


SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Rami Sammak, Anna Lena Ro�haler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

stages of security that vary depending on the type and complexity

of the product and its environment. We investigate the challenges

developers encounter when trying to secure their products and

examine the reason behind them.

RQ3: What tools or methods do developers use for Software Supply

Chain security and what approaches do they consider to be e�ective?

SSC includes all stages from development to product delivery to

the consumer, requiring security for each stage with appropriate

methods. We aim to identify the security tools and methods devel-

opers use to secure their projects and to examine their experiences

regarding the e�ectiveness of these tools and methods.

2 Related Work

We present related work in two areas: research literature in the

context of SSC security and security studies involving interviews.

2.1 Software Supply Chain Security

The SSC consists of many di�erent components and processes,

resulting in the individual components being of interest to at-

tackers and researchers alike including systematizations of knowl-

edge [4, 52]. Ohm et al. analyzed 174 malicious software packages

used in real-world attacks on open source SSCs, �nding that 56%

of packages triggered their malicious behavior on installation and

61% leveraged typo squatting [51]. Ladisa et al. presented a tax-

onomy of attacks on open source supply chains validated by user

surveys with 17 domain experts and 134 developers [36]. Recent

research also investigated SSC concepts like Software Bill of Ma-

terials (SBOM) [12, 50, 62, 77] and metrics like OpenSSF Score-

cards [53, 75, 76, 78].

Dependencies act as ‘links’ in the SSC allowing projects to bene-

�t from existing code, but can also be an entry vector for attacks

and vulnerabilities. Research in this area include outdated depen-

dencies [35], dependency selection [40, 73], typosquatting [48], and

abandoned dependencies [44]. Yan et al. iteratively explored the at-

tack surface of supply chain residual vulnerabilities in open source

projects [74]. Updating and patching vulnerable dependencies is

an important maintenance step. Pashchenko et al. investigated

vulnerable dependencies in open source projects �nding that the

vast majority (81%) may be �xed by simply updating to a new

version [54].

On the side of defenses for dependencies and updates, Ferreira

et al. proposed a lightweight permission system to protect Node.js

applications [15], Gonzalez et al. presented a tool to identify ma-

licious commits [21], and Froh et al. proposed a di�erential static

analysis approach to detect malicious code in package updates [19].

As part of the SSC, package repositories are a common data

source for measurement studies, e.g., JavaScript’s npm [1, 13, 42,

72, 79, 80], Python’s PyPI [2, 67], Ruby’s gem [30], and Google’s

Android [14]. Gu et al. conducted a one year measurement study

spanning six registries and seventeen popular mirrors, covering

over 4 million packages, �nding that multiple threats exist in ev-

ery ecosystem, and some have been exploited by attackers [24].

Ladisa et al. analyzed seven ecosystems to show how attackers use

package managers and languages for arbitrary code execution in

open source supply chain attacks, identifying 3 install-time and 4

runtime techniques [37].

Past research into the security of continuous integration and con-

tinuous delivery (CI/CD) and build systems include hardening [7],

infrastructure as code [57, 58], and security strategies [11]. A num-

ber of scienti�c works focuses on GitHub action work�ows [23, 33],

including the creation of new analysis tools [9, 47]. A defensive

build approach involves reproducibly building software artifacts or

packages directly from source code repositories [22, 38, 68]. Protect-

ing development environments is an important part of SSC security,

including published research in the areas of code secret leakage

(like API keys and passwords) [6, 34, 60] and IDE plugins [41].

Previous research in the SSC context mostly focuses on mea-

surements and tooling; in this work we conducted interviews to

investigate aspects that are not necessarily visible on a code level

such as developers’ awareness, perceptions, and encountered chal-

lenges in regards to securing the SSC of their products.

2.2 Security Interview Studies

Interview studies are a well-established, qualitative research ap-

proach for in-depth evaluations in the security research community,

however, little research centers human factors along the entire SSC.

Past interviews gained insights into the perceptions and work of ex-

perts such as security professionals [10, 59], administrators [8], app

developers [65], and ML developers [45, 46]. Past studies also cov-

ered individual SSC technology topics such as open source compo-

nents [69, 70], development processes and tooling [25, 29], program-

ming languages [27], cryptography and authentication [16, 26, 32],

reproducible builds [17], and dependency selection [39, 55].

In 2024, Amft et al. conducted 20 semi-structured interviews

with experienced open source software contributors, �nding that

despite a high a�nity for security, contributors face challenges

due to heterogeneous security setups, lack of enforced guidelines,

and social factors like trust and respect that hinder the sharing of

security knowledge and best practices [3]. In a 2024 preprint, Kalu

et al. conducted interviews with 18 high-ranking industry practi-

tioners across 13 organizations, �nding that while software signing

is recommended for improving supply chain security, its adoption is

hindered by technical, organizational, and human challenges [31].

As shown by these relatedworks, interviews are awell-established

method in security and privacy research, allowing researchers to

e�ectively gather in-depth insights from software experts. While

recent research focuses on individual components of the SSC, such

as integrating [69, 70] and signing components [31], or building

reproducibly [17], our research investigates how developers holis-

tically consider security in the SSC. In a holistic overview we ex-

plore how developers consider supply chain security practices pre-

development to post-deployment, by interviewing them about all

aspects and measures during all development stages, rather than

individual processes as in prior work.

3 Methodology

In this section, we describe our research approach and the design

of the semi-structured interviews. To explore SSC security issues,

the challenges developers face, and e�ectiveness of various security

measures employed within commercial industry, we conducted 18



Developers’ Approaches to So�ware Supply Chain Security SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

semi-structured interviews with software developers and engineers

actively working in the �eld between December 2023 and February

2024.

3.1 Interview Guide

We developed an initial interview guide based on our research

questions and extended it based on relevant related work. Some

questions requiring clari�cation were accompanied by explanatory

notes designed in such a way that they would not in�uence the

course of the interview or create bias. We conducted two pilot

interviews with software developers. Based on feedback, we rear-

ranged questions between sections and rephrased others. The �nal

interview guide is provided in Appendix A.

3.2 Recruitment

Our recruitment strategy focused on currently employed software

developers from various industries with over three years of com-

mercial experience to ensure participants had experience with SSC

concepts or at least some exposure to them. We utilized multi-

ple recruitment channels (personal networks, discord, telegram) to

maintain a balance between quality and accessibility of participants.

Speci�cally, we looked for developers who satisfy our inclusion

criteria through our professional network, Discord channels, and

IT Telegram groups, where we posted messages that contained

details about our study, supplementary information, and contact

details. We aimed to recruit developers from a diverse range of

backgrounds, given that security measures may vary by country

and industry, e.g., �nancial institutions and telecommunications

may require speci�c security protocols and measures by local laws.

We chose recruitment channels to reach our desired sample, and

did not access any pre-existing pool of participants. Most of those

in our professional network we recruited opted in. As we also re-

cruited through open channels, we cannot make statements about

opt-in rates, as we do not know how many potential participants

saw our messages, and chose not to participate. We did not pay

participants for participation.

3.3 Interview Procedure

All the interviews were conducted through our university’s Zoom

instance between December 2023 and February 2024. Before start-

ing the interview, the participants were briefed about its purpose

and goals. It was clari�ed that participation was voluntary, that

respondents were free to ask for clari�cation should a question

be confusing, and that they were free to skip any question. Inter-

viewees were promised anonymity and were asked for consent to

audio record the interviews, emphasizing that the recordings will

be destroyed after transcription. Interviews lasted between 35 and

50 minutes. The semi-structured interviews were guided by the

major topics illustrated in Figure 1.

3.4 Data Analysis

A codebookwas created to systematically de�ne and catalog the var-

ious themes and concepts that emerged during the coding process.

Each entry in the codebook consisted of a code, its description, and

potentially a list of subcodes that were derived from the resulting

data.

Intro

Introduction to the interview and obtaining verbal con-

sent.

1. Biography

Participants’ experience, role, and background.

2. Awareness of Software Supply Chain

Identify participants’ familiarity with the SSC, their opin-

ions about components, and their usage of security meth-

ods.

3. Security Issues and Challenges

Participants’ opinions about the security status of their

projects and identi�cation of the challenges they face in

securing them.

4. Tools and Methods

Challenges with security tools, the methods employed

for security, and the selection of third-party components.

5. Securing the Development Lifecycle

How security is incorporated into the development pro-

cess, how time and security concerns are balanced.

Figure 1: Illustration of the �ow of topics in the semi-

structured interviews. In each section, participants were pre-

sented with general questions and corresponding follow-ups,

but were generally free to diverge from this �ow at will.

During the analysis, both thematic analysis and content analysis

were employed. The former was used to conduct an in-depth anal-

ysis of the responses to open-ended questions where respondents

shared their personal opinions. This method helped identify key pat-

terns in participants’ views, while the later one helped analyze more

structured responses, such as determining the frequency of men-

tions of di�erent tools or methodologies. This approach provided

a comprehensive understanding of the studied issues, combining

both qualitative and quantitative aspects of the data.

3.5 Ethical Consideration

In this study, we adhere to the best practices from the Menlo report

such as bene�cence, respect for persons, respect for laws, and justice.

Prior to signing up, we provided the participants with detailed

information about the study’s aims, its procedures, and the handling

of the collected data. This approach ensured that participants were

well-informed and couldmake a knowledgeable decision about their

involvement. We encouraged potential participants to ask questions

and informed them that their participation was entirely voluntary.

Prior to the interviews, we obtained participants’ informed consent

and made them aware of their right to skip any question for any

reason, whether due to lack of knowledge, preference not to disclose,

or restrictions on revealing certain information. We also informed

them of their freedom to withdraw from the study at any moment

without any consequences.



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Rami Sammak, Anna Lena Ro�haler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

All collected data was managed, processed, and stored in strict

compliance with GDPR requirements. Upon completion of tran-

scription, all original interview recordings were destroyed to further

ensure participant con�dentiality. Participants were provided with

contact information should they have any follow-up questions or

require further clari�cation after the interviews. All authors in-

volved in data collection and analysis were enrolled/employed by

an institution outside the US that does not require ethics review

for this type of research. While we did follow all best practices,

we did not undergo formal review. We took great care to follow

research best practices, as well as principles outlined in the Menlo

Report [5].

3.6 Limitations

This study includes several limitations that should be considered

when interpreting its results. The sample size of 18 developers may

not fully capture the diversity of SSC practices and challenges on

the large scale of the software ecosystem. The reliance on quali-

tative, self-reported data introduces a degree of subjectivity and

potential bias, as participants’ responses are in�uenced by their

individual experiences, knowledge, and perspectives. Furthermore,

the rapidly evolving nature of technology, security practices, and

emerging SSC frameworks means that some �ndings might quickly

become outdated. The focus solely on developers may also neglect

other key stakeholders in the SSC, such as security specialists,

project managers, QA engineers, and senior executives, whose ap-

proaches to security could o�er additional valuable perspectives.

Lastly, con�dentiality concerns may have restricted the level of de-

tail participants shared about proprietary technologies or sensitive

security measures, potentially limiting a thorough grasp of SSC

security operations in industry. To protect participants’ identities

and workplace privacy, we agreed with them not to publicly share

full transcripts.

4 Results

We present the results of 18 semi-structured interviews with partic-

ipants involved in software development. We explored their aware-

ness and perceptions regarding SSC security, and we found that

developers do not consider SSC security holistically. However, par-

ticipants mentioned considering various aspects of general software

security and open source software security.

4.1 Participants

We interviewed 18 participants, 14 of whom hold degrees in com-

puter science or computer engineering. Their industry experience

ranges from three to over ten years, with an average of eight years.

The participants’ professional roles include freelancing, web devel-

opment, DevOps engineering, embedded systems, project manage-

ment, and cloud technology. They have worked in diverse indus-

tries such as �nancial technology, healthcare, sports, e-commerce,

automotive, and government. An overview of participants’ demo-

graphics is shown in Table 1.

4.2 Developers’ Awareness of the SSC

Out of 18 participants, 11 expressed some familiarity with the con-

cept of the SSC. However, despite this general awareness, some

P.No Position Industry Country

P01 Senior DevOps Telecommunication Germany

P02 Lead Developer IT Services India

P03 Lead Developer IT Services India

P04 Senior Developer IT Services Chile

P05 Developer IT Services Germany

P06 Senior Developer Healthcare Germany

P07 Developer Telecommunication Sweden

P08 Lead Developer Manufacturing India

P09 Senior Developer Various UAE

P10 Senior Developer IT Services Germany

P11 Software Architect Banking USA

P12 Senior Developer Healthcare Pakistan

P13 Software Architect IT Services India

P14 Senior Developer Various India

P15 Senior Developer IT Services Pakistan

P16 Lead Developer IT Services Germany

P17 Developer Sports Russia

P18 Developer Banking Germany

Table 1: Participants’ demographics based on self-reporting

in the interviews. Position and Industry are binned into cat-

egories to protect participants’ identities.

participants encountered challenges in formally speaking about

SSC, and were unsure on what it formally describes and encom-

passes. While most of them understood its various elements and

were relatively accurate in discussing its essence, they expressed

doubts about the reliability of their knowledge, e.g., “I’m somewhat

familiar with software supply chain that is the end to end delivery

from software initiation till the software delivery, am I correct?” (P02).

Participant P16 also directly pointed out the problem of lack of

formalization of the concept: “We do not formalize these processes

so much.” (P16) Participant P17 expressed di�culty in providing

a concrete de�nition, but highlighted its application in their pro-

fessional activities: “Maybe I don’t know the name, the actual name,

but I do know it in practical way, I think.” (P17)

Participants are aware of the elements of the SSC but not the

term. For participants who initially struggled to �uently discuss

the SSC, we shared an explanation in Zoom’s interview chat box,

based on prior literature [20, 28, 43], as follows: “Software supply

chain refers to the entire process involved in creating and delivering

software products. Main components found in almost every software

supply chain: Source code repository (GIT, SVN etc.), Dependencies

and libraries: third-party libraries and open source dependencies,

CI/CD systems: Jenkins, Gitlab CI/CD, azure devops etc., Develop-

ment tools: IDEs, code editors, Version Control, building tools (e.g.:

apache maven, webpack etc.), Deployment: Docker, cloud, databases,

Testing: unit testing, security testing (pentesting, authentication and

authorization testing, etc.), People: developers, QA testers, project

managers, open source maintainers, product owners, Code scanning

and analysis”. After reading our explanation, some participants

noted that they were familiar with many elements of the chain, but

had trouble articulating the concept: “So I do all those things, but



Developers’ Approaches to So�ware Supply Chain Security SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

I’m not aware of the software supply chain. Yeah. But I do all those

things and do not know the word.” (P10)

Participants’ understanding of SSC security is shaped by a com-

bination of formal education and practical experience. However,

despite the general awareness, there is a gap in the accuracy and

formalization of their understanding of the concept. Participants

possess practical experience in interacting with the di�erent SSC

components but face di�culties in �uently articulating their place

in the SSC. Overall, even though most participants have at least

heard of the term, some indicated that they have a limited un-

derstanding of the SSC and do not holistically consider it in their

development processes.

Low awareness of supply chain attacks. Participants did not

report having been directly targeted by supply chain attacks. When

asked, they either volunteered issues not attacking the supply chain,

or reported patching well-publicized supply chain issues along with

other industry players, as detailed by participant P10:

“Normally these kind of issues comes with when we dis-

cover new kind of vulnerabilities in our third-part li-

brary or some kind of tool that we are using. Common

example I can give you like this or like local Log4J issue

that was in a Java library. That kind of issue sometimes

comes in. Yeah, that’s like common thing happened to

us. [. . .] we have addressed that critically and immedi-

ately.” — P10

4.3 Security Issues and Challenges

We present security issues and challenges related to tools and com-

ponents, and organizational challenges with budget, time, and re-

sources. Our interviews highlight that participants report facing

multiple challenges regarding general software security that often

in�uence supply chain security.

4.3.1 Challenges with Tools and Components. Participants reported

challenges with security tools and external components; they high-

lighted that issues like poor usability make it di�cult to detect

vulnerabilities. They further mentioned challenges with updating

vulnerability scanning tools, making it challenging for them to

detect new threats or worse—leading to them abandoning the tools.

Usability issues with security tools. Multiple participants re-

ported challenges with the usability of security tools; speci�cally,

one participant (P08) expressed frustration with a software compo-

sition analysis (SCA) security tool not predicting and reporting all

issues in early runs, leading to a fractional approach to addressing

vulnerabilities and issues being reported after initial �xes:

“So the main challenges that I see with the security tools

is they cannot predict, at least they cannot report all

the issues in the early runs of our security violation. On

every run they keep reporting di�erent issues. So for

example we use [security tool] and when I run it now,

if I get a report that it has some issues, the developers

�x them, but when we run it after two weeks or three

weeks later, it will report some issues which it should

have reported earlier, because the code base did not

change [. . .]” — P08

Participant P01 shared challenges associated with con�guring

certain security tools within the CI/CD pipeline when managing

projects with di�erent programming languages. They report that

the primary issue lies in the complexity of con�guring a static

application security testing (SAST) tool they use so that it accurately

scans projects based on the programming language they use: “[. . .]

imagine having a repo with many languages, each time you scan, you

must edit the con�guration �le. This is one challenge.” (P01) Such an

issue is an example of the practical aspects developers face when

integrating security measures into a project that uses a diverse set

of technologies.

Participant P18 mentioned a problem they encountered after in-

tegrating a SAST tool into the CI/CD pipeline where it signi�cantly

increased the project build time: “I remember once we had a problem

where we tried to bake in the tool into our pipeline, but the build time

became very long. I guess because of the codebase. It actually became

so long that it a�ected our sprints.” (P18)

Using third-party components introduces security risks.

Some participants (8) mentioned challenges in balancing the us-

age of third-party components and the need to ensure security.

Participant P17 talked about their decision to stop using certain

frameworks due to their notable security �aws in an e�ort to main-

tain the overall project security: “I can say I stopped using some

frameworks because of security problems. Like [content management

system], for example. [Content management system] is so easy to

hack, I can say. So much information by default is given through API.”

(P17) Participant P01 discussed a critical challenge that could be

posed by third-party libraries that are no longer updated, leaving

known vulnerabilities unaddressed, and mentioned having “[. . .] to

live with this latest version that is vulnerable” (P01)

Participant P10mentioned issues of third-party components ceas-

ing to provide support after a certain period of time, forcing the

search for alternatives that meet the project standards. They men-

tion the di�culty in �nding suitable replacements, often leading to

the development of in-house solutions that may greatly impact the

speed of delivery:

“Sometimes projects or libraries don’t provide support to

a certain level after a certain time period. So in that case,

if we don’t have the support, we have to �nd an alter-

native for that. So there are alternatives, but sometimes

it can be quite hard to �nd alternative that matches

our requirements and our security standards, and that’s

where you have to use an engineering of your own, and

that takes some additional time.” — P10.

Participant P11 highlighted a major challenge they faced when a

long-used open source software component underwent ownership

changes, with another company becoming the new owner. This led

to a major overhaul and the release of a new version, disrupting

the project roadmap and highlighting the potential challenges that

come with relying on third-party open source software. They men-

tioned that this challenge is “ [. . .] like that sort of throw a trainwreck

into your roadmap.” (P11)

The period duringwhich a project is stuck on an outdated version

of a component may expose it to security vulnerabilities, especially

when projects are using old dependencies’ versions that are no

longer patched. Furthermore, integrating new components often



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Rami Sammak, Anna Lena Ro�haler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

involves a reevaluation of security protocols followed within the

project. All of this requires time, which may be utilized by malicious

actors until a project is �nally updated, as outlined by one of our

participants: “Sometimes we have to make those changes because for

example once you’re switching to something new, the steps we follow

or the procedures we follow need to be adjusted accordingly, otherwise

everything will get more complicated.” (P10)

Although one of the most important security measures is au-

diting dependencies and keeping them up-to-date, the majority

of participants (13) mentioned it as one of the most challenging

security measures to implement. One participant mentions that this

comes from a lack of �nancial resources: “I believe nobody except the

banks and the military and some other high level organization does a

third party auditing to every component, and updates everything. I

think that’s way expensive. So it’s very di�cult for people to do that.”

(P04) Another reason could be compatibility issues that may be in-

troduced upon updating: “Also updating is challenging because when

you update to the latest version you may need to change some parts

of the code which could lead to code breaking.” (P08) Additionally,

participant P08 also adds that business needs can prevent updates:

“And if our business is getting solved even if the library has an old

version, we will go with it to avoid downtime.” (P08)

4.3.2 Organizational Challenges with Budget, Time, and Resources.

Participants highlighted challenges with the lack of budget allo-

cated for security, which makes it challenging to prioritize security.

Additionally, they also explained that there is a lack of focus on

security training; if they exist, they are typically generic and mostly

also do not focus on SSC.

Lack of budget for security. Participants expressed major chal-

lenges with security tools and components, including con�guration

di�culties, integration issues, and the need to stay alert to pre-

vent vulnerabilities. Furthermore, the task of managing, auditing,

and updating third-party dependencies presents another signi�-

cant challenge in software security. It is additionally hindered by

various constraints, from �nancial limitations and compatibility

issues to completing business priorities. The fear of introducing

compatibility problems or disrupting business operations further

complicates this challenge. Participant P11 expressed frustration

that they believe that organizations mainly focus on pro�t, with

security oftentimes not being prioritized:

“I think updating dependencies and validating and sign-

ing builds are probably really hard to implement. [. . .]

It’s really because most companies already have a really

long backlog of things to do for pro�t-generating, you

know, market-based sort of thing, and their �rst target

is not security” — P11

Additionally, only 9 participants receive �nancial support from

their employers to participate in courses, seminars, and workshops.

This indicates that many participants do not receive su�cient sup-

port for professional training, especially in such a critical area such

as software security.

Insu�cient security training: Learnings are motivated by

personal interest. Participants expressed a lack of support from

organizations to further their knowledge in security. Further, par-

ticipants expressed a commitment to self-education and e�orts to

keep their skills up to date despite the lack of direct motivation or �-

nancial support from employers. Many participants (10) self-initiate

their own learning process by utilizing various online courses, fo-

rums, podcasts, and other resources to expand their knowledge

independently. For instance, participant P15 gained hands-on expe-

rience in penetration testing and speci�ed educating themselves

about recent vulnerabilities.

Participant P17 mentioned that even though security-related

tasks are part of their daily work, their superiors do not actively

encourage further quali�cations in the security domain, leaving

them to pursue security skills independently:

“Yes, I do learn to get better knowledge on security, but

for personal interests, not at the company level [. . .] we

always use security tools to protect ourselves and create

our projects using some famous frameworks that also

include in the background all these securities. But there

are no trainings on how to use them in the company.” —

P17.

Many participants prefer to invest in training that directly relates

to their current projects and professional goals. This re�ects a

pragmatic approach to career development that prioritizes skills

that directly impact the workplace: “You know, I would say since my

job is more focused on DevOps and cloud computing and that stu�, I

would say I would focus more on taking courses that are bene�cial to

this domain. [. . .] Maybe in the future I might consider taking security

courses.” (P01)

Companies’ security trainings are general and abstract.

Some participants (3) whose companies o�er internal security

courses mentioned some issues within those courses. The issues

centered around security training being too general and not practi-

cal to apply in their actual projects. For instance, participant P16’s

company provided a security course; the knowledge provided was

perceived as abstract, and the program lacked the �exibility to adapt

to the speci�c needs of employees:

“[. . .] they [security trainings] can be too abstract in

general. And speci�cally the disadvantage that I saw

in it was that the things that were discussed there, I

couldn’t apply to my project. And it would be much

more useful if a person would come to our project and

see how our processes are built and o�er something of

their own.” — P16

Lack of dedicated security roles. Only �ve participants men-

tioned having security roles in their organizations that are either

�lled by a security professional or an entire unit responsible for

managing security issues: “We do have speci�c roles called security

o�cers. So they can be security o�cers of di�erent experience level.

Some of them are at a software developer level. Some of them are at a

architect level. Some of them are a principle architect level.” (P08)

The allocation of security roles depends on many factors, in-

cluding the company’s budget, project complexity, and the level

of leadership responsibility. In certain cases, these roles may be

primarily focused on conducting penetration tests, which cover

only some aspects of SSC security: “Yes, for example, in our recent

project, there was a team of the pen testers that would frequently

check the security of the product and we would get the reports. [. . .]

but I don’t think that would be enough for perfect security.” (P15)



Developers’ Approaches to So�ware Supply Chain Security SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

Other companies adopt a more comprehensive approach that

includes training for developers: “We have security in our team,

security team and security master, I think it’s called. We have that

in every team. So one person, he got additional training for security

within the company to analyze if there is any security risks that we

introduce through our code changes.” (P07)

Only four participants indicated having security roles and high

security requirements within their companies, and felt that security

was systematically pursued.

Navigating trade-o� between security and project deadlines.

Another major issue many participants frequently face is �nding a

balance between time pressure and the need for security. Partici-

pants report that often developers must make di�cult decisions on

whether to prioritize project timelines or address security concerns

at the cost of delaying its release. Most participants (11) reported

that due to strict time constraints within their company, they had

to either postpone addressing certain security issues until after

product release, or ignore them entirely:

“We also try to publish the project so quickly because we always

have a short deadline. That’s why sometimes we publish the projects

and push the security updates after the deadline.” (P17)

Further, participant P03 expressed that their clients “[d]on’t want

to make di�erent adjustments with their deadline” (P03) and men-

tioned that implementing comprehensive security measures can

sometimes slow down the development process, leading to choosing

less secure options to deliver on time: “When you are implementing

any big security scheme into the system, it’s very di�cult to meet the

deadline so we have to cross those bridges and start using less secure

things [. . .]. People are just looking for the solution not looking for

security sometimes.” (P03)

Though a majority of participants grappled with deadlines and

security, a few participants (5) mentioned taking a more system-

atic approach when faced with the issue of weighing time against

security. Speci�cally, participant P02 mentioned that they make

decisions based on the severity of the security issue, and try to

postpone deadlines where necessary. “When we are talking about

security, there are two levels to it. One is critical and risky and then we

have low security issues. So based on the priority of the security issue,

we make the decision of whether to patch it or whether to release it.”

(P02)

Almost all participants mentioned cases where they had to bal-

ance tight deadlines with the need for strong security. They ex-

pressed that this issue mainly arises from the pressure of managers

and clients who often care for features rather than security.

Balancing (mis)trust and security. Many participants (10) men-

tioned people (developers, users, and adversaries) as the most vul-

nerable component of the SSC. This includes a range of security

factors, ranging from accidental errors to malicious actors. Trust

was one of the most frequently mentioned reasons for considering

people as the most vulnerable component: “The most vulnerable

component is people. Because relying on trustworthy developers is

very hard these days. It’s very hard to �nd a trustworthy developer

with ethical and moral skills.” (P09)

Participants expressed a general mistrust in developers, espe-

cially based on seniority level. Participants P16 and P13 reported

feeling uncomfortable with junior developers having privileges and

access to sensitive parts of the project. Participant P16 exclaimed

their mistrust in junior developers by stating: “Well, in my �rst

company security was built on trust. That is, you need something, you

just get maximum access to it. Even juniors. At some point you have

access to delete all the resources. And it doesn’t really scare anybody,

it’s just like people are betting that it’s never going to happen.” (P16)

Further, participant P17 pointed out that they fear potential

sabotage or leaks of internal policies when certain team members

leave the company under unfavorable terms. This highlights the

need to strictly monitor not only the technical aspects of the project,

but also the human aspect: “[. . .] if someone leaves the company,

maybe they didn’t get paid, they might create so many problems for

the team, like leaking company code or security rules.” (P17)

Overall, many participants consider human factors as a critical

vulnerability in software security, with challenges ranging from

managing developer privileges to ensuring proper security training.

Security guidelines are not project speci�c. Some participants

(8) reported having standards or guidelines related to security. How-

ever, despite their existence, they do not always meet the needs

of teams and developers. Some participants pointed out that these

guidelines are often not too useful: “There are guidelines, yes. I don’t

think it’s as detailed as coming down to speci�c rules. Sure, there are

some rules in place, but most of the guidelines are very general and

not really applicable to everyone.” (P07)

Others �nd that the standards and practices in place can be quite

bene�cial. The e�ectiveness and applicability of these guidelines

can vary signi�cantly from one company to another, with some

companies managing to create security guidelines that participants

�nd useful: “Yes. We have best practices and coding standards. So

those documents are shared with all the developers. So whenever we

feel that we are supposed to raise a full request for a certain feature,

then we check that document.” (P02)

Participant P17 stated that they “[. . .] do not have these kind of

security standards or policies” and took the initiative in introducing

guidelines within their company, leading their company to “taking

security seriously”. Participants’ experiences with security standards

and guidelines greatly varied in our interviews, with some �nding

them too general and not particularly useful, while others bene�t

from well-de�ned practices and coding standards. Some also took

the personal initiative to introduce their organizations to guidelines.

4.4 Security Tools and Methods

In this section, we present participants’ views on security tools and

vulnerability assessment strategies. When asked about the tools

and methods they use for SSC, participants expressed strategies

they use for general software security, further highlighting a lack

of awareness about SSC.

Use of security tools despite challenges and issues. Almost

all participants speci�ed employing di�erent tools and methods to

ensure project security. Participants mentioned using static code

analysis, manual testing, keeping all third-party libraries and depen-

dencies up to date, and software updates to eliminate vulnerabilities.

Furthermore, some participants (7) emphasized the importance of

continuously monitoring deployed systems to detect anomalies and

promptly responding to security incidents: “Continuous monitor-

ing of deployed software. Deployed software means it is right now



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Rami Sammak, Anna Lena Ro�haler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

in the production stage mostly. And this is the code base which is

being served to all of the end customers. So continuous monitoring

is extremely important. [. . .] Deployment phase is one of the most

important phases.” (P13)

Dependency auditing is another method mentioned to ensure

security, despite the di�culties of conducting continuous depen-

dency audits in projects due to time and resource constraints, it is

an integral part of securing the SSC. The primary auditing tools

that were mentioned include SonarQube (9), MEND, Black Duck,

and OWASP dependency check, all of which aid in identifying and

mitigating potential security threats in project dependencies. Even

in situations where automated auditing tools are absent, partici-

pants usually resort to manual security testing: “I would say that

because also we don’t have some kind of automated testing tools, so

the reviews are mostly done manually.” (P05)

Only some teams conduct security tests at di�erent stages of

the development process. Some participants (6) also reported

conducting penetration testing, where penetration testers simulate

attacks on the application and provide a report with patch require-

ments: “The internal security team try to hack into the application

using di�erent tools and get a report which they send us, and we have

to �x certain things.” (P02)

During the software development lifecycle, participants spec-

i�ed the development and testing stages as the ones where they

focus the most on security: “The most fundamental phase where you

should focus on security is development phase. And before you do

the deployment, you apply a set of penetration testing, like trials and

quality assurance to maintain and check if your code is 100% reliable

for production.” (P09)

Key factors for selecting security tools: Popularity, latest

updates, user engagement, and known issues. All participants

reported assessing a project’s popularity and its user base, making

this one of the most frequently mentioned veri�cation methods.

The popularity of a project can indicate that it has regular security

checks and updates, which may imply that problems are detected

fairly quickly: “Well, in any case, you would have to check the libraries

you’re using, but I would say that if you’re using a very famous, well-

known library, it’s more likely that it will be free from vulnerabilities

because it’s being used by many developers in many other projects.”

(P01)

Further, 15 participants mentioned verifying when a particular

tool or component was last updated, making this the second most

mentioned vulnerability check method:

“If any tool was updated more than a year ago then we

never use it, because if that tool has not been updated

in a long time, then there is a chance that it won’t be

updated in the future also and if there is any vulner-

ability or any security issue that may come in future

there is no guarantee that it will be updated” — P13

Additionally, few participants (4) go even further and check a

project’s known issues: “If you are using GitHub, for instance, you

can track all the issues in the issue section. From there, you can see

what the community members are reporting and the vulnerabilities

which are discovered on the repository itself.” (P09) Participant P11

mentioned that their security teams perform an analysis of a project

before allowing it to be integrated: “We submit a request that we’d

like to include this library. And in in a matter of days and weeks that

[the security team] will come back and say yes or no.” (P11)

Overall, participants employ a variety of tools and methods for

security and vulnerability assessment, including static code analy-

sis, manual testing, continuous monitoring, dependency auditing,

and software updates. Participants also mentioned considering key

metrics like popularity, engagement, known issues, or update fre-

quency when selecting security tools.

No adoption of SBOMs. Participants were recruited internation-

ally at a time that SBOMs were not yet widespread. Consequently,

participants either did not know the term, or reported a more gen-

eral strategy for keeping track of components and dependencies,

if at all. For example, SBOMs will be required to comply with the

upcoming EU cyber resilience act—this is, however, not in e�ect at

the time of writing this paper, and apparently has not made it into

interviewees’ development practice yet.

4.5 Developers’ Security Recommendations

In this section, we highlight participants’ recommendations and

suggestions for better security. Even though asked speci�cally about

supply chain security, results highlight an overall need for software

security, with less focus on SSC.

Developers should be aware of vulnerabilities. Participant P13

emphasized the importance for developers to have a comprehensive

knowledge of the di�erent vulnerabilities, especially with regard

to the tools that they use: “The developers should be very well aware

of all of those security vulnerabilities and all of those development

practices, that should be followed for technologies they use.” (P13)

Developers should follow secure coding practices. Partici-

pants P02, P07, P14, and P18 point out the necessity of following

secure coding practices: “Secure coding practices are very important,

actually, if you follow them, you will secure yourself against many

OWASP listed attacks.” (P14)

Developers should carefully select third-party components.

Besides, they state that it is important to carefully select third-

party components. Participants P01 and P11 recommend utilizing

well-known and reliable repositories and software, stressing the im-

portance of verifying the security credentials of third-party vendors:

“Use really well-known repositories or software. Don’t just import or

use any libraries or tool that is lesser known, including in your IDE

environment and your development tools.” (P11)

Developers should carefully manage access rights. Lastly,

participants P12 and P16 discuss the importance of development

environments and managing access rights. Participant P12 rec-

ommends creating distinct development environments to protect

against unauthorized access, while participant P16 talks about pro-

tecting project resources frommisuse, especially by new developers:

“One of the most important is probably the protection of resources.

That is, which are involved in the project. This starts with access to

the source �les. So that a junior could not conditionally come in and

destroy the database on the �rst day.” (P16)

Our participants’ recommendations highlight the complexity

of managing the security of the SSC, including recommendations

ranging from developers’ education, careful tools selection, trusting

people, and ending with following basic security practices.



Developers’ Approaches to So�ware Supply Chain Security SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

5 Discussion

In this work we reported insights from 18 semi-structured inter-

views with experienced industry developers to formulate key rec-

ommendations for improving SSC security.

We �nd that developers care about SSC security, although not all

of our participants were initially familiar with the speci�c term. We

also �nd both a lack of awareness of speci�c SSC attacks and also

a lack of knowledge around mitigations for these attacks. While

our participants were aware, mentioned, and implement security

practices and were securing open source components—an integral

part of SSC security—we encountered no direct discussion of some

other important SSC security approaches like secure builds and the

prevention of certain deployment and runtime threats. Similarly,

interviewees were not personally familiar with SBOM and supply

chain attacks, and the Supply-chain Levels for Software Artifacts

(SLSA) framework was also never discussed.

We think this shows that more awareness work, education, and

engagement is needed about SSC security in industry, speci�cally

highlighting the unique threats and mitigations in the context of

the SSC.We also think that threat modeling with developers, as well

as educational outreach in industry, can help increase awareness

and skills for developers to protect the SSC. Finally, as we once

again observe the importance of open source security for supply

chain, we recommend e�orts that secure and make transparent the

security of open source components. Our work identi�ed several

issues like usability issues with existing security tools, we implore

future work to determinewhether these stem from a lack of training,

insu�cient documentation, or other user experience issues.

Based on our work, we recommend that the research community

as well as industry leaders that demonstrably have expertise in

securing the supply chain [61, 66] engage with a broad audience

of developers to disseminate current advances in supply chain

security.

6 Conclusion

We conducted 18 in-depth, semi-structured interviews with experi-

enced software developers from industry between December 2023

and February 2024 to explore their experiences and challenges in

securing the SSC. Our investigation focused on their awareness of

SSC, the hurdles they encounter, and the e�ectiveness of the strate-

gies and tools they employ. We discovered that while developers

are generally aware of SSC’s importance, they face signi�cant ob-

stacles in implementing e�ective security measures. These include

issues with security tools, dependency management, and balancing

security with development time. We also �nd a lack of awareness

of new attacks and also defenses speci�c to supply chain security.

Acknowledgments

This work is supported in part by NSF grant CNS-2207008 and

CNS-2206865. Any �ndings and opinions expressed in this material

are those of the authors and do not necessarily re�ect the views

of the funding agencies. We want to thank all interviewees for

their participation and appreciate the knowledge and valuable time

that they have generously given. We also thank the anonymous

reviewers for their valuable feedback.

References
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why do developers use trivial packages? an empirical case study
on npm. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering. 385–395.

[2] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2023. Empirical analysis
of security vulnerabilities in python packages. Empirical Software Engineering
28, 3 (2023), 59.

[3] Sabrina Amft, Sandra Höltervennho�, Rebecca Panskus, Karola Marky, and
Sascha Fahl. 2024. Everyone for Themselves? A Qualitative Study about In-
dividual Security Setups of Open Source Software Contributors. In 45th IEEE
Symposium on Security and Privacy, IEEE S&P 2024, May 20-23, 2024. IEEE, IEEE
Computer Society.

[4] Na�sa Anjum, Nazmus Sakib, Juanjose Rodriguez-Cardenas, Corey Brookins,
Ava Norouzinia, Asia Shavers, Miranda Dominguez, Marie Nassif, and Hossain
Shahriar. 2023. Uncovering Software Supply Chains Vulnerability: A Review
of Attack Vectors, Stakeholders, and Regulatory Frameworks. In 2023 IEEE 47th
Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 1816–
1821.

[5] Michael Bailey, David Dittrich, Erin Kenneally, and Doug Maughan. 2012. The
menlo report. IEEE Security & Privacy 10, 2 (2012), 71–75.

[6] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie Williams. 2022.
What are the practices for secret management in software artifacts?. In 2022 IEEE
Secure Development Conference (SecDev). IEEE, 69–76.

[7] Len Bass, Ralph Holz, Paul Rimba, An Binh Tran, and Liming Zhu. 2015. Securing
a deployment pipeline. In 2015 IEEE/ACM 3rd International Workshop on Release
Engineering. IEEE, 4–7.

[8] Lujo Bauer, Lorrie Faith Cranor, Robert W Reeder, Michael K Reiter, and Kami
Vaniea. 2009. Real life challenges in access-control management. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 899–908.

[9] Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic security
assessment of github actions work�ows. In Proceedings of the 2022 ACMWorkshop
on Software Supply Chain O�ensive Research and Ecosystem Defenses. 37–45.

[10] David Botta, Rodrigo Werlinger, André Gagné, Konstantin Beznosov, Lee Iver-
son, Sidney Fels, and Brian Fisher. 2007. Towards Understanding IT Secu-
rity Professionals and Their Tools. In Proceedings of the 3rd Symposium on
Usable Privacy and Security (Pittsburgh, Pennsylvania, USA) (SOUPS ’07). As-
sociation for Computing Machinery, New York, NY, USA, 100–111. https:
//doi.org/10.1145/1280680.1280693

[11] Ramaswamy Chandramouli, Frederick Kautz, and Santiago Torres-Arias. 2024.
Strategies for the Integration of Software Supply Chain Security in DevSecOps
CI/CD Pipelines.

[12] Cybersecurity and Infrastructure Security Agency (CISA). [n. d.]. Software Bill
of Materials (SBOM). https://www.cisa.gov/sbom.

[13] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th international conference on mining software repositories. 181–191.

[14] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.
Keep me updated: An empirical study of third-party library updatability on
android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2187–2200.

[15] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-
taining malicious package updates in npm with a lightweight permission system.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 1334–1346.

[16] Konstantin Fischer, Ivana Trummová, Phillip Gajland, Yasemin Acar, Sascha
Fahl, and Angela Sasse. 2024. On The Challenges of Bringing Cryptography
from Papers to Products: Results from an Interview Study with Experts. In In
33rd USENIX Security Symposium, USENIX Security ’24, Philadelphia, PA, USA,
August 14-16, 2024. USENIX Association. https://www.usenix.org/conference/
usenixsecurity24/presentation/�scher

[17] Marcel Fourné, Dominik Wermke, William Enck, Sascha Fahl, and Yasemin
Acar. 2023. It’s like �ossing your teeth: On the Importance and Challenges
of Reproducible Builds for Software Supply Chain Security. In In 44th IEEE
Symposium on Security and Privacy.

[18] Andres Freund. 2024. backdoor in upstream xz/liblzma leading to ssh server
compromise. https://www.openwall.com/lists/oss-security/2024/03/29/4.

[19] Fabian Niklas Froh, Matías Federico Gobbi, and Johannes Kinder. 2023. Di�eren-
tial Static Analysis for Detecting Malicious Updates to Open Source Packages. In
Proceedings of the 2023 Workshop on Software Supply Chain O�ensive Research
and Ecosystem Defenses (SCORED’23). ACM, 41–49.

[20] Betul Gokkaya, Leonardo Aniello, and Basel Halak. 2023. Software supply chain:
review of attacks, risk assessment strategies and security controls. arXiv preprint
arXiv:2305.14157 (2023).

[21] Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schäfer.
2021. Anomalicious: Automated detection of anomalous and potentially malicious
commits on github. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 258–267.



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Rami Sammak, Anna Lena Ro�haler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

[22] Pronnoy Goswami, Saksham Gupta, Zhiyuan Li, Na Meng, and Daphne Yao. 2020.
Investigating the reproducibility of npm packages. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 677–681.

[23] Yacong Gu, Lingyun Ying, Huajun Chai, Chu Qia, Haixin Duam, and Xing Gao.
2023. Continuous Intrusion: Characterizing the Security of Continuous Integra-
tion Services. In 44th IEEE Symposium on Security and Privacy (S&P’23). IEEE.

[24] Yacong Gu, Lingyun Ying, Yingyuan Pu, Xiao Hu, Huajun Chai, Ruimin Wang,
Xing Gao, and Haixin Dua. 2023. Investigating Package Related Security Threats
in Software Registries. In 44th IEEE Symposium on Security and Privacy (S&P’23).
IEEE.

[25] Marco Gut�eisch, Jan H. Klemmer, Niklas Busch, Yasemin Acar, M. Angela Sasse,
and Sascha Fahl. 2022. How Does Usable Security (Not) End Up in Software
Products? Results From a Qualitative Interview Study. In 43rd IEEE Symposium
on Security and Privacy, IEEE S&P 2022, May 22-26, 2022. IEEE Computer Society.

[26] Julie M Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman.
2018. " We make it a big deal in the company": Security Mindsets in Organizations
that Develop Cryptographic Products.. In SOUPS USENIX Security Symposium.
357–373.

[27] Sandra Höltervennho�, Philip Klostermeyer, Noah Wöhler, Yasemin Acar, and
Sascha Fahl. 2023. “I wouldn’t want my unsafe code to run my pacemaker”: An
Interview Study on the Use, Comprehension, and Perceived Risks of Unsafe Rust.
In 32nd USENIX Security Symposium (USENIX Security 23). 2509–2525.

[28] HF Md Jobair, M Tasnim, H Shahriar, M Valero, A Rahman, and F Wu. 2022.
Investigating Novel Approaches to Defend Software Supply Chain Attacks. In
33rd IEEE Int. Symp. Softw. Reliab. Eng.

[29] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to �nd bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[30] Jaap Kabbedijk and Slinger Jansen. 2011. Steering Insight: An Exploration of
the Ruby Software Ecosystem. In Software Business, Björn Regnell, Inge van de
Weerd, and Olga De Troyer (Eds.). Vol. 80. Springer Berlin Heidelberg, Berlin,
Heidelberg, 44–55. https://doi.org/10.1007/978-3-642-21544-5_5 Series Title:
Lecture Notes in Business Information Processing.

[31] Kelechi G Kalu, Tanya Singla, Chinenye Okafor, Santiago Torres-Arias, and
James C Davis. 2024. An Industry Interview Study of Software Signing for Supply
Chain Security. arXiv preprint arXiv:2406.08198 (2024).

[32] Jan H Klemmer, Marco Gut�eisch, Christian Stransky, Yasemin Acar, M Angela
Sasse, and Sascha Fahl. 2023. “Make Them Change it Every Week!”: A Qualitative
Exploration of Online Developer Advice on Usable and Secure Authentication. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 2740–2754.

[33] Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, SiddharthMuralee,
Bradley Reaves, Alexandros Kapravelos, and Aravind Machiry. 2022. Character-
izing the Security of Github CI Work�ows. In 31st USENIX Security Symposium
(USENIX Sec’22). 2747–2763.

[34] Alexander Krause, Jan H Klemmer, Nicolas Huaman, Dominik Wermke, Yasemin
Acar, and Sascha Fahl. 2023. Pushed by Accident: A {Mixed-Methods} Study on
Strategies of Handling Secret Information in Source Code Repositories. In 32nd
USENIX Security Symposium (USENIX Security 23). 2527–2544.

[35] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? An empirical study
on the impact of security advisories on library migration. Empirical Software
Engineering 23 (2018), 384–417.

[36] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. Sok:
Taxonomy of attacks on open-source software supply chains. In 2023 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 1509–1526.

[37] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Mar-
tinez, and Olivier Barais. 2023. The Hitchhiker’s Guide to Malicious Third-Party
Dependencies. In Proceedings of the 2023 Workshop on Software Supply Chain
O�ensive Research and Ecosystem Defenses (SCORED’23). ACM, 65–74.

[38] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible builds: Increasing the
integrity of software supply chains. IEEE Software 39, 2 (2021), 62–70.

[39] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
245–256.

[40] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering.
245–256.

[41] Elizabeth Lin, Igibek Koishybayev, Trevor Dunlap, William Enck, and Alexandros
Kapravelos. 2024. UntrustIDE: Exploiting Weaknesses in VS Code Extensions.
In Proceedings of the ISOC Network and Distributed Systems Symposium (NDSS).
Internet Society.

[42] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem. In Proceedings of the 44th International Con-
ference on Software Engineering. 672–684.

[43] Marcela S Melara and Mic Bowman. 2022. What is Software Supply Chain
Security? arXiv preprint arXiv:2209.04006 (2022).

[44] Courtney Miller, Christian Kästner, and Bogdan Vasilescu. 2023. “We Feel Like
We’re Winging It:” A Study on Navigating Open-Source Dependency Aban-
donment. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1281–
1293.

[45] JaronMink, Hadjer Benkraouda, Limin Yang, Arridhana Ciptadi, Ali Ahmadzadeh,
Daniel Votipka, and Gang Wang. 2023. Everybody’s got ML, tell me what else
you have: Practitioners’ perception of ML-based security tools and explanations.
In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2068–2085.

[46] Jaron Mink, Harjot Kaur, Juliane Schmüser, Sascha Fahl, and Yasemin Acar. 2023.
“Security8B=>C<~5 84;3, � ′< a stats guy”’: A Qualitative Root Cause Analysis of
Barriers to Adversarial Machine Learning Defenses in Industry. In 32nd USENIX
Security Symposium (USENIX Security 23). 3763–3780.

[47] Siddharth Muralee, Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl,
Brad Reaves, Antonio Bianchi, William Enck, Alexandros Kapravelos, and Ar-
avind Machiry. 2023. ARGUS: A Framework for Staged Static Taint Analysis of
GitHub Work�ows and Actions. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX, 6983–7000.

[48] Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo
De Carli. 2023. Beyond typosquatting: an in-depth look at package confusion. In
32nd USENIX Security Symposium (USENIX Security 23). 3439–3456.

[49] Alfred Ng. 2018. US: Russia’s NotPetya the Most Destructive Cyberat-
tack Ever. https://www.cnet.com/news/privacy/uk-said-russia-is-behind-
destructive-2017-cyberattack-in-ukraine/ Checked 2023-11-10..

[50] Sabato Nocera, Simone Romano, Massimiliano Di Penta, Rita Francese, and
Giuseppe Scanniello. 2023. Software bill of materials adoption: a mining study
from GitHub. In 2023 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 39–49.

[51] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-
ber’s knife collection: A review of open source software supply chain attacks. In
Detection of Intrusions and Malware, and Vulnerability Assessment: 17th Interna-
tional Conference, DIMVA 2020, Lisbon, Portugal, June 24–26, 2020, Proceedings 17.
Springer, 23–43.

[52] Chinenye Okafor, Taylor R Schorlemmer, Santiago Torres-Arias, and James C
Davis. 2022. Sok: Analysis of software supply chain security by establishing
secure design properties. In Proceedings of the 2022 Workshop on Software Supply
Chain O�ensive Research and Ecosystem Defenses (SCORED’22). ACM, 15–24.

[53] OpenSSF. [n. d.]. OpenSSF Scorecard. https://securityscorecards.dev/.
[54] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio

Massacci. 2018. Vulnerable open source dependencies: Counting those that
matter. In Proceedings of the 12th ACM/IEEE international symposium on empirical
software engineering and measurement. 1–10.

[55] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A qualitative study of
dependency management and its security implications. In Proceedings of the 2020
ACM SIGSAC conference on computer and communications security. 1513–1531.

[56] Sean Peisert, Bruce Schneier, Hamed Okhravi, Fabio Massacci, Terry Benzel, Carl
Landwehr, Mohammad Mannan, Jelena Mirkovic, Atul Prakash, and James Bret
Michael. 2021. Perspectives on the solarwinds incident. IEEE Security & Privacy
19, 2 (2021), 7–13.

[57] Akond Rahman, E�at Farhana, and Laurie Williams. 2020. The ‘as code’ activi-
ties: Development anti-patterns for infrastructure as code. Empirical Software
Engineering 25 (2020), 3430–3467.

[58] Akond Rahman, Chris Parnin, and LaurieWilliams. 2019. The seven sins: Security
smells in infrastructure as code scripts. In IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 164–175.

[59] Mario Silic and Andrea Back. 2013. Information Security and Open Source
Dual Use Security Software: Trust Paradox. In Open Source Software: Quality
Veri�cation, Etiel Petrinja, Giancarlo Succi, Nabil El Ioini, and Alberto Sillitti
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 194–206.

[60] Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and
Senthil Mani. 2015. Detecting and mitigating secret-key leaks in source code
repositories. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, 396–400.

[61] Sonatype. 2024. What is a software supply chain? https://www.sonatype.com/
resources/software-supply-chain-management-part-1-what-is-a-software-
supply-chain

[62] Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta,
Daniel M German, and Denys Poshyvanyk. 2024. Boms away! inside the minds of
stakeholders: A comprehensive study of bills of materials for software systems. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[63] The White House. 2021. Executive Order on America’s Supply Chains
(EO14017). https://www.whitehouse.gov/brie�ng-room/presidential-actions/
2021/05/12/executive-order-on-improving-the-nations-cybersecurity/.



Developers’ Approaches to So�ware Supply Chain Security SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

[64] The White House. 2021. Executive Order on Improving the Nation’s Cyber-
security (EO14028). https://www.whitehouse.gov/brie�ng-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/.

[65] TylerW Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. 2018. Security
during application development: An application security expert perspective. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–12.

[66] Greg Tystahl, Yasemin Acar, Michel Cukier, William Enck, Christian Kastner,
Alexandros Kapravelos, Dominik Wermke, and Laurie Williams. 2024. S3C2
Summit 2024-03: Industry Secure Supply Chain Summit. arXiv:2405.08762 [cs.CR]
https://arxiv.org/abs/2405.08762

[67] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 644–655.

[68] Duc-Ly Vu, FabioMassacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta.
2021. Lastpymile: identifying the discrepancy between sources and packages.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 780–792.

[69] Dominik Wermke, Jan H Klemmer, Noah Wöhler, Juliane Schmüser, Harshini Sri
Ramulu, Yasemin Acar, and Sascha Fahl. 2023. "Always Contribute Back": A
Qualitative Study on Security Challenges of the Open Source Supply Chain. In
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1545–1560.

[70] Dominik Wermke, Noah Wöhler, Jan H Klemmer, Marcel Fourné, Yasemin Acar,
and Sascha Fahl. 2022. Committed to trust: A qualitative study on security &
trust in open source software projects. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 1880–1896.

[71] Evan D Wol�, KM Growley, MG Gruden, et al. 2021. Navigating the solarwinds
supply chain attack. The Procurement Lawyer 56, 2 (2021).

[72] ElizabethWyss, Lorenzo De Carli, and Drew Davidson. 2023. (Nothing But) Many
Eyes Make All Bugs Shallow. In Proceedings of the 2023 Workshop on Software
Supply Chain O�ensive Research and Ecosystem Defenses (SCORED’23). ACM,
53–63.

[73] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2019. Why rein-
venting the wheels? An empirical study on library reuse and re-implementation.
Empirical Software Engineering 25, 1 (Sept. 2019), 755–789. https://doi.org/10.
1007/s10664-019-09771-0

[74] Dapeng Yan, Yuqing Niu, Kui Liu, Zhe Liu, Zhiming Liu, and Tegawendé F
Bissyandé. 2021. Estimating the attack surface from residual vulnerabilities in
open source software supply chain. In 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS). IEEE, 493–502.

[75] Awad A Younis, Yi Hu, and Ramadan Abdunabi. 2023. Analyzing Software
Supply Chain Security Risks in Industrial Control System Protocols: An OpenSSF
Scorecard Approach. In 2023 10th International Conference on Dependable Systems
and Their Applications (DSA). IEEE, 302–311.

[76] Nusrat Zahan, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan, and
Laurie Williams. 2023. Openssf scorecard: On the path toward ecosystem-wide
automated security metrics. IEEE Security & Privacy 21, 6 (2023), 76–88.

[77] Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and Laurie
Williams. 2023. Software bills of materials are required. are we there yet? IEEE
Security & Privacy 21, 2 (2023), 82–88.

[78] Nusrat Zahan, Shohanuzzaman Shohan, Dan Harris, and Laurie Williams. 2023.
Do software security practices yield fewer vulnerabilities?. In 2023 IEEE/ACM
45th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 292–303.

[79] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What are weak links in the npm supply
chain?. In Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice. 331–340.

[80] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC’19) (Santa Clara, CA, USA). USENIX, USA, 995–1010.

A Interview Guide
Q1: Introduction

(1) Please tell me a bit about your biography, how did you get into the �eld of
software development?
(a) What is your experience in software development?
(b) What industry do you work in?
(c) Do you attend any conferences, workshops or seminars as part of your

professional activities?
(2) Does your employer o�er bene�ts in the form of funding (full or partial) for

educational courses?
If yes: (a) Have you taken software security courses as part of this funding?

(b) Do you consider this experience useful? Has it been helpful in your
work? How?

If no: (a) In which �eld would you take a course if the opportunity were available?

Q2: Awareness of Software Supply Chain and Security Methods

(1) Are you familiar with the concept of software supply chain?
If yes: (a) Can you name key components of a software supply chain?

[Share information and ask b & c]
(b) Which components do you use in your daily work?
(c) In your opinion, which component is the most vulnerable in terms of

security? Why?
[Next share the main methods for SSC security and proceed]

(2) Were any of these methods familiar to you?
If yes: (a) Which methods do you use in your everyday work?

(b) In your opinion, which of these methods are the most challenging to
implement or use? Why?

(3) Does your company organize seminars or workshops on security-related
topics?

(4) Have you used any sources of information to broaden your knowledge of
security? If so, which ones?

Q3: Security Issues and Challenges

(1) How would you rate the security status of the current project you are working
on on a scale from 1 to 5, where 1 indicates insecure and 5 indicates highly
secure? Do you think there are security vulnerabilities?

(2) What are the main challenges you face in securing your project (e.g.: time,
cost, speci�city of some tools: di�cult to use or need additional training, etc.)?

(3) Are there speci�c guidelines or standards that you follow to ensure project
security?

(4) What recommendations would you give to other developers regarding ap-
proaches to ensuring the security of their projects? What would you consider
very important in terms of project security?

(5) Can you think of any supply chain related security issues your projects have
faced in the past?

Q4: Tools and Methods

(1) What problems do you most often encounter when using security tools? Have
you had to change or stop using certain tools or components (e.g.: frequent
updates which caused inconveniences, or the project was abandoned, etc.)? If
so, why?
(a) What do you think could be improved or enhanced?

(2) If and when you want to include third-party components into your projects,
do you check them for vulnerabilities? If so, how do you do that?

(3) Do you audit the dependencies used in your project?
(4) Are there roles in your project related to security?
(5) Do you keep your knowledge of new security tools and techniques up to date?

If yes, how?

Q5: Security in the Development Lifecycle

(1) During which phases of the development process do you place speci�c em-
phasis on security?

(2) Do you sometimes have to �nd a compromise between security concerns and
the need for speed of development?
(a) How do you allocate time for product development and security? What do

you prioritize?
(3) Have you had to make changes in the development process to improve secu-

rity? If yes, please tell us what changes were made?
(4) If you want to use third-party components or tools in your projects, what is

the criteria for choosing them, what metrics?
(a) Do you document all third-party dependencies or tools that are included

in the project?
(5) Opinion about having security guidelines within a company/team/project?


	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Supply Chain Security
	2.2 Security Interview Studies

	3 Methodology
	3.1 Interview Guide
	3.2 Recruitment
	3.3 Interview Procedure
	3.4 Data Analysis
	3.5 Ethical Consideration
	3.6 Limitations

	4 Results
	4.1 Participants
	4.2 Developers' Awareness of the SSC
	4.3 Security Issues and Challenges
	4.4 Security Tools and Methods
	4.5 Developers’ Security Recommendations

	5 Discussion
	6 Conclusion
	References
	A Interview Guide

