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ABSTRACT

This work introduces KsPIR, a new practically efficient single-server
private information retrieval (PIR) system that outperforms the
state-of-the-art Spiral (Menon and Wu, S&P 2022) in terms of server
response times. We achieve this by proposing novel dimension
folding methods, inspired by recent advancements in fully homo-
morphic encryption. Our methods offer two significant advantages:
firstly, they feature simpler designs that eliminate the need for ci-
phertext expansion steps in Spiral. Secondly, and more importantly,
we propose two types of designs that offer distinct advantages -
the first type enables preprocessing of the most resource-intensive
computation in the offline stage before receiving the query, thereby
optimizing online response time; the second type optimizes over-
all response time without requiring preprocessing in the offline
stage, accomplished through a highly optimized baby-step-giant-
step matrix-vector homomorphic multiplication.

We conduct comprehensive experiments to evaluate the concrete
performance of KsPIR, and the results confirm an approximately
10.7 times faster online throughput than that of Spiral for the first
type, and 5.8 times faster overall throughput for the second type.
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1 INTRODUCTION

Private information retrieval (PIR) enables a client to retrieve a
specific element from a server’s database without disclosing the
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index that was queried. This concept was first introduced by Chor
et al. [16], and has been widely applied in various domains, in-
cluding but not limited to anonymous messaging [4, 5, 38, 51], pri-
vate contact tracing [61], safe browsing [32, 36], and more [24, 62].
The literature on PIR research includes many variations, such as
multi-server [18, 22, 36] versus single-server settings [1, 2, 4, 17, 26,
32, 37, 46, 52, 65], and pre-processing (i.e., offline/online) [12, 17—
19, 32, 36, 55, 60, 64, 65] versus the plain settings [1, 2, 4, 26, 45, 46,
52, 53]. There has been active research in both theory and prac-
tice [12, 31, 39, 40, 56, 58, 60, 63, 64].

Practical Single-Server PIR. This work focuses on the setting of
practical single-server PIR. In recent years, several works [1, 2, 4, 45,
46, 52, 54] have focused on implementing and optimizing the con-
crete performance of single-server PIR. Many of the designs have
involved leveraging the power of pre-processing, where the server
and client can perform some offline computation before the online
query from the client. These works have significantly improved
the response time, server’s throughputs, and/or the server-client
communication complexity, making substantial progress towards
practical deployments of PIR in the real-world applications.

In the following, we outline the best practical solutions currently
available (to our knowledge) in two general categories. However,
solutions in these two categories are incomparable due to various
tradeofs, and each solution has its own strengths and weaknesses.
Therefore, depending on the specific requirements of a particular
application, users will make distinct selections based on the best
fit.

Two General Categories. Below we present two major categories
of practical PIR, achieving incomparable advantages in different
aspects. The categorization is based on several critical features
that PIR aims to optimize. We present some contexts and then
the features below. Briefly, an offline/online PIR scheme consists
of several phases: (1) There is an offline phase before the client
receives the input of the query. In this phase, the server and client
can do some one-time set up and pre-process queries (if they have
an input-independent component). The server receives the database
in this phase. (2) Once the client receives the input of the query, the
protocol enters the online phase. Now we present several important
features below.

e For the offline phase (including one-time setup and pre-processing
offline queries), we list two critical features — the client’s com-
putation time and the communication complexity between the
server and the client.
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e For the online phase, we list two critical features — the query
and response size, and the server’s response time.

e We list two among other important features, including the client’s
required (long-term) storage and the complexity (for both par-
ties) to handle database updates.

Based on these, two general categories have been studied in the
state of the art designs.

Category I. A key characterization is the optimization of client’s
computation and communication load in both the offline and online
phases. Particularly, in all the stages, the client does not storage
any database-dependent hints, and the database update is fully
client independent. This objective can be accomplished by utiliz-
ing generic Fully Homomorphic Encryption (FHE)-based solutions,
and there have been recent advancements in efficient implementa-
tions, such as XPIR [45], SealPIR [4], SHECS-PIR [54], FastPIR [1],
MulPIR [2], OnionPIR [52], Spiral [46] and recent works includ-
ing HintlessPIR [41], YPIR [49] and WhisPIR [20]. Among these
schemes, the currently most efficient options are Spiral (and its
related family) [46], HintlessPIR [41], YPIR [49] and WhisPIR [20].

Category II. The designs within this category utilize the client’s
resources by allocating more intensive offline computation and
communication procedures. Moreover, they also involve storing
significantly larger hints from the client’s side. By using these, the
server’s online response time (and thus the online throughput)
may significantly outperform that in the other category. Notable
practical schemes in this category include [36], FrodoPIR [19], Sim-
ple/Double PIR [32] and Piano [65]. The current state-of-the-art
schemes are Simple/Double PIR [32] and Piano [65]. However, it is
important to note that these two schemes are incomparable due to
the tradeoffs in different aspects. In Section 6.4, we will delve into
further details.

Upon examining the features, we observe that Category I is bet-
ter suited for light-weighted clients who require minimal storage
for hints, computation, and communication across all stages. Addi-
tionally, these clients do not need to repeat extensive computation
even when the database undergoes frequent updates (insertions
or modifications). On the other hand, Category II becomes more
advantageous when clients are actively involved in the offline phase
and can store larger hints. In such cases, Category II schemes can
provide significantly faster online response times. We also notice
that due to the lower bound result of tr = Q(n) [7] where t is
server online time, r is the bits of hint, and n is the size of database,
for schemes in Category I, the server’s computation complexity
would inherently be linear in the database size, whereas for schemes
in Category II, it is possible to design sublinear computation for
servers with larger hints stored on the client’s side, e.g., [65].

It is worth noting that both categories hold their own signifi-
cance and may offer different advantages in various scenarios. Thus,
advancements in either category hold value for practical deploy-
ments. Table 1 presents a concise overview of the pros and cons of
these two categories, along with the state-of-the-art schemes and
our results figuratively. This would allow for a quick comparison
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and understanding of the different aspects of each category and
our merits.

. . Simple/Double Piano
Spiral [46] This paper PIR [32] [65]
Offline (Preprocessing) phase
Client comp. 4 v 4 v
Comm. v v v X
Online phase
Server response time v v v vv
Online comm. v v v v
Others
Client storage v v
Database update
(Client independent) 4 4 X X

Table 1: Performance characteristics of the four PIR proto-
cols. “Comm.” stands for communication cost and “Comp.”

stands for computation cost. ¥ means “the best”. X means

“not so good”. v means “the performance is between v
and X ”. Two symbols indicate more,i.e., ¥V isbetter than
v and /V isbetter than v/ .

1.1 Our Results

This work makes substantial progress for single-server PIR in Cate-
gory I, demonstrating contributions in the following aspects.

o We develop three efficient PIR schemes in the offline/online
setting. All our three schemes are in Category I, as the client
stores minimal storage (no database-dependent hints) and the
database update is fully client independent.

Our designs are built upon the dimension folding idea of the

Spiral framework [46], yet with several enhancements:

— Our dimension folding algorithms are simpler than those

in [46], eliminating the need for the computationally intensive
expansions of ciphertexts.
In the first two designs, we identify a crucial advantage: the
client’s query can be split into an offline part and an online
part, where the heaviest computational load lies in processing
the offline part. As the offline part does not require knowing
the specific index queried, this heavy computation can be done
beforehand, significantly reducing the online response time
and achieving a substantial improvement in online through-
put.

In the third design, we encode the database and the client’s

query differently and deploy the highly optimized “Baby-step-

Giant-step” method [30, 34]. This approach does need a slightly

longer online time than the first two designs, yet eliminates the

need for preprocessing, resulting in better overall throughput

(offline + online).

Our three designs offer incomparable advantages, providing flex-

ible options for application designers to choose from depending

on the specific scenarios and requirements.

We implement our schemes in C++ with library [43] to evaluate

the concrete performances. Particularly, our first and second

constructions confirm an approximately 10.7X faster online run-
time than that of Spiral, and our third construction confirms an
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approximately 5.8x faster overall throughput, under the 256 MB
database configuration. This demonstrates practicality of our
work. More details are presented in Section 6.3 and Section 6.4.

Table 1 presents a figurative comparison between Categories
I and II, and our progress in the Category I. The schemes in the
table represent the best practical solutions in the categories. By
looking at this table, the readers can quickly get the general differ-
ences between these categories, and our improvements in the first
category.

1.2 Technical Overview

Briefly, our approach is the classic FHE-based construction where
the client sends an encryption of the position (denoted by Enc(index))
as the query to the server. The server who holds the database
DB homomorphically computes Enc(DB[index]) and returns the
resulting ciphertext to the client. The client can decrypt and re-
trieve the answer. This approach has been implemented in prior
works [1, 2, 4, 26, 45, 46, 52, 53], yet how to optimize the concrete
efficiency remains the main research challenge. Particularly, it is
important to determine the most suitable FHE schemes/variants,
parameters, and the homomorphic methods to achieve competitive
performances.

As our designs use different encodings for the database and
queries, we would first present the encoding and then our insights.

Encoding Method for the First Two Constructions. We encode
the database into a two dimensional array, say DB € Z2*", and
use polynomial #;(X) of degree n to encode the i-th column into its
coefficients, for i € [n]. To query the database of index = (u, w) €
[n] X [n], our schemes use RLWE [44, 59] and RGSW [3, 15, 21, 28]
schemes for the two dimensions, respectively, i.e., RLWE.Enc(X™%)
and RGSW.Enc(X™"). To achieve more efficient homomorphic re-
sponses, we develop critical techniques from the insights below.

Insight of First Construction. We identify several nice properties
of RLWE and RGSW as developed along the research of FHE:

(1) Given RLWE.Enc(X™*) and t;(X), we can efficiently compute
and extract an LWE ciphertext that encrypts t;[u], the coefficient
with respect to X* of ¢;(X). This has been used in [15, 21] and
many follow up works. In the end, we have n LWE ciphertexts.
Given n LWE ciphertexts that encrypt to[u],. .., tn—1[u], we
can convert them into a RLWE ciphertext that encrypts #(X) =
tolu] +t1[u]X +- - -+ ty—1 [u] X"~ L. This can be achieved by using
the key-switching technique of [13, 50].

Given ciphertexts RGSW.Enc(X™") and RLWE.Enc(¢(X)), we
can compute the external product [15], resulting in a RLWE ci-
phertext that encrypts f,,[u] in the constant term. Then one
can extract an LWE ciphertext that encrypts t,,[u]. This is the
resulting response, where the client can retrieve the answer by
decrypting it.

@)

®)

In Figure 1, we present a diagram for the above process. We notice
that the first two steps are referred to as “first dimension folding”
and the last step as “second dimension folding”, where the names
represent their behavior. The dimension folding technique is con-
ceptually similar to that in Spiral [46], yet our instantiation can
avoid the heavy ciphertext expansions as used by Spiral [46]. This
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First Dimension Folding

o | 4 LWEg LWE;  LWEp
tolu tlu] ...0a\u
RLWEREY — — folul  tfu] ... G[u]
T4X) RLWE
Second Dimension Folding i’
tw[u] LWE

RGSW(X™)

100 = to[u] + i [u)X + -+ by [u] X!

Figure 1: A basic PIR protocol in two dimensions. The query
consists of a RLWE ciphertext and a RGSW ciphertext. The
response is an LWE ciphertext.

already gives a non-trivial advantage of our design.

Insight of Second Construction. Our major technique to sub-
stantially improve the online throughput relies on the second in-
sight as we now present. We first observe that the above steps (1)
and (2) are more computationally heavy, whereas step (3) is light.
Nevertheless, the majority burdens in steps (1) and (2) can be done
in an offline manner, which is the key that substantially improves
the online throughput. Next we highlight the ideas.

First we observe that each RLWE ciphertext consists of two ring
elements, say (b, a), where a is uniformly random and thus message
independent, and only b is message dependent. In the end Step
(1), we would obtain n LWE ciphertexts (bg, ap), - - - , (bp—1, @n—1).
(Here the readers can understand the high level ideas without go-
ing into the precise space of LWE ciphertexts.) We observe that
ay, . . ., anp—1 can be derived from a and the database DB, without
knowing b. Thus, this step can be computed in an offline manner.

For step (2), we can use the conversion algorithm of [50] - given
n LWE ciphertexts (bo, ag), - - - » (bn-1, @n—1), the algorithm outputs
a RLWE ciphertext (b’, a’). Importantly, we identify that this step
can also be made into an offline/online manner. Particularly, we
onlyneed ay, - - - , a—1 to derive a’. Combining with the idea above,
we can compute a’ in an offline manner. Then in the online stage,
one can compute b’ from b and the pre-computed a’ in a much
faster way. As computing a’ is the most computationally heavy
step, the online step would be much light-weighted and thus the
response time can be significantly reduced.

Overall, given a partial RLWE ciphertext a, we can compute a
partial RLWE ciphertext a” in an offline manner. Then in the online
stage when b is given, the server can then complete the computa-
tion of b’, and then use (b, a’) to proceed to the third step. This
would give a substantial improvement of the online efficiency! We
present more details of the offline/online technique in Sections 3
and 4.

We notice that our first two schemes have roughly similar overall
(offline + online) complexity as the state-of-the-art Spiral [46], yet
our designs can push the heaviest computation to the offline stage,
resulting in the substantial improvements in the online throughputs.
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To improve the overall runtime, we present our third method below.

Encoding of Third Construction. In this construction, we en-
code the database DB and query index (u, w) as: (1) apply NTT
operation to each column of DB to get matrix M; (2) encrypt u and
w by RLWE and RGSW to get ciphertexts of RLWE.Enc(NTT~!(u))
and RGSW.Enc(X ™), respectively, where u is the vector with only
one non-zero entry 1 in the u-th position.

Insight of Third Construction. In the first dimension folding, we
take M and RLWE.Enc(NTT!(u)) as the input of the "Baby-step-
Giant-step" [30, 34], which outputs a RLWE cihpertext encrypting
NTT~!(M - u). Then by linear algebra we have

NTT !(M-u):= NTT"/(NTT(DB) - u) = NTT }(NTT(DB - u)).

Next we can perform the second dimension folding as our first two
schemes.

By realizing the above design principle with a highly optimized
BSGS implementation, we can significantly improve the overall
efficiency, as in this PIR protocol the computation cost (except
plaintext-ciphertext multiplication) is rather small. The details and
concrete performance analyses are showed in Sections 5 and Sec-
tion 6.

1.3 Concurrent works

There are several important concurrent and independent works, in-
cluding HintlessPIR [41], YPIR [49], and WhisPIR [20], each achiev-
ing advantages in different aspects. Below, we present a summary
of the pros and cons of these concurrent works in some critical
features, along with a high-level comparison with our work and
the prior state-of-the-art Spiral. It is important to note that each
of these schemes offers unique advantages. As PIR is an essential
privacy-preserving technology, it is critical to have various options
available for users to determine the best tradeoff based on their
specific scenarios.

Comparison by Results. We first notice that all these schemes are
in Category I and they require very small or even no hint for the
clients. Next, we describe some tradeoffs of these schemes and a
comparison with ours.

Spiral [46].

o Pros: Good throughput, large record size (>100 KB) and high
rate, where rate = plaintext size / response ciphertext size.

o Comparison with ours: We inherit the advantages of Spiral but
with approximately 5.8 better throughput. Our query size is
slightly larger, i.e., 140 KB, but this is not a significant issue as
query size does not affect rate.

HintlessPIR [41].

o Pros: High throughput for large databases.

e Cons: Rate is not good.

o Comparison with ours: Our throughput is better when the
database is smaller than 1 GB and our rate is significantly
better. When the database reaches 8 GB, their throughput is
faster than ours.

YPIR [49].
o Pros: Highest throughput.
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o Cons: The record size is quite smaller.

o Comparison with ours: YPIR is limited in many application
scenarios. YPIR + Simple PIR [49] can support large records, but
its throughput is not as good as YPIR’s, and their client-side
computational load is greater than that of our protocol.

WhisPIR [20].

o Pros: Good throughput and communication.
o Comparison with ours: Our throughput and rate are slightly
better than WhisPIR.

Comparison by Techniques. We notice that there is a common tech-
nique shared by HintlessPIR [41], YPIR [49] and WhisPIR [20].
Briefly, clients upload key-switching keys during the online phase,
thereby eliminating the need for the server to maintain any client-
specific storage. This also allows certain computations related to the
uniform sampling of LWE and RLWE ciphertexts to be offloaded to
the offline phase, a strategy also observed in earlier works such as
Simple/Double PIR [32] and FrodoPIR [19]. We notice that we can
also employ this technique to achieve a stateless PIR with enhanced
throughput. For instance, considering a database configuration of
217 x 8 KB (1 GB), the online query and response sizes are 932 KB
and 26 KB, respectively, yielding a throughput of 2103 MB/s. Conse-
quently, we can achieve a stateless protocol with high throughput
and high rate. More details are presented in Sections 5.3 and 6.5.

2 PRELIMINARY

Notations. We use N, Z, Q, R to denote the set of natural numbers,
integers, rational numbers and real numbers, respectively. log refers
to the base-2 logarithm. For a positive k € Z, let [k] be the set of
integers {0, ..., k — 1} and [a, b] be the set [a, b] N Z for any integers
a < b. For x € R, |x] and | x] denote the rounding to the lower
and closest integer, respectively.

In this paper, a vector is always a column vector by default and is
denoted by a bold lower-case letter, e.g., x. We use x[i] to denote the
i-th element of x. For a vector x with k entries, we start the index
from 0, i.e., x[0], and the last element is x[k — 1]. For convenience,
we let x[k] = x[0]. For a two-dimensional matrix (m X n) X, X[, j]
indexes the i-th row and j-th column, where both i, j start from 0.
Similar to the one-dimensional case, we set X[m, -] = X[0, -] and
X|[-, n] = X[, 0] for convenience.

We use || x||co denotes the lo-normof x, i.e., || x||o = max {||x[i]||}.

1

For a matrix X, x; denotes its i-th column vector without extra in-
structions, X" denotes the transpose of X, ||X]lco := max;{||x;|lco}.
Given some set S, S™X" denotes the set of all m X n matrices with
entries in S.

For a set A and a probability distribution £, we use a < A to
denote that a is uniformly chosen from A and a < P to denote
that a is chosen according to the distribution #.

2.1 Lattice-based Encryptions

Regev introduced the Learning with Errors (LWE) problem [59],
whose hardness can be based on some lattice problems. Consider
the distribution As, y, where y is a distribution over Z and s € Zg
for modulus g € N. A sample from the distribution As, y is of the
form (b, a) € Zgq XZ;' , where a « ZZ, e«— yand b = (a,s) +e
mod q.
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DEFINITION 2.1 (LWE). Let y be a distribution over Z, g > 2
be an integer modulus. The decision version of LWE is given m
samples with the form of (b, a) € Z4 x ZZ and decide whether these
pairs are from the uniform distribution or As, .

Another important variant is LWE in the ring setting, known as
the Ring Learning with Errors (RLWE) problem [44]. In this work,
we only focus on the polynomial ring R = Z[X]/(X" + 1), where n
is a power of two, also known as the 2n-th cyclotomic ring.

For the RLWE problem, now we present the distribution As .
Let y be a distribution over R and s € Ry = R/qR, and a sample
from As,y is of the form (b, a) € Rq X ‘Rq, where a «— 73,1, e—x
and b =s-a+e mod q. Then, the problem RLWE is presented as:

DEFINITION 2.2 (RLWE). For security parameter A,let ¢ = g(1) >
2 be an integer modulus and y = y(X) be a distribution over R. The
task of decision RLWE is, given m pairs of (b, a) € Rq X Ry, decide
whether these pairs are from the uniform distribution or A, ;.

The hardness of the above two problems have been extensively
studied in the NIST’s post-quantum standardization process in
recent years. There are a number of plausible encryption schemes
based on LWE or RLWE [8, 9].

In the following, we use four basic encryption schemes based
on the LWE or RLWE- (1) LWE, (2) RLWE, (3) RGSW, and (4)
RGSW'. Clearly, the security of these schemes can be based on
the hard problems of (Ring) Learning with Errors. These schemes
have been widely used in the lattice-based cryptography [8, 9] and
FHE [10, 15, 21, 23], which imply various homomorphic operations.
In the full version of our paper, we present more details about them.

2.2 Polynomial Rings

Here we present some useful notations and properties for the poly-
nomial rings. Let R = Z[X]/(X™ + 1) where n is a power of two.

DEFINITION 2.3. Given a ring element a € R expressed as a =
ag + a;X + -+ + ap—1X""1, define coef(a) as the coefficient vector
(a0, a1, , an-1).

Next we present a simple lemma, saying that inner products of
the coefficient vectors can be used to capture the constant term by
multiplying two ring elements.

LEMMA 2.4. Leta(X) =ag + a1 X + -+ an1 X" 1 e R, b(X) =
bp + b1 X+ + b1 X" € R, and ¢(X) = a(X) - b(X) with the
constant term cg. Then ¢y = {coef(a(X)), coef(b(X™1))).

2.3 Useful Algorithms

Here we recall several useful algorithms for our design: (1) Key-
switching, (2) Extract, and (3) Conversion from LWE(s) to RLWE.

Key-switching. The procedure is denoted as KS (Key-switching)

with the following algorithms:

. KS.KeyGen(l’l, s,s"). Given two secrets s and s’, the algorithm
outputs KSkey « RGSW’.Enc(sk, s), where sk = (1, —s")T.

o KS(KSkey, (b, a)). Given a RLWE ciphertext (b, a) € RLWE(p)
and key-switching key KSkey as input, the algorithm outputs a
RLWE ciphertext (b’,a’) € RLWEy (1) by computing

(", a")" = (b,0)" — KSkey - g 1(a).
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This idea was proposed by [11] and later used widely in the research
of FHE [10, 15, 21, 23].

Extract. Given a RLWE ciphertext (b, a) € RLWE(n), there is a
simple way that extracts an LWE ciphertext (b’, a’) € LWEg (o),
where s’ = coef(s(X™1)), a’ = coef(a), po = coef(y)[0]. This simply
follows from Lemma 2.4. The extraction procedure can be easily gen-
eralized to outputting an LWE ciphertext that encrypts coef(u)[i]
for any i (i.e., any coefficient of p).

Conversion from LWE(s) to RLWE. According to [13, 50], there is
an algorithm that given r(< n) LWE ciphertexts, namely (b, ag) €
LWEs (o), - - - 5 (br—1,ar—1) € LWEg(pir—1) and some proper key-
switching key, outputs a RLWE ciphertext (b, a) € RLWE(u) where
= po+mX+ -+ pr—1X "1 We simply call this algorithm r-
LWE-to-RLWE.

When r = O(log n), the method of [13] is faster, whereas when
r = O(n), the two methods [13, 50] are roughly the same complexity.

2.4 Private Information Retrieval

Here we describe the syntax of Private Information Retrieval (PIR),
following essentially the presentation of [65]. A PIR with prepro-
cessing is a protocol between two stateful machines, namely the
server and the client with the following structure. Implicitly the
security parameter 17 is taken in all procedures below.

One-time Setup Phase. This phase is run one-time per database
and per client. Particularly, the client receives no input and the
server receives a database DB of size N € N, i.e., number of entries.
Next the client sends a single message pk (public key) to the server
while storing privately the corresponding secret key sk. Then the
server does some pre-computation based on DB and pk, resulting
in a pair of hints (hints, hint.). The server stores hintg locally and
sends back hint, to the client, as shown in Figure 2.

Query Phase. In this phase, the client would like to retrieve
DB[index] for some private index € [N]. This phase can be divided
into two stages as follow:

o (Offline). The client generates an offline query qug indepen-
dent of the index, and sends the query to the server. As this
step can be done before knowing the querying index, it can be
completed in an offline manner.

(Online). Once given the index index € [N] and the offline
query qug, the client computes an online query qu,,, and sends
the query to the server. Next, the server computes a response
r and sends back to the client. Finally given r and sk, the client
can then recover the desired DB[index].

There are several variants of PIR that can be captured by the
above framework as we discuss in the following remarks.

REMARK 2.5. In general, the Setup phase is run one time per client
per database, i.e., (hints, hint.) are generated based on the client’s pk
and database DB.

For any scheme where hint. is not needed, e.g., hint, is an empty
string, then the setup is only needed once per client. In this case, the
storage required by the client is independent of the number of the
databases in the system.

Next we define several desirable qualities for the offline queries.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

One-time Setup Phase

hint,

Data

qQUon 5
response

Client Server

Figure 2: A sketch of Private Information Retrieval.

DEFINITION 2.6. We say the offline query is fully-reusable if
one query can be used among multiple online queries over differ-
ent databases. It is reusable over multiple databases if a single qu
can be used to query multiple databases, but it might not be reused
for different online queries.

In another angle, we define a desirable property — public-coin.

DEFINITION 2.7. The offline query is public-coin if the distribution
of quyg follows the uniformly random string that can be sampled
publicly (without trapdoor).

REMARK 2.8. The public-coin property has some desirable practical
advantages — in many real-world scenarios, we can just use a random
beacon or random oracle to generate public randomness for the query.
As long the public source of randomness cannot be controlled by
the adversary, this offline query can be made non-interactive where
both the client and server just retrieve qug by looking at the agreed
location at the source. Thus, the server can pre-compute multiple
offline queries non-interactively, significantly accelerating the online
running time even for multiple queries.

Next we define correctness and privacy for the PIR scheme.

Correctness. For a database DB € ZY, where each element is
in Zp and can be indexed by a number in [N], the correct answer
for a query index € [N] is the index-th element of DB, denoted as
DB[index].

In section 3 and 4, we represent DB with a two dimensional
array where index is encoded by two numbers (u, w). In this case,
DB[index] refers to DB[u, w] where u is the row index and w is the
column index. In section 6, we extend it to handle larger database.

Privacy. We define that a single-server PIR scheme satisfies pri-
vacy if and only if there is a probabilistic polynomial-time (PPT)
simulator Sim such that for any PPT adversary A (as the server),
any polynomial bound N and Q and any DB € ZY, the adver-
sary’s view is computationally indistinguishable for the following
experiments.

e Real: an honest client interacts with A(1%, N, DB) who acts
as the server but may not follow the prescribed protocol. In
the online query stage, for any step i € [Q], A may adaptively
choose the query x; € [N] for the client and the client queries
with x;.

1410

Ming Luo, Feng-Hao Liu, and Han Wang

o Ideal: the simulated client Sim(1%, N) interacts with A(14, N, DB)
who acts as the server as the real experiement. In every online
step, A may adaptively choose the query x; € [N], and Sim is
invoked to generate a simulated query without receiving x;.

2.5 Faster Matrix-vector Multiplication

Given an n/2 X n/2 x 2 plaintext matrix M and an encrypted
n/2 x 2-dimensional vector v, a commonly used method to homo-
morphically evaluate matrix vector multiplication is the baby-step
giant-step (BSGS) algorithm [30, 34]. The vector v is encoded to
plaintext slots and then encrypted to a ciphertext ct. The plaintext
matrix is arranged as n/2 vectors My, that are diagonal rows
of M. One BSGS algorithm mainly consists of total n/2 plaintext-
ciphertext multiplications and n; + nz homomorphic rotations,
where n/2 = niny, as Algorithm 2.1.

By looking deep inside baby-step, we exploit a faster implementa-
tion method called hoisting [30] without compromising correctness
or error growth. Rotate(, i) consists of an automorphism transfor-
mation (b;, a;) := (b(X°"), a(X*")) and a key-switching algorithm
(b;,0)T — KSkey - g~(a;). The automorphism transformation is
cheap while key-switching algorithm is much slower as there are
some conversions between coefficient and NTT forms.

Algorithm 2.1: BSGS Algorithm for Matrix Vector Multi-
plication [30, 34]
Input: Inputs an n/2 X n/2 x 2 plaintext matrix M; a ciphertext ct
encrypting vector @; two integers n; and ny such that
n/2 = ninz. My, 44 are the diagonal rows of M, My;44[i]
is a vector [M[n/z -i,0],M[n/2-i+1,1],---,
M[n/2-i-1,n/2-1]].
Output: Outputs the evaluation result ct = M X ct.

// Add, Mul, Rotate are homomorphic addition, multiplication,
rotation over slots, respectively, ModSwitch is modulus-switching
algorithm.

fori=0;i < ny;i++;do

3 ct; = Rotate(ct, i) // baby step. the ciphertext ct; encrypting left

rotated vector of v by i

4 ct; = ModSwitch(ct;) // this step is optional

-

N

5 ct:=(0,0)
for j =0;j < ny; j++do
ct_temp := (0, 0)
fork=0;k <ny;;k++do
r = Mul(cty, Rotate(Mg;qq[j - n1 + k1, k)) // here Rotate
acts on plaintext slots
ct_temp = Add(ct_temp, r)

IS

© ®

10

11

| ct =Add(ct, Rotate(ct_temp, j - n1)) // gaint step

return ct

// plaintext can only be encoded to (n/2) x 2-dimensional vector and
then rotate [14], instead of n-dimensional vector, so the input of this
algorithm is an n/2 X n/2 X 2 plaintext matrix instead of n X n
plaintext matrix.

12

13

In fact, an automorphism transformation on its coefficient form
is equivalent to a permutation on its corresponding NTT form [27].
Thus, two NTT representations b; = NTT(b;) and Ej = NTT(bj)
where i,j € [n1], have the same elements, and they are just a
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permutation of each other. Therefore, we only have to perform one
NTT to obtain NTT(b;) for all i € [n;], instead of performing n
NTTs.

Further, g~ is instantiated as signed base decomposition in this
work. For a polynomial a € Rg = Z4[X]/(X" + 1), the algorithm
g l: Zg — Z¢ outputs a vector x such that (g,x) = a mod g,
and ||x|lcc < By/2, where € := [logB(, q] and base By, € N. A
useful fact is the property g~}(—a;) = —g~'(a;) when using the
signed base decomposition algorithm. In the following we notice
that NTT(g~"(a(X>")) can also be accelerated.

LEMMA 2.9. For a polynomial a € Ry = Zg[X]/(X™ + 1) where
n is a power of two. g~ is signed base decomposition. we have
g ' (aX*) = g M @(X*).

Lemma 2.9 states that the automorphism transformations and
signed base decomposition are commutative in power-of-two cyclo-
tomic rings, with the proof provided in the full version of our paper.
Therefore, we can perform g~1(a) firstly and then perform a series
of automorphism transformations. Further, it is known that auto-
morphism transformations can be delayed and replaced by some
permutations over NTT representations. So we just do NTT(g71(a))
and then perform a series of permutations on it, rather than directly
computing NTT(g_l(a(XSI)) for all i € [nq]. Consequently, ny ro-
tations in baby-step (lines 2 and 3 in Algorithm 2.1) can be reduced
to one rotation in theory, plus some lightweight permutation oper-
ations.

3 OUR FIRST PIR CONSTRUCTION

In the next two sections, we present our new constructions of PIR
with pre-processing. We use several recent tools from fully homo-
morphic encryption, e.g., external products, key-switching, and
n-LWE-to-RLWE conversion as Section 2.3. These techniques have
been implemented efficiently, and by using them we can achieve
more practical protocols.

Building Blocks. We use the following building blocks: (1) RLWE
encryption scheme; (2) RGSW and RGSW’ encryption schemes; (3)
LWE encryption scheme.

Parameters. Next we describe a list of parameters and symbols
used in our PIR constructions.
e R:the underlying ring of the RLWE and RGSW/RGSW’ schemes.
In this paper, we set R = Z[X]/(X™ + 1), where n is a power of
two.

e coef(a): returns the coefficient vector of a, as defined in Lemma 2.3.

LWE{: the set of all legal LWE ciphertexts with the secret s and
modulus g(may omitted).

o s: the secret of the LWE ciphertexts.

e n, g, p: the dimension of the LWE scheme and the dimension of
the ring R, the modulus of the ciphertexts, the modulus of the
plaintext space, respectively.

A= L%J, is the encoding factor.

®: the homomorphic external product between a RGSW cipher-
text and a RLWE ciphertext, or between a RGSW’ ciphertext
and a plaintext.

Ext(b, a): returns an LWE ciphertext encrypting the constant
term of m(X) under the secret key vector coef(s(X™1)).
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o There is a bijective map 7 between [N] and [n] X [n]. It maps
I € [N]to ([I/n],I mod n) and the its inverse maps (u, w) to
u-n+w.

e Err(-): For any LWE/RLWE ciphertext ¢ or RGSW/RGSW’ ci-
phertext C, we denote its error by Err(c) or Err(C), respectively.

e { and By: are the decomposition dimension and decomposition
base in the server’s offline phase, respectively.

o Lexp and Bexp: are the decomposition dimension and decompo-
sition base in the server’s online phase, respectively.

3.1 The Construction

Let DB be a database of N = n? entries represented as a two-
dimensional matrix, i.e, DB = {DB[i, j]}; je[n], Where each entry
DB[i, j] € Zp. We encode the i-th column of DB using polynomial

t;(X) = DB[0, i] + DB[1,i]X +--- + DB[n — 1,i]X""L.
Then we present our PIR protocol as follow.
One-time Setup Phase. Below we describe the procedures for the
client and the server, respectively.

The client receives the security parameter 1% and computes:

Run (1, —=s)7 « RLWE.KeyGen(lA), and set sk = (1, —s) 7.
Store the secret key sk and set s = coef(s(X~1)). We notice
that sk can be used as a secret key of RGSW” as well.

Then for each i € [n], generate pk; <~ RGSW’.Enc(sk, s[i]).
Set pk = {pk; };e[n] and send pk to the server.

The server receives the security parameter 14, database DB, and pk
from the client. It stores pk and sets (hintg, hint¢) to be the empty
string.

Note. As both the client and server’s procedures do not depend
on the database, the phase is one-time per client.
Query Phase. We now present the offline/online query protocol.
(Offline).
o The client samples a uniformly random ring element a «
Rg, and sends qu¢ = a as the offline query to the server.
e Upon receiving quyg = a, the server does the following:
(1) For i € [n], compute a; = a - t; € Ry, and denote a; =
coef(a;).
(2) For i € [n], set v; = vi(X) = aoli] + a1[i]X + ---
an—1[i]X" 1
(3) Compute hintq = X ;¢[5) Pk; B v;, and store it as the pre-
processed information with respect to the query qu g = a.
Note that hint, is a RLWE ciphertext that encrypts m(X) = mo +
miX + -+ + mu_1 X", where for i € [n] we have m; = {(aj, s).
Recall that s = coef(s(X™1)).

+

Note. As the offline query is just a uniformly random ring element
a, our scheme is public-coin and enjoys the advantages as stated in
Remark 2.8.

(Online).
e The client receives index € [N] and an offline query qu g =
a. It does the following.
(1) Parse index into 7 (index) = (u, w) € [n] X [n].
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(2) Compute b = s-a+e+ A- X" We note that (b,a) €
RLWE(A - X™%), where a is the random ring element
generated as the offline query.

(3) Compute C «— RGSW.Enc(sk, X™").

(4) Set qug, = (b, C) and send the pair to the server.

o Upon receiving qu,, = (b, C), the server does the following:

(1) For i € [n], compute b - t; € Rq and set b; € Zg as its
constant term.

(2) Let hint, be the hint with respect to the offline query a,
and compute ansg = (bg+b X+ - - +by_1 X1, 0)=hint,.

(3) Compute (b’,a’) = C ® ans.

(4) Send response r = (b, @) = Ext(b’, a’) back to the client.

o Upon receiving the response r, the client outputs

d = LWE.Dec(coef(s(X™1)), (b, @)).

Additional analysis. We present the error growth, correctness
and security analysis in the full version of our paper.

4 OUR SECOND PIR CONSTRUCTION

In this section, we present our second construction, by leveraging
additional pre-processing to improve the server’s offline query re-
sponse. Particularly, the server is doing one-time setup per database
per client and store some hints, which can be used to accelerate
the response time for each offline query. The client is still doing
one-time setup per client.

One-time Setup Phase. Below we describe the procedures. Here
we note that for better noise control, we use two ciphertext modulus
Q > q and the modulus switching technique [10]. For conceptual
understanding of the protocol, the reader can just think of Q = q.

The client receives the security parameter 1% and does exactly the
same as the prior construction but with a larger modulus Q. We
re-state the process.
e Run (1, —s)T « RLWE.KeyGen(1%), and set sk = (1, —s)7.
o Store the secret key sk and set s = coef(s). We notice that
sk can be used as the secret key of RGSW’ as well.
o Then for each i € [n], generate pk; <~ RGSW’.Enc(sk, s[i]).
e Set pk = {pk;};¢[n] and send pk to the server.

The server receives the security parameter 1%, database DB, and
pk from the client. Then it does the following:
e Let vj = Yie[n) DBl k] - Xk For i € [n], compute
KSkey! = X% _ pky - vicir— X84, PRy - Ongicir
e KSkey; = |KSkey; - %] mod q. The server sets hint. as

empty string and hints = {KSkey;};¢[n)-

We note that each KSkey; is a RGSW’ ciphertext that encrypts
Dk xk. sgli], if each vector coef(s - ty.) is denoted as s for k € [n].
Note. Clearly, for the client this process is one-time per client;

for the server, this is one-time per client per database.

Query Phase. We now present our protocol for the offline/online
query phase.

(Offline).
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o The client samples a uniformly random ring element a «
Rgq, and sends quy¢ = a as the offline query to the server.

e Upon receiving pk and qu g = a, the server computes and
stores the pre-processed information with respect to the

query qu,g = a as

hint, = Z KSkey; ® ali],

i€[n]
where we denote coef(a(X™1)) as a.

Note. The same as our first construction, our second scheme is
public-coin and enjoys the advantages as stated in Remark 2.8.

(Online). The online phase is exactly the same as the prior con-
struction in Section 3, so we omit the detailed description here.

Additional analysis. Similar to Section 3, we present the error
growth, correctness and security analysis in the full version of our
paper.

5 OUR THIRD PIR CONSTRUCTION

In this section, we present another construction that delivers im-
proved overall runtime (offline + online) without requiring pre-
processing compared to the prior two schemes. As an interesting
tradeoft, the online time of this scheme is slightly longer than that
in the previous schemes.

We notice that both our first two constructions contain the first
dimension folding operation to extract a certain column (or row)
from the given database matrix. From the linear algebra expression,
these schemes actually (homomorphically) compute

DB -

u,

where u is some vector with only one non-zero entry 1. As pointed
in the BGV/BFV/CKKS bootstrapping and ciphertext transforma-
tions [34], we can efficiently compute the product of a matrix and a
vector by the BSGS algorithm (ref. Section 2.5). We treat the BSGS
as a blackbox algorithm, i.e., BSGS(M, ¢) takes a plaintext matrix M
and a cihpertext ¢ € RLWE(A - NTT~1(u)) as input and outputs a
RLWE(A - NTT~1(M - u)) ciphertext. Using this as a building block,
we present our third scheme as follow.

5.1 The Construction

Let DB be a database of N = n/2 X n/2 X 2 entries represented
as a two-dimensional matrix, i.e., DB = {DB[i, j1};e[n/2],je[n/2]>
where each entry DBJ[i, j] € Z; (plaintext can only be encoded to
(n/2) x 2-dimensional vector and then rotate [14], so each slot have
two entries € Zp). Apply NTT to each column of DB to get M. Then
our PIR works as follow.

One-time Setup Phase. Below we describe the procedures for the
client and the server, respectively.
The client receives the security parameter 14 and does the follow-
ing:
e Run (1,-s)" « RLWE.KeyGen(l’l), and set sk = (1, —s) .
e Store key-switching keys used in the homomorphic auto-
morphisms in the BSGS procedure in pk.
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The server receives the security parameter 14, database DB, and
pk from the client. The server does nothing.

Query Phase. We now present the query protocol.

o The client receives index € [N] and does the following.
(1) Parse index into z(index) = (u, w) € [n/2] X [n]. Denote
the vector with only one non-zero entry 1 in the u-th
position as u.
(2) Randomly choose a from Rq4. Compute b =s-a+e+A-
NTT !(u). We note that (b, a) € RLWEg(A - NTT (u))!.
(3) Compute C «— RGSW.Enc(sk, X™").
(4) Set qu = ((b, a), C) and send the pair to the server.
e Upon receiving qu = ((b, a), C), the server does the follow-
ing:
(1) compute ansg = BSGS(M, (b, a)).
(2) Compute (b’,a’) = C ® ans.
(3) Send response r = (b, @) = Ext(b’, a’) back to the client.
o Upon receiving the response r, the client outputs

d = LWE.Dec(coef(s(X™1)), (b, @)).

5.2 Analysis

We present Theorem 5.1 to illustrate the correctness of our third
construction.

THEOREM 5.1 (CORRECTNESS). Adopt the notations from the above
section. If the parameter q keeps the LWE.Dec correct, then for any
input query (u, w), the final output of our protocol satisfies d =
DB[w, u].

Proor. We begin by analyzing the underlying plaintexts at each
step of the homomorphic computation in our construction. Then
in the full version of our paper, we estimate noise growth and
calculate the probability of decryption failure, thereby validating
the correctness of our overall scheme.

In the query phase, we mainly focus on the server. First note that
(b, a) is a RLWE ciphertext encrypting A - NTT~!(u) with secret
s. By the property of BSGS, we have ans is a RLWE encryption
of NTT™1(M - u). In the pre-processing, we set M = NTT(DB) in
advance. Moreover, u is a vector with its only non-zero element
being 1 in the u-th position, and multiplying it from the right is
equivalent to extracting the u-th column. Therefore, we have

M- u=NTT(DB)u = NTT(DB - u).
In step (2), the server performs an external product, so (b’, a’) is an
RLWE ciphertext that encrypts X= - (3; A - DB[i, u]X?). In step
(3), the server applys Ext(-), so the result r is an LWE ciphertext
that encrypts A - DB[w, u].

Through the above analysis, we have d = DB[w, u] by the cor-
rectness of LWE.Dec. O

5.3 Stateless Variant

Motivated by recent advancements in PIR protocols including Hint-
lessPIR [41], YPIR [49] and WhisPIR [20], we derive a stateless
variant of our third construction. In this setting, not only are the

!In our implementation we use RLWE (| g/p - NTT™(u)]) thus to achieve smaller
error growth [35].
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clients free from storing any database-dependent hint, but the server
also avoids retaining any client-specific storage, e.g., key-switching
keys. This is achieved by having clients upload key-switching key
materials during the online phase, instead of the server storing
them for each client. While this approach increases the query size,
it significantly reduces server-side storage requirements, simplifies
deployment, and enhances anonymity by obscuring which client is
querying at any given time [41].

Moreover, in most FHE-based protocols, the query ciphertexts
must be homomorphically multiplied with the database. Whether
the query ciphertext is the LWE ciphertext (b, a) used in Sim-
ple/Double PIR [32] and FrodoPIR [19], or the RLWE ciphertext
(b, a) used in Spiral, using the same a (resp. a) to encrypt multiple
messages —while independently sampling s (resp. s) and error e
—does not compromise security [57]. In Simple/Double PIR and
FrodoPIR, the component a of the query ciphertext (b, a) is pre-
processed to enhance efficiency during the online phase. Subse-
quent works HintlessPIR [41], YPIR [49] and WhisPIR [20] extend
this insight to key-switching keys, i.e., the components a" in key-
switching keys (b";a") can also be preprocessed. Following this
insight, we can achieve the stateless variant and below we describe
how it works.

One-time Setup Phase. Below we describe the procedures for the
client and the server, respectively.

The server receives the security parameter 1%, database DB, and
does the following:

e Sample a PRG seed o « {0, %
e Expand the seed o to generate dummy RLWE ciphertext

(0, a), and dummy key-switching keys in pk = {KSkey; =
(OT;a;'—) € Réxg, i € [1+(nz —1)]}, where {KSkey;} are the
required keys in the BSGS procedure.

e Compute ansg = BSGS_setup(M, (0, a)) 2

The client receives the security parameter 1% and does nothing.

Query Phase. We now present the query protocol.

o The client receives the security parameter 14, the public
seed o and does the following:

(1) Run(1, —s)T « RLWE.KeyGen(l’l), and set sk = (1, —s)T.

(2) Expand the seed o to generate key-switching keys {KSkey; =
(b;r;a;'—) € R‘z]xg,i € [n2]} used in the BSGS procedure,
and store pk = {KSkey; = (b];07), i € [nz]}.

e Upon receiving index € [N], the client does the following:

(1) Parse index into z(index) = (u, w) € [n/2] X [n]. Denote
the vector with only one non-zero entry 1 in the u-th
position as u.

(2) Expand the seed o to ring element a in R4 and compute
b =s-a+e+A-NTT 1(u). We note that (b, a) € RLWE(A-
NTT L (u)).

(3) Compute C «— RGSW.Enc(sk, X™").

(4) Set qu = ((b,0),C, E)vk) and send it to the server.

2For a smaller key-switching key size, we do not employ the hoisting technique
described in Section 2.5. Instead, we use the iterative rotation method detailed in
HintlessPIR [41] and Figure 8, Appendix A.3 of WhisPIR [20].
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e Upon receiving qu = ((b,0),C, ﬁ) the server does the fol-
lowing:
(1) Compute ansg = ansg + BSGS_online(M, (b, 0)).
(2) Compute (b’,a’) = C ® ansy.
(3) Send response r = (b, @) = Ext(b’, a’) back to the client.
e Upon receiving the response r, the client outputs

d = LWE.Dec(coef(s(X™ 1)), (b, @)).

The stateless variant differs from the original protocol in two
significant ways: 1). The client uploads key-switching keys used
in the homomorphic automorphisms during BSGS procedure in
the online phase, while the server preprocesses all public compo-
nents across all clients. 2). We employ the iterative rotation method
detailed in HintlessPIR [41] and WhisPIR [20] in the baby-step
algorithm instead of using the hoisting technique.

Recalling that in the baby-step algorithm, the server rotates the
same ciphertext ct by 1 to n; — 1. Although the hoisting technique
reduces the theoretical computational complexity from n; — 1 to
1, the key-switching keys remain at ny — 1. The iterative rotation,
ie., Rotate(”l_l)(ct, 1), is more suitable in the stateless setting, as
it only requires a single key-switching key. Most importantly, Hint-
lessPIR and WhisPIR found that the heaviest computations can
be preprocessed. We introduce the principle of BSGS_setup and
BSGS_online here, and the detailed iterative rotation algorithm
can be referred to Figure 8 of WhisPIR [20]: It is known that Ro-
tate(-, 1) consists of an automorphism transformation (b1, a;) :=
(b(XS), a(XS)) and a key-switching algorithm ct; = (by,0)T —
KSkey, - g~ !(az). In fact, most heavy computation can be offloaded
to the one-time setup phase. We assume that the dummy key-
switching key is KSkey, = (07; @) in the one-time setup phase.
The server preprocesses (0,a;) := (0, a(Xs)) and ct; = (0,0)T —
KSkey, - g~ !(a1) in the one-time setup phase. Upon receiving (b, 0)

and KSkey, = (b;;0") in the online phase, the server computes
(b1,0) = (b(X®),0) and ct; = ¢ + (b1,0)7 — KSkey, - g~ (az).
Noting that KSkey, = KSkey, + I@(eiyo, the ciphertext ct; is pre-
cisely the rotated ciphertext by 1. The server also store g~!(a1)
in NTT form, and the automorphism transformation b(X>) can be
directly preformed in its NTT form [27], thus the online phase can
be greatly accelerated. By using this method for iterative rotations
and extending the precomputation approach to plaintext-ciphertext
multiplication and the giant step, the throughput wound be much
better than that of the original construction.

6 IMPLEMENTATION AND EVALUATION

We implement our protocols in C++ to evaluate their concrete
efficiency. Our implementations do not use any existing FHE library
but adopt the Intel HEXL library (v1.2.5) to implement the NTTs.
The source code is available at [43].

6.1 Extensions and Optimizations

Our implementations apply the following extensions and optimiza-
tions for better concrete performances.

Handling Larger Database. In the last three sections we intro-
duced three constructions, both of which can support the basic
database of n? records (n®/2 records in third construction, below
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we may ignore that), where the size of each record is log p. Now
we describe how to extend them to support larger databases and
longer records. 1) larger databases: there are only n® x log p bits
in one basic database, and the value is about 16 MB to 36 MB un-
der concrete parameters. The server can do r times for r basic
databases, with the same query. Finally the server can use a r-
LWE-to-RLWE algorithm [13] to pack r LWE ciphertexts. 2) longer
records: r log p bits may not be enough for some applications. We
use two approaches to accommodate more bits. One is the more
general usage of r-LWE-to-RLWE algorithm. The subprocedure
(line 5-7 in PackLWEs algorithm [13]) can packing two RLWE ci-
phertexts RLWE(Y ;[ m;X") and RLWE(X i ¢[n] ;X" to a new
ciphertext RLWE(Y;¢[p) m;X"), such that Min/e My e and
Micn/e+n)(26) ® Miny¢ for k € [€] and € is a power of two, with only
small noise growth produced by evaluating automorphic transfor-
mation. Therefore, the server don’t always extract LWE ciphertexts
and packing them but just directly packing r RLWE ciphertexts
and response. Finally, each record is nlog p bits, which is around
8 KB under concrete parameters. To the best of our knowledge,
using external product and subprocedure of r-LWE-to-RLWE al-
gorithm [13] to handle a small number of RLWE ciphertexts is
unprecedented in previous PIR protocols. Further, we also use the
same approach as SpiralPack [46] when the records are larger than
8 KB, i.e., packing multiple RLWE ciphertexts to a matrix Regev
ciphertext, thus to achieve better rate.

Improvement by Approximate Decomposition. We also use an-
other variant of algorithm ¢! in our implementation. Given a
modulus g and ¢ := [logg, q/Be], we denote the gadget vector
as g' = B, (1,8, ..., Bg’l) for some base By, B, € N. Then
we use the algorithm ¢! : Zg — Z¢, such that the output of the
algorithm x « g~1(a) satisfy (g, x) ~ @ mod q. The approximate
gadget decomposition is first used for the torus variant of LWE and
RLWE samples in TFHE [15]. It also works well in our protocol. In
the following we call £, B, and B, as decomposition dimension,
decomposition base and approximate base, respectively.

Reducing Size of Response. Like other lattice-based PIR proto-
cols [2, 46], the server of our protocol performs a modulus switching
in order to reduce the size of response. Given a RLWE ciphertext
(b, a), the server computes | qmoq - (b,a)/q] mod qp,04, Where
Qmod 1s a smaller modulus than q.

Reducing Size of Public Key. Both in the first and the second
constructions, the client sends a public key pk to the server. Note
that pk = {pk;};e[,] and each pk; is a RGSW’ ciphertext that
encrypts only a constant term. We can use an expansion algorithm
to reduce communication, like SealPIR [4] and Spiral [46]. The
processing is performed once for each client, and it can be reused
for arbitrary databases.

Heuristic Noise Analysis with Subgaussian Variables. We estimate
the noise growth in the way of independent subgaussian variables.
This type of estimate is tighter than the bounding of worst-case
noise magnitude, and it’s also closer to what we observe in practice.
All of our following experiments in this paper have been checked
with lower than decryption failure probability 274°. We put the
concrete analysis in the full version of our paper.
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A . . Spiral First Second Third
Database Metric FastPIR Spiral  SpiralPack StreamPack construction construction construction
One-time setup 0 0 0 0 0 879 s 0
Offline comp. 0 0 0 0 638 ms 93 ms 0
(229 + 217)x32B P
36 MB Online
Server response time 538 ms 637 ms 548 ms 165 ms 14.5 ms 14.5 ms 77.1 ms
Query size 192 KB 14 KB 14 KB 2.4 MB 25 KB 25 KB 140 KB
Response size 64 KB 20 KB 20 KB 20 KB 28 KB 29 KB 26 KB
Throughput 67 MB/s 57 MB/s 66 MB/s 218 MB/s 2483 MB/s 2483 MB/s 467 MB/s
One-time setup 0 0 0 0 0 6972/ ¥672 s 0
F920 5 9568 Offline comp. 0 0 0 0 5112 ms 746 ms 0
X
256 MB Online
Server response time 876 ms 1744 ms 1424 ms 524 ms 133.1 ms 133.1 ms 243 ms
Query size 1 MB 14 KB 14 KB 7.8 MB 125 KB 125 KB 140 KB
Response size 64 KB 20 KB 20 KB 20 KB 24 KB 27 KB 26 KB
Throughput 292 MB/s 147 MB/s 180 MB/s 489 MB/s 1923 MB/s 1923 MB/s 1053 MB/s
One-time setup 0 0 0 0 0 2953 5 0
22 Offline comp. 0 0 0 0 20s 2955 ms 0
2% X 256B
1 GB Online
Server response time 2306 ms 3628 ms 3094 ms 1756 ms 694.2 ms 694.2 ms 801 ms
Query size 4 MB 14 KB 14 KB 15 MB 135 KB 135 KB 140 KB
Response size 64 KB 20 KB 20 KB 20 KB 28 KB 26 KB 26 KB
Throughput 444 MB/s 282 MB/s 331 MB/s 583 MB/s 1475 MB/s 1475 MB/s 1278 MB/s

Table 2: Compared with Spiral. © Our database configuration is 2!°> x 8 KB, which can be trivially seen as 22° x 256 B. iRunning

in T = 16 threads, whereas all the others are run in T = 1 thread. For 256 MB database of Spiral, we use the default parameters
in [47]. We adjust the parameters of Spiral to get 36 MB, 1 GB database configuration, e.g., v; (the number of the first dimension),
vy (the number of the second dimension), log p (plaintext bits), and so on. For 36 MB, we use (v1, v2,logp) = (7,5, 9). For 256 MB,
we use (v1, vg,logp) = (8,7, 8). For 1 GB, we use (v1, v2,logp) = (9, 8, 8).

6.2 Parameter Selection 22.04.1. The compiler we used is clang++ 14.0.0.

In this section, we present how we select parameters for our schemes.
Experimental Results. We list four different database configura-

Lattice parameters. Our protocols always work over a power-of- tions, which are 36 MB, 256 MB, 1 GB and 2 GB, and we provide
two cyclotomic ring. In order to ensure 128 bits of classical security concrete experimental results to confirm efficiency of our protocols
and take the noise growth into account, we set ring dimension n = in Table 3 and Table 2.

4096. Each secret is sampled as ternary secret with the Hamming
weight h, and all the initial noise is sampled from discrete Gaussian

distribution with standard deviation o = 3.19. Comparison of Three Constructions. In the previous three sec-
tions, we presented three PIR constructions. The first and second
Database and Key Material. The database is arranged as a hy- constructions have better online response time. They share the
percube with dimensions n® x r, where each n? elements form a same online phase processing, but they have their own advantages
basic database, r is the packing number. Our database is stored and disadvantages in the one-time setup phase and offline phase.
in its evaluation representation (i.e., the FFT/NTT representation). The first construction has a longer offline processing time while
This enables faster homomorphic operations during online query the second construction has a longer one-time setup phase.
processing. Similarly, the automorphism transform key materials Table 3 shows the concrete experimental results of the third
are all stored in their evaluation representation. construction for different database configurations. We find that

BSGS algorithm consumes a relatively large proportion of time.
In fact, due to the use of hoisting technique (see Section 2.5) and

6.3 Concrete Performances for Our PIR the output of the baby-step algorithm can be reused by multiple

Protocols basic databases, most of the consumption of the BSGS algorithm is
In this section, we report the concrete performances of our proto- plaintext-ciphertext multiplications, i.e., plaintext-ciphertext mul-
cols. Our computing environment is a server with Intel(R) Xeon(R) tiplications seem to be intrinsic for PIR protocols belonging to
Gold 6230R CPU @ 2.10GHz and 256GB RAM, running Ubuntu Category L
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Metric 36 MB 256 MB 1GB 2 GB

Communication  Query size 140 140 140 140
(KB) Response size 26 26 26 26
Client cost Query 5.9 6.1 6.2 6
(ms) Recover 1.5 1.5 14 15
Offline 0 0 0 0

Server cost First dim. 72.9 228.6 742.6 1391

(ms) Second dim. 1.7 6.4 236 425
Packing 2.4 8.3 344 64

Online total  77.1 243 801 1498

Throughput (MB/s) 467 1053 1278 1367

Table 3: Concrete experimental results of the third construc-
tion for different database configurations. “dim.” stands for
dimension. BSGS algorithm is called the first dimension fold-
ing. External product is called the second dimension fold-
ing. Packing multiple ciphertexts is called the packing al-
gorithm.

6.4 Comparisons with other protocols in
Category I and Category II

We discuss comparisons of our three constructions with other re-
lated work in Category I, e.g., Spiral and its prior works. We also
discuss comparisons with other works in Category II, e.g., Sim-
ple/Double PIR [32] and Piano [65].

Compared with Spiral and its Prior Works. The single-server PIR
scheme Spiral [46] follows the Gentry-Halevi [26] blueprint. They
rely on two basic encryption schemes: RLWE encryption scheme
and the RGSW encryption scheme. After a query expansion phase,
the server performs plaintext-ciphertext multiplications in the first
dimension folding. Then the server uses external product to per-
form ciphertext-ciphertext multiplications, which is also called
the subsequent dimensions folding. Thanks to the expansion algo-
rithm and low noise growth of external product, Spiral as well as
its family outperform almost all other lattice-based PIR protocols,
e.g., SealPIR [4], FastPIR [1], MulPIR [2], OnionPIR [52]. Therefore,
Spiral can be considered as the current state of the art, and a base-
line for us to compare. For a fair comparison, we use their C++
implementation, which adapts procedure from the SEAL library
and HEXL library to implement NTTs. The comparison results are
given in the Table 2 and Figure 3. Taking the performance of 256
MB database as an example, our server’s online response time of
third construction is 5.8 faster than SpiralPack.

Compared with Simple/Double PIR and more. Another well-known
type of PIR protocols are proposed by A. Henzinger et al. [32], which
are called Simple PIR and Double PIR. As PIR protocols in Category
II, the biggest advantage is their high throughput. The drawback of
them is that the client must download and store an around 124 MB
(Simple PIR) and 16 MB hint (Double PIR), respectively. Meanwhile,
larger records (e.g., 256 bits) are not friendly to Double PIR, so there
are some limitations in applying it to many application scenarios.

Simple PIR can achieve more than 6000 MB/s server throughput
while Double PIR can achieve more than 5000 MB/s. However, our
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PIR protocol is more client cost friendly, both in terms of compu-
tation and storage. The client only needs to store the secret and a
public coin. We show the comparison in Figure 3 and defer more in
the full version of our paper. Besides, the client in Simple PIR and
Double PIR should update hint when the database updates. In our
setting, database updating has nothing to do with the state of the
client.

Other Related Works. Besides the practical PIR protocols which
we have mentioned, e.g., XPIR [45], SealPIR [4], SHECS-PIR [54],
FastPIR [1], MulPIR [2], OnionPIR [52] and Spiral [46], multi-server
PIR and PIR for special scenarios have also received great atten-
tions. Currently the most practical two-server PIR comes from
Corrigan-Gibbs and Kogan et al. [18, 36]. They propose a new two-
server PIR [18] that can achieve sublinear online time, and they
improve it and publish experimental results [36]. Special PIR in-
cludes SparsePIR [56], which is an efficient keyword PIR for sparse
databases.

6.5 Comparisons with Concurrent Stateless
Protocols

Recently, Li et al. [41] proposed HintlessPIR based on Simple PIR.
They found that the clients do not need to store the hint in Simple
PIR [32], but online homomorphic evaluate matrix-vector multipli-
cation [29], involving the hint matrix and secret vector. Further-
more, this RLWE-based matrix-vector multiplication can still be
accelerated by offloading part of the computation to the offline
phase, similar to the precomputation approach in Simple/Double
PIR [32] and FrodoPIR [19].

Menon and Wu [49] adopted an approach similar to HintlessPIR.
The starting point for their construction is Double PIR. They found
that the hint and online response in Double PIR consist of many

LWE ciphertexts. Utilizing an LWE-to-RLWE conversion algorithm [13],

YPIR enables to response the RLWE ciphertext instead of many co-
efficients and storing a hint matrix on the client side.

Castro et al. [20] proposed WhisPIR, a stateless protocol charac-
terized by low communication overhead. In WhisPIR, clients upload
key-switching keys during the online phase, and the protocol op-
timizes the key-switching key size in the coefficient expansion
algorithm used by SealPIR [4], OnionPIR [52] and Spiral [46]. Fol-
lowing an optimized coefficient expansion algorithm, the server per-
forms plaintext-ciphertext multiplications and then non-compact
homomorphic multiplications, i.e., tensor multiplication without
relinearization.

These three stateless protocols as well as Spiral (and its related
family) are currently state of the art in Category I. In Table 4, we col-
lect concrete experimental results for ours and these three protocols,
as well as Simple/Double PIR (in Category II), to show their unique
advantages. All protocols (expect for WhisPIR) are tested under the
same computing environment specified in Section 6.3, running on
a single thread. The total database sizes are 256 MB, 1 GB and 8
GB, with the record size being optimal and most recommended for
each protocol.

Compared with HintlessPIR and YPIR. HintlessPIR and YPIR are
two stateless LWE-based PIR protocols derived from Simple and
Double PIR, respectively. When retrieving large databases, their
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Figure 3: Comparison of online communication, client computation and sever response time of SealPIR, FastPIR, Spiral, Spi-
ralPack, SpiralStreamPack, Simple/Double PIR and Ours third construction. The online communication of FastPIR, Spiral-
StreamPack is much bigger than others.

. Spiral Simple PIR" Double PIR"[HintlessPIR ~ YPIR ~ YPIR + SP WhisPIR Ours  Ours-stateless
Database = Metric
(8KB) (16 KB) (1B) (1B,32KB)  (1B) (32KB) (256 B,32KB)| (8KB) (8 KB)
Server storage | 13.3 MB 0 0 0 0 0 NA 8.8 MB 0
Hint size 0 56 MB 14 MB 0 0 0 NA 0 0
256 MB Server preproc.| 9.7 s 6.4s 9.8s 53.2s 9.8s 13.1s NA 43s 6.6
Server resp. | 1744 ms 28 ms 36 ms 598 ms 86 ms 314 ms NA 243 ms 149 ms
Query size 14 KB 64 KB 112 KB 379 KB 846 KB 518 KB NA 140 KB 988 KB
Response size | 20 KB 56 KB 12 KB 1504 KB 12 KB 120 KB NA 26 KB 26 KB
Throughput (147 MB/s 9143 MB/s 7111 MB/s | 428 MB/s 2977 MB/s 815 MB/s NA 1053 MB/s 1718 MB/s
Client comp. | 11 ms 234 ms 914 ms 1928 ms 977 ms 323 ms NA 7.6 ms 42.2 ms
Server storage | 13.6 MB 0 0 0 0 0 0 9.0 MB 0
Hint size 0 112 MB 14 MB 0 0 0 0 0 0
1GB Server preproc.| 40s 26s 31.6 s 187 s 31.6 s 215s NA 16.9 s 19.2s
Server resp. [3628 ms 111 ms 126 ms 866 ms 178 ms 426 ms ~1000 ms 801 ms 487 ms
Query size 14 KB 128 KB 224 KB 443 KB 846 KB 686 KB ~390 KB 140 KB 932 KB
Response size | 20 KB 112 KB 12 KB 3008 KB 12 KB 120 KB ~100 KB 26 KB 26 KB
Throughput (282 MB/s 9225 MB/s 8127 MB/s | 1182 MB/s 5753 MB/s 2404 MB/s ~1024 MB/s (1278 MB/s 2103 MB/s
Client comp. | 21 ms 459 ms 1988 ms 3958 ms 2050 ms 1223 ms NA 7.6 ms 39.2 ms
Server storage | 15.5 MB 0 0 0 0 0 0 9.3 MB 0
Hint size 0 224 MB 14 MB 0 0 0 0 0 0
8 GB  Server preproc| 489s 221s 232.8s 1640 s 232.8s 93s NA 148 s 157 s
Server resp. 18.6 s 1123 ms 1156 ms 2058 ms 1183 ms 1321ms ~7100ms | 5677 ms 3621 ms
Query size 14KB  512KB 448 KB 1339 KB 1486 KB 2254 KB =~ 710 KB 140 KB 1184 KB
Response size | 20 KB 224 KB 12 KB 3008 KB 12 KB 120 KB ~ 260 KB 26 KB 26 KB
Throughput (440 MB/s 7295 MB/s 7087 MB/s | 3981 MB/s 6925 MB/s 6201 MB/s ~1154 MB/s (1443 MB/s 2262 MB/s
Client comp. | 90 ms 1814 ms 5039 ms 323s 5103 ms 133s NA 7.7 ms 39.6 ms

Table 4: Compared with current state-of-the-art FHE-based PIR protocols. ¥ Here we benchmark the performance of Sim-
ple/Double PIR from the YPIR library [48], which shows slightly improved performance over the implementations in the
original paper [32, 33] and HintlessPIR [41, 42]. For 255 MB, 1 GB and 8 GB databases in HintlessPIR, we use database matrices
of sizes 16384 X 16384, 32768 X 32768 and 32768 X 262144, respectively, with each entry being 8 bits. The clients of HintlessPIR can
access a column of entries from the database matrix, so here the record size is 32 KB for an 8 GB database. “Server preproc.”
stands for the server preprocessing time. “Server resp.” stands for the server response time. “Client comp.” stands for the sum
of query generation time and recovery time. Record sizes over 8 bits are unsupported for YPIR. We take the benchmarks of
222x 256B (1 GB) and 2'¥x 32KB (8 GB) reported in Figure 1, 2 and 4 of WhisPIR’s paper [20], where NA indicates that the
concrete result is not publicly available.

throughput can approach that of Simple/Double PIR, albeit at the MB. However, as the database size increases to 8 GB, HintlessPIR
cost of reasonably larger online communication. achieves a throughput of 3981 MB/s, which is faster than ours. Our

Compared with HintlessPIR, our stateful protocol demonstrates stateless variant performs better, outperforming the HintlessPIR in
higher throughput when managing smaller databases, e.g., 256 both throughput and communication when the database is equal to
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or smaller than 1 GB. Another disadvantage of HintlessPIR is that
the rate is not good, where rate is the ratio of plaintext size to re-
sponse size. This becomes particularly problematic when retrieving
very large records, such as movies [46], where the response size
may be substantially larger than that seen in other protocols. YPIR
achieves the highest throughput when the records are 1 to 8 bits.
The only limitation of YPIR is that its record size is somewhat small,
which introduces some limitations in many application scenarios.
Menon and Wu [49] also introduce another variant called YPIR +
SP, which packs LWE ciphertexts in Simple PIR instead of Double
PIR. YPIR + SP can support large records, but its throughput is
not as good as YPIR’s. Another disadvantage of YPIR + SP (which
also includes HintlessPIR and YPIR) is the relatively high compu-
tational load on the client, which is not conducive to applications
that require low latency on limited client resources.

Compared with WhisPIR. WhisPIR is a stateless protocol charac-
terized by low communication overhead and good throughput. As
a ring-based protocol, WhisPIR supports records of varying sizes,
making it adaptable to most applications. Compared to Spiral, its
only disadvantages are a slightly lower rate and marginally higher
query size, but it offers better throughput and is fully stateless,
which is particularly beneficial in scenarios with a large number of
clients.

The implementation of WhisPIR is not publicly available at the
time of this writing. It appears that communication and computa-
tion achieve a good tradeoff when the parameter is set to 16 chunks,
so we simply take this benchmark reported in Figure 1, 2 and 4 of
their paper [20]. Our stateful protocol has a slightly higher through-
put and rate than WhisPIR but the server in our protocol have to
store per-client storage. Taking the performance of 1 GB database
as an example, our throughput is 1278 MB/s, slightly better than
WhisPIR’s 1024 MB/s. Moreover, our stateless protocol achieves a
throughput of 2103 MB/s, approximately twice that of WhisPIR.
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