
Faster FHE-Based Single-Server Private Information Retrieval
Ming Luo

Key Laboratory of Cyberspace
Security Defense, Institute of
Information Engineering, CAS

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
luoming@iie.ac.cn

Feng-Hao Liu
Washington State University

Pullman, USA
feng-hao.liu@wsu.edu

Han Wang∗
Key Laboratory of Cyberspace
Security Defense, Institute of
Information Engineering, CAS

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China
wanghan@iie.ac.cn

ABSTRACT
This work introduces KsPIR, a new practically e!cient single-server
private information retrieval (PIR) system that outperforms the
state-of-the-art Spiral (Menon andWu, S&P 2022) in terms of server
response times. We achieve this by proposing novel dimension
folding methods, inspired by recent advancements in fully homo-
morphic encryption. Our methods o"er two signi#cant advantages:
#rstly, they feature simpler designs that eliminate the need for ci-
phertext expansion steps in Spiral. Secondly, and more importantly,
we propose two types of designs that o"er distinct advantages -
the #rst type enables preprocessing of the most resource-intensive
computation in the o$ine stage before receiving the query, thereby
optimizing online response time; the second type optimizes over-
all response time without requiring preprocessing in the o$ine
stage, accomplished through a highly optimized baby-step-giant-
step matrix-vector homomorphic multiplication.

We conduct comprehensive experiments to evaluate the concrete
performance of KsPIR, and the results con#rm an approximately
10.7 times faster online throughput than that of Spiral for the #rst
type, and 5.8 times faster overall throughput for the second type.

CCS CONCEPTS
• Security and privacy → Cryptography.

KEYWORDS
Private Information Retrieval, Fully Homomorphic Encryption

ACM Reference Format:
Ming Luo, Feng-Hao Liu, and Han Wang. 2024. Faster FHE-Based Single-
Server Private Information Retrieval . In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690233

1 INTRODUCTION
Private information retrieval (PIR) enables a client to retrieve a
speci#c element from a server’s database without disclosing the

∗Corresponding author.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690233

index that was queried. This concept was #rst introduced by Chor
et al. [16], and has been widely applied in various domains, in-
cluding but not limited to anonymous messaging [4, 5, 38, 51], pri-
vate contact tracing [61], safe browsing [32, 36], and more [24, 62].
The literature on PIR research includes many variations, such as
multi-server [18, 22, 36] versus single-server settings [1, 2, 4, 17, 26,
32, 37, 46, 52, 65], and pre-processing (i.e., o$ine/online) [12, 17–
19, 32, 36, 55, 60, 64, 65] versus the plain settings [1, 2, 4, 26, 45, 46,
52, 53]. There has been active research in both theory and prac-
tice [12, 31, 39, 40, 56, 58, 60, 63, 64].

Practical Single-Server PIR. This work focuses on the setting of
practical single-server PIR. In recent years, several works [1, 2, 4, 45,
46, 52, 54] have focused on implementing and optimizing the con-
crete performance of single-server PIR. Many of the designs have
involved leveraging the power of pre-processing, where the server
and client can perform some o$ine computation before the online
query from the client. These works have signi#cantly improved
the response time, server’s throughputs, and/or the server-client
communication complexity, making substantial progress towards
practical deployments of PIR in the real-world applications.

In the following, we outline the best practical solutions currently
available (to our knowledge) in two general categories. However,
solutions in these two categories are incomparable due to various
tradeo"s, and each solution has its own strengths and weaknesses.
Therefore, depending on the speci#c requirements of a particular
application, users will make distinct selections based on the best
#t.

Two General Categories. Below we present two major categories
of practical PIR, achieving incomparable advantages in di"erent
aspects. The categorization is based on several critical features
that PIR aims to optimize. We present some contexts and then
the features below. Brie%y, an o$ine/online PIR scheme consists
of several phases: (1) There is an o$ine phase before the client
receives the input of the query. In this phase, the server and client
can do some one-time set up and pre-process queries (if they have
an input-independent component). The server receives the database
in this phase. (2) Once the client receives the input of the query, the
protocol enters the online phase. Now we present several important
features below.
• For the o$ine phase (including one-time setup and pre-processing
o$ine queries), we list two critical features – the client’s com-
putation time and the communication complexity between the
server and the client.

1405

https://doi.org/10.1145/3658644.3690233
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690233
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690233&domain=pdf&date_stamp=2024-12-09


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

• For the online phase, we list two critical features – the query
and response size, and the server’s response time.

• We list two among other important features, including the client’s
required (long-term) storage and the complexity (for both par-
ties) to handle database updates.

Based on these, two general categories have been studied in the
state of the art designs.

Category I. A key characterization is the optimization of client’s
computation and communication load in both the o$ine and online
phases. Particularly, in all the stages, the client does not storage
any database-dependent hints, and the database update is fully
client independent. This objective can be accomplished by utiliz-
ing generic Fully Homomorphic Encryption (FHE)-based solutions,
and there have been recent advancements in e!cient implementa-
tions, such as XPIR [45], SealPIR [4], SHECS-PIR [54], FastPIR [1],
MulPIR [2], OnionPIR [52], Spiral [46] and recent works includ-
ing HintlessPIR [41], YPIR [49] and WhisPIR [20]. Among these
schemes, the currently most e!cient options are Spiral (and its
related family) [46], HintlessPIR [41], YPIR [49] and WhisPIR [20].

Category II. The designs within this category utilize the client’s
resources by allocating more intensive o$ine computation and
communication procedures. Moreover, they also involve storing
signi#cantly larger hints from the client’s side. By using these, the
server’s online response time (and thus the online throughput)
may signi#cantly outperform that in the other category. Notable
practical schemes in this category include [36], FrodoPIR [19], Sim-
ple/Double PIR [32] and Piano [65]. The current state-of-the-art
schemes are Simple/Double PIR [32] and Piano [65]. However, it is
important to note that these two schemes are incomparable due to
the tradeo"s in di"erent aspects. In Section 6.4, we will delve into
further details.

Upon examining the features, we observe that Category I is bet-
ter suited for light-weighted clients who require minimal storage
for hints, computation, and communication across all stages. Addi-
tionally, these clients do not need to repeat extensive computation
even when the database undergoes frequent updates (insertions
or modi#cations). On the other hand, Category II becomes more
advantageous when clients are actively involved in the o$ine phase
and can store larger hints. In such cases, Category II schemes can
provide signi#cantly faster online response times. We also notice
that due to the lower bound result of tr = ω(n) [7] where t is
server online time, r is the bits of hint, and n is the size of database,
for schemes in Category I, the server’s computation complexity
would inherently be linear in the database size, whereas for schemes
in Category II, it is possible to design sublinear computation for
servers with larger hints stored on the client’s side, e.g., [65].

It is worth noting that both categories hold their own signi#-
cance and may o"er di"erent advantages in various scenarios. Thus,
advancements in either category hold value for practical deploy-
ments. Table 1 presents a concise overview of the pros and cons of
these two categories, along with the state-of-the-art schemes and
our results #guratively. This would allow for a quick comparison

and understanding of the di"erent aspects of each category and
our merits.

Spiral [46] This paper Simple/Double
PIR [32]

Piano
[65]

O$ine (Preprocessing) phase
Client comp. ✁ ✁ ✁ ✂

Comm. ✁ ✁ ✂ ✃

Online phase
Server response time ✂ ✂ ✂ ✁ ✁ ✁

Online comm. ✁ ✁ ✁ ✁

Others
Client storage ✁ ✁ ✂ ✂

Database update
(Client independent) ✁ ✁ ✃ ✃

Table 1: Performance characteristics of the four PIR proto-
cols. “Comm.” stands for communication cost and “Comp.”
stands for computation cost. ✁ means “the best”. ✃ means
“not so good”. ✂ means “the performance is between ✁

and ✃ ”. Two symbols indicatemore, i.e., ✁✁ is better than
✁ and ✂✂ is better than ✂ .

1.1 Our Results
This work makes substantial progress for single-server PIR in Cate-
gory I, demonstrating contributions in the following aspects.
• We develop three e!cient PIR schemes in the o$ine/online
setting. All our three schemes are in Category I, as the client
stores minimal storage (no database-dependent hints) and the
database update is fully client independent.
Our designs are built upon the dimension folding idea of the
Spiral framework [46], yet with several enhancements:
– Our dimension folding algorithms are simpler than those
in [46], eliminating the need for the computationally intensive
expansions of ciphertexts.

– In the #rst two designs, we identify a crucial advantage: the
client’s query can be split into an o$ine part and an online
part, where the heaviest computational load lies in processing
the o$ine part. As the o$ine part does not require knowing
the speci#c index queried, this heavy computation can be done
beforehand, signi#cantly reducing the online response time
and achieving a substantial improvement in online through-
put.

– In the third design, we encode the database and the client’s
query di"erently and deploy the highly optimized “Baby-step-
Giant-step”method [30, 34]. This approach does need a slightly
longer online time than the #rst two designs, yet eliminates the
need for preprocessing, resulting in better overall throughput
(o$ine + online).

Our three designs o"er incomparable advantages, providing %ex-
ible options for application designers to choose from depending
on the speci#c scenarios and requirements.

• We implement our schemes in C++ with library [43] to evaluate
the concrete performances. Particularly, our #rst and second
constructions con#rm an approximately 10.7↑ faster online run-
time than that of Spiral, and our third construction con#rms an

1406



Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

approximately 5.8↑ faster overall throughput, under the 256 MB
database con#guration. This demonstrates practicality of our
work. More details are presented in Section 6.3 and Section 6.4.
Table 1 presents a #gurative comparison between Categories

I and II, and our progress in the Category I. The schemes in the
table represent the best practical solutions in the categories. By
looking at this table, the readers can quickly get the general di"er-
ences between these categories, and our improvements in the #rst
category.

1.2 Technical Overview
Brie%y, our approach is the classic FHE-based construction where
the client sends an encryption of the position (denoted by Enc(index))
as the query to the server. The server who holds the database
DB homomorphically computes Enc(DB[index]) and returns the
resulting ciphertext to the client. The client can decrypt and re-
trieve the answer. This approach has been implemented in prior
works [1, 2, 4, 26, 45, 46, 52, 53], yet how to optimize the concrete
e!ciency remains the main research challenge. Particularly, it is
important to determine the most suitable FHE schemes/variants,
parameters, and the homomorphic methods to achieve competitive
performances.

As our designs use di"erent encodings for the database and
queries, we would #rst present the encoding and then our insights.

EncodingMethod for the First TwoConstructions.We encode
the database into a two dimensional array, say DB ↓ Zn↑np , and
use polynomial ti (X ) of degree n to encode the i-th column into its
coe!cients, for i ↓ [n]. To query the database of index = (u,w) ↓
[n] ↑ [n], our schemes use RLWE [44, 59] and RGSW [3, 15, 21, 28]
schemes for the two dimensions, respectively, i.e., RLWE.Enc(X↔u )
and RGSW.Enc(X↔w ). To achieve more e!cient homomorphic re-
sponses, we develop critical techniques from the insights below.

Insight of First Construction.We identify several nice properties
of RLWE and RGSW as developed along the research of FHE:
(1) Given RLWE.Enc(X↔u ) and ti (X ), we can e!ciently compute

and extract an LWE ciphertext that encrypts ti [u], the coe!cient
with respect to Xu of ti (X ). This has been used in [15, 21] and
many follow up works. In the end, we have n LWE ciphertexts.

(2) Given n LWE ciphertexts that encrypt t0[u], . . . , tn↔1[u], we
can convert them into a RLWE ciphertext that encrypts t(X ) =
t0[u]+t1[u]X + · · ·+tn↔1[u]Xn↔1. This can be achieved by using
the key-switching technique of [13, 50].

(3) Given ciphertexts RGSW.Enc(X↔w ) and RLWE.Enc(t(X )), we
can compute the external product [15], resulting in a RLWE ci-
phertext that encrypts tw [u] in the constant term. Then one
can extract an LWE ciphertext that encrypts tw [u]. This is the
resulting response, where the client can retrieve the answer by
decrypting it.

In Figure 1, we present a diagram for the above process. We notice
that the #rst two steps are referred to as “#rst dimension folding”
and the last step as “second dimension folding”, where the names
represent their behavior. The dimension folding technique is con-
ceptually similar to that in Spiral [46], yet our instantiation can
avoid the heavy ciphertext expansions as used by Spiral [46]. This

RLWE(X -u)

t0      t1     

RGSW(X -w)

LWE0

t0[u] t1[u] tn-1[u] …

LWE1

RLWE†t(X )

LWEtw[u]

LWEn-1

†t(X ) = t0[u] + t1[u]X + ··· + tn-1[u]X n-1

First Dimension Folding 

Second Dimension Folding 

Figure 1: A basic PIR protocol in two dimensions. The query
consists of a RLWE ciphertext and a RGSW ciphertext. The
response is an LWE ciphertext.

already gives a non-trivial advantage of our design.

Insight of Second Construction. Our major technique to sub-
stantially improve the online throughput relies on the second in-
sight as we now present. We #rst observe that the above steps (1)
and (2) are more computationally heavy, whereas step (3) is light.
Nevertheless, the majority burdens in steps (1) and (2) can be done
in an o$ine manner, which is the key that substantially improves
the online throughput. Next we highlight the ideas.

First we observe that each RLWE ciphertext consists of two ring
elements, say (b,a), where a is uniformly random and thus message
independent, and only b is message dependent. In the end Step
(1), we would obtain n LWE ciphertexts (b0,a0), · · · , (bn↔1,an↔1).
(Here the readers can understand the high level ideas without go-
ing into the precise space of LWE ciphertexts.) We observe that
a0, . . . ,an↔1 can be derived from a and the database DB, without
knowing b. Thus, this step can be computed in an o$ine manner.

For step (2), we can use the conversion algorithm of [50] – given
n LWE ciphertexts (b0,a0), · · · , (bn↔1,an↔1), the algorithm outputs
a RLWE ciphertext (b ↗,a↗). Importantly, we identify that this step
can also be made into an o$ine/online manner. Particularly, we
only needa0, · · · ,an↔1 to derive a↗. Combining with the idea above,
we can compute a↗ in an o$ine manner. Then in the online stage,
one can compute b ↗ from b and the pre-computed a

↗ in a much
faster way. As computing a

↗ is the most computationally heavy
step, the online step would be much light-weighted and thus the
response time can be signi#cantly reduced.

Overall, given a partial RLWE ciphertext a, we can compute a
partial RLWE ciphertext a↗ in an o$ine manner. Then in the online
stage when b is given, the server can then complete the computa-
tion of b ↗, and then use (b ↗,a↗) to proceed to the third step. This
would give a substantial improvement of the online e!ciency! We
present more details of the o$ine/online technique in Sections 3
and 4.

We notice that our #rst two schemes have roughly similar overall
(o$ine + online) complexity as the state-of-the-art Spiral [46], yet
our designs can push the heaviest computation to the o$ine stage,
resulting in the substantial improvements in the online throughputs.

1407



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

To improve the overall runtime, we present our third method below.

Encoding of Third Construction. In this construction, we en-
code the database DB and query index (u,w) as: (1) apply NTT
operation to each column of DB to get matrix M; (2) encrypt u and
w by RLWE and RGSW to get ciphertexts of RLWE.Enc(NTT↔1(u))
and RGSW.Enc(X↔w ), respectively, whereu is the vector with only
one non-zero entry 1 in the u-th position.

Insight of Third Construction. In the #rst dimension folding, we
take M and RLWE.Enc(NTT↔1(u)) as the input of the "Baby-step-
Giant-step" [30, 34], which outputs a RLWE cihpertext encrypting
NTT↔1(M · u). Then by linear algebra we have

NTT↔1(M · u) := NTT↔1
(
NTT(DB) · u

)
= NTT↔1

(
NTT(DB · u)

)
.

Next we can perform the second dimension folding as our #rst two
schemes.

By realizing the above design principle with a highly optimized
BSGS implementation, we can signi#cantly improve the overall
e!ciency, as in this PIR protocol the computation cost (except
plaintext-ciphertext multiplication) is rather small. The details and
concrete performance analyses are showed in Sections 5 and Sec-
tion 6.

1.3 Concurrent works
There are several important concurrent and independent works, in-
cluding HintlessPIR [41], YPIR [49], and WhisPIR [20], each achiev-
ing advantages in di"erent aspects. Below, we present a summary
of the pros and cons of these concurrent works in some critical
features, along with a high-level comparison with our work and
the prior state-of-the-art Spiral. It is important to note that each
of these schemes o"ers unique advantages. As PIR is an essential
privacy-preserving technology, it is critical to have various options
available for users to determine the best tradeo" based on their
speci#c scenarios.

Comparison by Results. We #rst notice that all these schemes are
in Category I and they require very small or even no hint for the
clients. Next, we describe some tradeo"s of these schemes and a
comparison with ours.
Spiral [46].

• Pros: Good throughput, large record size (>100 KB) and high
rate, where rate = plaintext size / response ciphertext size.

• Comparison with ours: We inherit the advantages of Spiral but
with approximately 5.8↑ better throughput. Our query size is
slightly larger, i.e., 140 KB, but this is not a signi!cant issue as
query size does not a"ect rate.

HintlessPIR [41].
• Pros: High throughput for large databases.
• Cons: Rate is not good.
• Comparison with ours: Our throughput is better when the
database is smaller than 1 GB and our rate is signi!cantly
better. When the database reaches 8 GB, their throughput is
faster than ours.

YPIR [49].
• Pros: Highest throughput.

• Cons: The record size is quite smaller.
• Comparison with ours: YPIR is limited in many application
scenarios. YPIR + Simple PIR [49] can support large records, but
its throughput is not as good as YPIR’s, and their client-side
computational load is greater than that of our protocol.

WhisPIR [20].
• Pros: Good throughput and communication.
• Comparison with ours: Our throughput and rate are slightly
better than WhisPIR.

Comparison by Techniques. We notice that there is a common tech-
nique shared by HintlessPIR [41], YPIR [49] and WhisPIR [20].
Brie%y, clients upload key-switching keys during the online phase,
thereby eliminating the need for the server to maintain any client-
speci#c storage. This also allows certain computations related to the
uniform sampling of LWE and RLWE ciphertexts to be o$oaded to
the o$ine phase, a strategy also observed in earlier works such as
Simple/Double PIR [32] and FrodoPIR [19]. We notice that we can
also employ this technique to achieve a stateless PIR with enhanced
throughput. For instance, considering a database con#guration of
217 ↑ 8 KB (1 GB), the online query and response sizes are 932 KB
and 26 KB, respectively, yielding a throughput of 2103 MB/s. Conse-
quently, we can achieve a stateless protocol with high throughput
and high rate. More details are presented in Sections 5.3 and 6.5.

2 PRELIMINARY
Notations. WeuseN,Z,Q,R to denote the set of natural numbers,

integers, rational numbers and real numbers, respectively. log refers
to the base-2 logarithm. For a positive k ↓ Z, let [k] be the set of
integers {0, ...,k ↔ 1} and [a,b] be the set [a,b]↘Z for any integers
a ≃ b. For x ↓ R, ⇐x⇒ and ⇐x⇑ denote the rounding to the lower
and closest integer, respectively.

In this paper, a vector is always a column vector by default and is
denoted by a bold lower-case letter, e.g., x . We use x[i] to denote the
i-th element of x . For a vector x with k entries, we start the index
from 0, i.e., x[0], and the last element is x[k ↔ 1]. For convenience,
we let x[k] = x[0]. For a two-dimensional matrix (m ↑ n) X, X[i, j]
indexes the i-th row and j-th column, where both i, j start from 0.
Similar to the one-dimensional case, we set X[m, ·] = X[0, ·] and
X[·,n] = X[·, 0] for convenience.

We use ⇓x ⇓⇔ denotes the l⇔-norm ofx , i.e., ⇓x ⇓⇔ = max
i

{⇓x[i]⇓}.
For a matrix X, x i denotes its i-th column vector without extra in-
structions, X↖ denotes the transpose of X, ⇓X⇓⇔ := maxi {⇓x i ⇓⇔}.
Given some set S , Sm↑n denotes the set of allm ↑ n matrices with
entries in S .

For a set A and a probability distribution P, we use a ↙ A to
denote that a is uniformly chosen from A and a ↙ P to denote
that a is chosen according to the distribution P.

2.1 Lattice-based Encryptions
Regev introduced the Learning with Errors (LWE) problem [59],
whose hardness can be based on some lattice problems. Consider
the distribution As ,ω , where ω is a distribution over Z and s ↓ Znq
for modulus q ↓ N. A sample from the distribution As ,ω is of the
form (b,a) ↓ Zq ↑ Znq , where a ↙ Znq , e ↙ ω and b = ∝a, s′ + e
mod q.

1408



Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

D!"#$#%#&$ 2.1 (LWE). Let ω be a distribution over Z, q ∞ 2
be an integer modulus. The decision version of LWE is given m

samples with the form of (b,a) ↓ Zq ↑Znq and decide whether these
pairs are from the uniform distribution or As ,ω .

Another important variant is LWE in the ring setting, known as
the Ring Learning with Errors (RLWE) problem [44]. In this work,
we only focus on the polynomial ring R = Z[X ]/(Xn + 1), where n
is a power of two, also known as the 2n-th cyclotomic ring.

For the RLWE problem, now we present the distribution As ,ω .
Let ω be a distribution over R and s ↓ Rq = R/qR, and a sample
from As ,ω is of the form (b,a) ↓ Rq ↑ Rq , where a ↙ Rq , e ↙ ω

and b = s · a + e mod q. Then, the problem RLWE is presented as:

D!"#$#%#&$ 2.2 (RLWE). For security parameter ε, letq = q(ε) ∞
2 be an integer modulus and ω = ω (ε) be a distribution over R. The
task of decision RLWE is, givenm pairs of (b,a) ↓ Rq ↑Rq , decide
whether these pairs are from the uniform distribution or As ,ω .

The hardness of the above two problems have been extensively
studied in the NIST’s post-quantum standardization process in
recent years. There are a number of plausible encryption schemes
based on LWE or RLWE [8, 9].

In the following, we use four basic encryption schemes based
on the LWE or RLWE– (1) LWE, (2) RLWE, (3) RGSW, and (4)
RGSW↗. Clearly, the security of these schemes can be based on
the hard problems of (Ring) Learning with Errors. These schemes
have been widely used in the lattice-based cryptography [8, 9] and
FHE [10, 15, 21, 23], which imply various homomorphic operations.
In the full version of our paper, we present more details about them.

2.2 Polynomial Rings
Here we present some useful notations and properties for the poly-
nomial rings. Let R = Z[X ]/(Xn + 1) where n is a power of two.

D!"#$#%#&$ 2.3. Given a ring element a ↓ R expressed as a =
a0 + a1X + · · · + an↔1Xn↔1, de!ne coef(a) as the coe#cient vector
(a0,a1, · · · ,an↔1).

Next we present a simple lemma, saying that inner products of
the coe!cient vectors can be used to capture the constant term by
multiplying two ring elements.

L!’’( 2.4. Let a(X ) = a0 + a1X + · · · + an↔1Xn↔1 ↓ R, b(X ) =
b0 + b1X + · · · + bn↔1Xn↔1 ↓ R, and c(X ) = a(X ) · b(X ) with the
constant term c0. Then c0 = ∝coef(a(X )), coef(b(X↔1))′.

2.3 Useful Algorithms
Here we recall several useful algorithms for our design: (1) Key-
switching, (2) Extract, and (3) Conversion from LWE(s) to RLWE.

Key-switching. The procedure is denoted as KS (Key-switching)
with the following algorithms:
• KS.KeyGen(1ε, s, s ↗). Given two secrets s and s ↗, the algorithm
outputs KSkey ↙ RGSW↗.Enc(sk, s), where sk = (1,↔s ↗)↖.

• KS(KSkey, (b,a)). Given a RLWE ciphertext (b,a) ↓ RLWEs (µ)
and key-switching key KSkey as input, the algorithm outputs a
RLWE ciphertext (b ↗,a↗) ↓ RLWEs ↗(µ) by computing

(b ↗,a↗)↖ = (b, 0)↖ ↔ KSkey · ω↔1(a).

This idea was proposed by [11] and later used widely in the research
of FHE [10, 15, 21, 23].

Extract. Given a RLWE ciphertext (b,a) ↓ RLWEs (µ), there is a
simple way that extracts an LWE ciphertext (b ↗,a↗) ↓ LWEs ↗(µ0),
where s ↗ = coef(s(X↔1)),a↗ = coef(a), µ0 = coef(µ)[0]. This simply
follows from Lemma 2.4. The extraction procedure can be easily gen-
eralized to outputting an LWE ciphertext that encrypts coef(µ)[i]
for any i (i.e., any coe!cient of µ).

Conversion from LWE(s) to RLWE. According to [13, 50], there is
an algorithm that given r (≃ n) LWE ciphertexts, namely (b0,a0) ↓
LWEs (µ0), · · · , (br↔1,ar↔1) ↓ LWEs (µr↔1) and some proper key-
switching key, outputs aRLWE ciphertext (b,a) ↓ RLWEs (µ)where
µ = µ0 + µ1X + · · · + µr↔1X r↔1. We simply call this algorithm r -
LWE-to-RLWE.

When r = O(logn), the method of [13] is faster, whereas when
r = O(n), the twomethods [13, 50] are roughly the same complexity.

2.4 Private Information Retrieval
Here we describe the syntax of Private Information Retrieval (PIR),
following essentially the presentation of [65]. A PIR with prepro-
cessing is a protocol between two stateful machines, namely the
server and the client with the following structure. Implicitly the
security parameter 1ε is taken in all procedures below.

One-time Setup Phase. This phase is run one-time per database
and per client. Particularly, the client receives no input and the
server receives a database DB of size N ↓ N, i.e., number of entries.
Next the client sends a single message pk (public key) to the server
while storing privately the corresponding secret key sk. Then the
server does some pre-computation based on DB and pk, resulting
in a pair of hints (hints , hintc ). The server stores hints locally and
sends back hintc to the client, as shown in Figure 2.

Query Phase. In this phase, the client would like to retrieve
DB[index] for some private index ↓ [N ]. This phase can be divided
into two stages as follow:
• (O!line). The client generates an o$ine query quo! indepen-
dent of the index, and sends the query to the server. As this
step can be done before knowing the querying index, it can be
completed in an o$ine manner.

• (Online). Once given the index index ↓ [N ] and the o$ine
query quo! , the client computes an online query quon and sends
the query to the server. Next, the server computes a response
r and sends back to the client. Finally given r and sk, the client
can then recover the desired DB[index].
There are several variants of PIR that can be captured by the

above framework as we discuss in the following remarks.

R!’()* 2.5. In general, the Setup phase is run one time per client
per database, i.e., (hints , hintc ) are generated based on the client’s pk
and database DB.

For any scheme where hintc is not needed, e.g., hintc is an empty
string, then the setup is only needed once per client. In this case, the
storage required by the client is independent of the number of the
databases in the system.

Next we de#ne several desirable qualities for the o$ine queries.

1409



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

Data

Client Server

One-time Setup Phase 

Offline 

Online 

sk

response

pk
hintc

……

index

hints

quoff 

quon  

Figure 2: A sketch of Private Information Retrieval.

D!"#$#%#&$ 2.6. We say the o$ine query is fully-reusable if
one query can be used among multiple online queries over di"er-
ent databases. It is reusable over multiple databases if a single quo!
can be used to query multiple databases, but it might not be reused
for di"erent online queries.

In another angle, we de#ne a desirable property – public-coin.

D!"#$#%#&$ 2.7. The o$ine query is public-coin if the distribution
of quo! follows the uniformly random string that can be sampled
publicly (without trapdoor).

R!’()* 2.8. The public-coin property has some desirable practical
advantages – in many real-world scenarios, we can just use a random
beacon or random oracle to generate public randomness for the query.
As long the public source of randomness cannot be controlled by
the adversary, this o$ine query can be made non-interactive where
both the client and server just retrieve quo! by looking at the agreed
location at the source. Thus, the server can pre-compute multiple
o$ine queries non-interactively, signi!cantly accelerating the online
running time even for multiple queries.

Next we de#ne correctness and privacy for the PIR scheme.

Correctness. For a database DB ↓ ZNp , where each element is
in Zp and can be indexed by a number in [N ], the correct answer
for a query index ↓ [N ] is the index-th element of DB, denoted as
DB[index].

In section 3 and 4, we represent DB with a two dimensional
array where index is encoded by two numbers (u,w). In this case,
DB[index] refers to DB[u,w] where u is the row index andw is the
column index. In section 6, we extend it to handle larger database.

Privacy. We de#ne that a single-server PIR scheme satis#es pri-
vacy if and only if there is a probabilistic polynomial-time (PPT)
simulator Sim such that for any PPT adversary A (as the server),
any polynomial bound N and Q and any DB ↓ ZNp , the adver-
sary’s view is computationally indistinguishable for the following
experiments.
• Real: an honest client interacts with A(1ε,N ,DB) who acts
as the server but may not follow the prescribed protocol. In
the online query stage, for any step i ↓ [Q], A may adaptively
choose the query xi ↓ [N ] for the client and the client queries
with xi .

• Ideal: the simulated client Sim(1ε,N ) interacts withA(1ε,N ,DB)
who acts as the server as the real experiement. In every online
step, A may adaptively choose the query xi ↓ [N ], and Sim is
invoked to generate a simulated query without receiving xi .

2.5 Faster Matrix-vector Multiplication
Given an n/2 ↑ n/2 ↑ 2 plaintext matrix M and an encrypted
n/2 ↑ 2-dimensional vectorv , a commonly used method to homo-
morphically evaluate matrix vector multiplication is the baby-step
giant-step (BSGS) algorithm [30, 34]. The vector v is encoded to
plaintext slots and then encrypted to a ciphertext ct . The plaintext
matrix is arranged as n/2 vectors Mdiaϑ that are diagonal rows
ofM. One BSGS algorithm mainly consists of total n/2 plaintext-
ciphertext multiplications and n1 + n2 homomorphic rotations,
where n/2 = n1n2, as Algorithm 2.1.

By looking deep inside baby-step, we exploit a faster implementa-
tion method called hoisting [30] without compromising correctness
or error growth. Rotate(·, i) consists of an automorphism transfor-
mation (bi ,ai ) :=

(
b(X 5i ),a(X 5i )

)
and a key-switching algorithm

(bi , 0)↖ ↔ KSkey · ω↔1(ai ). The automorphism transformation is
cheap while key-switching algorithm is much slower as there are
some conversions between coe!cient and NTT forms.

Algorithm 2.1: BSGS Algorithm for Matrix Vector Multi-
plication [30, 34]
Input: Inputs an n/2 ↑ n/2 ↑ 2 plaintext matrix M; a ciphertext ct

encrypting vector v ; two integers n1 and n2 such that
n/2 = n1n2. Mdiaω are the diagonal rows of M,Mdiaω [i]
is a vector

[
M[n/2 ↔ i , 0],M[n/2 ↔ i + 1, 1], · · · ,

M[n/2 ↔ i ↔ 1, n/2 ↔ 1]
]
.

Output: Outputs the evaluation result c̄ t = M ↑ ct.

1 // Add, Mul, Rotate are homomorphic addition, multiplication,
rotation over slots, respectively, ModSwitch is modulus-switching
algorithm.

2 for i = 0; i < n1; i + +; do
3 cti = Rotate(ct, i ) // baby step. the ciphertext cti encrypting left

rotated vector of v by i
4 cti =ModSwitch(cti ) // this step is optional

5 c̄ t := (0, 0)
6 for j = 0; j < n2; j + + do
7 ct_temp := (0, 0)
8 for k = 0; k < n1; k + + do
9 r =Mul

(
ctk , Rotate(Mdiaω [j · n1 + k ], k )

)
// here Rotate

acts on plaintext slots
10 ct_temp = Add(ct_temp, r )

11 c̄ t = Add(c̄ t , Rotate(ct_temp, j · n1)) // gaint step
12 return c̄ t
13 // plaintext can only be encoded to (n/2) ↑ 2-dimensional vector and

then rotate [14], instead of n-dimensional vector, so the input of this
algorithm is an n/2 ↑ n/2 ↑ 2 plaintext matrix instead of n ↑ n
plaintext matrix.

In fact, an automorphism transformation on its coe!cient form
is equivalent to a permutation on its corresponding NTT form [27].
Thus, two NTT representations b̃i = NTT(bi ) and b̃j = NTT(bj )
where i, j ↓ [n1], have the same elements, and they are just a

1410



Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

permutation of each other. Therefore, we only have to perform one
NTT to obtain NTT(bi ) for all i ↓ [n1], instead of performing n1
NTTs.

Further, ω↔1 is instantiated as signed base decomposition in this
work. For a polynomial a ↓ Rq = Zq [X ]/(Xn + 1), the algorithm
ω↔1 : Zq → Zω outputs a vector x such that ∝ω,x′ = a mod q,
and ⇓x ⇓⇔ ≃ Bω/2, where ω := ∈logBω

q⇑ and base Bω ↓ N. A
useful fact is the property ω↔1(↔aj ) = ↔ω↔1(aj ) when using the
signed base decomposition algorithm. In the following we notice
that NTT

(
ω↔1(a(X 5i )

)
can also be accelerated.

L!’’( 2.9. For a polynomial a ↓ Rq = Zq [X ]/(Xn + 1) where
n is a power of two. ω↔1 is signed base decomposition. we have
ω↔1

(
a(X 5i )

)
= ω↔1(a)(X 5i ).

Lemma 2.9 states that the automorphism transformations and
signed base decomposition are commutative in power-of-two cyclo-
tomic rings, with the proof provided in the full version of our paper.
Therefore, we can perform ω↔1(a) #rstly and then perform a series
of automorphism transformations. Further, it is known that auto-
morphism transformations can be delayed and replaced by some
permutations overNTT representations. So we just doNTT

(
ω↔1(a)

)
and then perform a series of permutations on it, rather than directly
computing NTT

(
ω↔1(a(X 5i )

)
for all i ↓ [n1]. Consequently, n1 ro-

tations in baby-step (lines 2 and 3 in Algorithm 2.1) can be reduced
to one rotation in theory, plus some lightweight permutation oper-
ations.

3 OUR FIRST PIR CONSTRUCTION
In the next two sections, we present our new constructions of PIR
with pre-processing. We use several recent tools from fully homo-
morphic encryption, e.g., external products, key-switching, and
n-LWE-to-RLWE conversion as Section 2.3. These techniques have
been implemented e!ciently, and by using them we can achieve
more practical protocols.

Building Blocks. We use the following building blocks: (1) RLWE
encryption scheme; (2) RGSW and RGSW↗ encryption schemes; (3)
LWE encryption scheme.

Parameters. Next we describe a list of parameters and symbols
used in our PIR constructions.
• R: the underlying ring of theRLWE andRGSW/RGSW↗ schemes.
In this paper, we set R = Z[X ]/(Xn + 1), where n is a power of
two.

• coef(a): returns the coe!cient vector ofa, as de#ned in Lemma 2.3.
• LWEqs : the set of all legal LWE ciphertexts with the secret s and
modulus q(may omitted).

• s: the secret of the LWE ciphertexts.
• n, q, p: the dimension of the LWE scheme and the dimension of
the ring R, the modulus of the ciphertexts, the modulus of the
plaintext space, respectively.

• ε: = ⇐ qp ⇒, is the encoding factor.
• ↭: the homomorphic external product between a RGSW cipher-
text and a RLWE ciphertext, or between a RGSW↗ ciphertext
and a plaintext.

• Ext(b,a): returns an LWE ciphertext encrypting the constant
term ofm(X ) under the secret key vector coef(s(X↔1)).

• There is a bijective map ϑ between [N ] and [n] ↑ [n]. It maps
I ↓ [N ] to (⇐I/n⇒, I mod n) and the its inverse maps (u,w) to
u · n +w .

• Err(·): For any LWE/RLWE ciphertext c or RGSW/RGSW↗ ci-
phertext C, we denote its error by Err(c) or Err(C), respectively.

• ω and Bω : are the decomposition dimension and decomposition
base in the server’s o$ine phase, respectively.

• ωexp and Bexp : are the decomposition dimension and decompo-
sition base in the server’s online phase, respectively.

3.1 The Construction
Let DB be a database of N = n

2 entries represented as a two-
dimensional matrix, i.e., DB = {DB[i, j]}i , j ↓[n], where each entry
DB[i, j] ↓ Zp . We encode the i-th column of DB using polynomial

ti (X ) = DB[0, i] + DB[1, i]X + · · · + DB[n ↔ 1, i]Xn↔1.

Then we present our PIR protocol as follow.

One-time Setup Phase. Below we describe the procedures for the
client and the server, respectively.

The client receives the security parameter 1ε and computes:
• Run (1,↔s)↖ ↙ RLWE.KeyGen(1ε), and set sk = (1,↔s)↖.
• Store the secret key sk and set s = coef(s(X↔1)). We notice
that sk can be used as a secret key of RGSW↗ as well.

• Then for each i ↓ [n], generate pki ↙ RGSW↗.Enc(sk, s[i]).
• Set pk = {pki }i ↓[n] and send pk to the server.

The server receives the security parameter 1ε , databaseDB, and pk
from the client. It stores pk and sets (hints , hintc ) to be the empty
string.

Note. As both the client and server’s procedures do not depend
on the database, the phase is one-time per client.

Query Phase. We now present the o$ine/online query protocol.

(O!line).
• The client samples a uniformly random ring element a ↙
Rq , and sends quo! = a as the o$ine query to the server.

• Upon receiving quo! = a, the server does the following:
(1) For i ↓ [n], compute ai = a · ti ↓ Rq , and denote ai =

coef(ai ).
(2) For i ↓ [n], set ϖi = ϖi (X ) = a0[i] + a1[i]X + · · · +

an↔1[i]Xn↔1.
(3) Compute hinta =

∑
i ↓[n] pki ↭ϖi , and store it as the pre-

processed information with respect to the query quo! = a.
Note that hinta is a RLWE ciphertext that encryptsm(X ) =m0 +
m1X + · · · +mn↔1Xn↔1, where for i ↓ [n] we have mi = ∝ai , s′.
Recall that s = coef(s(X↔1)).

Note.As the o$ine query is just a uniformly random ring element
a, our scheme is public-coin and enjoys the advantages as stated in
Remark 2.8.

(Online).
• The client receives index ↓ [N ] and an o$ine query quo! =
a. It does the following.

(1) Parse index into ϑ (index) = (u,w) ↓ [n] ↑ [n].

1411



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

(2) Compute b = s · a + e + ε · X↔u . We note that (b,a) ↓
RLWEs (ε · X↔u ), where a is the random ring element
generated as the o$ine query.

(3) Compute C ↙ RGSW.Enc(sk,X↔w ).
(4) Set quon = (b,C) and send the pair to the server.
• Upon receiving quon = (b,C), the server does the following:
(1) For i ↓ [n], compute b · ti ↓ Rq and set bi ↓ Zq as its

constant term.
(2) Let hinta be the hint with respect to the o$ine query a,

and compute ans0 = (b0+b1X + · · ·+bn↔1Xn↔1, 0)↔hinta .
(3) Compute (b ↗,a↗) = C ↭ ans0.
(4) Send response r = (b,a) = Ext(b ↗,a↗) back to the client.
• Upon receiving the response r, the client outputs

d = LWE.Dec(coef(s(X↔1)), (b,a)).
Additional analysis. We present the error growth, correctness

and security analysis in the full version of our paper.

4 OUR SECOND PIR CONSTRUCTION
In this section, we present our second construction, by leveraging
additional pre-processing to improve the server’s o$ine query re-
sponse. Particularly, the server is doing one-time setup per database
per client and store some hints , which can be used to accelerate
the response time for each o$ine query. The client is still doing
one-time setup per client.

One-time Setup Phase. Below we describe the procedures. Here
we note that for better noise control, we use two ciphertext modulus
Q > q and the modulus switching technique [10]. For conceptual
understanding of the protocol, the reader can just think of Q = q.

The client receives the security parameter 1ε and does exactly the
same as the prior construction but with a larger modulus Q . We
re-state the process.

• Run (1,↔s)↖ ↙ RLWE.KeyGen(1ε), and set sk = (1,↔s)↖.
• Store the secret key sk and set s = coef(s). We notice that
sk can be used as the secret key of RGSW↗ as well.

• Then for each i ↓ [n], generate pki ↙ RGSW↗.Enc(sk, s[i]).
• Set pk = {pki }i ↓[n] and send pk to the server.

The server receives the security parameter 1ε , database DB, and
pk from the client. Then it does the following:

• Let ϖj =
∑
k ↓[n] DB[j,k] · Xk . For i ↓ [n], compute

KSkey↗i =
∑i
i↗=0 pki↗ · ϖi↔i↗↔

∑n↔1
i↗=i+1 pki↗ · ϖn+i↔i↗

• KSkeyi = ⇐KSkey↗i ·
q
Q ⇑ mod q. The server sets hintc as

empty string and hints = {KSkeyi }i ↓[n].

We note that each KSkeyi is a RGSW↗ ciphertext that encrypts∑
k X

k · sk [i], if each vector coef(s · tk ) is denoted as sk for k ↓ [n].

Note. Clearly, for the client this process is one-time per client;
for the server, this is one-time per client per database.

Query Phase.We now present our protocol for the o$ine/online
query phase.

(O!line).

• The client samples a uniformly random ring element a ↙
Rq , and sends quo! = a as the o$ine query to the server.

• Upon receiving pk and quo! = a, the server computes and
stores the pre-processed information with respect to the
query quo! = a as

hinta =
∑
i ↓[n]

KSkeyi ↭ a[i],

where we denote coef(a(X↔1)) as a.

Note. The same as our #rst construction, our second scheme is
public-coin and enjoys the advantages as stated in Remark 2.8.

(Online). The online phase is exactly the same as the prior con-
struction in Section 3, so we omit the detailed description here.

Additional analysis. Similar to Section 3, we present the error
growth, correctness and security analysis in the full version of our
paper.

5 OUR THIRD PIR CONSTRUCTION
In this section, we present another construction that delivers im-
proved overall runtime (o$ine + online) without requiring pre-
processing compared to the prior two schemes. As an interesting
tradeo", the online time of this scheme is slightly longer than that
in the previous schemes.

We notice that both our #rst two constructions contain the #rst
dimension folding operation to extract a certain column (or row)
from the given database matrix. From the linear algebra expression,
these schemes actually (homomorphically) compute

DB · u,

where u is some vector with only one non-zero entry 1. As pointed
in the BGV/BFV/CKKS bootstrapping and ciphertext transforma-
tions [34], we can e!ciently compute the product of a matrix and a
vector by the BSGS algorithm (ref. Section 2.5). We treat the BSGS
as a blackbox algorithm, i.e., BSGS(M,c) takes a plaintext matrixM
and a cihpertext c ↓ RLWE(ε · NTT↔1(u)) as input and outputs a
RLWE(ε ·NTT↔1(M ·u)) ciphertext. Using this as a building block,
we present our third scheme as follow.

5.1 The Construction
Let DB be a database of N = n/2 ↑ n/2 ↑ 2 entries represented
as a two-dimensional matrix, i.e., DB = {DB[i, j]}i ↓[n/2], j ↓[n/2],
where each entry DB[i, j] ↓ Z2p (plaintext can only be encoded to
(n/2)↑ 2-dimensional vector and then rotate [14], so each slot have
two entries ↓ Zp ). ApplyNTT to each column ofDB to getM. Then
our PIR works as follow.

One-time Setup Phase. Below we describe the procedures for the
client and the server, respectively.
The client receives the security parameter 1ε and does the follow-
ing:

• Run (1,↔s)↖ ↙ RLWE.KeyGen(1ε), and set sk = (1,↔s)↖.
• Store key-switching keys used in the homomorphic auto-
morphisms in the BSGS procedure in pk.

1412



Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

The server receives the security parameter 1ε , database DB, and
pk from the client. The server does nothing.

Query Phase. We now present the query protocol.
• The client receives index ↓ [N ] and does the following.
(1) Parse index into ϑ (index) = (u,w) ↓ [n/2] ↑ [n]. Denote

the vector with only one non-zero entry 1 in the u-th
position as u.

(2) Randomly choose a from Rq . Compute b = s · a + e + ε ·
NTT↔1(u). We note that (b,a) ↓ RLWEs (ε · NTT↔1(u))1.

(3) Compute C ↙ RGSW.Enc(sk,X↔w ).
(4) Set qu = ((b,a),C) and send the pair to the server.
• Upon receiving qu = ((b,a),C), the server does the follow-
ing:

(1) compute ans0 = BSGS(M, (b,a)).
(2) Compute (b ↗,a↗) = C ↭ ans0.
(3) Send response r = (b,a) = Ext(b ↗,a↗) back to the client.
• Upon receiving the response r, the client outputs

d = LWE.Dec(coef(s(X↔1)), (b,a)).

5.2 Analysis
We present Theorem 5.1 to illustrate the correctness of our third
construction.

T+!&)!’ 5.1 (C&))!,%$!--). Adopt the notations from the above
section. If the parameter q keeps the LWE.Dec correct, then for any
input query (u,w), the !nal output of our protocol satis!es d =
DB[w,u].

P)&&". We begin by analyzing the underlying plaintexts at each
step of the homomorphic computation in our construction. Then
in the full version of our paper, we estimate noise growth and
calculate the probability of decryption failure, thereby validating
the correctness of our overall scheme.

In the query phase, we mainly focus on the server. First note that
(b,a) is a RLWE ciphertext encrypting ε · NTT↔1(u) with secret
s . By the property of BSGS, we have ans is a RLWE encryption
of NTT↔1(M · u). In the pre-processing, we set M = NTT(DB) in
advance. Moreover, u is a vector with its only non-zero element
being 1 in the u-th position, and multiplying it from the right is
equivalent to extracting the u-th column. Therefore, we have

M · u = NTT(DB) · u = NTT(DB · u).
In step (2), the server performs an external product, so (b ↗,a↗) is an
RLWE ciphertext that encrypts X↔w · (∑i ε · DB[i,u]X i ). In step
(3), the server applys Ext(·), so the result r is an LWE ciphertext
that encrypts ε · DB[w,u].

Through the above analysis, we have d = DB[w,u] by the cor-
rectness of LWE.Dec. ↫

5.3 Stateless Variant
Motivated by recent advancements in PIR protocols including Hint-
lessPIR [41], YPIR [49] and WhisPIR [20], we derive a stateless
variant of our third construction. In this setting, not only are the

1In our implementation we use RLWEs
(
⇐q/p · NTT↔1(u)⇑

)
thus to achieve smaller

error growth [35].

clients free from storing any database-dependent hint, but the server
also avoids retaining any client-speci#c storage, e.g., key-switching
keys. This is achieved by having clients upload key-switching key
materials during the online phase, instead of the server storing
them for each client. While this approach increases the query size,
it signi#cantly reduces server-side storage requirements, simpli#es
deployment, and enhances anonymity by obscuring which client is
querying at any given time [41].

Moreover, in most FHE-based protocols, the query ciphertexts
must be homomorphically multiplied with the database. Whether
the query ciphertext is the LWE ciphertext (b,a) used in Sim-
ple/Double PIR [32] and FrodoPIR [19], or the RLWE ciphertext
(b,a) used in Spiral, using the same a (resp. a) to encrypt multiple
messages —while independently sampling s (resp. s) and error e
—does not compromise security [57]. In Simple/Double PIR and
FrodoPIR, the component a of the query ciphertext (b,a) is pre-
processed to enhance e!ciency during the online phase. Subse-
quent works HintlessPIR [41], YPIR [49] and WhisPIR [20] extend
this insight to key-switching keys, i.e., the components a↖ in key-
switching keys (b↖;a↖) can also be preprocessed. Following this
insight, we can achieve the stateless variant and below we describe
how it works.

One-time Setup Phase. Below we describe the procedures for the
client and the server, respectively.
The server receives the security parameter 1ε , database DB, and
does the following:

• Sample a PRG seed ϱ ↙ {0, 1}ε .
• Expand the seed ϱ to generate dummy RLWE ciphertext
(0,a), and dummy key-switching keys in pk = {KSkeyi =
(0↖;a↖i ) ↓ R2↑ω

q , i ↓ [1+ (n2 ↔ 1)]}, where {KSkeyi } are the
required keys in the BSGS procedure.

• Compute ans0 = BSGS_setup(M, (0,a)) 2,
The client receives the security parameter 1ε and does nothing.

Query Phase. We now present the query protocol.

• The client receives the security parameter 1ε , the public
seed ϱ and does the following:

(1) Run (1,↔s)↖ ↙ RLWE.KeyGen(1ε), and set sk = (1,↔s)↖.
(2) Expand the seedϱ to generate key-switching keys {KSkeyi =

(b↖i ;a↖i ) ↓ R2↑ω
q , i ↓ [n2]} used in the BSGS procedure,

and store p̃k = {(KSkeyi = (b↖i ; 0↖), i ↓ [n2]}.
• Upon receiving index ↓ [N ], the client does the following:
(1) Parse index into ϑ (index) = (u,w) ↓ [n/2] ↑ [n]. Denote

the vector with only one non-zero entry 1 in the u-th
position as u.

(2) Expand the seed ϱ to ring element a in Rq and compute
b = s ·a+e+ε ·NTT↔1(u). We note that (b,a) ↓ RLWEs (ε ·
NTT↔1(u)).

(3) Compute C ↙ RGSW.Enc(sk,X↔w ).
(4) Set qu = ((b, 0),C, p̃k) and send it to the server.

2For a smaller key-switching key size, we do not employ the hoisting technique
described in Section 2.5. Instead, we use the iterative rotation method detailed in
HintlessPIR [41] and Figure 8, Appendix A.3 of WhisPIR [20].

1413



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

• Upon receiving qu = ((b, 0),C, p̃k), the server does the fol-
lowing:

(1) Compute ans0 = ans0 + BSGS_online(M, (b, 0)).
(2) Compute (b ↗,a↗) = C ↭ ans0.
(3) Send response r = (b,a) = Ext(b ↗,a↗) back to the client.
• Upon receiving the response r, the client outputs

d = LWE.Dec(coef(s(X↔1)), (b,a)).
The stateless variant di"ers from the original protocol in two

signi#cant ways: 1). The client uploads key-switching keys used
in the homomorphic automorphisms during BSGS procedure in
the online phase, while the server preprocesses all public compo-
nents across all clients. 2). We employ the iterative rotation method
detailed in HintlessPIR [41] and WhisPIR [20] in the baby-step
algorithm instead of using the hoisting technique.

Recalling that in the baby-step algorithm, the server rotates the
same ciphertext ct by 1 to n1 ↔ 1. Although the hoisting technique
reduces the theoretical computational complexity from n1 ↔ 1 to
1, the key-switching keys remain at n1 ↔ 1. The iterative rotation,
i.e., Rotate(n1↔1)(ct, 1), is more suitable in the stateless setting, as
it only requires a single key-switching key. Most importantly, Hint-
lessPIR and WhisPIR found that the heaviest computations can
be preprocessed. We introduce the principle of BSGS_setup and
BSGS_online here, and the detailed iterative rotation algorithm
can be referred to Figure 8 of WhisPIR [20]: It is known that Ro-
tate(·, 1) consists of an automorphism transformation (b1,a1) :=(
b(X 5),a(X 5)

)
and a key-switching algorithm ct1 = (b1, 0)↖ ↔

KSkey0 · ω↔1(a1). In fact, most heavy computation can be o$oaded
to the one-time setup phase. We assume that the dummy key-
switching key is KSkey0 = (0↖;a↖0 ) in the one-time setup phase.
The server preprocesses (0,a1) :=

(
0,a(X 5)

)
and ct1 = (0, 0)↖ ↔

KSkey0 · ω↔1(a1) in the one-time setup phase. Upon receiving (b, 0)
and (KSkey0 = (b↖0 ; 0↖) in the online phase, the server computes
(b1, 0) :=

(
b(X 5), 0

)
and ct1 = ct1 + (b1, 0)↖ ↔ (KSkey0 · ω↔1(a1).

Noting that KSkey0 = KSkey0 +(KSkey0, the ciphertext ct1 is pre-
cisely the rotated ciphertext by 1. The server also store ω↔1(a1)
in NTT form, and the automorphism transformation b(X 5) can be
directly preformed in its NTT form [27], thus the online phase can
be greatly accelerated. By using this method for iterative rotations
and extending the precomputation approach to plaintext-ciphertext
multiplication and the giant step, the throughput wound be much
better than that of the original construction.

6 IMPLEMENTATION AND EVALUATION
We implement our protocols in C++ to evaluate their concrete
e!ciency. Our implementations do not use any existing FHE library
but adopt the Intel HEXL library (v1.2.5) to implement the NTTs.
The source code is available at [43].

6.1 Extensions and Optimizations
Our implementations apply the following extensions and optimiza-
tions for better concrete performances.

Handling Larger Database. In the last three sections we intro-
duced three constructions, both of which can support the basic
database of n2 records (n2/2 records in third construction, below

we may ignore that), where the size of each record is logp. Now
we describe how to extend them to support larger databases and
longer records. 1) larger databases: there are only n

2 ↑ logp bits
in one basic database, and the value is about 16 MB to 36 MB un-
der concrete parameters. The server can do r times for r basic
databases, with the same query. Finally the server can use a r -
LWE-to-RLWE algorithm [13] to pack r LWE ciphertexts. 2) longer
records: r logp bits may not be enough for some applications. We
use two approaches to accommodate more bits. One is the more
general usage of r -LWE-to-RLWE algorithm. The subprocedure
(line 5-7 in PackLWEs algorithm [13]) can packing two RLWE ci-
phertexts RLWE(∑i ↓[n]miX i ) and RLWE(∑i ↓[n] m̃iX i ) to a new
ciphertext RLWE(∑i ↓[n] m̄iX i ), such that m̄kn/ω ∋ mkn/ω and
m̄kn/ω+n/(2ω) ∋ m̃kn/ω for k ↓ [ω] and ω is a power of two, with only
small noise growth produced by evaluating automorphic transfor-
mation. Therefore, the server don’t always extract LWE ciphertexts
and packing them but just directly packing r RLWE ciphertexts
and response. Finally, each record is n logp bits, which is around
8 KB under concrete parameters. To the best of our knowledge,
using external product and subprocedure of r -LWE-to-RLWE al-
gorithm [13] to handle a small number of RLWE ciphertexts is
unprecedented in previous PIR protocols. Further, we also use the
same approach as SpiralPack [46] when the records are larger than
8 KB, i.e., packing multiple RLWE ciphertexts to a matrix Regev
ciphertext, thus to achieve better rate.

Improvement by Approximate Decomposition. We also use an-
other variant of algorithm ω↔1 in our implementation. Given a
modulus q and ω := ∈logBω

q/Be ⇑, we denote the gadget vector
as ω↖ = Be · (1,Bω, ...,Bω↔1

ω
) for some base Bω,Be ↓ N. Then

we use the algorithm ω↔1 : Zq → Zω , such that the output of the
algorithm x ↙ ω↔1(a) satisfy ∝ω,x′ ∋ a mod q. The approximate
gadget decomposition is #rst used for the torus variant of LWE and
RLWE samples in TFHE [15]. It also works well in our protocol. In
the following we call ω, Bω and Be as decomposition dimension,
decomposition base and approximate base, respectively.

Reducing Size of Response. Like other lattice-based PIR proto-
cols [2, 46], the server of our protocol performs amodulus switching
in order to reduce the size of response. Given a RLWE ciphertext
(b,a), the server computes ⇐qmod · (b,a)/q⇑ mod qmod , where
qmod is a smaller modulus than q.

Reducing Size of Public Key. Both in the #rst and the second
constructions, the client sends a public key pk to the server. Note
that pk = {pki }i ↓[n] and each pki is a RGSW↗ ciphertext that
encrypts only a constant term. We can use an expansion algorithm
to reduce communication, like SealPIR [4] and Spiral [46]. The
processing is performed once for each client, and it can be reused
for arbitrary databases.

Heuristic Noise Analysis with Subgaussian Variables. We estimate
the noise growth in the way of independent subgaussian variables.
This type of estimate is tighter than the bounding of worst-case
noise magnitude, and it’s also closer to what we observe in practice.
All of our following experiments in this paper have been checked
with lower than decryption failure probability 2↔40. We put the
concrete analysis in the full version of our paper.

1414



Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Database Metric FastPIR Spiral SpiralPack Spiral
StreamPack

First
construction

Second
construction

Third
construction

(220 + 217)↑32B
36 MB

One-time setup 0 0 0 0 0 879 s 0

O$ine comp. 0 0 0 0 638 ms 93 ms 0

Online
Server response time 538 ms 637 ms 548 ms 165 ms 14.5 ms 14.5 ms 77.1 ms

Query size 192 KB 14 KB 14 KB 2.4 MB 25 KB 25 KB 140 KB
Response size 64 KB 20 KB 20 KB 20 KB 28 KB 29 KB 26 KB
Throughput 67 MB/s 57 MB/s 66 MB/s 218 MB/s 2483 MB/s 2483 MB/s 467 MB/s

†220 ↑ 256B
256 MB

One-time setup 0 0 0 0 0 6972 / ‡672 s 0

O$ine comp. 0 0 0 0 5112 ms 746 ms 0

Online
Server response time 876 ms 1744 ms 1424 ms 524 ms 133.1 ms 133.1 ms 243 ms

Query size 1 MB 14 KB 14 KB 7.8 MB 125 KB 125 KB 140 KB
Response size 64 KB 20 KB 20 KB 20 KB 24 KB 27 KB 26 KB
Throughput 292 MB/s 147 MB/s 180 MB/s 489 MB/s 1923 MB/s 1923 MB/s 1053 MB/s

222 ↑ 256B
1 GB

One-time setup 0 0 0 0 0 ‡2953 s 0

O$ine comp. 0 0 0 0 20 s 2955 ms 0

Online
Server response time 2306 ms 3628 ms 3094 ms 1756 ms 694.2 ms 694.2 ms 801 ms

Query size 4 MB 14 KB 14 KB 15 MB 135 KB 135 KB 140 KB
Response size 64 KB 20 KB 20 KB 20 KB 28 KB 26 KB 26 KB
Throughput 444 MB/s 282 MB/s 331 MB/s 583 MB/s 1475 MB/s 1475 MB/s 1278 MB/s

Table 2: Compared with Spiral. † Our database con"guration is 215 ↑ 8 KB, which can be trivially seen as 220 ↑ 256 B. ‡Running
in T = 16 threads, whereas all the others are run in T = 1 thread. For 256 MB database of Spiral, we use the default parameters
in [47].We adjust the parameters of Spiral to get 36MB, 1GBdatabase con"guration, e.g.,ϖ1 (the number of the"rst dimension),
ϖ2 (the number of the second dimension), logp (plaintext bits), and so on. For 36 MB, we use (ϖ1,ϖ2, logp) = (7, 5, 9). For 256 MB,
we use (ϖ1,ϖ2, logp) = (8, 7, 8). For 1 GB, we use (ϖ1,ϖ2, logp) = (9, 8, 8).

6.2 Parameter Selection
In this section, we present howwe select parameters for our schemes.

Lattice parameters. Our protocols always work over a power-of-
two cyclotomic ring. In order to ensure 128 bits of classical security
and take the noise growth into account, we set ring dimension n =
4096. Each secret is sampled as ternary secret with the Hamming
weight h, and all the initial noise is sampled from discrete Gaussian
distribution with standard deviation ϱ = 3.19.

Database and Key Material. The database is arranged as a hy-
percube with dimensions n2 ↑ r , where each n

2 elements form a
basic database, r is the packing number. Our database is stored
in its evaluation representation (i.e., the FFT/NTT representation).
This enables faster homomorphic operations during online query
processing. Similarly, the automorphism transform key materials
are all stored in their evaluation representation.

6.3 Concrete Performances for Our PIR
Protocols

In this section, we report the concrete performances of our proto-
cols. Our computing environment is a server with Intel(R) Xeon(R)
Gold 6230R CPU @ 2.10GHz and 256GB RAM, running Ubuntu

22.04.1. The compiler we used is clang++ 14.0.0.

Experimental Results. We list four di"erent database con#gura-
tions, which are 36 MB, 256 MB, 1 GB and 2 GB, and we provide
concrete experimental results to con#rm e!ciency of our protocols
in Table 3 and Table 2.

Comparison of Three Constructions. In the previous three sec-
tions, we presented three PIR constructions. The #rst and second
constructions have better online response time. They share the
same online phase processing, but they have their own advantages
and disadvantages in the one-time setup phase and o$ine phase.
The #rst construction has a longer o$ine processing time while
the second construction has a longer one-time setup phase.

Table 3 shows the concrete experimental results of the third
construction for di"erent database con#gurations. We #nd that
BSGS algorithm consumes a relatively large proportion of time.
In fact, due to the use of hoisting technique (see Section 2.5) and
the output of the baby-step algorithm can be reused by multiple
basic databases, most of the consumption of the BSGS algorithm is
plaintext-ciphertext multiplications, i.e., plaintext-ciphertext mul-
tiplications seem to be intrinsic for PIR protocols belonging to
Category I.

1415



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

Metric 36 MB 256 MB 1 GB 2 GB

Communication
(KB)

Query size 140 140 140 140
Response size 26 26 26 26

Client cost
(ms)

Query 5.9 6.1 6.2 6
Recover 1.5 1.5 1.4 1.5

Server cost
(ms)

O$ine 0 0 0 0
First dim. 72.9 228.6 742.6 1391

Second dim. 1.7 6.4 23.6 42.5
Packing 2.4 8.3 34.4 64

Online total 77.1 243 801 1498

Throughput (MB/s) 467 1053 1278 1367
Table 3: Concrete experimental results of the third construc-
tion for di!erent database con"gurations. “dim.” stands for
dimension. BSGS algorithm is called the!rst dimension fold-
ing. External product is called the second dimension fold-
ing. Packing multiple ciphertexts is called the packing al-
gorithm.

6.4 Comparisons with other protocols in
Category I and Category II

We discuss comparisons of our three constructions with other re-
lated work in Category I, e.g., Spiral and its prior works. We also
discuss comparisons with other works in Category II, e.g., Sim-
ple/Double PIR [32] and Piano [65].

Compared with Spiral and its Prior Works. The single-server PIR
scheme Spiral [46] follows the Gentry-Halevi [26] blueprint. They
rely on two basic encryption schemes: RLWE encryption scheme
and the RGSW encryption scheme. After a query expansion phase,
the server performs plaintext-ciphertext multiplications in the #rst
dimension folding. Then the server uses external product to per-
form ciphertext-ciphertext multiplications, which is also called
the subsequent dimensions folding. Thanks to the expansion algo-
rithm and low noise growth of external product, Spiral as well as
its family outperform almost all other lattice-based PIR protocols,
e.g., SealPIR [4], FastPIR [1], MulPIR [2], OnionPIR [52]. Therefore,
Spiral can be considered as the current state of the art, and a base-
line for us to compare. For a fair comparison, we use their C++
implementation, which adapts procedure from the SEAL library
and HEXL library to implement NTTs. The comparison results are
given in the Table 2 and Figure 3. Taking the performance of 256
MB database as an example, our server’s online response time of
third construction is 5.8↑ faster than SpiralPack.

Comparedwith Simple/Double PIR andmore. Anotherwell-known
type of PIR protocols are proposed by A. Henzinger et al. [32], which
are called Simple PIR and Double PIR. As PIR protocols in Category
II, the biggest advantage is their high throughput. The drawback of
them is that the client must download and store an around 124 MB
(Simple PIR) and 16 MB hint (Double PIR), respectively. Meanwhile,
larger records (e.g., 256 bits) are not friendly to Double PIR, so there
are some limitations in applying it to many application scenarios.

Simple PIR can achieve more than 6000 MB/s server throughput
while Double PIR can achieve more than 5000 MB/s. However, our

PIR protocol is more client cost friendly, both in terms of compu-
tation and storage. The client only needs to store the secret and a
public coin. We show the comparison in Figure 3 and defer more in
the full version of our paper. Besides, the client in Simple PIR and
Double PIR should update hint when the database updates. In our
setting, database updating has nothing to do with the state of the
client.

Other Related Works. Besides the practical PIR protocols which
we have mentioned, e.g., XPIR [45], SealPIR [4], SHECS-PIR [54],
FastPIR [1], MulPIR [2], OnionPIR [52] and Spiral [46], multi-server
PIR and PIR for special scenarios have also received great atten-
tions. Currently the most practical two-server PIR comes from
Corrigan-Gibbs and Kogan et al. [18, 36]. They propose a new two-
server PIR [18] that can achieve sublinear online time, and they
improve it and publish experimental results [36]. Special PIR in-
cludes SparsePIR [56], which is an e!cient keyword PIR for sparse
databases.

6.5 Comparisons with Concurrent Stateless
Protocols

Recently, Li et al. [41] proposed HintlessPIR based on Simple PIR.
They found that the clients do not need to store the hint in Simple
PIR [32], but online homomorphic evaluate matrix-vector multipli-
cation [29], involving the hint matrix and secret vector. Further-
more, this RLWE-based matrix-vector multiplication can still be
accelerated by o$oading part of the computation to the o$ine
phase, similar to the precomputation approach in Simple/Double
PIR [32] and FrodoPIR [19].

Menon and Wu [49] adopted an approach similar to HintlessPIR.
The starting point for their construction is Double PIR. They found
that the hint and online response in Double PIR consist of many
LWE ciphertexts. Utilizing an LWE-to-RLWE conversion algorithm [13],
YPIR enables to response the RLWE ciphertext instead of many co-
e!cients and storing a hint matrix on the client side.

Castro et al. [20] proposed WhisPIR, a stateless protocol charac-
terized by low communication overhead. InWhisPIR, clients upload
key-switching keys during the online phase, and the protocol op-
timizes the key-switching key size in the coe!cient expansion
algorithm used by SealPIR [4], OnionPIR [52] and Spiral [46]. Fol-
lowing an optimized coe!cient expansion algorithm, the server per-
forms plaintext-ciphertext multiplications and then non-compact
homomorphic multiplications, i.e., tensor multiplication without
relinearization.

These three stateless protocols as well as Spiral (and its related
family) are currently state of the art in Category I. In Table 4, we col-
lect concrete experimental results for ours and these three protocols,
as well as Simple/Double PIR (in Category II), to show their unique
advantages. All protocols (expect for WhisPIR) are tested under the
same computing environment speci#ed in Section 6.3, running on
a single thread. The total database sizes are 256 MB, 1 GB and 8
GB, with the record size being optimal and most recommended for
each protocol.

Compared with HintlessPIR and YPIR. HintlessPIR and YPIR are
two stateless LWE-based PIR protocols derived from Simple and
Double PIR, respectively. When retrieving large databases, their

1416



Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

32 64 128 256 512 1024 2048
0

100

200

300

400

500

O
nl

in
e 

co
m

m
. (

K
B

) 

Database (MB)

 SealPIR
 Spiral/SpiralPack
 Simple PIR
 Double PIR
 Ours

32 64 128 256 512 1024 2048
1

10

100

1000

C
lie

nt
 c

om
p.

 (m
s)

Database (MB)

 SealPIR
 FastPIR
 Spiral
 SpiralPack

 SpiralStreamPack
 Simple PIR
 Double PIR

 Ours

32 64 128 256 512 1024 2048

10

100

1000

10000

Database (MB)

 SealPIR
 FastPIR
 Spiral
 SpiralPack

 SpiralStreamPack
 Simple PIR
 Double PIR
 Ours

Se
rv

er
 re

sp
on

se
 ti

m
e 

(m
s)

Figure 3: Comparison of online communication, client computation and sever response time of SealPIR, FastPIR, Spiral, Spi-
ralPack, SpiralStreamPack, Simple/Double PIR and Ours third construction. The online communication of FastPIR, Spiral-
StreamPack is much bigger than others.

Database Metric Spiral
(8 KB)

Simple PIR†
(16 KB)

Double PIR†
(1B)

HintlessPIR
(1B, 32 KB)

YPIR
(1B)

YPIR + SP
(32 KB)

WhisPIR
(256 B, 32 KB)

Ours
(8 KB)

Ours-stateless
(8 KB)

256 MB

Server storage 13.3 MB 0 0 0 0 0 NA 8.8 MB 0
Hint size 0 56 MB 14 MB 0 0 0 NA 0 0

Server preproc. 9.7 s 6.4 s 9.8 s 53.2 s 9.8 s 13.1 s NA 4.3 s 6.6 s
Server resp. 1744 ms 28 ms 36 ms 598 ms 86 ms 314 ms NA 243 ms 149 ms
Query size 14 KB 64 KB 112 KB 379 KB 846 KB 518 KB NA 140 KB 988 KB

Response size 20 KB 56 KB 12 KB 1504 KB 12 KB 120 KB NA 26 KB 26 KB
Throughput 147 MB/s 9143 MB/s 7111 MB/s 428 MB/s 2977 MB/s 815 MB/s NA 1053 MB/s 1718 MB/s
Client comp. 11 ms 234 ms 914 ms 1928 ms 977 ms 323 ms NA 7.6 ms 42.2 ms

1 GB

Server storage 13.6 MB 0 0 0 0 0 0 9.0 MB 0
Hint size 0 112 MB 14 MB 0 0 0 0 0 0

Server preproc. 40 s 26 s 31.6 s 187 s 31.6 s 21.5 s NA 16.9 s 19.2 s
Server resp. 3628 ms 111 ms 126 ms 866 ms 178 ms 426 ms ∋1000 ms 801 ms 487 ms
Query size 14 KB 128 KB 224 KB 443 KB 846 KB 686 KB ∋390 KB 140 KB 932 KB

Response size 20 KB 112 KB 12 KB 3008 KB 12 KB 120 KB ∋100 KB 26 KB 26 KB
Throughput 282 MB/s 9225 MB/s 8127 MB/s 1182 MB/s 5753 MB/s 2404 MB/s ∋1024 MB/s 1278 MB/s 2103 MB/s
Client comp. 21 ms 459 ms 1988 ms 3958 ms 2050 ms 1223 ms NA 7.6 ms 39.2 ms

8 GB

Server storage 15.5 MB 0 0 0 0 0 0 9.3 MB 0
Hint size 0 224 MB 14 MB 0 0 0 0 0 0

Server preproc 489 s 221 s 232.8 s 1640 s 232.8 s 93 s NA 148 s 157 s
Server resp. 18.6 s 1123 ms 1156 ms 2058 ms 1183 ms 1321 ms ∋ 7100 ms 5677 ms 3621 ms
Query size 14 KB 512 KB 448 KB 1339 KB 1486 KB 2254 KB ∋ 710 KB 140 KB 1184 KB

Response size 20 KB 224 KB 12 KB 3008 KB 12 KB 120 KB ∋ 260 KB 26 KB 26 KB
Throughput 440 MB/s 7295 MB/s 7087 MB/s 3981 MB/s 6925 MB/s 6201 MB/s ∋1154 MB/s 1443 MB/s 2262 MB/s
Client comp. 90 ms 1814 ms 5039 ms 32.3 s 5103 ms 13.3 s NA 7.7 ms 39.6 ms

Table 4: Compared with current state-of-the-art FHE-based PIR protocols. † Here we benchmark the performance of Sim-
ple/Double PIR from the YPIR library [48], which shows slightly improved performance over the implementations in the
original paper [32, 33] and HintlessPIR [41, 42]. For 255MB, 1 GB and 8 GB databases in HintlessPIR, we use database matrices
of sizes 16384↑ 16384, 32768↑ 32768 and 32768↑ 262144, respectively, with each entry being 8 bits. The clients of HintlessPIR can
access a column of entries from the database matrix, so here the record size is 32 KB for an 8 GB database. “Server preproc.”
stands for the server preprocessing time. “Server resp.” stands for the server response time. “Client comp.” stands for the sum
of query generation time and recovery time. Record sizes over 8 bits are unsupported for YPIR. We take the benchmarks of
222↑ 256B (1 GB) and 218↑ 32KB (8 GB) reported in Figure 1, 2 and 4 of WhisPIR’s paper [20], where NA indicates that the
concrete result is not publicly available.

throughput can approach that of Simple/Double PIR, albeit at the
cost of reasonably larger online communication.

Compared with HintlessPIR, our stateful protocol demonstrates
higher throughput when managing smaller databases, e.g., 256

MB. However, as the database size increases to 8 GB, HintlessPIR
achieves a throughput of 3981 MB/s, which is faster than ours. Our
stateless variant performs better, outperforming the HintlessPIR in
both throughput and communication when the database is equal to

1417



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Ming Luo, Feng-Hao Liu, and Han Wang

or smaller than 1 GB. Another disadvantage of HintlessPIR is that
the rate is not good, where rate is the ratio of plaintext size to re-
sponse size. This becomes particularly problematic when retrieving
very large records, such as movies [46], where the response size
may be substantially larger than that seen in other protocols. YPIR
achieves the highest throughput when the records are 1 to 8 bits.
The only limitation of YPIR is that its record size is somewhat small,
which introduces some limitations in many application scenarios.
Menon and Wu [49] also introduce another variant called YPIR +
SP, which packs LWE ciphertexts in Simple PIR instead of Double
PIR. YPIR + SP can support large records, but its throughput is
not as good as YPIR’s. Another disadvantage of YPIR + SP (which
also includes HintlessPIR and YPIR) is the relatively high compu-
tational load on the client, which is not conducive to applications
that require low latency on limited client resources.

Compared with WhisPIR. WhisPIR is a stateless protocol charac-
terized by low communication overhead and good throughput. As
a ring-based protocol, WhisPIR supports records of varying sizes,
making it adaptable to most applications. Compared to Spiral, its
only disadvantages are a slightly lower rate and marginally higher
query size, but it o"ers better throughput and is fully stateless,
which is particularly bene#cial in scenarios with a large number of
clients.

The implementation of WhisPIR is not publicly available at the
time of this writing. It appears that communication and computa-
tion achieve a good tradeo"when the parameter is set to 16 chunks,
so we simply take this benchmark reported in Figure 1, 2 and 4 of
their paper [20]. Our stateful protocol has a slightly higher through-
put and rate than WhisPIR but the server in our protocol have to
store per-client storage. Taking the performance of 1 GB database
as an example, our throughput is 1278 MB/s, slightly better than
WhisPIR’s 1024 MB/s. Moreover, our stateless protocol achieves a
throughput of 2103 MB/s, approximately twice that of WhisPIR.

7 ACKNOLEWGEMENT
The authors would like to thank anonymous reviewers for their in-
sightful comments that signi#cantly help improve the presentation.
Ming Luo and Han Wang are supported by the National Key R&D
Program of China under Grant 2020YFA0712303, State Key Labo-
ratory of Information Security under Grant TC20221013042, and
the Strategic Priority Research Program of the Chinese Academy
of Sciences under Grant XDB0690200. Feng-Hao Liu is supported
by NSF CNS-2402031.

REFERENCES
[1] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-

abh Gupta. 2021. Addra: Metadata-private voice communication over fully
untrusted infrastructure. In 15th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2021, July 14-16, 2021, Angela Demke Brown and Jay R.
Lorch (Eds.). USENIX Association. https://www.usenix.org/conference/osdi21/
presentation/ahmad

[2] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. 2021. Communication-Computation Trade-o"s in PIR,
See [6], 1811–1828.

[3] Jacob Alperin-Sheri" and Chris Peikert. 2014. Faster Bootstrapping with Polyno-
mial Error, See [25], 297–314. https://doi.org/10.1007/978-3-662-44371-2_17

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with
Compressed Queries and Amortized Query Processing. In 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 962–979. https://doi.org/
10.1109/SP.2018.00062

[5] Sebastian Angel and Srinath T. V. Setty. 2016. Unobservable Communication
over Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016, Kimberly Keeton and Timothy Roscoe (Eds.). USENIX Association, 551–
569. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
angel

[6] Michael Bailey and Rachel Greenstadt (Eds.). 2021. USENIX Security 2021. USENIX
Association.

[7] Amos Beimel, Yuval Ishai, and Tal Malkin. 2004. Reducing the Servers’ Compu-
tation in Private Information Retrieval: PIR with Preprocessing. Journal of Cryp-
tology 17, 2 (March 2004), 125–151. https://doi.org/10.1007/s00145-004-0134-y

[8] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. 2016. Frodo: Take o"
the Ring! Practical, Quantum-Secure Key Exchange from LWE. In ACM CCS 2016,
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi (Eds.). ACM Press, 1006–1018. https://doi.org/10.1145/2976749.
2978425

[9] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYS-
TALS - Kyber: A CCA-Secure Module-Lattice-Based KEM. In 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018. IEEE, 353–367. https://doi.org/10.1109/EuroSP.2018.00032

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012, Sha# Goldwasser
(Ed.). ACM, 309–325. https://doi.org/10.1145/2090236.2090262

[11] Zvika Brakerski and Vinod Vaikuntanathan. 2011. E!cient Fully Homomorphic
Encryption from (Standard) LWE. In 52nd FOCS, Rafail Ostrovsky (Ed.). IEEE
Computer Society Press, 97–106. https://doi.org/10.1109/FOCS.2011.12

[12] Ran Canetti, Justin Holmgren, and Silas Richelson. 2017. Towards Doubly E!cient
Private Information Retrieval. In TCC 2017, Part II (LNCS), Yael Kalai and Leonid
Reyzin (Eds.), Vol. 10678. Springer, Cham, 694–726. https://doi.org/10.1007/978-
3-319-70503-3_23

[13] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2021. E!cient Homomorphic
Conversion Between (Ring) LWE Ciphertexts. InACNS 21International Conference
on Applied Cryptography and Network Security, Part I (LNCS), Kazue Sako and
Nils Ole Tippenhauer (Eds.), Vol. 12726. Springer, Cham, 460–479. https://doi.
org/10.1007/978-3-030-78372-3_18

[14] Hao Chen, Kim Laine, and Rachel Player. 2017. Simple Encrypted Arithmetic
Library - SEAL v2.1. In FC 2017 Workshops (LNCS), Michael Brenner, Kurt Rohlo",
Joseph Bonneau, Andrew Miller, Peter Y. A. Ryan, Vanessa Teague, Andrea
Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson (Eds.),
Vol. 10323. Springer, Cham, 3–18. https://doi.org/10.1007/978-3-319-70278-0_1

[15] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.
Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.
In ASIACRYPT 2016, Part I (LNCS), Jung Hee Cheon and Tsuyoshi Takagi (Eds.),
Vol. 10031. Springer, Berlin, Heidelberg, 3–33. https://doi.org/10.1007/978-3-662-
53887-6_1

[16] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
Information Retrieval. In 36th FOCS. IEEE Computer Society Press, 41–50. https:
//doi.org/10.1109/SFCS.1995.492461

[17] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. 2022. Single-
Server Private Information Retrieval with Sublinear Amortized Time. In EURO-
CRYPT 2022, Part II (LNCS), Orr Dunkelman and Stefan Dziembowski (Eds.),
Vol. 13276. Springer, Cham, 3–33. https://doi.org/10.1007/978-3-031-07085-3_1

[18] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval
with Sublinear Online Time. In EUROCRYPT 2020, Part I (LNCS), Anne Canteaut
and Yuval Ishai (Eds.), Vol. 12105. Springer, Cham, 44–75. https://doi.org/10.
1007/978-3-030-45721-1_3

[19] Alex Davidson, Gonçalo Pestana, and Sofía Celi. 2023. FrodoPIR: Simple, Scalable,
Single-Server Private Information Retrieval. Proc. Priv. Enhancing Technol. 2023,
1 (2023), 365–383. https://doi.org/10.56553/popets-2023-0022

[20] Leo de Castro, Kevin Lewi, and Edward Suh. 2024. WhisPIR: Stateless Private
Information Retrieval with Low Communication. Cryptology ePrint Archive,
Paper 2024/266. https://eprint.iacr.org/2024/266 https://eprint.iacr.org/2024/266.

[21] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In EUROCRYPT 2015, Part I (LNCS), Elisabeth
Oswald and Marc Fischlin (Eds.), Vol. 9056. Springer, Berlin, Heidelberg, 617–640.
https://doi.org/10.1007/978-3-662-46800-5_24

[22] Zeev Dvir and Sivakanth Gopi. 2016. 2-Server PIR with Subpolynomial Commu-
nication. J. ACM 63, 4 (2016), 39:1–39:15. https://doi.org/10.1145/2968443

[23] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Paper 2012/144. https:
//eprint.iacr.org/2012/144 https://eprint.iacr.org/2012/144.

[24] Eric Fung, Georgios Kellaris, and Dimitris Papadias. 2015. Combining Di"erential
Privacy and PIR for E!cient Strong Location Privacy. In Advances in Spatial and
Temporal Databases - 14th International Symposium, SSTD 2015, Hong Kong, China,
August 26-28, 2015. Proceedings (Lecture Notes in Computer Science), Christophe

1418

https://www.usenix.org/conference/osdi21/presentation/ahmad
https://www.usenix.org/conference/osdi21/presentation/ahmad
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1109/SP.2018.00062
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
https://doi.org/10.1007/s00145-004-0134-y
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-030-78372-3_18
https://doi.org/10.1007/978-3-319-70278-0_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1007/978-3-031-07085-3_1
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.56553/popets-2023-0022
https://eprint.iacr.org/2024/266
https://eprint.iacr.org/2024/266
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1145/2968443
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144


Faster FHE-Based Single-Server Private Information Retrieval CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Claramunt, Markus Schneider, Raymond Chi-Wing Wong, Li Xiong, Woong-
Kee Loh, Cyrus Shahabi, and Ki-Joune Li (Eds.), Vol. 9239. Springer, 295–312.
https://doi.org/10.1007/978-3-319-22363-6_16

[25] Juan A. Garay and Rosario Gennaro (Eds.). 2014. CRYPTO 2014, Part I. LNCS,
Vol. 8616. Springer, Berlin, Heidelberg.

[26] Craig Gentry and Shai Halevi. 2019. Compressible FHE with Applications to PIR.
In TCC 2019, Part II (LNCS), Dennis Hofheinz and Alon Rosen (Eds.), Vol. 11892.
Springer, Cham, 438–464. https://doi.org/10.1007/978-3-030-36033-7_17

[27] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Fully Homomorphic En-
cryption with Polylog Overhead. In EUROCRYPT 2012 (LNCS), David Pointcheval
and Thomas Johansson (Eds.), Vol. 7237. Springer, Berlin, Heidelberg, 465–482.
https://doi.org/10.1007/978-3-642-29011-4_28

[28] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-
tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In CRYPTO 2013, Part I (LNCS), Ran Canetti and Juan A. Garay
(Eds.), Vol. 8042. Springer, Berlin, Heidelberg, 75–92. https://doi.org/10.1007/978-
3-642-40041-4_5

[29] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib, See [25], 554–571.
https://doi.org/10.1007/978-3-662-44371-2_31

[30] Shai Halevi and Victor Shoup. 2018. Faster Homomorphic Linear Transforma-
tions in HElib. In CRYPTO 2018, Part I (LNCS), Hovav Shacham and Alexandra
Boldyreva (Eds.), Vol. 10991. Springer, Cham, 93–120. https://doi.org/10.1007/978-
3-319-96884-1_4

[31] Ryan Henry. 2016. Polynomial Batch Codes for E!cient IT-PIR. Proc. Priv.
Enhancing Technol. 2016, 4 (2016), 202–218. https://doi.org/10.1515/popets-2016-
0036

[32] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-
john, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two: Simple
and Fast Single-Server Private Information Retrieval. In USENIX Security 2023,
Joseph A. Calandrino and Carmela Troncoso (Eds.). USENIX Association, 3889–
3905.

[33] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meik-
lejohn, and Vinod Vaikuntanathan. 2024. One Server for the Price of Two:
Simple and Fast Single-Server Private Information Retrieval. https://github.com/
ahenzinger/simplepir/commit/e9020b

[34] Wen jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. 2021. PE-
GASUS: Bridging Polynomial and Non-polynomial Evaluations in Homomorphic
Encryption. In 2021 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 1057–1073. https://doi.org/10.1109/SP40001.2021.00043

[35] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. 2021. Revisiting Homomorphic
Encryption Schemes for Finite Fields. In ASIACRYPT 2021, Part III (LNCS), Mehdi
Tibouchi and Huaxiong Wang (Eds.), Vol. 13092. Springer, Cham, 608–639. https:
//doi.org/10.1007/978-3-030-92078-4_21

[36] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private Blocklist Lookups with
Checklist, See [6], 875–892.

[37] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is NOT Needed: SINGLE
Database, Computationally-Private Information Retrieval. In 38th FOCS. IEEE
Computer Society Press, 364–373. https://doi.org/10.1109/SFCS.1997.646125

[38] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Ri$e: An
E!cient Communication System With Strong Anonymity. Proc. Priv. Enhancing
Technol. 2016, 2 (2016), 115–134. https://doi.org/10.1515/popets-2016-0008

[39] Arthur Lazzaretti and Charalampos Papamanthou. 2022. Near-Optimal Private
Information Retrieval with Preprocessing. Cryptology ePrint Archive, Paper
2022/830. https://eprint.iacr.org/2022/830 https://eprint.iacr.org/2022/830.

[40] Arthur Lazzaretti and Charalampos Papamanthou. 2023. TreePIR: Sublinear-Time
and Polylog-Bandwidth Private Information Retrieval from DDH. Cryptology
ePrint Archive, Paper 2023/204. https://eprint.iacr.org/2023/204 https://eprint.
iacr.org/2023/204.

[41] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu. 2023.
Hintless Single-Server Private Information Retrieval. Cryptology ePrint Archive,
Report 2023/1733. https://eprint.iacr.org/2023/1733

[42] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu. 2023.
Hintless Single-Server Private Information Retrieval. https://github.com/google/
hintless_pir/commit/4be2ae

[43] Ming Luo, Feng-Hao Liu, and Han Wang. 2024.
https://github.com/mmingluo/kspir.

[44] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On Ideal Lattices
and Learning with Errors over Rings. In EUROCRYPT 2010 (LNCS), Henri Gilbert
(Ed.), Vol. 6110. Springer, Berlin, Heidelberg, 1–23. https://doi.org/10.1007/978-
3-642-13190-5_1

[45] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR : Private Information Retrieval for Everyone. Proc. Priv. Enhancing
Technol. 2016, 2 (2016), 155–174. https://doi.org/10.1515/popets-2016-0010

[46] Samir Jordan Menon and David J. Wu. 2022. SPIRAL: Fast, High-Rate Single-
Server PIR via FHE Composition. In 2022 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 930–947. https://doi.org/10.1109/SP46214.2022.
9833700

[47] Samir Jordan Menon and David J. Wu. 2023. SPIRAL: Fast, High-Rate Single-
Server PIR via FHEComposition. https://github.com/menonsamir/spiral/commit/
361ee4

[48] Samir Jordan Menon and David J. Wu. 2024. YPIR: High-Throughput Single-
Server PIR with Silent Preprocessing. https://github.com/menonsamir/ypir/
commit/8701cc

[49] Samir Jordan Menon and David J. Wu. 2024. YPIR: High-Throughput Single-
Server PIR with Silent Preprocessing. Cryptology ePrint Archive, Paper 2024/270.
https://eprint.iacr.org/2024/270 https://eprint.iacr.org/2024/270.

[50] Daniele Micciancio and Jessica Sorrell. 2018. Ring Packing and Amortized FHEW
Bootstrapping. In ICALP 2018 (LIPIcs), Ioannis Chatzigiannakis, Christos Kak-
lamanis, Dániel Marx, and Donald Sannella (Eds.), Vol. 107. Schloss Dagstuhl,
100:1–100:14. https://doi.org/10.4230/LIPIcs.ICALP.2018.100

[51] Prateek Mittal, Femi G. Olumo#n, Carmela Troncoso, Nikita Borisov, and Ian
Goldberg. 2011. PIR-Tor: Scalable Anonymous Communication Using Private
Information Retrieval. In USENIX Security 2011. USENIX Association.

[52] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Response
E!cient Single-Server PIR. In ACM CCS 2021, Giovanni Vigna and Elaine Shi
(Eds.). ACM Press, 2292–2306. https://doi.org/10.1145/3460120.3485381

[53] Muhammad Haris Mughees and Ling Ren. 2023. Vectorized Batch Private Infor-
mation Retrieval. In 2023 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 437–452. https://doi.org/10.1109/SP46215.2023.10179329

[54] Jeongeun Park and Mehdi Tibouchi. 2020. SHECS-PIR: Somewhat Homomor-
phic Encryption-Based Compact and Scalable Private Information Retrieval. In
ESORICS 2020, Part II (LNCS), Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A.
Schneider (Eds.), Vol. 12309. Springer, Cham, 86–106. https://doi.org/10.1007/978-
3-030-59013-0_5

[55] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2018. Private Stateful Information
Retrieval. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang (Eds.). ACM Press, 1002–1019. https://doi.org/10.1145/3243734.
3243821

[56] Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Don’t be Dense: E!cient
Keyword PIR for Sparse Databases. Cryptology ePrint Archive, Paper 2023/466.
https://eprint.iacr.org/2023/466 https://eprint.iacr.org/2023/466.

[57] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. 2008. A Framework for
E!cient and Composable Oblivious Transfer. In CRYPTO 2008 (LNCS), David
Wagner (Ed.), Vol. 5157. Springer, Berlin, Heidelberg, 554–571. https://doi.org/
10.1007/978-3-540-85174-5_31

[58] Giuseppe Persiano and Kevin Yeo. 2022. Limits of Preprocessing for Single-
Server PIR. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9
- 12, 2022, Joseph (Se!) Naor and Niv Buchbinder (Eds.). SIAM, 2522–2548.
https://doi.org/10.1137/1.9781611977073.99

[59] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and
cryptography. In 37th ACM STOC, Harold N. Gabow and Ronald Fagin (Eds.).
ACM Press, 84–93. https://doi.org/10.1145/1060590.1060603

[60] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce M. Maggs.
2021. Puncturable Pseudorandom Sets and Private Information Retrieval with
Near-Optimal Online Bandwidth and Time. In CRYPTO 2021, Part IV (LNCS),
Tal Malkin and Chris Peikert (Eds.), Vol. 12828. Springer, Cham, Virtual Event,
641–669. https://doi.org/10.1007/978-3-030-84259-8_22

[61] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020.
Epione: Lightweight Contact Tracing with Strong Privacy. IEEE Data Eng. Bull.
43, 2 (2020), 95–107. http://sites.computer.org/debull/A20june/p95.pdf

[62] David J. Wu, Joe Zimmerman, Jérémy Planul, and John C. Mitchell. 2016. Privacy-
Preserving Shortest Path Computation. In NDSS 2016. The Internet Society. https:
//doi.org/10.14722/ndss.2016.23052

[63] Kevin Yeo. 2023. Lower Bounds for (Batch) PIR with Private Preprocessing. In
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-
27, 2023, Proceedings, Part I (Lecture Notes in Computer Science), Carmit Hazay and
Martijn Stam (Eds.), Vol. 14004. Springer, 518–550. https://doi.org/10.1007/978-
3-031-30545-0_18

[64] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. 2023. Optimal
Single-Server Private Information Retrieval. In Advances in Cryptology - EURO-
CRYPT 2023 - 42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part
I (Lecture Notes in Computer Science), Carmit Hazay and Martijn Stam (Eds.),
Vol. 14004. Springer, 395–425. https://doi.org/10.1007/978-3-031-30545-0_14

[65] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. 2023. Piano:
Extremely Simple, Single-Server PIR with Sublinear Server Computation. Cryp-
tology ePrint Archive, Report 2023/452. https://eprint.iacr.org/2023/452

1419

https://doi.org/10.1007/978-3-319-22363-6_16
https://doi.org/10.1007/978-3-030-36033-7_17
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1515/popets-2016-0036
https://doi.org/10.1515/popets-2016-0036
https://github.com/ahenzinger/simplepir/commit/e9020b
https://github.com/ahenzinger/simplepir/commit/e9020b
https://doi.org/10.1109/SP40001.2021.00043
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1007/978-3-030-92078-4_21
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1515/popets-2016-0008
https://eprint.iacr.org/2022/830
https://eprint.iacr.org/2022/830
https://eprint.iacr.org/2023/204
https://eprint.iacr.org/2023/204
https://eprint.iacr.org/2023/204
https://eprint.iacr.org/2023/1733
https://github.com/google/hintless_pir/commit/4be2ae
https://github.com/google/hintless_pir/commit/4be2ae
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1515/popets-2016-0010
https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1109/SP46214.2022.9833700
https://github.com/menonsamir/spiral/commit/361ee4
https://github.com/menonsamir/spiral/commit/361ee4
https://github.com/menonsamir/ypir/commit/8701cc
https://github.com/menonsamir/ypir/commit/8701cc
https://eprint.iacr.org/2024/270
https://eprint.iacr.org/2024/270
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://doi.org/10.1145/3460120.3485381
https://doi.org/10.1109/SP46215.2023.10179329
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1007/978-3-030-59013-0_5
https://doi.org/10.1145/3243734.3243821
https://doi.org/10.1145/3243734.3243821
https://eprint.iacr.org/2023/466
https://eprint.iacr.org/2023/466
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1137/1.9781611977073.99
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-030-84259-8_22
http://sites.computer.org/debull/A20june/p95.pdf
https://doi.org/10.14722/ndss.2016.23052
https://doi.org/10.14722/ndss.2016.23052
https://doi.org/10.1007/978-3-031-30545-0_18
https://doi.org/10.1007/978-3-031-30545-0_18
https://doi.org/10.1007/978-3-031-30545-0_14
https://eprint.iacr.org/2023/452

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Concurrent works

	2 Preliminary
	2.1 Lattice-based Encryptions
	2.2 Polynomial Rings
	2.3 Useful Algorithms
	2.4 Private Information Retrieval
	2.5 Faster Matrix-vector Multiplication

	3 Our First PIR Construction 
	3.1 The Construction

	4 Our Second PIR Construction
	5 Our Third PIR Construction 
	5.1 The Construction
	5.2 Analysis
	5.3 Stateless Variant 

	6 Implementation and Evaluation
	6.1 Extensions and Optimizations
	6.2 Parameter Selection
	6.3 Concrete Performances for Our PIR Protocols
	6.4 Comparisons with other protocols in Category I and Category II
	6.5 Comparisons with Concurrent Stateless Protocols

	7 Acknolewgement
	References

