,n,q,k,d,χ ≤ negl(λ).

Now we will give our concrete reductions. To start, we first show a reduction
from S-MLWEm,n,q,χ to S-MLWELEm,n,k,q,χ. Generally, a search problem with
log q bits of leakage can only decrease security by a factor of q. Therefore, if
q = poly(λ), then the leakage version can be reduced from the non-leakage
version of the problem.

Theorem 3.6. Let m,n, k, d, q > 0 be integers, and q is a polynomial of the
security parameter λ, R = Z[X]/(Xd +1), χ be error distribution over R. There
exists a ppt reduction from S-MLWEm,n,q,χ to S-MLWELEm,n,k,q,χ, such that if
ε is the advantage of S-MLWELEm,n,k,q,χ solver, then ε′ = 1

q ε is the advantage
of S-MLWEm,n,q,χ solver.

The theorem can be proved by a simple idea to randomly guess the value of the
inner product. We put the proof in full version of this paper.

The hardness result of D-MLWELE as an important intermediate reduction
of our main result can be summarized as the following Theorem.

Theorem 3.7. Let m,n, k, d > 0 be integers, R = Z[X]/(Xd + 1), q be the
prime modulus such that qR splits as qR = q1 · · · q�, where � = d/c for a con-
stant c ∈ Z and q ≥ �2, χ be an error distribution that is invariant under all
the automorphisms of K = Q[X]\(Xd + 1). There exists a reduction from S-
MLWELEm̄∗,n,k,q,χ to D-MLWELEm,n,k,q,χ, such that if ε is the advantage of D-
MLWE-LSm,n,k,q,χ solver, then ε′ ≥ 1− ε

8 is the advantage of S-MLWELEm̄∗,n,k,q,χ

solver, and m̄∗ = �qcmn · �1/ε2�.
Proof. We first summarize the reduction route as follows, and then explain the
concrete steps later:

S-MLWELEm̄∗,n,k,q,χ
(1)−−→ (W )-qi-MLWELEm∗,n,k,q,χ

(2)−−→ (W )-D-MLWELEi
m,n,k,q,χ

(3)−−→ (A)-D-MLWELEi
m,n,k,q,χ

(4)−−→ D-MLWELEm,n,k,q,χ.

To start, we define the first intermediate assumption (W)-qi-MLW
ELEm∗,n,k,q,χ as follows.
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Definition 3.8 ((W)-qi-MLWELEm ∗,n,k,q,χ). Let m∗, n, k, d > 0 be integers,
R = Z[X]/(Xd+1), q be the modulus such that qR splits as qR = q1 · · · q�, where
� = d/c for a constant c ∈ Z, χ be error distribution over R. For any qi, i ∈ [�],
the worst-case search problem qi-MLWELEm∗,n,k,q,χ is defined as: given access to
(A,As + e,z, (c1, · · · , ck), 〈φ(z), φ(c1e, · · · , cke)〉) for some arbitrary s ∈ Rn

q ,

where A $←− Rm∗×n
q ,e ← χm∗

, z ∈ Rk·m∗
q and (c1, · · · , ck) ∈ Rk

q as defined in
Definition 3.2, find s mod qi.

Then, we have the following reduction.

Lemma 3.9 (S-MLWELEm̄ ∗,n,k,q,χ to (W)-qi-MLWELEm ∗,n,k,q,χ). Let
m∗, n, k, d > 0 be integers, R = Z[X]/(Xd + 1), q be the modulus such that
qR splits completely as qR = q1 · · · q�, where � = d/c for a constant c ∈ Z,
χ be error distribution over R and invariant under all the automorphisms of
K = Q[X]\(Xd + 1). Then for every i ∈ {1, · · · , �}, there exists a determinis-
tic poly-time reduction from S-MLWELEm̄∗,n,k,q,χ to (W)-qi-MLWELEm∗,n,k,q,χ,
such that if 1−ε is the advantage of (W)-qi-MLWELEm∗,n,k,q,χ solver, then 1−�ε
is the advantage of S-MLWELEm̄∗,n,k,q,χ solver, where ε < 1

� , and m̄∗ = �m∗.

The reduction can be proved by a similar approach to that of Lemma 4.16 in
[29] combining with a subtle simulation of inner product leakage under automor-
phisms. Due to the space limit, we put the proof in full version of this paper.

In order to describe the second intermediate assumption, the following defi-
nition is needed.

Definition 3.10 (Hybrid MLWELE distribution). For i ∈ {1, · · · , �},
a distribution χ over Rq and s

$←− Rn, we define the distribu-
tion Ai

m∗,k,s,χ over Rm∗×n
q × Rm∗

q × Rkm∗
q × Rk

q × Zq as: sample
(A, b,z, (c1, · · · , ck), 〈φ(z), φ(c1e, · · · , cke)〉) as Definition 3.8 and output
(A, b + h,z, (c1, · · · , ck), 〈φ(z), φ(c1e, · · · , cke)〉) where h ∈ Rm∗

q are uniformly
random mod qjR for all j ≤ i, and 0 over mod all the other ideals, i.e., qjR’s
for j > i.

We note that A0
m∗,k,s,χ is the original distribution as Definition 3.8, A�

m∗,k,s,χ

is the distribution as the random case defined in Definition 3.3, and the other
Ai

m∗,k,s,χ’s are intermediate hybrids, which will be used via a hybrid argument
later.

Now, the second intermediate assumption is as follows.

Definition 3.11 ((W)-D-MLWELEi
m,n,k,q,χ). The worst-case D-MLW

ELEi
m,n,k,q,χ problem is defined as follows: given access to an oracle sampling

from Ai
m,k,s,χ for arbitrary s ∈ Supp(χn) and j ∈ {i − 1, i}, find j.

The following lemma states a reduction from (W)-qi-MLWELEm∗,n,k,q,χ to
(W)-D-MLWELEi

m,n,k,q,χ.
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Lemma 3.12 ((W)-qi-MLWELEm ∗,n,k,q,χ to (W)-D-MLWELEi
m,n,k,q,χ).

For any i ∈ {1, · · · , �}, and ideal qi with N(qi) = qd/� = qc where c ≥ 1 is
a constant integer, there exists a probabilistic polynomial time reduction from
qi-MLWELEm∗,n,k,q,χ to (W)-D-MLWELEi

m,n,k,q,χ, such that if ε is the advan-
tage of (W)-D-MLWELEi

m,n,k,q,χ solver, then ε′ ≥ 1 − ε
8 is the advantage of

qi-MLWELEm∗,n,k,q,χ solver, where m∗ = qcmn · � 1
ε2 �.

The proof of this lemma is similar to that of Lemma 5.9 in [37]. Due to the space
limit, we put it in full version of this paper.

The third intermediate assumption in the reduction route is as follows.

Definition 3.13 (Average-case Decision LWE relative to qi). For i ∈
{1, · · · , �} and a distribution χ over error Rq, we say that an algorithm solves the
D-MLWELEi

m,n,k,q,χ problem if with a non-negligible probability over the choice
of a random s ← U(Rn

q ), it has a non-negligible difference in acceptance proba-
bility on inputs from Ai−1

m,k,s,χ versus inputs from Ai
m,k,s,χ.

We have the worst-case to average-case reduction as follows.

Lemma 3.14 (Worst-case to Average-case). There exists a randomized
poly-time reduction from worst-case (W)-D-MLWELEi

m,n,k,q,χ to average-case
D-MLWELEi

m,n,k,q,χ, such that if ε is the advantage of D-MLWELEi
m,n,k,q,χ dis-

tinguisher, then ε is the advantage of (W)-D-MLWELEi
m,n,k,q,χ distinguisher.

The reduction performs a re-randomization of the secret, which is a standard
approach to prove a worst-case to average-case reduction. We omit here, and
provide the rigorous proof in the full version.

The following lemma states the step (4) of the reduction route.

Lemma 3.15 (D-MLWELEi
m,n,k,q,χ to D-MLWELEm,n,k,q,χ). For any ora-

cle solving the D-MLWELEm,n,k,q,χ problem with advantage ε, there exists an
i ∈ {1, · · · , �} and an efficient algorithm that solves D-MLWELEi

m,n,k,q,χ with
advantage ε/� using this oracle.

The lemma can be proved by a simple hybrid argument. We put the proof in
full version of this paper.

The proof of Theorem3.7 follows from Lemmas 3.9, 3.12, 3.14 and 3.15. ��
Finally, we show a reduction from D-MLWELEm,n,k,q,χ to D-

MLWE-LSm,n,k,q,χ as follows.

Lemma 3.16 (D-MLWELEm(nd)2,n,k,q,χ to D-MLWE-LSm,n,k,q,χ). There
exists a probabilistic poly-time reduction from D-MLWELEm(nd)2,n,k,q,χ to
D-MLWE-LSm,n,k,q,χ, such that if ε is the advantage of D-MLWE-LSm,n,k,q,χ

distinguisher, then ε is the advantage of D-MLWELEm(nd)2,n,k,q,χ distinguisher.

The main idea of this reduction is similar to the reduction from MLWE to the
HNF-MLWE in the work [29]. Due to space limit, we put the proof in full version
of this paper.

Combine Theorem 3.7 ,Theorem 3.6 and Lemma 3.16, the hardness of D-
MLWE-LS can be reduced to the hardness of the fundamental problem S-MLWE
by the following Corollary.
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Corollary 3.17. Let m,n, k, d > 0 be integers, R = Z[X]/(Xd + 1), q be the
modulus such that qR splits as qR = q1 · · · q�, where � = d/c for a constant c ∈ Z,
χ be an error distributions over R that is invariant under all the automorphisms
of K = Q[X]/(Xd + 1). There exists a reduction from S-MLWEm∗,n,q,χ to D-
MLWE-LSm,n,k,q,χ, such that if ε is the advantage of D-MLWE-LSm,n,k,q,χ solver,
then ε′ ≥ 1

q · (1 − ε
8 ) is the advantage of S-MLWEm∗,n,q,χ solver, and m∗ =

�qcmn3d2 · �1/ε2�.
Remark 3.18. In our reduction, we consider the ring Z[X]/(Xd + 1) which is
frequently used in many applications. It should be noted that we can generalize
the ring to the more general cyclotomic setting by representing a ring element
as integer linear combinations of a certain Z-basis of the ring. Then, the map φ
and the automorphism are defined according to the Z-basis.

4 Application: More Efficient Opening Proof
for One-Time BDLOP Commitment

In this section, we present an important application of MLWE with linear leak-
age, leading to more efficient opening proofs for one-time BDLOP commitments
under the paradigm [36]. Our particular contribution is to derive a more fine-
grained tradeoff between efficiency and leakage of the paradigm [36], which can
potentially lead to even more efficient proofs.

The section is organized as follow. We first recall the classical opening
proof for BDLOP commitment in [9], together with two rejection sampling algo-
rithms [32,36] in Sect. 4.1. Then in Sect. 4.2, we further generalize the subset
rejection sampling algorithm proposed by [36] in two ways: (1) we use a smaller
subset Sv for the accepting condition; (2) we extends the constant value M to
a real-valued function M of (v, z), whose output can vary based on the input.
These two ideas can improve efficiency of the opening proof for the setting of
one-time BDLOP commitment. Finally, in Sect. 4.3, we compare in detail the
efficiency differences of the opening protocol under four different rejection sam-
pling algorithms in Figs. 3 and 4. Below we first present the parameters used in
this section in Table 3.

4.1 Classical Opening Proof of BDLOPCommitment and Rejection
Sampling Algorithms

Let us first recall the standard opening proof for BDLOP commitment scheme
in [9]. Particularly, for a BDLOP commitment scheme with public parameters
A1 ∈ Rn×η

q ,A2 ∈ Rl×η
q , a message vector m ∈ Rl

q is committed as comm :=[
t1
t2

]
=

[
A1

A2

]
r +

[
0
m

]
, where r

$←− Sη
β . Without loss of generality, we assume

that qR splits as qR = q1 · · · q�, where � = d/c for a constant c ∈ Z, and
q − 1 = 2�(mod4�). Clearly, if � = d, we say the ring R is full-splitting.
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Table 3. Notation of parameters in this section

Parameters Description

R Cyclotomic Ring R = Z[X]/(Xd + 1) used in this section

d ring dimension of R
Sβ Set of all elements in R with �∞ norm at most β

q modulus of BDLOP commitment

n, l, η dimension parameters of BDLOP commitment

C Challenge set of the opening ZKP system for BDLOP commitment

κ C = {c ∈ R : ‖c‖1 = κ, ‖c‖∞ = 1}
m dimension parameters of rejection sampling

k̂ the parameter with respect to boosting soundness

M function from (V,Zm) to R

α derivation of discrete Gaussian distribution for rejection sampling

Ŝv The subset of Zm used for subset rejection sampling

M, c constant parameters for subset rejection sampling

rep. prover’s expected repetition times for one non-abort

� the number of irreducible ideal modulo q, i.e., qR = q1 · · · q�

l the bit-length of randomness leakage during the opening proof

According to [7,9], in order to prove knowledge of an opening to comm, one
just needs to give an approximate proof for the first equation t1 = A1 · r in the
form of a three-round Schnorr-type Σ-protocol. Particularly in the first step,
the prover first chooses a random vector y, and then sends w = A1y to the
verifier. Then, the verifier sends a short polynomial c ∈ C ⊂ R as a challenge.
Finally, the prover replies with the vector z = y+cr. To achieve zero-knowledge,
intuitively the masking vector y is used to hide the private randomness r of the
commitment comm. Trivially one can set y to be super-polynomially larger than
cr as some smudging noise, yet this would incur a large overhead in the proof
size. To improve efficiency, [32] introduced the technique of rejection sampling
that outputs ⊥ instead of z with an appropriate probability, effectively wiping
out the dependency of cr in z.

Furthermore, in some settings such as proving the infinity norm of a vector as
in [7,23,36], we need to set the underlying ring R to be full-splitting. In this case,
the above mentioned initial Σ-protocol can only provide 1/q soundness, which
is far away from negligible. In order to boost soundness, the work [7] applys
Galois automorphisms. At a high level, given r, t1, t2 as before, the prover P first
generates y1, · · · ,yk̂ ← Dη

α. Then it outputs (w1, · · · ,wk̂), where wi = A1 · yi.
After receiving a challenge c ← C from the verifier, P computes

zi = yi + σi−1(c) · r for i = 1, · · · , k̂
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where σ := σ2d/k̂+1 ∈ Aut(Rq) is the automorphism of order k̂d/� and k̂ is a
divisor of d. After this, the prover applies rejection sampling Rej(z,v, σ) where
z = z1‖ · · · ‖zk̂ and v = σ0(c) · r‖ · · · ‖σk̂−1(c) · r. If it does not abort, then P
outputs z. Finally, the verifier checks that z is small and

A1zi = wi + σi−1(c) · t1

for i = 1, · · · , k̂. As argued by [7], this protocol has soundness around q−k̂.
More formally, the protocol is described in Fig. 2, and the used rejection

sampling algorithm is described as Rej0 in Fig. 3.

Fig. 2. Opening proof of BDLOP commitment through using our generalized rejection
sampling, where j = 0, . . . , 3.

Particularly, if we sample yi from the discrete Gaussian distribution with
derivation α, i.e., yi ← Dη

α, then the vector zi = yi+σi−1(c)r follows the shifted
discrete Gaussian distribution Dη

v ,α centered at v = σ0(c) · r‖ · · · ‖σk̂−1(c) · r.
According to [32], we can “transform” the distribution Dη

v ,α into the distribution
Dη

α, by outputting z = z1‖ · · · ‖zk̂ with probability Dη
α

M ·Dη
v ,α

(or otherwise ⊥),
where M is some positive integer so that this ratio is always smaller than 1.
To further determine the concrete value for M , we need to compute an upper
bound of Dη

α

Dη
v ,α

as

Dm
α

Dm
v ,α

= exp
(−2〈z,v〉 + ‖v‖2

2α2

)
≤ exp

(
24α‖v‖ + ‖v‖2

2α2

)
= M, (1)
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Fig. 3. Rejection Sampling. Here, implicitly, the outcome 1 implies abort, and 0 implies
non-abort.

where the above inequality is obtained through using a standard one-dimensional
tail bound for the inner product of a discrete Gaussian with arbitrary vector.
Clearly, if we want to set M = exp(1), then we need to set α = 12‖v‖. In this
case, the size of z is about k̂ηd log(12α) = k̂ηd log(144‖v‖), which depends on
the value of α. This is essentially the intuition of [32].

In a recent work, Lyubashevsky et al. [36] observed that a much tighter upper
bound for the ratio Dη

α/Dη
v ,α would imply a much smaller α, further lowering

the size of z. Particularly, if we assume that 〈z,v〉 ≥ 0, then we have

Dη
α

Dη
v ,α

= exp
(−2〈z,v〉 + ‖v‖2

2α2

)
≤ exp

(‖v‖2
2α2

)
= M. (2)

In this case, if we want to set M = exp(1) in the following rejection sam-
pling procedure again, we can set α = ‖v‖/

√
2, which results in a decrease of

around a factor of 17. This will clearly reduce the size of z to k̂ηd log(12α) =
k̂ηd log(8.487‖v‖). More formally, Lyubashevsky et al. [36] call such more effi-
cient rejection sampling as subset rejection sampling, which is described as Rej1
in Fig. 3. Clearly, Rej1 can improve the size of the proof protocol in Fig. 2.

Additional Costs of [36]. It is not for free however for the improvement [36].
All the above analyses have a precondition – 〈z,v〉 ≥ 0. For randomly chosen
y, r, this precondition happens with a probability ≈ 1/2. This means that if we
want to leverage the above subset rejection sampling, the prover will first abort
the protocol with a probability ≈ 1/2 to ensure 〈z,v〉 ≥ 0, and then conduct the
regular rejection sampling. So, for the same constant value M , even the output
size of z is reduced, the running time of the prover inherently becomes almost 2
times longer than that of [9].

Of course, one can easily balance the prover’s running time and the size of
his output z. Particularly, we can set the upper bound of probability ratio to be
M/2, which will derive that the finally expected abort time is about M . But,
this will result in a slightly larger α′, i.e., α′ = α

√
lnM

lnM/2 .
Besides and more importantly, there is a security concern. After the prover

outputting z successfully, it imposes the precondition 〈z,v〉 ≥ 0, which leaks
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almost one bit information of r to the adversary. In this case, we need to consider
whether this would affect the security of the opening proof of the BDLOP com-
mitment, and even the whole privacy-preserving protocols.

To analyze this, Lyubashevsky et al. [36] identified a new variant of extended
MLWE, and prove security of the protocol based on the variant of extended
MLWE. As noticed in the introduction, this extended MLWE can be captured
by MLWE with linear leakage analyzed in Sect. 3 of this work, using a formal
reduction argument. This strengthens the foundation of the paradigm, as the
leakage variant is no easier than the standard MLWE asymptotically. Thus, we
would be more confident in the practical parameters of [36] obtained by crypt-
analysis arguments.

4.2 More Efficient One-Time Opening Proof Through Using
Generalized Subset Rejection Sampling Algorithms

Now we define our new generalized subset rejection sampling algorithms Rej2
and Rej3 as in Fig. 4. Then we show that the algorithms themselves can be simu-
lated, and the opening protocol with Rej2 or Rej3 satisfies correctness, knowledge
soundness and simulatability. This means we can replace Rej0 or Rej1 for the pro-
tocol in Fig. 2 in a black-box way, by using our generalized algorithms (Fig. 4).

Fig. 4. Generalized Rejection Sampling.

Simulation of Generalized Subset Rejection Sampling

To argue that the algorithms Rej2 and Rej3 themselves can be simulated success-
fully, we first define a more general version of subset rejection sampling algorithm
A, i.e., Rej2 and Rej3 can be viewed as two special cases of A. Then we show that
A can be simulated successfully by another algorithm F in Theorem 4.1. Fur-
thermore, by setting parameters appropriately, we can obtain two Theorems 4.3
and 4.4, which correspond to Rej2 and Rej3, respectively.

Theorem 4.1 (Generalized Subset Rejection Sampling). Let V be an
arbitrary set, and h : V → R and f : Z

m → R be probability distributions.
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Define a family of set Ŝv ⊂ Z
m for v ∈ V . Suppose gv : Zm → R is a family

of probability distributions indexed by all v ∈ V and there exist two constants
M ≥ 1, 1 ≥ γ ≥ 0, and a function M : V × Z

m → R, which satisfy:

∀ v ∈ V, z ∈ Ŝv : M(v, z) · gv(z) ≥ f(z)

∀ v ∈ V, z ∈ Ŝv : 1 ≤ M(v, z) ≤ M

∀ v ∈ V :
∑
z∈Ŝv

f(z) ≥ γ.

then the output distribution of the following algorithm A:

1. v
$←− h

2. z
$←− gv

3. if z /∈ Ŝv then abort
4. output (z, v) with probability f(z)

M(v,z)·gv(z)

is identical to the distribution of the following algorithm F :

1. v
$←− h

2. z
$←− f

3. if z /∈ Ŝv then abort
4. output (z, v) with probability 1/M(v, z).

Moreover, the probability of A and F outputting something is at least γ/M .

Proof. Given v ∈ V , if z ∈ Ŝv, the probability of A outputting z ∈ Z
m is

gv(z) · f(z)
M(v,z)·gv(z)

= f(z)
M(v,z) . Otherwise, the probability that A outputs z /∈ Ŝv

is 0. As a result, it holds

Pr[A outputs something] =
∑
v∈V

h(v)
∑
z∈Ŝv

f(z)
M(v, z)

≥ γ

M
.

Notice also that the probability of F outputting something is
∑

(v,z)∈V ×Ŝv

h(v)f(z)
M(v,z) ≥ γ

M . Besides, it holds

Δ(A,F) =
1
2

⎛
⎝ ∑

(v,z)∈V ×Ŝv

|A(v, z) − F(v, z)|
⎞
⎠

=
1
2

∑
v∈V

h(v)

⎛
⎝ ∑

z∈Ŝv

∣∣∣∣gv(z) · f(z)
M(v, z) · gv(z)

− f(z)
M(v, z)

∣∣∣∣
⎞
⎠

=
1
2

∑
v∈V

h(v)

⎛
⎝ ∑

z∈Ŝv

∣∣∣∣ f(z)
M(v, z)

− f(z)
M(v, z)

∣∣∣∣
⎞
⎠

= 0.

��
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Remark 4.2. We note that compared with the original rejection sampling of
Lemma 3.2 in [36], this generalized version just extends the constant value M
to a real-valued function M(v, z), whose output may vary based on (v, z).

Next, we consider the special case where v ∈ V ⊆ Z
m, f := Dm

α , gv := Dm
v ,α,

constant M = 1 and the constant function M(v,z) = 1. Thus, we have the
following theorem for the rejection sampling algorithm Rej2.

Theorem 4.3. Let V be an arbitrary subset of Zm, and h : V → R be probability
distribution. Let M = 1. Given any v ∈ V and any constant c, define Ŝv ,c =
{z : 〈z,v〉 ≥ c · σ‖v‖}. Then it holds that the output distribution of A2:

1. v
$←− h

2. z
$←− Dm

v ,α

3. if z /∈ Ŝv ,c then abort
4. output (z,v) with probability Dm

α (z)
Dm

v ,α(z) .

is identical to the distribution of the following algorithm F2:

1. v
$←− h

2. z
$←− Dm

α

3. if z /∈ Ŝv ,c then abort
4. output (z,v) with probability 1.

Moreover, the probability of A2 and F2 outputting something is at least α, where
α is the probability of a randomly chosen vector from Dm

v ,α belonging to Ŝv ,c.

Next, we consider the special case where v ∈ V ⊆ Z
m, f := Dm

α , gv :=
Dm

v ,α, and M(v,z) = exp
(

3〈v ,z〉
α2

)
. Thus, we have the following theorem for the

rejection sampling algorithm Rej3.

Theorem 4.4. Let M be a constant and V be an arbitrary subset of Zm, and
h : V → R be probability distribution. Given any v ∈ V , define Ŝv ,c = {z :

〈z,v〉 ≥ c ·α‖v‖}. Then there exists a function M(v,z) = exp
(

3〈v ,z〉
α2

)
with 1 ≤

M(v,z) ≤ M and M(v,z) ·Dm
v ,α(z) ≥ Dm

α (z), such that the output distribution
of A3:4

1. v
$←− h

2. z
$←− Dm

v ,α

3. if z /∈ Ŝv ,c then abort

4. output (z,v) with probability Dm
α (z)

exp( 3〈v ,z 〉
α2 )·Dm

v ,α(z)
= exp

(
−8〈z ,v〉+‖v‖2

2α2

)
.

4 For such function M(v, z) = exp
(

3〈v ,z 〉
α2

)
, the condition M(v, z) ∈ [1, M ] implies

〈z, v〉 ∈ [0, (α2 · ln M)/3].
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is identical to the distribution of the following algorithm F3:

1. v
$←− h

2. z
$←− Dm

α

3. if z /∈ Ŝv ,c then abort
4. output (z,v) with probability 1

exp( 3〈v ,z 〉
α2 )

.

Moreover, the probability of A3 and F3 outputting something is at least γ
M , where

γ is the probability of a randomly chosen vector from Dm
v ,α belonging to Ŝv ,c.

Security of Opening Proof Protocol with Rej2 and Rej3

Here, we need to prove that the opening proof protocol with Rej2 or Rej3 sat-
isfies correctness, knowledge soundness and simulatability, whose formal defi-
nitions are deferred to the full version of this paper. Similar to [36], we first
represent the opening proof of BDLOP commitment as the commit-and-prove
functionality CP = (Gen,Com,Prove,Verify), and then show that CP satisfies
simulatability, since the properties of correctness and knowledge soundness can
be proven almost identically as in [7].

More formally, with random oracle H : {0, 1}∗ → C, the commit-and-prove
functionality CP = (Gen,Com,Prove,Verify) with respect to the language RL is
described as follows, where RL is defined as (params, x,m) ∈ RL ⇔ m ∈ Rq for
certain statement x.

– Gen(1λ): Given a security parameter λ, the algorithm generates a commit-
ment public parameter params, which specifies Rl

q as message space, Sη
1 ⊂ Rη

as randomness space, and Rn+l as the commitment space. Besides, it also
generates A1 ∈ Rn×η

q ,A2 ∈ Rl×η
q . Without loss of generality, for the under-

lying ring R = Z[X]/〈Xd + 1〉 and modulus q, we assume that qR splits as
qR = q1 · · · q�, where � = d/c for a constant c ∈ Z, and q − 1 = 2�(mod4�).
Clearly, if � = d, we say the ring R is full-splitting.
Besides, the algorithm further chooses k as the public boosting parameter,5

such that k̂|d and q−1/k̂ is negligible in λ, and set σ := σ2d/k̂+1 ∈ Aut(Rq) is

the automorphism of order k̂d/�.
– Com(params, x,m; r): Given params, m ∈ Rl

q, and randomness r ∈ Sη
1 , the

algorithm generates a commitment comm :=
[

t1
t2

]
=

[
A1

A2

]
r +

[
0
m

]
.

– Prove(params, x, comm,m, r): Given params, comm ∈ Rn+l
q , and randomness

r ∈ Sη
1 , the algorithm first samples yi ← Dη

α and computes c = H({A1 · yi})
for i ∈ [k̂]. Then, it computes zi = yi +σi−1(c) ·r and gets b ← Rejj((zi), (c ·
r), α) for j = 2 or 3. If b = 0, it outputs π = (c,z) with z := (zi). Otherwise
abort.

5 Of course, the number of k̂ will affect the proof size of opening proof. Thus, we try
to set it as small as possible.
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– Verify(params, x, comm, π): given params, comm, π, the algorithm parse comm
as t1 ∈ Rn, t2 ∈ Rl, and parse π as (c,z) with z := (zi). If ‖zi‖ ≤ α · √

d · η
and c = H({A1 · zi − σi−1(c)t1}), accept. Otherwise, reject.

Furthermore, we have the following theorem.

Theorem 4.5. In the random oracle model, if D-MLWE-LSn+l,η,k̂,q,χ assump-
tion holds, then the CP with Rej2 or Rej3 is simulatable.

We prove this theorem by a standard hybrid argument. Due to the limitation of
space, we defer the proof to full version of this paper.

Further Decreasing Standard Deviation. It should be noted that the boost-
ing procedure in Fig. 2 enlarges the norm of the vector z by a factor of k̂, com-
pared with the original proof with non-splitting underlying ring R in [9]. To deal
with this issue, the work [35] proposed a simple modification of the protocol. As
a result, one can decrease the standard deviation possibly by a factor of k̂. Due
to the limitation of space, we defer the details to full version of this paper.

4.3 Comparison of Efficiency

Intuitively, by using Rej2 or Rej3, we can get much better upper bounds for
Dη

α

Dη
v ,α

than Eqs. (1) and (2), allowing us to derive much smaller values for α.
Particularly, for Rej2 and the corresponding Theorem 4.3, if we use the condition
that 〈z,v〉 ≥ c · α‖v‖, then we have

Dη
α(z)

Dη
v ,α(z)

= exp
(−2〈z,v〉 + ‖v‖2

2α2

)
≤ exp

(−2c · α‖v‖ + ‖v‖2
2α2

)
= 1. (3)

Here, we set −2c ·α‖v‖+‖v‖2 = (−2c ·α+‖v‖) · ‖v‖ = 0. Thus, we just need
to set α = ‖v‖

2c . Besides, we notice that the event of Rej2’s abort only depends on
whether the random vector z is in the subset Ŝv ,c, for any fixed v and c. Clearly,
by careful balancing the parameter c, we can get a much smaller α, for the same
expected repetition times. The detailed example data are listed in Table 4.

Then, for Rej3 and the related Theorem 4.4, if we assume that M(v,z) =
exp

(
3〈v ,z〉

α2

)
, then we have

Dη
α(z)

M(v, z) · Dη
v ,α(z)

=
exp

(
−2〈z ,v 〉+‖v ‖2

2α2

)

exp
(

3〈v ,z 〉
α2

) = exp

(−8〈z, v〉 + ‖v‖2

2α2

)
≤ 1. (4)

Here, we set −8c · α‖v‖ + ‖v‖2 = (−8c · α + ‖v‖) · ‖v‖ = 0. Thus, we just need
to set α = ‖v‖

8c . Besides, we notice that the probability of Rej3’s abort depends
on Ŝv ,c and function M(v,z), i.e., the probability of Rej3’s non-abort is Pr[z ∈
Ŝv ,c] · 1

exp( 3〈v ,z 〉
α2 )

, for z
$←− Dm

α . Clearly, for any fixed v, α, z
$←− Dm

α , Pr[z ∈ Ŝv ,c]

depends on the choice of c. Notice also that, the condition M(v,z) ∈ [1,M ]
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implies 〈z,v〉 ∈ [0, (α2 · ln M)/3]. Thus, through setting different M , we can
compute the prover’s expected repetition numbers for one time non-abort, and
the detailed data are listed in Table 4.

According to the above principles, we can determine the concrete proof sizes
under various sets of parameters. The detailed numbers are presented in Tables 1
and 4.

Table 4. Comparison with the usage of different rejection sampling algorithms for
the protocol in Figs. 2 and 4, where M and c denote the parameters for each of four
algorithms, rep. denotes prover’s expected repetition times for one non-abort, η denotes
the dimension of z, d denotes the ring dimension of the underlying ring R, k̂ denotes
the parameter for boosting the soundness. And l denotes the number of leakage bits on

random during the security proof. Moreover, v = (σ0(c)r‖ . . . ‖σk̂−1(c)r), where r is
the randomness vector for BDLOP commitment, and c is the challenge from the verifier
in the opening proof protocol.

M c rep. α Size of z l

Rej0 3 - ≈ 3 11 · ‖v‖ k̂ηd log2(12 · 11 · ‖v‖) 0

6 ≈ 6 6.74 · ‖v‖ k̂ηd log2(12 · 6.74 · ‖v‖)

Rej1 3 0 ≈ 3 1.11 · ‖v‖ k̂ηd log(12 · 1.11 · ‖v‖) 1

4 ≈ 4 0.85 · ‖v‖ k̂ηd log2(12 · 0.85 · ‖v‖)

6 ≈ 6 0.675 · ‖v‖ k̂ηd log2(12 · 0.675 · ‖v‖)

Rej2 1 0.438 ≈ 3 1.142 · ‖v‖ k̂ηd log2(12 · 1.155 · ‖v‖) log2 3

0.672 ≈ 4 0.744 · ‖v‖ k̂ηd log2(12 · 0.744 · ‖v‖) 2

0.97 ≈ 6 0.515 · ‖v‖ k̂ηd log2(12 · 0.515 · ‖v‖) log2 6

1.149 ≈ 8 0.435 · ‖v‖ k̂ηd log2(12 · 0.435 · ‖v‖) 3

Rej3 1.8 0.5 ≈ 5.8 0.25 · ‖v‖ k̂ηd log2(12 · 0.25 · ‖v‖) log2 q

2 0.5 ≈ 6.48 0.25 · ‖v‖ k̂ηd log2(12 · 0.25 · ‖v‖)

2.5 0.5 ≈ 8.1 0.25 · ‖v‖ k̂ηd log2(12 · 0.25 · ‖v‖)

Comparison with [28]. As mentioned in the introduction, a concurrent work
[28] also improves the state-of-the-art proof of knowledge protocols for BDLOP
commitment schemes. Particularly, they remove the additional computational
overheads produced by the rejections in the framework of [36], and provide a
comparison of the output size under their framework with that under [36]’s
framework. We clarify that as a framework similar to [36], our framework also
needs more computational overheads than [28]. For the output size, we can pro-
vide a fair comparison between our framework and theirs by utilize the bench-
mark introduced in Sect. 5.1 of [28].

Concretely, same to [28], we measure the hardness of MSIS and MLWE in
terms of the root Hermite factor δ, targeting for δ ≈ 1.0043 which gives 128-
bit security. In this case, the parameters can be set as: q ≈ 232, d = 128, κ =
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32, � = 1. As claimed in [28], one should set n = 6, η = 10 to achieve the
128-bit security in the framework of [36], and they can set n = 5, η = 9 to
achieve the same security level. On the other hand, their output size is bounded

by (κα1 + α2)
√

(n + η + �)d/π, where α1 ≥ 2
√

2 log(2d(1+1/ε))
π , α2 ≥ 2

√
2κ ·√

2 log(2d(1+1/ε))
π , and ε is a security parameter that should be set at most 2−128

to be consistent with the 128-bit security. Under these parameters, the output
size of [28] is approximately 35490 (�2-norm of the output vector z, following
from the presentation of [28]). In our case, we set n = 6, η = 10, albeit our
improvement of [36]’s framework. Meanwhile, the output size in our framework
is bounded by τ · κ(n+�+η)d√

π
, where τ = 0.25 in Rej3. Therefore, output size of

our framework is approximately 9824.
To sum up, the output size in our framework is smaller than that in [28]

(approximate 3.6x). Consequently, our framework and [28]’s framework provide
a trade-off between computational overhead and communication overhead.
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44. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

45. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 2

46. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 161–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 6

https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-030-56880-1
https://doi.org/10.1007/978-3-642-22792-9_30
https://eprint.iacr.org/2015/939
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-319-63697-9_6

	Ring/Module Learning with Errors Under Linear Leakage – Hardness and Applications
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Cyclotomic Rings
	2.2 Discrete Gaussian Distribution
	2.3 MLWE

	3 Hardness: MLWE with Linear Leakage
	4 Application: More Efficient Opening Proof for One-Time BDLOP Commitment
	4.1 Classical Opening Proof of BDLOPCommitment and Rejection Sampling Algorithms
	4.2 More Efficient One-Time Opening Proof Through Using Generalized Subset Rejection Sampling Algorithms
	4.3 Comparison of Efficiency

	References


