Invited Paper: Efficient Design of FHEW/TFHE Bootstrapping
Implementation with Scalable Parameters

Ming-Chien Ho'?, Yu-Te Ku'??, Yu Xiao'?2, Feng-Hao Liu3, Chih-Fan Hsu!, Ming-Ching Chang1’4,
Shih-Hao Hungz’(’, Wei-Chao Chen!
! Tnventec Corporation, Taipei City, 111059, Taiwan; 2 National Taiwan University, Taipei City, 10617, Taiwan;

3 Washington State University, Pullman, WA, 99164, USA; 4 State University of New York, University at Albany, Albany,
NY 12222, USA; > Academia Sinica, Taipei City, 115201, Taiwan; ® Mohamed bin Zayed University of Artificial
Intelligence, Abu Dhabi
{r11944009,d08946006,r11922138}@ntu.edu.tw;hungsh@csie.ntu.edu.tw;feng-hao.lin@wsu.edu;{hsu.chih-fan,chen.wei-
chao}@inventec.com;mchang2@albany.edu

ABSTRACT

Fully Homomorphic Encryption (FHE) is vital for computing over
encrypted data, thereby enabling numerous privacy-preserving ap-
plications. This work focuses on the third generation FHE schemes
(e.g., FHEW and TFHE), known for their fast bootstrapping, small
FHE parameters, and robust security built on milder assumptions.

Our goal is to improve the efficiency of implementation for
scalable parameters. Notably, scaling up FHE parameters moder-
ately, such as the plaintext space, extends the applicability of third-
generation FHEs to a broader range of practical scenarios. However,
prevailing state-of-the-art libraries such as OpenFHE and TFHE
either lack support for extensive FHE parameters beyond 64-bit
integers or suffer significant performance slowdowns on widely
used 64-bit architectures. To tackle this challenge, we propose a
novel FFT-based multiplication implementation, which decomposes
large numbers (e.g., 128-bit integers) into multiple doubles (64-bit
floating points). To optimize the performance, we refine the error
analysis in FFT-based FHEW/TFHE computation with the decom-
position for the optimal balance between efficiency and decryption
failure probability.

We evaluate our approach through comprehensive experiments,
showing a 5-7x speedup using 64-bit architecture over 128-bit in
core operations compared to existing libraries. Our implementation
is particularly conducive to parallelization, making it well-suited
for hardware acceleration, such as GPUs.

CCS CONCEPTS

« Security and privacy — Cryptography; - Mathematics of
computing — Numerical analysis; « Computing methodolo-
gies — Parallel computing methodologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD °24, October 27-31, 2024, New York, NY, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10

https://doi.org/10.1145/3676536.3698873

KEYWORDS

Fully Homomorphic Encryption (FHE), FHEW, TFHE, Functional
Bootstrapping, Neural Network, DNN, Decision Tree, Large Modu-
lus Computation, 64-bit Architecture, FFT, Cryptographic Perfor-
mance, Error Estimation, OpenFHE, Parallel Computing.

ACM Reference Format:

Ming-Chien Ho'2, Yu-Te Ku®%, Yu Xiaol2, Feng-Hao Liu3, Chih-Fan Hsu!,
Ming-Ching Chang'#, Shih-Hao Hung®®, Wei-Chao Chen'. 2024. Invited
Paper: Efficient Design of FHEW/TFHE Bootstrapping Implementation with
Scalable Parameters. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD °24), October 27-31, 2024, New York, NY, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3676536.3698873

1 INTRODUCTION

Fully Homomorphic Encryption (FHE) allows arbitrary compu-
tation on encrypted data without decryption, enabling numerous
applications in secure cloud computing [23] and privacy-preserving
data analytics. The third-generation FHE schemes, represented by
FHEW [8] and TFHE [7], are robust against both classical and
quantum attacks due to their plausible security foundation, namely
learning with errors (LWE) assumptions that operate on a lower
modulus-to-noise ratio!. However, applying FHEW and TFHE to
high-precision or large-scale numerical data analysis, such as in
statistics and machine learning, often requires a larger message
space. This need for an increased modulus presents challenges for
efficient implementation. Current state-of-the-art libraries face sig-
nificant limitations. For instance, the fastest implementations, like
TFHE-rs, limit the modulus to 264, while versatile libraries like
OpenFHE encounter significant efficiency declines. For example, as
the modulus increases from 2%* to 2%, bootstrapping time slows
down by about 14 times. Our work aims to enhance efficiency in
this domain, focusing on the FHEW/TFHE implementations.
FHEW/TFHE bootstrapping is an important operation that re-
duces ciphertext noise, allowing continuous operations on the en-
crypted data. However, it is the most time-consuming procedure.
To improve efficiency, researchers have studied to optimize the
critical fundamental operation — polynomial ring multiplication.
To achieve this, two methods have been studied: Number Theoretic
Transform (NTT) and Fast Fourier Transform (FFT). NTT does not
incur numerical errors during the multiplication procedure, but the
computation is relatively slow compared to FFT, which however

IThis is a weaker and thus more plausible LWE assumption.

https://doi.org/10.1145/3676536.3698873
https://doi.org/10.1145/3676536.3698873
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676536.3698873&domain=pdf&date_stamp=2025-04-09

ICCAD ’24, October 27-31, 2024, New York, NY, USA

incurs additional errors due to the precision limitation in floating
point numbers. For larger modulus settings, the OpenFHE library
(https://www.openfhe.org/) supports ciphertext modulus exceed-
ing 254 using NTT with 128-bit operations, but this significantly
hampers speed on 64-bit computer architectures. This raises the
question of whether a more efficient and 64-bit architecture-friendly
method exists for bootstrapping with a large modulus. Doubling
the precision for the FFT floating point computation could achieve
efficient 128-bit polynomial ring multiplication. However, naively
adopting FFT to the large-modulus bootstrapping introduces large
numerical errors. The error inevitably impacts the bootstrapping
result. For example, using FFT with double precision for modulus
22 and message modulus 16 increases the bootstrapping failure
probability to 0.93, given a gadget base of 23!. Therefore, the mod-
ulus of the TFHE-rs (https://docs.zama.ai/tfhe-rs) can only support
ciphertext modulus to 2.

In this paper, we introduce a novel implementation of FFT-based
large-modulus bootstrapping for FHEW/TFHE, incorporating a
specially designed large-number decomposition. Our implemen-
tation is suitable for running on 64-bit architectures and offers
faster execution. Additionally, we examine the trade-offs between
computational efficiency and bootstrapping error and refine an
existing error function [26]. By the refined error function, users
can adjust the bootstrapping parameters to balance the trade-off
between efficiency and error based on the specific requirements of
their target problem.

1.1 Our Contributions

We summarize our contributions as follows:

e Efficient Polynomial Ring Multiplication: We propose a method
tailored for FHEW/TFHE that efficiently handles large modulus
by decomposing numbers into the minimum doubles necessary
to suppress error growth.

o Refined Bootstrapping Error Function: We refine the error func-
tion for large modulus to accommodate numerical errors from
FFT with double precision. This improves the bootstrapping er-
ror estimation, and balances efficiency and decryption failure
rates, thereby assisting in the optimal bootstrapping parameters
selection.

o Method Realization in OpenFHE v1.1.0: Our method is built upon
OpenFHE v1.1.0, which provides flexible parameter selection and
broad application scenarios. Compared to ordinary OpenFHE
v1.1.0, our bootstrapping implementation is 7-8x faster in single-
threaded mode and 5-7x faster in multi-threaded mode with
modulus ranging from 2°2 to 27°; compared to TFHE-1s v0.6.1,
our method supports a larger ciphertext modulus and effectively
manages numerical errors. We have evaluated our bootstrapping
method on OpenFHE v1.1.0. It can also run on the latest OpenFHE
v2.1.0 but the performance boost should be carefully investigated.

o Better Efficiency and Performance: Our method outperforms ex-
isting approaches, including an implementation using a single
long double for computations and another implementation using
a different large number decomposition method (for ciphertext
modulus below 276), as detailed in § 5.1, demonstrating superior
efficiency in real-world scenarios.

Ho et al.

Our implementation and the refined error function improve
the efficiency and practicalness of FHEW/TFHE bootstrapping for
large modulus support, which could widely be adapted to different
cryptographic applications.

1.2 Related Work

Fully Homomorphic Encryption (FHE) has evolved through
several generations since Gentry’s pioneering work [14]. First-
generation schemes introduced bootstrapping based on ideal lat-
tices. Second-generation schemes including BGV [4] and BFV [9]
focused on improving computational efficiency with leveled encryp-
tion. Third-generation schemes including FHEW [8] and TFHE [7]
used fast bootstrapping techniques for effective evaluation of non-
linear functions. Fourth-generation schemes like CKKS [5] support
encrypted operations on real numbers but provide only approxi-
mate results upon decryption. More details on each generation of
FHE schemes are in [25].

Second-generation and fourth-generation FHE schemes priori-
tize computational efficiency by using a higher modulus-to-noise
ratio. However, they depend on aggressive security assumptions,
making them vulnerable to attacks from traditional methods and
quantum computers. In contrast, third-generation schemes use
smaller FHE parameters, leading to lightweight ciphertexts and
smaller secret keys. They also rely on lattice problems with fewer
security assumptions, offering stronger confidence in security ap-
plications.

Bootstrapping for extended message spaces: Lu et al. [15]
introduced the PEGASUS framework to transition between CKKS
and FHEW. Since CKKS has a larger message space than FHEW,
PEGASUS uses large-domain bootstrapping to scale down CKKS
ciphertexts to fit FHEW’s smaller message space. This extends boot-
strapping to support a larger message domain but decreases preci-
sion. In contrast, Liu et al. [22] introduced a digit decomposition
method that divides a large message into smaller chunks and per-
forms individual bootstrapping on each chunk. This approach pre-
serves the input message’s precision but requires multiple rounds
of bootstrapping.

Given that our approach efficiently supports bootstrapping un-
der a large modulus, we can extend both of these prior works to
accommodate an even larger message modulus.

2 PRELIMINARIES

In this section, we overview the basic schemes of FHEW/TFHE boot-
strapping [6-8, 26]. § 2.1 and 2.2 introduce the encryption schemes
used in bootstrapping. § 2.3 discusses specific operations integral to
bootstrapping, based on the work of Micciancio and Polyakov [26].
Finally, § 2.4 presents methods for accelerating polynomial ring
multiplications.

Throughout this paper, logarithms are expressed in base two
unless stated otherwise. The integer field modulo g is denoted as Zg.
We define the polynomial ring R = Z[X]/(X" + 1), where N is a
power of two, making it a cyclotomic ring. Rp = Zg [X]/(X Nityis
a polynomial ring with coefficients modulo Q and dimension N; we
refer to the ring as Rp throughout the paper. A vector is represented
with an arrow above the letter, e.g., d, with a[i] indicating the i-th
element of d. For a ring d(X) € Ry, its coefficient vector is ?1 and it

https://www.openfhe.org/
https://docs.zama.ai/tfhe-rs

Invited Paper: Efficient Design of FHEW/TFHE Bootstrapping Implementation with Scalable Parameters

can be expressed as d(X) = d[0] X% +d[1]X +---+d[N-1]xN"1,
For simplicity, we denote a ring by lowercase bold letters, e.g., d.
A ciphertext is denoted by uppercase bold letters, such as C or
ACC. The notation d{ and C{ refer to the j-th component after
decomposing the ring d; and the ciphertext C;, respectively.

2.1 LWE Encryption Scheme

Let q represent the ciphertext modulus and p represent the message
modulus. In the LWE scheme, a message m € Z, is encrypted using
asecretkey s € Zg. The encryption is represented as LWE;(% m) =

(a,{a,s +1% m+e) = (a,b), where d € Zg, b€Zq ande € Zg is
a small Gaussian noise. The decrypted message g of a ciphertext
(d,b) in LWE scheme is calculated as (4, b) is g = [‘g (b-(a-s))],
where g € Z), and [-] is rounding function. During a sequence of
homomorphic operations, the error in the ciphertext accumulates.
For successful decryption, the error in the ciphertext must remain

q
below 2

2.2 Ring LWE Encryption Scheme

In the Ring LWE (RLWE) scheme, a message m € R is encrypted
with secrete key s € R as: RLWEg(m) = (a,a - s + e + m), where
a « R is chosen uniformly at random, and the error e < N (15{ o?)

is sampled from a discrete Gaussian distribution NV with zero mean
and variance o. To support multiplication of RLWEg(m) with an
arbitrary constant ring with small error, RLWE’ scheme is intro-
duced and use the base B to balance efficiency and noise growth:
RLWEs(m) = (RLWES(m), RLWEs(Bm), - - , RLWES(Bk’lm)) ,
with k = logg Q. This scheme avoids direct multiplication of the
error term with the constant ring. Since RLWE and RLWE’ schemes
do not support ciphertext multiplications inherently, RGSW scheme
built upon RLWE’ is introduced: RGSW¢(m) = (RLWE’(—s - m),

RLWE’s(m)). RGSW enables multiplication of an RLWE ciphertext
RLWEs(m) = (a,b) by using gadget decomposition G(-):

G (RLWE,(m)) = (ao,bo, albl,- . ,adg-l,bdg—l),

where a = ?i(;l al - Bi,b = Z?ﬁgl b’ - B! and dg = logg Q. The
rings a’ and b’ are bounded by B. The multiplication of an RGSW
ciphertext encrypting the message my and the RLWE ciphertext
encrypted the message ring m; is termed to as the external product
in [6]. The expansion of the external product is represented as:

G (RLWE,(myg)) - RGSW;(m;) = RLWE(mg - m;).

For a detailed overview of these encryption schemes, refer to [26].

2.3 FHEW/TFHE Bootstrapping

Bootstrapping performs decryption operations homomorphically.
Given an encrypted secret key with the LWE secret key s, boot-
strapping produces a new LWE ciphertext of the same message
with reduced noise. The noise after bootstrapping depends only
on the noise of the encrypted secret key and not on the original
LWE ciphertext. Here, the encrypted secret key is encrypted using a
different scheme from LWE, such as RGSW. The bootstrapping key
is: BTK = (RGSW(s[1]), RGSW(s][2]),---,RGSW(s[n])) . Table 1
lists the FHEW parameters used in bootstrapping.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Table 1: FHEW parameters used in bootstrapping.

Symbol Meaning

the modulus for the message.

the LWE dimension.

small modulus for LWE.

ring dimension for RLWE and RGSW.
large modulus for RLWE and RGSW.
gadget digit decomposition base dividing
integers mod Q into dg digits.

WO ZR I

Algorithm 1: Blind Rotation

input :A ciphertext C € RLWE; a vector
a=(a[1],a[2],---,a[n]),ali] € Zg; the bootstrapping
key {BTK(),‘, BTKIi}ie[l,n]: BTKji € RGSW;

output: A refreshed ciphertext ACC € RLWE

ACC « C

1
2 fori— 1tondo
3 ACC4 — G(ACC)
4 ACC

(xlil —1). (ACCq - BTKg;) + (X~2[il —1) . (ACC4 - BTK;;)
5 ACC « ACC + ACC;

6 return ACC

In this work, we leverage bootstrapping Boots|[f] for a given
function f through an RLWE accumulator from [26], facilitating
the following operations:

o Initialization: Encrypt the LWE™? ciphertext (4, b) into an
RLWE accumulator RLWEN-Q without adding noise.

e Update: Use the ring structure to homomorphically compute
z = b — (a,5) over the exponent, resulting in a ciphertext of
RLWEN-Q(X?). This step, known as blind rotation [6], is detailed
in Algorithm 1.

o Extraction: Extract the updated RLWEN-Q ciphertext back to
an LWEN-Q ciphertext.

For detailed bootstrapping procedures, please refer to [26] and [2].

2.4 Polynomial Multiplication Acceleration

Two main methods for accelerating polynomial ring multiplication
are the Number Theoretic Transform (NTT) and the Fast Fourier
Transform (FFT). Both transform polynomials from their coefficient
representation to NTT/FFT format. The transformed polynomials
then undergo elementwise multiplication. Finally, the result is trans-
formed back to coefficient representation. NTT operates within the
integer domain using modular arithmetic in finite fields, requiring
a specific prime modulus. FFT operates within the complex domain
and uses floating-point operations in infinite field, introducing nu-
merical errors but generally being faster by working with half the
polynomial dimensions [16]. FFT applies modular arithmetic only
after the inverse FFT (iFFT) and typically uses a power-of-two mod-
ulus. These methods reduce the complexity to O(N log N). In short,
NTT ensures exact results, while FFT offers faster processing with
approximate results.

ICCAD ’24, October 27-31, 2024, New York, NY, USA

3 EFFICIENT POLYNOMIAL MULTIPLICATION
FOR SCALABLE FHEW/TFHE
CRYPTOSYSTEM

Bootstrapping primarily involves time-consuming polynomial mul-
tiplications. To improve efficiency, we use FFT for polynomial ring
multiplication. However, FFT operations with floating-point num-
bers in infinite fields cause numerical errors and require modulo
operations after the iFFT transformation. Supporting large modulus
exceeding 204 with 64-bit floating-point numbers (double) exacer-
bates these errors. A naive approach is to use 128-bit floating-point
numbers (long double) to reduce errors, but this is inefficient on
current computer architectures and provides limited speed improve-
ments. Our goal is to maintain efficiency and minimize numerical
errors by using 64-bit floating-point numbers.

§ 3.1 explains our integration of the FHEW bootstrapping fea-
ture and the decomposition method to mitigate numerical errors
effectively. In § 3.2, we demonstrate the extension of our method
to support polynomial multiplication with a larger modulus.

3.1 Optimized Method of Polynomial
Multiplication with Small Numerical Error

Using the coefficient-limiting properties of gadget decomposition,
we decompose a large-coefficient polynomial into a minimal num-
ber of smaller-coefficient polynomials, effectively reducing numeri-
cal errors in polynomial multiplication. Polynomial multiplication
during bootstrapping involves the ring ¢ bounded by B and the ring
d with modulus Q because c is the output of gadget decomposition.
When the base B exceeds B, we only need to decompose d into
multiple components d’. By carefully selecting B, we ensure that
the numerical error of ¢ - d is predominantly influenced by the error
from c - d°. The following example illustrates decomposing the ring
d into two components, d? and d!, and how to select B to control
the numerical error of ¢ - d.

The Procedure of Decomposition. In this section, we delve into
the methodology of ring decomposition. Given a ring d, we decom-
pose each coefficient using the base B = 2k with k < 64, so that
d[i] = d°[i] + d'[i]B. The decomposed form of d is d = d° + d'B,
where d° = d°[0] + d°[1]X + --- + d°[N — 1]XN~1 and d' =
d'[0] +d![1]X + - - - + d! [N — 1]XN~1. We denote this decompo-
sition as: D(d) = (d° d?!), such thatd =d° +d!B e Rp. Here, d°
and d! are bounded by B and %, respectively. Because we use FFT
with double precision, larger coefficients resulting from polynomial
multiplication lead to greater numerical errors. To mitigate this, we
use signed digit decomposition as described in [1], ensuring each
coefficient of d° and d! is a signed number, with |d0 [i]\ < B/2and
|d1 [i]| < %. This method effectively limits coefficient growth in
the resulting polynomial multiplication. The composition of the
decomposed ring is given by: C(d°,d!) = d° + d!B = d, where d°
and d! are bounded by B and %, respectively, and d € Rp. This de-
composition method extends to various ciphertexts. For an RLWE
ciphertext C = (a, b), its decomposition is:

Dr1e (C) = (D(a), D(b)) = (C°,C),

where C% = (a% b%) and C! = (al,b'). For a RLWE’ ciphertext C =
(Co,C1, -+ ,Cg_1),its decomposition is D, yper (C) = (Dy14ve(Co)s

Ho et al.

Algorithm 2: Ring Multiplication with Decomposition

input :Tworingsc,d € Ro. ¢ bounded by B;
output:Aringh € Rp

1 (d%d!) « D(d)

2 T FFT(c),d® « FFT(d°), d! « FFT(d')

3 for j «— 0to1do

4 fori—0toN/2-1do

5 L h/[i] « ¢[i] d/[i] //complex multiplication

s | W FFT-1(W)

7 heh"+h'B,h«<h mod Q, returnh

Dy we(C1), o Drwe(Cr_1)) = (CO) Cl),Where c0 = (CO’ C?’ s
Cz_l) and C! = (Cl,C%, e ’Cllc—l)' For an RGSW ciphertext
C = (Cy, Cy), its decomposition is:

Drgsw(c) = (Drlwe’(co)»z}rlwe’(cl)) = ((":O, (":1),

where Gy = (C?, Cé) and C; = (CO,C%). The composition of the
decomposed RLWE ciphertext is:

Criwe(CO,CH =C'+ClB=C,

where C° and C! are RLWE ciphertext bounded by B and %, re-
spectively.

Error Analysis. This section elaborates on the decomposition
method discussed earlier, focusing on numerical errors from using
FFT with double precision for polynomial multiplication in boot-
strapping and strategies to mitigate these errors. In bootstrapping,
with B < B, the multiplication of the rings ¢ bounded by B and d
with modulus Q is represented as ¢-d = ¢ - d° +c- d' B, as shown in
Algorithm 2. According to [8], the magnitude of coefficients in ¢ - d°
isty = %ﬁ, while that of ¢ - d! is represented as t; = B-%;W.
The induced FFT numerical error for t; is [t; - €], where € is the
relative error depending on N and the FFT library. The overall FFT

numerical error, denoted as eg, is given by:

efft = [to- €]+t - EJB

To minimize eg;, the criterion t1e < 0.5 must be met, indicating
that the choice of B is crucial. When this criterion is satisfied, the
numerical error simplifies to eg; = [to - €].

3.2 Extension Method for Larger Modulus

The presented decomposition method facilitates support for a larger
modulus by decomposing multiple components. This section delves
into the extension of this method to accommodate a larger modulus.
Given a ring d, we decompose each coefficient d[i] using the bases

{Bo, By, , By}, suchthat:d[i] = d°[i]+ %5} (df[i] P Bt) .
T . k— i i-1 5

The multiplication of c by dis ¢-d = ¢-d° +Zi:11 (c -dt- H;z(l) Bj) ,

where d' is the ring bounded by B;. The magnitude of each coef-

ficient t; for ¢ - d’ is %ﬁ. The numerical error resulting from
FFT-based polynomial multiplication is:

k-1

i-1
e=To-el+) [Tti-el-[]B;.
j=0

i=1

Invited Paper: Efficient Design of FHEW/TFHE Bootstrapping Implementation with Scalable Parameters

Algorithm 3: Blind Rotation for Decomposed ACC Using
FFT
input :A ciphertext C € RLWE; a vector
d=(a[1],a[2],---,a[n]),a[i] € Zg; the bootstrapping
key {BTKOi, BTKj; }ie [1,n]> BTKji € RGSW;
output: A refreshed ciphertext ACC € RLWE
1 ACC « C, (ACC’, ACC!) « D,},,.(ACC)
2 fori < 1tondo

s | (BTK); BTK};) «— Dygsw (BTKy;

4 (BTK,, BTK},) « Dygs (BTKy;)

5 BFT‘KE. «— FFT(BTKY,), BTK}, « FFT(BTK},)

6 | BTKY, « FFT(BTKY,), BTK], «— FFT(BTK];)

7 ACCq4 — G4(ACCy, ACCy),

8 | ACCq <« FFT(ACCq)

9 for j «— 0to 1do

10 ACCY « (X@liT - 1)(ACCq - BTK/,) +
(X~ - 1) (ACC, - BTK),)

1 ACC{® « FFT"1(ACC{"), ACC;! « FFT~!1(ACC!)
2 | (ACC’ ACC!) — Dgayq((ACC, ACC!), (ACC,®, ACCt!))
13 ACC « Cyrwe (ACC°, ACC'), return ACC

where [-] denotes rounding. It is imperative to ensure ¢; - € < 0.5
for i € [1,k — 1]. Upon satisfying this criterion, the precision loss
is calculated as e = [t - €].

4 FFT-BASED FHEW/TFHE BOOTSTRAPPING
WITH SMALL NUMERICAL ERROR

While the decomposition method discussed in § 3 can be seamlessly
integrated into the bootstrapping operation, it might not offer the
most optimal optimization for the bootstrapping process. We denote
the modified bootstrapping as Bootsq [f].

In this paper, we detail how to integrate polynomial multiplica-
tion into FHEW/TFHE bootstrapping with the small numerical error
optimally. In § 4.1, we detail how to modify bootstrapping when our
method is introduced and optimize the modified parts. In § 4.2, we
detail the error of input ciphertext for our proposed bootstrapping
and that of refresh ciphertext after new bootstrapping.

4.1 Integrational Optimization

Incorporating the decomposition method has led to modifications
in the blind rotation procedure, as outlined in Algorithm 4. There
are three main adjustments:

(1) Decomposition: In the modified bootstrapping process, four
main components require decomposition.
Initial RLWE Accumulator. The initial RLWE accumulator is
decomposed into two RLWE accumulators based on B using the
function D,y (), as shown in line 1 of Algorithm 3.
Bootstrapping Key. The bootstrapping key is decomposed into
two bootstrapping keys based on B using the function Dygsy(-), as
shown in lines 3 to 6 of Algorithm 3. Notably, the decomposition
of the bootstrapping key can be preprocessed for optimization.
Gadget Decomposition. Traditionally, gadget decomposition per-
tains to the decomposition of the RLWE accumulator based on B. In
the context of modified bootstrapping, it involves the decomposed

ICCAD ’24, October 27-31, 2024, New York, NY, USA

RLWE accumulator, represented as:
G4(ACC, ACCY) = ACCy.
Here, (ACC?, ACC') is the decomposed RLWE accumulator based

on B, and ACCq € Rédg is bounded by B.

Re-decomposition for Addition. During the addition of (ACC?,

ACC!) and (ACC%, ACC;!), re-decomposition based on B is nec-
essary due to the lack of modular reduction in FFT operations. The
series of polynomial multiplications and additions may cause the
coefficients of ACC;? to exceed B, and the coefficients of ACC;! to

surpass %, The decomposition for this addition is denoted as:

Daqa((ACCY, ACCY), (ACC{®, ACC,)) = (ACC”, ACCH).

Here, ACC! and ACC' represent the RLWE ciphertexts bounded
by B, while ACC4’ denotes the RLWE ciphertext.

(2) ACC Update: In lines 2 to 10 of Algorithm 3, the external
product of the decomposed bootstrapping key and the decomposed
RLWE ciphertext results in [logg Q7 times more polynomial mul-
tiplications and additions compared to the original bootstrapping
procedure.

(3) Composition: After n iterations of ACC updation, the de-
composed RLWE ciphertext is reassembled into a single RLWE
ciphertext using Cy4,(+), as shown in line 12 of Algorithm 3.

In our approach, the primary optimal functions are the gadget
decomposition for the decomposed RLWE accumulator G;(-) and
the re-decomposition for addition D, 4(-). Next, we will discuss
the optimization strategies employed.

Optimization of Gadget Decomposition. The straightforward
implementation of G,;(-) reassembles the decomposed RLWE ci-
phertext before decomposing using B as the base. We propose a
method that directly decomposes with B without reassembling. For
m € Zg decomposed into mg and m; with B, we have m = mo+my-B.
Here, mp and m; correspond to coefficients from ACC? and ACC!.

Initially, mg is segmented into (rng, my, - - - , my) using B. If my. < B,
m can be represented as: m = rh0+2f:_11 (i - Bi)+Bk (rhk + mBl,'(B) .

The term (rng + mé,;B) undergoes further decomposition with B.

We implement this decomposition using signed digit decomposi-
tion [1]. For Q > 204 and B < 24, if mBS—,;B < 2% values can be
stored using 64-bit integers, making the method more efficient than
using 128-bit integers.

Optimization of Re-decomposition for Addition. The function
Daq4(+) adds two decomposed RLWE ciphertexts and re-decomposes
the result using B. This ensures ACC? coefficients are bounded by

B and ACC! coefficients by %. Since polynomial multiplication in
FFT format does not operate modulo Q, coefficients may exceed
Q, requiring a modulo operation. Given that Q is a power of two,
re-decomposition effectively performs a mod Q operation.

A naive approach adds ACC;? to ACC® and ACC;! to ACC!,
then re-decomposes ACC® + ACC' B using D, ,,¢(+). This is inef-
ficient on 64-bit architectures due to the long integer operations
required to mitigate numerical errors resulting from adding large
numbers to small ones with double precision.

When Q is a power of two, we optimize by directly using decom-
position without re-composition. For coefficients m; from ACC!
and r; from ACCy!, after polynomial operations, rizg and 171 may

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Modswitch
(Q = Qks)

Modswitch
(ka e q)

., Key switch

—> Boots[f] (N > n)

(a) The original bootstrapping procedure

Modswitch LI Key switch LI Modswitch
(Q = Qks) (N -»n) (Qrs = @)

- + Bootsy[f] —

(b) The modified bootstrapping procedure

Figure 1: Comparison of Bootstrapping Procedures.

exceed their bounds. We add i1y to my, divide by B to get the new
my (the remainder), and add the quotient to (mj + ri11), then divide
by % to get the new mj (the remainder).

We implement D, ;,4(+) using 64-bit floating-point operations to
improve efficiency. To handle numerical errors from adding large
and small numbers, we use two divisions: the first constrains ;s
range. These divisions are optimized with bitwise operations since
the divisor is a power of two. For more details, see the full paper.
Modified Procedure of Bootstrapping. The bootstrapping proce-
dure from [8] involves applying Boots|[f], followed by key switch-
ing (from (Q, N) to (Q, n)) and modulus switching (from (Q, n)
to (g, n)). As proposed in [26], we add an initial modulus switch
from (Q, N) to (Qys, N) before key switching, as depicted in Fig-
ure la. Here, Q > Qs > g and N > n. Our modified procedure first
switches the modulus from (Q, N) to (Qgs, N), then performs key
switching to (Q, n), followed by a final modulus switch to (g, n),
and concludes with Bootsq[f]. This sequence maintains the mod-
ulus Q for the input ciphertext, allowing a larger plaintext space
or more operations during processing. The modified procedure is
shown in Figure 1b.

4.2 Error Analysis of the Proposed
Bootstrapping

In this section, we analyze the error of LWE ciphertexts before and
after the Bootsy operation. The input LWE ciphertext for Bootsq
encapsulates cumulative errors from both key switch and modulus
switch operations. Let ai denote the variance attributed to cipher-
text arithmetic operations preceding the bootstrapping procedure.
Let 6/%/\51’ O'|2<S, and 0/2\4 s, Tepresent variances introduced by the first
modulus switching, key switching, and subsequent modulus switch-
ing operations, respectively. Using the analytical framework from
[26], we model the error in the input LWE ciphertext for Bootsq as
a Gaussian standard deviation:

a (le“az +0t . +ol)+0'2

Qﬁs QZ A MS1 KS MS2

After applying the Bootsq[f] operation, the error in a refreshed
ciphertext is modeled as a Gaussian standard deviation facc. This
standard deviation Sacc includes contributions from ognx arising
from the GINX bootstrapping procedure [12] employing ternary
CMUX optimization [2] and an approximate gadget decomposition
method [21]. Additionally, due to the FFT-based implementation,
an additional FFT bias A¢; stems from double-precision FFT com-
putations. Therefore, we express the adjusted standard deviation

Pacc as:

p=

Pacc = aGINX + Ay

Ho et al.

Considering our adoption of an approximate gadget decomposi-
tion omitting the first digit, og|Nx incorporates the variance of
information loss associated with the discarded first digit Var(tom).
Therefore, ognx is formulated as:

B2
OGINX = \/Zu(dg - l)nN?J2 + 2un - Var(tom).

This paper treats the formula of og|nx as a black box; for detailed
information, please refer to [26] and [21].

The FFT bias Ag; is computed from the LWE decryption (b —
(@ -5)) for LWE ciphertext (d, b) after the Bootsq[f] operation:

Agie = [(1 = [Isn Dege .

where ||sn|| < % as noted in [26]. The term e, representing the

numerical error of each element in the LWE ciphertext (g, b) due
to FFT with double precision, is expressed as:

= 1 o))

%ﬁ and t = %ﬁ, with € representing the rela-

tive error and [-] denoting the rounding operation from floating
point to integer after the iFFT. Here, t; represents the magnitude
of each coefficient after multiplying two rings as noted in [8]. The
numerical error from polynomial multiplication can be modeled as
independent Gaussian distributions. Therefore, after 2udg polyno-
mial multiplications accumulate during each ACC update, as shown
in line 10 of Algorithm 3, the numerical error is m - tj - €. After
n ACC updates, the numerical error is multiplied by 4/n. When

\2udg - t1 - € < 0.5, egge simplifies to:

e = V| yf2udy 10 1)

We also validate the constraint /2udg - t1 - € < 0.5 through experi-
ments involving 2048 polynomial multiplications. We measure the
mean and standard deviation o of t; - €. The mean and standard
deviation of y/2udy - t1 - € are /2udg - ;1 and 4/2udg - o, respectively.
Within the parameter range in Table 2, this constraint is at least 18
standard deviations away from the mean. Based on the Gaussian
distribution, being within 18 standard deviations corresponds to an
overwhelming probability, thus ensuring that /2udg - t1 - € < 0.5
almost always holds. Based on this approach, TFHE similarly ig-
nores FFT-induced numerical error for smaller parameters. As
shown in Figure 2, we observe that when B is slightly greater than

\2ud;N-B-Q-¢
2
exceeds 20, the noise increases again as it becomes proportional

to B according to Equation 1. Therefore, B must be greater than

V2udgN-B-Q-€
2

where t(=

, e.g., 2%, the noise significantly decreases. When it

but should not exceed this value too much.

5 EXPERIMENTAL EVALUATION

In this work, we extended the OpenFHE v1.1.0 framework [1] by
integrating our proposed method and benchmarking it against the
existing bootstrapping technique in OpenFHE v1.1.0. OpenFHE was
compiled using g++ version 11.4.0 with the —ffast — math flag and
configured with NATIVE_SIZE = 128 and WITH_NATIVEOPT =
ON. FFTW v3.3.10 [11] was incorporated for FFT implementation

Invited Paper: Efficient Design of FHEW/TFHE Bootstrapping Implementation with Scalable Parameters

40
g \b_ - o— o o-""°
330
)
°
20
10
0
40 41 42 43 44 45 46 47 48 49 50 S1 52

log B
Figure 2: The standard deviation of the bootstrapping noise
Bacc varies with decomposition base B.

to accelerate polynomial multiplication. Experiments were per-
formed on an AMD Ryzen Threadripper PRO 5975WX processor
with 32 cores and 256GB of RAM, running Ubuntu 22.04.2 LTS,
using OpenMP 4.5 for parallel computation, with one thread per
bootstrapping operation.

§ 5.1 discusses the performance analysis of OpenFHE and other
implementations. Our method is suitable for large number analy-
sis and high-precision machine learning applications. In § 5.2 and
§ 5.3, we validate our method’s correctness by comparing execution
time and accuracy with OpenFHE in secure decision tree and se-
cure DNN inference applications, using the same larger ciphertext
modulus. In these experiments, our method utilizes FFTW with
AVX optimization. Accuracy is measured as the ratio of correctly
predicted classes, with homomorphic inference accuracy denoted
as HE A and plaintext inference accuracy as Pt. A.

5.1 Efficiency Evaluation

In the efficiency analysis for supporting larger modulus, our method
is compared with three different bootstrapping implementations:
the one in the OpenFHE library, the single long double approach,
and the Residue Number System (RNS) scheme [13].

Comparison with OpenFHE. Functional bootstrapping is an ad-
vanced form of bootstrapping that constructs a lookup table for a
specific function. In FHEW/TFHE, both bootstrapping and func-
tional bootstrapping are consistent processes, meaning that im-
provements in bootstrapping also enhance functional bootstrap-
ping. We evaluated our method using the EvalFunc operation [1], a
general functional bootstrapping method for evaluating arbitrary
functions. The comparative results with a batch size of 2,048 are
presented in Table 2, using parameters n = 1,305, p = 16, g = 4, 096,
and N = 4,096, meeting 128-bit security with a modulus between
262 and 27°. Here, fq represents the standard deviation of the error
introduced by functional bootstrapping. Smaller fq values allow
more homomorphic operations. For a ciphertext with modulus Q,
message modulus P, and noise f, it supports either |logp % -1]

ciphertext-plaintext multiplications or Llogpm %J multiplica-

tions of a ciphertext vector (dimension N) with a plaintext ma-
trix (N x N). For example, with Q = 27 and N = 2048, when
Bstd = 231, it supports either five ciphertext-plaintext multiplica-
tions or two ciphertext-vector with plaintext-matrix multiplications.
If Bsq reduces to 238, it supports either eight ciphertext-plaintext

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Table 2: Execution time comparison of EvalFunc using a sin-
gle CPU thread (1T) and 32 CPU threads (32T). Bold values
indicate the execution times of our method under the same
noise level as OpenFHE [1].

Method | logQ | dg | logB | log fya 1T (s) 32T (s)
OpenFHE | 64 | 3 | N/A | 34 824 (1x) | 0.28(1x)
Ours 64 | 3| 44 34 | 0.98(8.4x) | 0.04 (7%)
Ours 64 | 4| 44 29 1.25 (6.6x) | 0.05 (5.6%)
OpenFHE | 66 3 | N/A 35 8.54 (1x) 0.29 (1x)
Ours 66 | 3| 46 35 0.95 (9x) | 0.04 (7.3%)
Ours 66 4 46 30 1.23 (6.9x) | 0.05 (5.8x)
OpenFHE | 68 3 | NA 35 8.53 (1x) 0.29 (1x)
Ours 68 | 3| 49 36 0.97 (8.8%) | 0.04 (7.3x)
Ours 68 | 4| 49 31 | 1.13(7.5x%) | 0.05 (5.8x)
OpenFHE | 72 3 | N/A 37 8.55 (1x) 0.29 (1x)
Ours 72 | 3| 54 42 0.95(9x) | 0.04(7.3%)
Ours 72 | 4| 53 36 | 1.11(7.7x) | 0.05 (5.8x)
OpenFHE | 76 3 | N/A 38 8.52 (1x) 0.29 (1x)
Ours 76 | 3| 61 51 0.97 (8.8%) | 0.04 (7.3%)
Ours 76 | 4 | 54 38 | 1.18 (7.2x) | 0.05 (5.8x)
® OpenFHE ®Ours ®Ours on AVX
32
28
24
%20
':né 16
a12
8
: Il
o mm= mum HHE
1 2 4 8 16 32

Threads
Figure 3: Speedup comparison of bootstrapping for OpenFHE,
our method, and our method using FFTW with AVX across
various thread counts.

multiplications or three ciphertext-vector with plaintext-matrix
multiplications.

In Table 2, for the modulus Q ranging from 2% to 26¢ under
the same dg, the noise fq of our method is comparable to that
of OpenFHE. This indicates that the noise from the approximate
gadget decomposition is similar to the numerical error from FFT
with double precision. When Q exceeds 2% under the same dg, the
error from FFT with double precision becomes the dominant factor.
We can increase dg to achieve similar noise levels, but this increases
execution time and the size of the bootstrapping key.

Under similar noise conditions, our method shows a 7.2x to 9x
speedup in single-threaded mode and a 5.8x to 7.3x speedup with
32 threads, compared to OpenFHE for Q between 24 and 276, Using
Advanced Vector Extensions (AVX) optimized FFTW, our method’s
performance improves by 14% to 17% in single-threaded execution
and by 25% to 33% with 32 threads. Figure 3 shows that the speedup
of our method using 32 threads is lower than that of OpenFHE. This
is due to our larger bootstrapping key, which uses complex numbers
with double precision, compared to OpenFHE'’s bootstrapping key
using 128-bit integers. Consequently, our method hits the memory
bottleneck sooner, especially noticeable with 32 threads.
Comparison with Long Double. Using a long double is ineffi-
cient on 64-bit architectures due to their 128-bit representation,

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Table 3: Comparison of secure decision tree evaluation time
per instance against OpenFHE [1] on the Iris dataset using
32 CPU threads.

Method logQ | dg | HEA. | Pt. A. | Time (s)
OpenFHE 66 | 3 | 98% | 100% | 18.39 (1X)
Ours on AVX 66 3 98% 100% | 1.84 (10X)

limiting speed improvements. For example, with a modulus of 2°°,
the speedup is only 2.2x in single-threaded mode, while our method
achieves a 9x speed improvement without AVX optimization. Our
method, which decomposes a large number into two doubles, is
faster than using two 64-bit doubles to simulate a 128-bit long dou-
ble. This efficiency is because our approach uses only one double
for ring coefficients generated by gadget decomposition, offering
greater flexibility and efficiency compared to using two 64-bit dou-
bles to mimic a 128-bit long double.

Comparison with the RNS Scheme. The Residue Number System
(RNS) is a number representation system that decomposes a large
number into smaller modulus to simplify arithmetic operations,
often combined with NTT. In comparison, while our method’s ACC
addition after the inverse transform is slower than that of RNS,
it offers three key advantages. Firstly, our method uses 64-bit op-
erations for gadget decomposition, whereas RNS requires 128-bit
operations. Secondly, we perform only half as many FFT operations
as the NTT operations required by RNS. Thirdly, in FFT/NTT for-
mat, our method handles polynomials with half the dimension of
those in RNS. Consequently, with similar noise levels, our method
is estimated to be faster than RNS for ciphertext modulus Q < 27°.
Detailed comparisons are provided in the full version of this paper.

5.2 Evaluation on Secure Decision Tree Models

Secure decision trees protect data privacy during inference, crucial
for applications like medical diagnostics and financial evaluations.
Recent studies, including [15, 24, 27], have explored the use of
FHE for this purpose. We assessed our FHE-based decision tree
using the Iris dataset [10] from the UCI repository. Table 3 com-
pares our method with the OpenFHE implementation. We used the
non-interactive secure decision tree algorithm from [15], which
encrypts only the input data and processes the rest in plaintext.
This algorithm involves O(N) EvalFunc, where N is the number
of decision tree nodes. In our experiments, we used EvalFunc with
the message modulus p = 2!'. Our model has eight internal nodes
and nine leaves. The Iris dataset contains three classes with 50
instances each, and each instance has four features. We randomly
selected 100 instances for training and 50 for testing. As shown in
Table 3, our method achieves a 10x speed improvement over the
OpenFHE implementation while maintaining equivalent accuracy
in homomorphic inference.

5.3 Evaluation on Secure DNN Inference

FHE-based encrypted DNN inference enables secure DNN inference
within an encrypted domain, offering a promising solution for data
privacy. This approach has been extensively studied [3, 17-19]. We
assessed our method using the MNIST [20] and Fashion-MNIST [28]
datasets, comparing it with OpenFHE as shown in Tables 4 and 5,
respectively. We used the FHE parameters and model architecture

Ho et al.

Table 4: Comparison of secure DNN inference time per in-
stance against OpenFHE [1] on MNIST dataset using 32 CPU
threads.

Method logQ | dg | HEA. | Pt. A. | Time (s)
OpenFHE 66 3 | 96.63% 97% 11.39 (1X)
Ours on AVX 66 3 | 96.69% 97% 2.35 (4.8X)

Table 5: Comparison of secure DNN inference time per in-
stance against OpenFHE [1] on Fashion-MNIST dataset using
32 CPU threads.

Method logQ | dg | HEA. | Pt. A. | Time (s)
OpenFHE | 66 | 3 | 88.71% | 89% | 483 (1X)
Ours on AVX 66 3 | 88.72% 89% 9.47 (5.1X)

from [18], with a message modulus of p = 21¢ and EvalFunc for the
ReLU activation function.

The MNIST dataset contains 28x28 pixel grayscale images of
handwritten digits, categorized into ten classes (0-9), with 60,000
instances (50,000 for training and 10,000 for testing). Our model
consists of an input layer with 784 neurons (28x28 pixels), a fully
connected hidden layer with 30 neurons using the ReLU activation
function, and a fully connected output layer with ten neurons. As
shown in Table 4, our method shows a 4.8x speedup over OpenFHE
with comparable accuracy in homomorphic inference.

The Fashion-MNIST dataset contains 28x28 pixel grayscale im-
ages of various clothing items categorized into ten classes (e.g.,
t-shirts, trousers, pullovers, dresses). It has 70,000 instances (60,000
for training and 10,000 for testing). Our model for this dataset con-
sists of an input layer with 784 neurons, a fully connected hidden
layer with 128 neurons using the ReLU activation function, and
a fully connected output layer with ten neurons. As shown in Ta-
ble 5, our method achieves a 5.1x speedup over OpenFHE while
maintaining similar accuracy in homomorphic inference.

6 CONCLUSION

We integrate FHEW-like bootstrapping with large-number decom-
position to achieve efficient FFT-based bootstrapping with min-
imal numerical error. Our method improves Evalfunc operation
speed by 5-7x over OpenFHE while maintaining similar error levels.
Specifically, in secure decision trees and neural network inference,
our method is 10x and 5x faster than OpenFHE, respectively, with
comparable accuracy. Additionally, our approach can expand the
message space for methods like CKKS and FHEW/TFHE [15] and
large precision sign function [22], suggesting broader applicabil-
ity. Finally, our implementation is well-suited for parallelization,
making it ideal for hardware acceleration, including GPUs.

ACKNOWLEDGMENTS

This work was primarily conducted at Inventec Corporation. We
gratefully acknowledge the support of the National Science and
Technology Council, Taiwan, under grant NSTC 112-2221-E-002
-159 -MY3 and 113-2634-F-002-001 -MBK. Feng-Hao Liu would like
to thank NSF Career Award CNS-2402031. Their support was in-
strumental in developing critical preliminary results for this work.

Invited Paper: Efficient Design of FHEW/TFHE Bootstrapping Implementation with Scalable Parameters

REFERENCES

[1] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

[9

[10

=

]

[11]

[12

[13

[14]

[15

[16

]

[17]

(18

[19

]

]

[20]

[21

[22

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,
et al. 2022. Openfhe: Open-source fully homomorphic encryption library. In
Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography. 53-63.

Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P.
Smart. 2022. FINAL: Faster FHE Instantiated with NTRU and LWE. In ASI-
ACRYPT 2022, Part I (LNCS, Vol. 13792), Shweta Agrawal and Dongdai Lin (Eds.).
Springer, Cham, 188-215. https://doi.org/10.1007/978-3-031-22966-4_7

Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018. Fast
Homomorphic Evaluation of Deep Discretized Neural Networks. In CRYPTO 2018,
Part IIl (LNCS, Vol. 10993), Hovav Shacham and Alexandra Boldyreva (Eds.).
Springer, Cham, 483-512. https://doi.org/10.1007/978-3-319-96878-0_17

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012, Shafi Goldwasser
(Ed.). ACM, 309-325. https://doi.org/10.1145/2090236.2090262

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT 2017,
Part I (LNCS, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer,
Cham, 409-437. https://doi.org/10.1007/978-3-319-70694-8_15

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. 2016.
Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.
In ASIACRYPT 2016, Part I (LNCS, Vol. 10031), Jung Hee Cheon and Tsuyoshi
Takagi (Eds.). Springer, Berlin, Heidelberg, 3-33. https://doi.org/10.1007/978-3-
662-53887-6_1

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
33, 1 (Jan. 2020), 34-91. https://doi.org/10.1007/s00145-019-09319-x

Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In EUROCRYPT 2015, Part I (LNCS, Vol. 9056),
Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Berlin, Heidelberg, 617-640.
https://doi.org/10.1007/978-3-662-46800-5_24

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:
//eprint.jacr.org/2012/144.

R. A. Fisher. 1988. Iris. UCI Machine Learning Repository.
https://doi.org/10.24432/C56C76.

Matteo Frigo and Steven G Johnson. 2005. The design and implementation of
FFTWS3. Proc. IEEE 93, 2 (2005), 216-231.

Nicolas Gama, Malika Izabachéne, Phong Q. Nguyen, and Xiang Xie. 2016. Struc-
tural Lattice Reduction: Generalized Worst-Case to Average-Case Reductions
and Homomorphic Cryptosystems. In EUROCRYPT 2016, Part II (LNCS, Vol. 9666),
Marc Fischlin and Jean-Sébastien Coron (Eds.). Springer, Berlin, Heidelberg,
528-558. https://doi.org/10.1007/978-3-662-49896-5_19

Harvey L Garner. 1959. The residue number system. In Papers presented at the
the March 3-5, 1959, western joint computer conference. 146—153.

Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st
ACM STOC, Michael Mitzenmacher (Ed.). ACM Press, 169-178. https://doi.org/
10.1145/1536414.1536440

Wen jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. 2021. PE-
GASUS: Bridging Polynomial and Non-polynomial Evaluations in Homomorphic
Encryption. In 2021 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 1057-1073. https://doi.org/10.1109/SP40001.2021.00043

Jakub Klemsa. 2021. Fast and error-free negacyclic integer convolution using
extended fourier transform. In International Symposium on Cyber Security Cryp-
tography and Machine Learning. Springer, 282-300.

Kamil Kluczniak and Leonard Schild. 2023. FDFB: Full Domain Functional Boot-
strapping Towards Practical Fully Homomorphic Encryption. IACR TCHES 2023,
1(2023), 501-537. https://doi.org/10.46586/tches.v2023.i1.501-537

Yu-Te Ku, Feng-Hao Liu, Yu Xiao, Ming-Ching Chang, Chih-Fan Hsu, I-Ping
Tu, Shih-Hao Hung, and Wei-Chao Chen. 2024. Efficient Third Generation FHE
Based Non-Interactive Encrypted DNN Inference with FHE-Aware Training. In
Unpublished Manuscript (2024).

Kwok-Yan Lam, Xianhui Lu, Linru Zhang, Xiangning Wang, Huaxiong Wang,
and Si Qi Goh. 2023. Efficient fhe-based privacy-enhanced neural network for
ai-as-a-service. Cryptology ePrint Archive (2023).

Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim Deryabin,
Jieun Eom, and Donghoon Yoo. 2023. Efficient FHEW Bootstrapping with Small
Evaluation Keys, and Applications to Threshold Homomorphic Encryption. In
EUROCRYPT 2023, Part IIl (LNCS, Vol. 14006), Carmit Hazay and Martijn Stam
(Eds.). Springer, Cham, 227-256. https://doi.org/10.1007/978-3-031-30620-4_8
Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. 2022. Large-Precision Homo-
morphic Sign Evaluation Using FHEW/TFHE Bootstrapping. In ASIACRYPT 2022,
Part II (LNCS, Vol. 13792), Shweta Agrawal and Dongdai Lin (Eds.). Springer,

DOI:

[24

[25

[26

[27

[28

]

]

]

ICCAD ’24, October 27-31, 2024, New York, NY, USA

Cham, 130-160. https://doi.org/10.1007/978-3-031-22966-4_5

Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2012. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic encryption.
In 44th ACM STOC, Howard J. Karloff and Toniann Pitassi (Eds.). ACM Press,
1219-1234. https://doi.org/10.1145/2213977.2214086

Wenjie Lu, Jun-Jie Zhou, and Jun Sakuma. 2018. Non-interactive and Output
Expressive Private Comparison from Homomorphic Encryption. In ASIACCS 18,
Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier Lopez, and Taesoo
Kim (Eds.). ACM Press, 67-74. https://doi.org/10.1145/3196494.3196503

Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank HP
Fitzek, and Najwa Aaraj. 2022. Survey on fully homomorphic encryption, theory,
and applications. Proc. IEEE 110, 10 (2022), 1572-1609.

Daniele Micciancio and Yuriy Polyakov. 2021. Bootstrapping in FHEW-like
cryptosystems. In Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography. 17-28.

Anselme Tueno, Yordan Boev, and Florian Kerschbaum. 2020. Non-interactive
private decision tree evaluation. In Data and Applications Security and Privacy
XXXIV: 34th Annual IFIP WG 11.3 Conference, DBSec 2020, Regensburg, Germany,
June 25-26, 2020, Proceedings 34. Springer, 174-194.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747
(2017). arXiv:1708.07747 http://arxiv.org/abs/1708.07747

https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.46586/tches.v2023.i1.501-537
https://doi.org/10.1007/978-3-031-30620-4_8
https://doi.org/10.1007/978-3-031-22966-4_5
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/3196494.3196503
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 LWE Encryption Scheme
	2.2 Ring LWE Encryption Scheme
	2.3 FHEW/TFHE Bootstrapping
	2.4 Polynomial Multiplication Acceleration

	3 Efficient Polynomial Multiplication for Scalable FHEW/TFHE Cryptosystem
	3.1 Optimized Method of Polynomial Multiplication with Small Numerical Error
	3.2 Extension Method for Larger Modulus

	4 FFT-based FHEW/TFHE Bootstrapping with Small Numerical Error
	4.1 Integrational Optimization
	4.2 Error Analysis of the Proposed Bootstrapping

	5 Experimental Evaluation
	5.1 Efficiency Evaluation
	5.2 Evaluation on Secure Decision Tree Models
	5.3 Evaluation on Secure DNN Inference

	6 Conclusion
	Acknowledgments
	References

