Check for
Updates

Developers’ Approaches to Software Supply Chain Security:
An Interview Study

Rami Sammak Anna Lena Rotthaler Harshini Sri Ramulu
rami.412222@yahoo.com anna.lena.rotthaler@uni- harshini.sri.ramulu@uni-
Paderborn University paderborn.de paderborn.de

Paderborn, Germany

Dominik Wermke

dwermke@ncsu.edu
North Carolina State University
Raleigh, NC, USA

Abstract

Software Supply Chain Security (SSC) involves numerous stake-
holders, processes and tools that work together to deliver a software
product. A vulnerability in one element can cascade through the
entire system and potentially affect thousands of dependents and
millions of end users. Despite the SSC’s importance and the increas-
ing awareness around its security, existing research mainly focuses
on either technical aspects, exploring various attack vectors and
their mitigation, or it empirically studies developers’ challenges, but
mainly within the open source context. To better develop support-
ive tooling and education, we need to understand how developers
consider and mitigate supply chain security challenges.

We conducted 18 semi-structured interviews with experienced
developers actively working in industry to gather in-depth insights
into their experiences, encountered challenges, and the effective-
ness of various strategies to secure the SSC. We find that the de-
velopers are generally interested in securing the supply chain, but
encounter many obstacles in implementing effective security mea-
sures, both specific to SSC security and for general security. De-
velopers also mention a wide set of approaches and methods to
secure their projects, but mostly report general secure software
engineering methodologies and seem to be mostly unaware of SSC
specific threats and mitigations.

CCS Concepts

+ Security and privacy — Usability in security and privacy.

Keywords

Software Supply Chain, Software Security, Cybersecurity, Inter-
views, Developers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1240-1/24/10

https://doi.org/10.1145/3689944.3696160

Paderborn University
Paderborn, Germany

56

Paderborn University
Paderborn, Germany

Yasemin Acar
yasemin.acar@uni-paderborn.de
Paderborn University and George

Washington University
Paderborn, Germany and USA

ACM Reference Format:

Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik Wermke,
and Yasemin Acar. 2024. Developers’ Approaches to Software Supply Chain
Security: An Interview Study. In Proceedings of the 2024 Workshop on Soft-
ware Supply Chain Offensive Research and Ecosystem Defenses (SCORED °24),
October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3689944.3696160

1 Introduction

The Software Supply Chain (SSC) includes the processes, materi-
als, and stakeholders involved in delivering software products or
services to consumers. As part of this chain, using existing tools,
resources, and infrastructure allows for cost and time effective soft-
ware product development and distribution without having to cre-
ate everything from scratch. Relying on external tools and libraries
also means that the companies using them cannot directly control
and ensure the security of these external components. In response to
prominent attacks such as the SolarWinds Orion breach [56, 71], the
NotPetya ransomware [49], and the recent xz-utils backdoor [18],
a concerted effort by both governments [63, 64] and industry has
been made to develop a set of guidelines and practices that ad-
dress the growing threat of SSC attacks. Because of its complexity
and many stakeholders, implementing SSC security is often not
straightforward. Especially developers might face numerous obsta-
cles and challenges, ranging from establishing trust for third-party
software components to the difficulty of ensuring that external
code components are vulnerability-free and up-to-date.

In this work we explore the current state of securing the SSC in
industry, specifically by investigating how industry developers deal
with the hurdles they face when trying to secure their SSC, analyz-
ing the thinking process behind adopting certain security measures
and neglecting others, and studying the factors that influence and
the perceived effectiveness of the tools they employ.

RQ1: How aware are developers of the Software Supply Chain?
We investigate if and how aware developers are of the SSC in
general, processes, and defenses, including secure coding practices,
consideration of human factors, sharing experiences, and informing
themselves about current threats and technologies.

RQ2: What challenges do developers face when trying to implement
Software Supply Chain security measures? SSC involves different

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

stages of security that vary depending on the type and complexity
of the product and its environment. We investigate the challenges
developers encounter when trying to secure their products and
examine the reason behind them.

RQ3: What tools or methods do developers use for Software Supply
Chain security and what approaches do they consider to be effective?
SSC includes all stages from development to product delivery to
the consumer, requiring security for each stage with appropriate
methods. We aim to identify the security tools and methods devel-
opers use to secure their projects and to examine their experiences
regarding the effectiveness of these tools and methods.

2 Related Work

We present related work in two areas: research literature in the
context of SSC security and security studies involving interviews.

2.1 Software Supply Chain Security

The SSC consists of many different components and processes,
resulting in the individual components being of interest to at-
tackers and researchers alike including systematizations of knowl-
edge [4, 52]. Ohm et al. analyzed 174 malicious software packages
used in real-world attacks on open source SSCs, finding that 56%
of packages triggered their malicious behavior on installation and
61% leveraged typo squatting [51]. Ladisa et al. presented a tax-
onomy of attacks on open source supply chains validated by user
surveys with 17 domain experts and 134 developers [36]. Recent
research also investigated SSC concepts like Software Bill of Ma-
terials (SBOM) [12, 50, 62, 77] and metrics like OpenSSF Score-
cards [53, 75, 76, 78].

Dependencies act as ‘links’ in the SSC allowing projects to bene-
fit from existing code, but can also be an entry vector for attacks
and vulnerabilities. Research in this area include outdated depen-
dencies [35], dependency selection [40, 73], typosquatting [48], and
abandoned dependencies [44]. Yan et al. iteratively explored the at-
tack surface of supply chain residual vulnerabilities in open source
projects [74]. Updating and patching vulnerable dependencies is
an important maintenance step. Pashchenko et al. investigated
vulnerable dependencies in open source projects finding that the
vast majority (81%) may be fixed by simply updating to a new
version [54].

On the side of defenses for dependencies and updates, Ferreira
et al. proposed a lightweight permission system to protect Node.js
applications [15], Gonzalez et al. presented a tool to identify ma-
licious commits [21], and Froh et al. proposed a differential static
analysis approach to detect malicious code in package updates [19].

As part of the SSC, package repositories are a common data
source for measurement studies, e.g., JavaScript’s npm [1, 13, 42,
72,79, 80], Python’s PyPI [2, 67], Ruby’s gem [30], and Google’s
Android [14]. Gu et al. conducted a one year measurement study
spanning six registries and seventeen popular mirrors, covering
over 4 million packages, finding that multiple threats exist in ev-
ery ecosystem, and some have been exploited by attackers [24].
Ladisa et al. analyzed seven ecosystems to show how attackers use
package managers and languages for arbitrary code execution in

57

Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

open source supply chain attacks, identifying 3 install-time and 4
runtime techniques [37].

Past research into the security of continuous integration and con-
tinuous delivery (CI/CD) and build systems include hardening [7],
infrastructure as code [57, 58], and security strategies [11]. A num-
ber of scientific works focuses on GitHub action workflows [23, 33],
including the creation of new analysis tools [9, 47]. A defensive
build approach involves reproducibly building software artifacts or
packages directly from source code repositories [22, 38, 68]. Protect-
ing development environments is an important part of SSC security,
including published research in the areas of code secret leakage
(like API keys and passwords) [6, 34, 60] and IDE plugins [41].

Previous research in the SSC context mostly focuses on mea-
surements and tooling; in this work we conducted interviews to
investigate aspects that are not necessarily visible on a code level
such as developers’ awareness, perceptions, and encountered chal-
lenges in regards to securing the SSC of their products.

2.2 Security Interview Studies

Interview studies are a well-established, qualitative research ap-
proach for in-depth evaluations in the security research community,
however, little research centers human factors along the entire SSC.
Past interviews gained insights into the perceptions and work of ex-
perts such as security professionals [10, 59], administrators [8], app
developers [65], and ML developers [45, 46]. Past studies also cov-
ered individual SSC technology topics such as open source compo-
nents [69, 70], development processes and tooling [25, 29], program-
ming languages [27], cryptography and authentication [16, 26, 32],
reproducible builds [17], and dependency selection [39, 55].

In 2024, Amft et al. conducted 20 semi-structured interviews
with experienced open source software contributors, finding that
despite a high affinity for security, contributors face challenges
due to heterogeneous security setups, lack of enforced guidelines,
and social factors like trust and respect that hinder the sharing of
security knowledge and best practices [3]. In a 2024 preprint, Kalu
et al. conducted interviews with 18 high-ranking industry practi-
tioners across 13 organizations, finding that while software signing
is recommended for improving supply chain security, its adoption is
hindered by technical, organizational, and human challenges [31].

As shown by these related works, interviews are a well-established
method in security and privacy research, allowing researchers to
effectively gather in-depth insights from software experts. While
recent research focuses on individual components of the SSC, such
as integrating [69, 70] and signing components [31], or building
reproducibly [17], our research investigates how developers holis-
tically consider security in the SSC. In a holistic overview we ex-
plore how developers consider supply chain security practices pre-
development to post-deployment, by interviewing them about all
aspects and measures during all development stages, rather than
individual processes as in prior work.

3 Methodology

In this section, we describe our research approach and the design
of the semi-structured interviews. To explore SSC security issues,
the challenges developers face, and effectiveness of various security
measures employed within commercial industry, we conducted 18

Developers’ Approaches to Software Supply Chain Security

semi-structured interviews with software developers and engineers
actively working in the field between December 2023 and February
2024.

3.1 Interview Guide

We developed an initial interview guide based on our research
questions and extended it based on relevant related work. Some
questions requiring clarification were accompanied by explanatory
notes designed in such a way that they would not influence the
course of the interview or create bias. We conducted two pilot
interviews with software developers. Based on feedback, we rear-
ranged questions between sections and rephrased others. The final
interview guide is provided in Appendix A.

3.2 Recruitment

Our recruitment strategy focused on currently employed software
developers from various industries with over three years of com-
mercial experience to ensure participants had experience with SSC
concepts or at least some exposure to them. We utilized multi-
ple recruitment channels (personal networks, discord, telegram) to
maintain a balance between quality and accessibility of participants.
Specifically, we looked for developers who satisfy our inclusion
criteria through our professional network, Discord channels, and
IT Telegram groups, where we posted messages that contained
details about our study, supplementary information, and contact
details. We aimed to recruit developers from a diverse range of
backgrounds, given that security measures may vary by country
and industry, e.g., financial institutions and telecommunications
may require specific security protocols and measures by local laws.
We chose recruitment channels to reach our desired sample, and
did not access any pre-existing pool of participants. Most of those
in our professional network we recruited opted in. As we also re-
cruited through open channels, we cannot make statements about
opt-in rates, as we do not know how many potential participants
saw our messages, and chose not to participate. We did not pay
participants for participation.

3.3 Interview Procedure

All the interviews were conducted through our university’s Zoom
instance between December 2023 and February 2024. Before start-
ing the interview, the participants were briefed about its purpose
and goals. It was clarified that participation was voluntary, that
respondents were free to ask for clarification should a question
be confusing, and that they were free to skip any question. Inter-
viewees were promised anonymity and were asked for consent to
audio record the interviews, emphasizing that the recordings will
be destroyed after transcription. Interviews lasted between 35 and
50 minutes. The semi-structured interviews were guided by the
major topics illustrated in Figure 1.

3.4 Data Analysis

A codebook was created to systematically define and catalog the var-
ious themes and concepts that emerged during the coding process.
Each entry in the codebook consisted of a code, its description, and
potentially a list of subcodes that were derived from the resulting
data.

58

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

1. Biography
Participants’ experience, role, and background.

¥
2. Awareness of Software Supply Chain
Identify participants’ familiarity with the SSC, their opin-
ions about components, and their usage of security meth-
ods.

¥

3. Security Issues and Challenges

Participants’ opinions about the security status of their
projects and identification of the challenges they face in
securing them.

4. Tools and Methods

Challenges with security tools, the methods employed

for security, and the selection of third-party components.
¥

5. Securing the Development Lifecycle

How security is incorporated into the development pro-

cess, how time and security concerns are balanced.

Figure 1: Illustration of the flow of topics in the semi-
structured interviews. In each section, participants were pre-
sented with general questions and corresponding follow-ups,
but were generally free to diverge from this flow at will.

During the analysis, both thematic analysis and content analysis
were employed. The former was used to conduct an in-depth anal-
ysis of the responses to open-ended questions where respondents
shared their personal opinions. This method helped identify key pat-
terns in participants’ views, while the later one helped analyze more
structured responses, such as determining the frequency of men-
tions of different tools or methodologies. This approach provided
a comprehensive understanding of the studied issues, combining
both qualitative and quantitative aspects of the data.

3.5 Ethical Consideration

In this study, we adhere to the best practices from the Menlo report
such as beneficence, respect for persons, respect for laws, and justice.
Prior to signing up, we provided the participants with detailed
information about the study’s aims, its procedures, and the handling
of the collected data. This approach ensured that participants were
well-informed and could make a knowledgeable decision about their
involvement. We encouraged potential participants to ask questions
and informed them that their participation was entirely voluntary.
Prior to the interviews, we obtained participants’ informed consent
and made them aware of their right to skip any question for any
reason, whether due to lack of knowledge, preference not to disclose,
or restrictions on revealing certain information. We also informed
them of their freedom to withdraw from the study at any moment
without any consequences.

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

All collected data was managed, processed, and stored in strict
compliance with GDPR requirements. Upon completion of tran-
scription, all original interview recordings were destroyed to further
ensure participant confidentiality. Participants were provided with
contact information should they have any follow-up questions or
require further clarification after the interviews. All authors in-
volved in data collection and analysis were enrolled/employed by
an institution outside the US that does not require ethics review
for this type of research. While we did follow all best practices,
we did not undergo formal review. We took great care to follow
research best practices, as well as principles outlined in the Menlo
Report [5].

3.6 Limitations

This study includes several limitations that should be considered
when interpreting its results. The sample size of 18 developers may
not fully capture the diversity of SSC practices and challenges on
the large scale of the software ecosystem. The reliance on quali-
tative, self-reported data introduces a degree of subjectivity and
potential bias, as participants’ responses are influenced by their
individual experiences, knowledge, and perspectives. Furthermore,
the rapidly evolving nature of technology, security practices, and
emerging SSC frameworks means that some findings might quickly
become outdated. The focus solely on developers may also neglect
other key stakeholders in the SSC, such as security specialists,
project managers, QA engineers, and senior executives, whose ap-
proaches to security could offer additional valuable perspectives.
Lastly, confidentiality concerns may have restricted the level of de-
tail participants shared about proprietary technologies or sensitive
security measures, potentially limiting a thorough grasp of SSC
security operations in industry. To protect participants’ identities
and workplace privacy, we agreed with them not to publicly share
full transcripts.

4 Results

We present the results of 18 semi-structured interviews with partic-
ipants involved in software development. We explored their aware-
ness and perceptions regarding SSC security, and we found that
developers do not consider SSC security holistically. However, par-
ticipants mentioned considering various aspects of general software
security and open source software security.

4.1 Participants

We interviewed 18 participants, 14 of whom hold degrees in com-
puter science or computer engineering. Their industry experience
ranges from three to over ten years, with an average of eight years.
The participants’ professional roles include freelancing, web devel-
opment, DevOps engineering, embedded systems, project manage-
ment, and cloud technology. They have worked in diverse indus-
tries such as financial technology, healthcare, sports, e-commerce,
automotive, and government. An overview of participants’ demo-
graphics is shown in Table 1.

4.2 Developers’ Awareness of the SSC

Out of 18 participants, 11 expressed some familiarity with the con-
cept of the SSC. However, despite this general awareness, some

59

Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

P.No Position Industry Country
Po1 Senior DevOps Telecommunication Germany
P02 Lead Developer IT Services India

P03 Lead Developer IT Services India

P04 Senior Developer IT Services Chile
P05 Developer IT Services Germany
P06 Senior Developer = Healthcare Germany
P07 Developer Telecommunication Sweden
P08 Lead Developer Manufacturing India

P09 Senior Developer ~ Various UAE

P10 Senior Developer IT Services Germany
P11 Software Architect Banking USA

P12 Senior Developer =~ Healthcare Pakistan
P13 Software Architect IT Services India

P14 Senior Developer Various India

P15 Senior Developer IT Services Pakistan
P16 Lead Developer IT Services Germany
P17 Developer Sports Russia
P18 Developer Banking Germany

Table 1: Participants’ demographics based on self-reporting
in the interviews. Position and Industry are binned into cat-
egories to protect participants’ identities.

participants encountered challenges in formally speaking about
SSC, and were unsure on what it formally describes and encom-
passes. While most of them understood its various elements and
were relatively accurate in discussing its essence, they expressed
doubts about the reliability of their knowledge, e.g., “I'm somewhat
familiar with software supply chain that is the end to end delivery
from software initiation till the software delivery, am I correct?” (P02).
Participant P16 also directly pointed out the problem of lack of
formalization of the concept: “We do not formalize these processes
so much.” (P16) Participant P17 expressed difficulty in providing
a concrete definition, but highlighted its application in their pro-
fessional activities: “Maybe I don’t know the name, the actual name,
but I do know it in practical way, I think.” (P17)

Participants are aware of the elements of the SSC but not the
term. For participants who initially struggled to fluently discuss
the SSC, we shared an explanation in Zoom’s interview chat box,
based on prior literature [20, 28, 43], as follows: “Software supply
chain refers to the entire process involved in creating and delivering
software products. Main components found in almost every software
supply chain: Source code repository (GIT, SVN etc.), Dependencies
and libraries: third-party libraries and open source dependencies,
CI/CD systems: Jenkins, Gitlab CI/CD, azure devops etc., Develop-
ment tools: IDEs, code editors, Version Control, building tools (e.g.:
apache maven, webpack etc.), Deployment: Docker, cloud, databases,
Testing: unit testing, security testing (pentesting, authentication and
authorization testing, etc.), People: developers, QA testers, project
managers, open source maintainers, product owners, Code scanning
and analysis”. After reading our explanation, some participants
noted that they were familiar with many elements of the chain, but
had trouble articulating the concept: “So I do all those things, but

Developers’ Approaches to Software Supply Chain Security

I’'m not aware of the software supply chain. Yeah. But I do all those
things and do not know the word.” (P10)

Participants’ understanding of SSC security is shaped by a com-
bination of formal education and practical experience. However,
despite the general awareness, there is a gap in the accuracy and
formalization of their understanding of the concept. Participants
possess practical experience in interacting with the different SSC
components but face difficulties in fluently articulating their place
in the SSC. Overall, even though most participants have at least
heard of the term, some indicated that they have a limited un-
derstanding of the SSC and do not holistically consider it in their
development processes.

Low awareness of supply chain attacks. Participants did not
report having been directly targeted by supply chain attacks. When
asked, they either volunteered issues not attacking the supply chain,
or reported patching well-publicized supply chain issues along with
other industry players, as detailed by participant P10:

“Normally these kind of issues comes with when we dis-
cover new kind of vulnerabilities in our third-part li-
brary or some kind of tool that we are using. Common
example I can give you like this or like local Log47 issue
that was in a Java library. That kind of issue sometimes
comes in. Yeah, that’s like common thing happened to
us. [...] we have addressed that critically and immedi-
ately” — P10

4.3

We present security issues and challenges related to tools and com-
ponents, and organizational challenges with budget, time, and re-
sources. Our interviews highlight that participants report facing
multiple challenges regarding general software security that often
influence supply chain security.

Security Issues and Challenges

4.3.1 Challenges with Tools and Components. Participants reported
challenges with security tools and external components; they high-
lighted that issues like poor usability make it difficult to detect
vulnerabilities. They further mentioned challenges with updating
vulnerability scanning tools, making it challenging for them to
detect new threats or worse—leading to them abandoning the tools.

Usability issues with security tools. Multiple participants re-
ported challenges with the usability of security tools; specifically,
one participant (P08) expressed frustration with a software compo-
sition analysis (SCA) security tool not predicting and reporting all
issues in early runs, leading to a fractional approach to addressing
vulnerabilities and issues being reported after initial fixes:

“So the main challenges that I see with the security tools
is they cannot predict, at least they cannot report all
the issues in the early runs of our security violation. On
every run they keep reporting different issues. So for
example we use [security tool] and when I run it now,
if I get a report that it has some issues, the developers
fix them, but when we run it after two weeks or three
weeks later, it will report some issues which it should
have reported earlier, because the code base did not
change [...]” — P08

60

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

Participant P01 shared challenges associated with configuring
certain security tools within the CI/CD pipeline when managing
projects with different programming languages. They report that
the primary issue lies in the complexity of configuring a static
application security testing (SAST) tool they use so that it accurately
scans projects based on the programming language they use: “[...]
imagine having a repo with many languages, each time you scan, you
must edit the configuration file. This is one challenge.” (P01) Such an
issue is an example of the practical aspects developers face when
integrating security measures into a project that uses a diverse set
of technologies.

Participant P18 mentioned a problem they encountered after in-
tegrating a SAST tool into the CI/CD pipeline where it significantly
increased the project build time: “I remember once we had a problem
where we tried to bake in the tool into our pipeline, but the build time
became very long. I guess because of the codebase. It actually became
so long that it affected our sprints.” (P18)

Using third-party components introduces security risks.
Some participants (8) mentioned challenges in balancing the us-
age of third-party components and the need to ensure security.
Participant P17 talked about their decision to stop using certain
frameworks due to their notable security flaws in an effort to main-
tain the overall project security: “I can say I stopped using some
frameworks because of security problems. Like [content management
system], for example. [Content management system] is so easy to
hack, I can say. So much information by default is given through APL”
(P17) Participant P01 discussed a critical challenge that could be
posed by third-party libraries that are no longer updated, leaving
known vulnerabilities unaddressed, and mentioned having “[...] to
live with this latest version that is vulnerable” (P01)

Participant P10 mentioned issues of third-party components ceas-
ing to provide support after a certain period of time, forcing the
search for alternatives that meet the project standards. They men-
tion the difficulty in finding suitable replacements, often leading to
the development of in-house solutions that may greatly impact the
speed of delivery:

“Sometimes projects or libraries don’t provide support to
a certain level after a certain time period. So in that case,
if we don’t have the support, we have to find an alter-
native for that. So there are alternatives, but sometimes
it can be quite hard to find alternative that matches
our requirements and our security standards, and that’s
where you have to use an engineering of your own, and
that takes some additional time.” — P10.

Participant P11 highlighted a major challenge they faced when a
long-used open source software component underwent ownership
changes, with another company becoming the new owner. This led
to a major overhaul and the release of a new version, disrupting
the project roadmap and highlighting the potential challenges that
come with relying on third-party open source software. They men-
tioned that this challenge is “ [...] like that sort of throw a trainwreck
into your roadmap.” (P11)

The period during which a project is stuck on an outdated version
of a component may expose it to security vulnerabilities, especially
when projects are using old dependencies’ versions that are no
longer patched. Furthermore, integrating new components often

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

involves a reevaluation of security protocols followed within the
project. All of this requires time, which may be utilized by malicious
actors until a project is finally updated, as outlined by one of our
participants: “Sometimes we have to make those changes because for
example once you're switching to something new, the steps we follow
or the procedures we follow need to be adjusted accordingly, otherwise
everything will get more complicated.” (P10)

Although one of the most important security measures is au-
diting dependencies and keeping them up-to-date, the majority
of participants (13) mentioned it as one of the most challenging
security measures to implement. One participant mentions that this
comes from a lack of financial resources: “I believe nobody except the
banks and the military and some other high level organization does a
third party auditing to every component, and updates everything. I
think that’s way expensive. So it’s very difficult for people to do that.”
(P04) Another reason could be compatibility issues that may be in-
troduced upon updating: “Also updating is challenging because when
you update to the latest version you may need to change some parts
of the code which could lead to code breaking.” (P08) Additionally,
participant P08 also adds that business needs can prevent updates:
“And if our business is getting solved even if the library has an old
version, we will go with it to avoid downtime.” (P08)

4.3.2 Organizational Challenges with Budget, Time, and Resources.
Participants highlighted challenges with the lack of budget allo-
cated for security, which makes it challenging to prioritize security.
Additionally, they also explained that there is a lack of focus on
security training; if they exist, they are typically generic and mostly
also do not focus on SSC.

Lack of budget for security. Participants expressed major chal-
lenges with security tools and components, including configuration
difficulties, integration issues, and the need to stay alert to pre-
vent vulnerabilities. Furthermore, the task of managing, auditing,
and updating third-party dependencies presents another signifi-
cant challenge in software security. It is additionally hindered by
various constraints, from financial limitations and compatibility
issues to completing business priorities. The fear of introducing
compatibility problems or disrupting business operations further
complicates this challenge. Participant P11 expressed frustration
that they believe that organizations mainly focus on profit, with
security oftentimes not being prioritized:

“I think updating dependencies and validating and sign-
ing builds are probably really hard to implement. [...]
It’s really because most companies already have a really
long backlog of things to do for profit-generating, you
know, market-based sort of thing, and their first target
is not security” — P11

Additionally, only 9 participants receive financial support from
their employers to participate in courses, seminars, and workshops.
This indicates that many participants do not receive sufficient sup-
port for professional training, especially in such a critical area such
as software security.

Insufficient security training: Learnings are motivated by
personal interest. Participants expressed a lack of support from
organizations to further their knowledge in security. Further, par-
ticipants expressed a commitment to self-education and efforts to

61

Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

keep their skills up to date despite the lack of direct motivation or fi-
nancial support from employers. Many participants (10) self-initiate
their own learning process by utilizing various online courses, fo-
rums, podcasts, and other resources to expand their knowledge
independently. For instance, participant P15 gained hands-on expe-
rience in penetration testing and specified educating themselves
about recent vulnerabilities.

Participant P17 mentioned that even though security-related
tasks are part of their daily work, their superiors do not actively
encourage further qualifications in the security domain, leaving
them to pursue security skills independently:

“Yes, I do learn to get better knowledge on security, but
for personal interests, not at the company level [...] we
always use security tools to protect ourselves and create
our projects using some famous frameworks that also
include in the background all these securities. But there
are no trainings on how to use them in the company.” —
P17.

Many participants prefer to invest in training that directly relates
to their current projects and professional goals. This reflects a
pragmatic approach to career development that prioritizes skills
that directly impact the workplace: “You know, I would say since my
Jjob is more focused on DevOps and cloud computing and that stuff, I
would say I would focus more on taking courses that are beneficial to
this domain. [...] Maybe in the future I might consider taking security
courses.” (P01)

Companies’ security trainings are general and abstract.
Some participants (3) whose companies offer internal security
courses mentioned some issues within those courses. The issues
centered around security training being too general and not practi-
cal to apply in their actual projects. For instance, participant P16’s
company provided a security course; the knowledge provided was
perceived as abstract, and the program lacked the flexibility to adapt
to the specific needs of employees:

“[...] they [security trainings] can be too abstract in
general. And specifically the disadvantage that I saw
in it was that the things that were discussed there, I
couldn’t apply to my project. And it would be much
more useful if a person would come to our project and
see how our processes are built and offer something of
their own.” — P16

Lack of dedicated security roles. Only five participants men-
tioned having security roles in their organizations that are either
filled by a security professional or an entire unit responsible for
managing security issues: “We do have specific roles called security
officers. So they can be security officers of different experience level.
Some of them are at a software developer level. Some of them are at a
architect level. Some of them are a principle architect level.” (P08)
The allocation of security roles depends on many factors, in-
cluding the company’s budget, project complexity, and the level
of leadership responsibility. In certain cases, these roles may be
primarily focused on conducting penetration tests, which cover
only some aspects of SSC security: “Yes, for example, in our recent
project, there was a team of the pen testers that would frequently
check the security of the product and we would get the reports. [...]
but I don’t think that would be enough for perfect security.” (P15)

Developers’ Approaches to Software Supply Chain Security

Other companies adopt a more comprehensive approach that
includes training for developers: “We have security in our team,
security team and security master, I think it’s called. We have that
in every team. So one person, he got additional training for security
within the company to analyze if there is any security risks that we
introduce through our code changes.” (P07)

Only four participants indicated having security roles and high
security requirements within their companies, and felt that security
was systematically pursued.

Navigating trade-off between security and project deadlines.
Another major issue many participants frequently face is finding a
balance between time pressure and the need for security. Partici-
pants report that often developers must make difficult decisions on
whether to prioritize project timelines or address security concerns
at the cost of delaying its release. Most participants (11) reported
that due to strict time constraints within their company, they had
to either postpone addressing certain security issues until after
product release, or ignore them entirely:

“We also try to publish the project so quickly because we always
have a short deadline. That’s why sometimes we publish the projects
and push the security updates after the deadline.” (P17)

Further, participant P03 expressed that their clients “[d]on’t want
to make different adjustments with their deadline” (P03) and men-
tioned that implementing comprehensive security measures can
sometimes slow down the development process, leading to choosing
less secure options to deliver on time: “When you are implementing
any big security scheme into the system, it’s very difficult to meet the
deadline so we have to cross those bridges and start using less secure
things [...]. People are just looking for the solution not looking for
security sometimes.” (P03)

Though a majority of participants grappled with deadlines and
security, a few participants (5) mentioned taking a more system-
atic approach when faced with the issue of weighing time against
security. Specifically, participant P02 mentioned that they make
decisions based on the severity of the security issue, and try to
postpone deadlines where necessary. “When we are talking about
security, there are two levels to it. One is critical and risky and then we
have low security issues. So based on the priority of the security issue,
we make the decision of whether to patch it or whether to release it.”
(Po2)

Almost all participants mentioned cases where they had to bal-
ance tight deadlines with the need for strong security. They ex-
pressed that this issue mainly arises from the pressure of managers
and clients who often care for features rather than security.

Balancing (mis)trust and security. Many participants (10) men-
tioned people (developers, users, and adversaries) as the most vul-
nerable component of the SSC. This includes a range of security
factors, ranging from accidental errors to malicious actors. Trust
was one of the most frequently mentioned reasons for considering
people as the most vulnerable component: “The most vulnerable
component is people. Because relying on trustworthy developers is
very hard these days. It’s very hard to find a trustworthy developer
with ethical and moral skills.” (P09)

Participants expressed a general mistrust in developers, espe-
cially based on seniority level. Participants P16 and P13 reported
feeling uncomfortable with junior developers having privileges and

62

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

access to sensitive parts of the project. Participant P16 exclaimed
their mistrust in junior developers by stating: “Well, in my first
company security was built on trust. That is, you need something, you
Jjust get maximum access to it. Even juniors. At some point you have
access to delete all the resources. And it doesn’t really scare anybody,
it’s just like people are betting that it’s never going to happen.” (P16)
Further, participant P17 pointed out that they fear potential
sabotage or leaks of internal policies when certain team members
leave the company under unfavorable terms. This highlights the
need to strictly monitor not only the technical aspects of the project,
but also the human aspect: “[...] if someone leaves the company,
maybe they didn’t get paid, they might create so many problems for
the team, like leaking company code or security rules.” (P17)
Overall, many participants consider human factors as a critical
vulnerability in software security, with challenges ranging from
managing developer privileges to ensuring proper security training.

Security guidelines are not project specific. Some participants
(8) reported having standards or guidelines related to security. How-
ever, despite their existence, they do not always meet the needs
of teams and developers. Some participants pointed out that these
guidelines are often not too useful: “There are guidelines, yes. I don’t
think it’s as detailed as coming down to specific rules. Sure, there are
some rules in place, but most of the guidelines are very general and
not really applicable to everyone.” (P07)

Others find that the standards and practices in place can be quite
beneficial. The effectiveness and applicability of these guidelines
can vary significantly from one company to another, with some
companies managing to create security guidelines that participants
find useful: “Yes. We have best practices and coding standards. So
those documents are shared with all the developers. So whenever we
feel that we are supposed to raise a full request for a certain feature,
then we check that document.” (P02)

Participant P17 stated that they “[...] do not have these kind of
security standards or policies” and took the initiative in introducing
guidelines within their company, leading their company to “taking
security seriously”. Participants’ experiences with security standards
and guidelines greatly varied in our interviews, with some finding
them too general and not particularly useful, while others benefit
from well-defined practices and coding standards. Some also took
the personal initiative to introduce their organizations to guidelines.

4.4 Security Tools and Methods

In this section, we present participants’ views on security tools and
vulnerability assessment strategies. When asked about the tools
and methods they use for SSC, participants expressed strategies
they use for general software security, further highlighting a lack
of awareness about SSC.

Use of security tools despite challenges and issues. Almost
all participants specified employing different tools and methods to
ensure project security. Participants mentioned using static code
analysis, manual testing, keeping all third-party libraries and depen-
dencies up to date, and software updates to eliminate vulnerabilities.
Furthermore, some participants (7) emphasized the importance of
continuously monitoring deployed systems to detect anomalies and
promptly responding to security incidents: “Continuous monitor-
ing of deployed software. Deployed software means it is right now

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

in the production stage mostly. And this is the code base which is
being served to all of the end customers. So continuous monitoring
is extremely important. [...] Deployment phase is one of the most
important phases.” (P13)

Dependency auditing is another method mentioned to ensure
security, despite the difficulties of conducting continuous depen-
dency audits in projects due to time and resource constraints, it is
an integral part of securing the SSC. The primary auditing tools
that were mentioned include SonarQube (9), MEND, Black Duck,
and OWASP dependency check, all of which aid in identifying and
mitigating potential security threats in project dependencies. Even
in situations where automated auditing tools are absent, partici-
pants usually resort to manual security testing: “I would say that
because also we don’t have some kind of automated testing tools, so
the reviews are mostly done manually.” (P05)

Only some teams conduct security tests at different stages of
the development process. Some participants (6) also reported
conducting penetration testing, where penetration testers simulate
attacks on the application and provide a report with patch require-
ments: “The internal security team try to hack into the application
using different tools and get a report which they send us, and we have
to fix certain things.” (P02)

During the software development lifecycle, participants spec-
ified the development and testing stages as the ones where they
focus the most on security: “The most fundamental phase where you
should focus on security is development phase. And before you do
the deployment, you apply a set of penetration testing, like trials and
quality assurance to maintain and check if your code is 100% reliable
for production.” (P09)

Key factors for selecting security tools: Popularity, latest
updates, user engagement, and known issues. All participants
reported assessing a project’s popularity and its user base, making
this one of the most frequently mentioned verification methods.
The popularity of a project can indicate that it has regular security
checks and updates, which may imply that problems are detected
fairly quickly: “Well, in any case, you would have to check the libraries
you’re using, but I would say that if you’re using a very famous, well-
known library, it’s more likely that it will be free from vulnerabilities
because it’s being used by many developers in many other projects.”
(Po1)

Further, 15 participants mentioned verifying when a particular
tool or component was last updated, making this the second most
mentioned vulnerability check method:

“If any tool was updated more than a year ago then we
never use it, because if that tool has not been updated
in a long time, then there is a chance that it won’t be
updated in the future also and if there is any vulner-
ability or any security issue that may come in future
there is no guarantee that it will be updated” — P13

Additionally, few participants (4) go even further and check a
project’s known issues: “If you are using GitHub, for instance, you
can track all the issues in the issue section. From there, you can see
what the community members are reporting and the vulnerabilities
which are discovered on the repository itself.” (P09) Participant P11
mentioned that their security teams perform an analysis of a project
before allowing it to be integrated: “We submit a request that we'd

63

Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

like to include this library. And in in a matter of days and weeks that
[the security team] will come back and say yes or no.” (P11)

Overall, participants employ a variety of tools and methods for
security and vulnerability assessment, including static code analy-
sis, manual testing, continuous monitoring, dependency auditing,
and software updates. Participants also mentioned considering key
metrics like popularity, engagement, known issues, or update fre-
quency when selecting security tools.

No adoption of SBOMs. Participants were recruited internation-
ally at a time that SBOMs were not yet widespread. Consequently,
participants either did not know the term, or reported a more gen-
eral strategy for keeping track of components and dependencies,
if at all. For example, SBOMs will be required to comply with the
upcoming EU cyber resilience act—this is, however, not in effect at
the time of writing this paper, and apparently has not made it into
interviewees’ development practice yet.

4.5 Developers’ Security Recommendations

In this section, we highlight participants’ recommendations and
suggestions for better security. Even though asked specifically about
supply chain security, results highlight an overall need for software
security, with less focus on SSC.

Developers should be aware of vulnerabilities. Participant P13
emphasized the importance for developers to have a comprehensive
knowledge of the different vulnerabilities, especially with regard
to the tools that they use: “The developers should be very well aware
of all of those security vulnerabilities and all of those development
practices, that should be followed for technologies they use.” (P13)

Developers should follow secure coding practices. Partici-
pants P02, P07, P14, and P18 point out the necessity of following
secure coding practices: “Secure coding practices are very important,
actually, if you follow them, you will secure yourself against many
OWASP listed attacks.” (P14)

Developers should carefully select third-party components.
Besides, they state that it is important to carefully select third-
party components. Participants P01 and P11 recommend utilizing
well-known and reliable repositories and software, stressing the im-
portance of verifying the security credentials of third-party vendors:
“Use really well-known repositories or software. Don’t just import or
use any libraries or tool that is lesser known, including in your IDE
environment and your development tools.” (P11)

Developers should carefully manage access rights. Lastly,
participants P12 and P16 discuss the importance of development
environments and managing access rights. Participant P12 rec-
ommends creating distinct development environments to protect
against unauthorized access, while participant P16 talks about pro-
tecting project resources from misuse, especially by new developers:
“One of the most important is probably the protection of resources.
That is, which are involved in the project. This starts with access to
the source files. So that a junior could not conditionally come in and
destroy the database on the first day.” (P16)

Our participants’ recommendations highlight the complexity
of managing the security of the SSC, including recommendations
ranging from developers’ education, careful tools selection, trusting
people, and ending with following basic security practices.

Developers’ Approaches to Software Supply Chain Security

5 Discussion

In this work we reported insights from 18 semi-structured inter-
views with experienced industry developers to formulate key rec-
ommendations for improving SSC security.

We find that developers care about SSC security, although not all
of our participants were initially familiar with the specific term. We
also find both a lack of awareness of specific SSC attacks and also
a lack of knowledge around mitigations for these attacks. While
our participants were aware, mentioned, and implement security
practices and were securing open source components—an integral
part of SSC security—we encountered no direct discussion of some
other important SSC security approaches like secure builds and the
prevention of certain deployment and runtime threats. Similarly,
interviewees were not personally familiar with SBOM and supply
chain attacks, and the Supply-chain Levels for Software Artifacts
(SLSA) framework was also never discussed.

We think this shows that more awareness work, education, and
engagement is needed about SSC security in industry, specifically
highlighting the unique threats and mitigations in the context of
the SSC. We also think that threat modeling with developers, as well
as educational outreach in industry, can help increase awareness
and skills for developers to protect the SSC. Finally, as we once
again observe the importance of open source security for supply
chain, we recommend efforts that secure and make transparent the
security of open source components. Our work identified several
issues like usability issues with existing security tools, we implore
future work to determine whether these stem from a lack of training,
insufficient documentation, or other user experience issues.

Based on our work, we recommend that the research community
as well as industry leaders that demonstrably have expertise in
securing the supply chain [61, 66] engage with a broad audience
of developers to disseminate current advances in supply chain
security.

6 Conclusion

We conducted 18 in-depth, semi-structured interviews with experi-
enced software developers from industry between December 2023
and February 2024 to explore their experiences and challenges in
securing the SSC. Our investigation focused on their awareness of
SSC, the hurdles they encounter, and the effectiveness of the strate-
gies and tools they employ. We discovered that while developers
are generally aware of SSC’s importance, they face significant ob-
stacles in implementing effective security measures. These include
issues with security tools, dependency management, and balancing
security with development time. We also find a lack of awareness
of new attacks and also defenses specific to supply chain security.

Acknowledgments

This work is supported in part by NSF grant CNS-2207008 and
CNS-2206865. Any findings and opinions expressed in this material
are those of the authors and do not necessarily reflect the views
of the funding agencies. We want to thank all interviewees for
their participation and appreciate the knowledge and valuable time
that they have generously given. We also thank the anonymous
reviewers for their valuable feedback.

64

SCORED 24, October 14-18, 2024, Salt Lake City, UT, USA

References

[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad
Shihab. 2017. Why do developers use trivial packages? an empirical case study
on npm. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering. 385-395.

[2] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2023. Empirical analysis
of security vulnerabilities in python packages. Empirical Software Engineering
28, 3 (2023), 59.

[3] Sabrina Amft, Sandra Holtervennhoff, Rebecca Panskus, Karola Marky, and
Sascha Fahl. 2024. Everyone for Themselves? A Qualitative Study about In-
dividual Security Setups of Open Source Software Contributors. In 45th IEEE
Symposium on Security and Privacy, IEEE S&P 2024, May 20-23, 2024. IEEE, IEEE
Computer Society.

[4] Nafisa Anjum, Nazmus Sakib, Juanjose Rodriguez-Cardenas, Corey Brookins,
Ava Norouzinia, Asia Shavers, Miranda Dominguez, Marie Nassif, and Hossain
Shahriar. 2023. Uncovering Software Supply Chains Vulnerability: A Review
of Attack Vectors, Stakeholders, and Regulatory Frameworks. In 2023 IEEE 47th
Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 1816~
1821.

[5] Michael Bailey, David Dittrich, Erin Kenneally, and Doug Maughan. 2012. The
menlo report. IEEE Security & Privacy 10, 2 (2012), 71-75.

[6] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie Williams. 2022.
What are the practices for secret management in software artifacts?. In 2022 IEEE
Secure Development Conference (SecDev). IEEE, 69-76.

[7] Len Bass, Ralph Holz, Paul Rimba, An Binh Tran, and Liming Zhu. 2015. Securing
a deployment pipeline. In 2015 IEEE/ACM 3rd International Workshop on Release
Engineering. IEEE, 4-7.

[8] Lujo Bauer, Lorrie Faith Cranor, Robert W Reeder, Michael K Reiter, and Kami

Vaniea. 2009. Real life challenges in access-control management. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. 899-908.

Giacomo Benedetti, Luca Verderame, and Alessio Merlo. 2022. Automatic security

assessment of github actions workflows. In Proceedings of the 2022 ACM Workshop

on Software Supply Chain Offensive Research and Ecosystem Defenses. 37-45.

David Botta, Rodrigo Werlinger, André Gagné, Konstantin Beznosov, Lee Iver-

son, Sidney Fels, and Brian Fisher. 2007. Towards Understanding IT Secu-

rity Professionals and Their Tools. In Proceedings of the 3rd Symposium on

Usable Privacy and Security (Pittsburgh, Pennsylvania, USA) (SOUPS °07). As-

sociation for Computing Machinery, New York, NY, USA, 100-111. https:

//doi.org/10.1145/1280680.1280693

Ramaswamy Chandramouli, Frederick Kautz, and Santiago Torres-Arias. 2024.

Strategies for the Integration of Software Supply Chain Security in DevSecOps

CI/CD Pipelines.

Cybersecurity and Infrastructure Security Agency (CISA). [n.d.]. Software Bill

of Materials (SBOM). https://www.cisa.gov/sbom.

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of

security vulnerabilities in the npm package dependency network. In Proceedings

of the 15th international conference on mining software repositories. 181-191.

Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. 2017.

Keep me updated: An empirical study of third-party library updatability on

android. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. 2187-2200.

Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kastner. 2021. Con-

taining malicious package updates in npm with a lightweight permission system.

In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).

IEEE, 1334-1346.

Konstantin Fischer, Ivana Trummova, Phillip Gajland, Yasemin Acar, Sascha

Fahl, and Angela Sasse. 2024. On The Challenges of Bringing Cryptography

from Papers to Products: Results from an Interview Study with Experts. In In

33rd USENIX Security Symposium, USENIX Security °24, Philadelphia, PA, USA,

August 14-16, 2024. USENIX Association. https://www.usenix.org/conference/

usenixsecurity24/presentation/fischer

Marcel Fourné, Dominik Wermke, William Enck, Sascha Fahl, and Yasemin

Acar. 2023. It’s like flossing your teeth: On the Importance and Challenges

of Reproducible Builds for Software Supply Chain Security. In In 44th IEEE

Symposium on Security and Privacy.

Andres Freund. 2024. backdoor in upstream xz/liblzma leading to ssh server

compromise. https://www.openwall.com/lists/oss-security/2024/03/29/4.

Fabian Niklas Froh, Matias Federico Gobbi, and Johannes Kinder. 2023. Differen-

tial Static Analysis for Detecting Malicious Updates to Open Source Packages. In

Proceedings of the 2023 Workshop on Software Supply Chain Offensive Research

and Ecosystem Defenses (SCORED’23). ACM, 41-49.

Betul Gokkaya, Leonardo Aniello, and Basel Halak. 2023. Software supply chain:

review of attacks, risk assessment strategies and security controls. arXiv preprint

arXiv:2305.14157 (2023).

Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schifer.

2021. Anomalicious: Automated detection of anomalous and potentially malicious

commits on github. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 258-267.

=

[10

[11

[12

=
&

[14

[15

[16

(17

(18

[19

)
=

[21

SCORED °24, October 14-18, 2024, Salt Lake City, UT, USA

[22]

[23]

[24]

[25]

[26

[27

[28]

[29]

[30

[31

[32]

w
&

[34]

[35]

[36]

[37

[38

[39

T
S

[41]

[42]

Pronnoy Goswami, Saksham Gupta, Zhiyuan Li, Na Meng, and Daphne Yao. 2020.
Investigating the reproducibility of npm packages. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 677-681.
Yacong Gu, Lingyun Ying, Huajun Chai, Chu Qia, Haixin Duam, and Xing Gao.
2023. Continuous Intrusion: Characterizing the Security of Continuous Integra-
tion Services. In 44th IEEE Symposium on Security and Privacy (S&P’23). IEEE.
Yacong Gu, Lingyun Ying, Yingyuan Pu, Xiao Hu, Huajun Chai, Ruimin Wang,
Xing Gao, and Haixin Dua. 2023. Investigating Package Related Security Threats
in Software Registries. In 44th IEEE Symposium on Security and Privacy (S&P’23).
IEEE.

Marco Gutfleisch, Jan H. Klemmer, Niklas Busch, Yasemin Acar, M. Angela Sasse,
and Sascha Fahl. 2022. How Does Usable Security (Not) End Up in Software
Products? Results From a Qualitative Interview Study. In 43rd IEEE Symposium
on Security and Privacy, IEEE S&P 2022, May 22-26, 2022. IEEE Computer Society.
Julie M Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman.
2018. " We make it a big deal in the company": Security Mindsets in Organizations
that Develop Cryptographic Products.. In SOUPS USENIX Security Symposium.
357-373.

Sandra Holtervennhoff, Philip Klostermeyer, Noah Wéhler, Yasemin Acar, and
Sascha Fahl. 2023. “I wouldn’t want my unsafe code to run my pacemaker”: An
Interview Study on the Use, Comprehension, and Perceived Risks of Unsafe Rust.
In 32nd USENIX Security Symposium (USENIX Security 23). 2509-2525.

HF Md Jobair, M Tasnim, H Shahriar, M Valero, A Rahman, and F Wu. 2022.
Investigating Novel Approaches to Defend Software Supply Chain Attacks. In
33rd IEEE Int. Symp. Softw. Reliab. Eng.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672-681.
Jaap Kabbedijk and Slinger Jansen. 2011. Steering Insight: An Exploration of
the Ruby Software Ecosystem. In Software Business, Bjorn Regnell, Inge van de
Weerd, and Olga De Troyer (Eds.). Vol. 80. Springer Berlin Heidelberg, Berlin,
Heidelberg, 44-55. https://doi.org/10.1007/978-3-642-21544-5_5 Series Title:
Lecture Notes in Business Information Processing.

Kelechi G Kalu, Tanya Singla, Chinenye Okafor, Santiago Torres-Arias, and
James C Davis. 2024. An Industry Interview Study of Software Signing for Supply
Chain Security. arXiv preprint arXiv:2406.08198 (2024).

Jan H Klemmer, Marco Gutfleisch, Christian Stransky, Yasemin Acar, M Angela
Sasse, and Sascha Fahl. 2023. “Make Them Change it Every Week!”: A Qualitative
Exploration of Online Developer Advice on Usable and Secure Authentication. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 2740-2754.

Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, Siddharth Muralee,
Bradley Reaves, Alexandros Kapravelos, and Aravind Machiry. 2022. Character-
izing the Security of Github CI Workflows. In 31st USENIX Security Symposium
(USENIX Sec’22). 2747-2763.

Alexander Krause, Jan H Klemmer, Nicolas Huaman, Dominik Wermke, Yasemin
Acar, and Sascha Fahl. 2023. Pushed by Accident: A {Mixed-Methods} Study on
Strategies of Handling Secret Information in Source Code Repositories. In 32nd
USENIX Security Symposium (USENIX Security 23). 2527-2544.

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? An empirical study
on the impact of security advisories on library migration. Empirical Software
Engineering 23 (2018), 384-417.

Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2023. Sok:
Taxonomy of attacks on open-source software supply chains. In 2023 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 1509-1526.

Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Mar-
tinez, and Olivier Barais. 2023. The Hitchhiker’s Guide to Malicious Third-Party
Dependencies. In Proceedings of the 2023 Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses (SCORED’23). ACM, 65-74.

Chris Lamb and Stefano Zacchiroli. 2021. Reproducible builds: Increasing the
integrity of software supply chains. IEEE Software 39, 2 (2021), 62-70.

Enrique Larios Vargas, Mauricio Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
245-256.

Enrique Larios Vargas, Mauricio Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software engineering.
245-256.

Elizabeth Lin, Igibek Koishybayev, Trevor Dunlap, William Enck, and Alexandros
Kapravelos. 2024. UntrustIDE: Exploiting Weaknesses in VS Code Extensions.
In Proceedings of the ISOC Network and Distributed Systems Symposium (NDSS).

Internet Society.
Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.

2022. Demystifying the vulnerability propagation and its evolution via depen-
dency trees in the npm ecosystem. In Proceedings of the 44th International Con-
ference on Software Engineering. 672—684.

65

[43]

[44

[45

=
&

[47

[48

[49

o
=

[51]

[56

[57

[59

[60

[61

[62

[63]

Rami Sammak, Anna Lena Rotthaler, Harshini Sri Ramulu, Dominik Wermke, & Yasemin Acar

Marcela S Melara and Mic Bowman. 2022. What is Software Supply Chain
Security? arXiv preprint arXiv:2209.04006 (2022).

Courtney Miller, Christian Kastner, and Bogdan Vasilescu. 2023. “We Feel Like
We're Winging It:> A Study on Navigating Open-Source Dependency Aban-
donment. In Proceedings of the 31st ACM Jjoint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1281—
1293.

Jaron Mink, Hadjer Benkraouda, Limin Yang, Arridhana Ciptadi, Ali Ahmadzadeh,
Daniel Votipka, and Gang Wang. 2023. Everybody’s got ML, tell me what else
you have: Practitioners’ perception of ML-based security tools and explanations.
In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2068-2085.

Jaron Mink, Harjot Kaur, Juliane Schmiiser, Sascha Fahl, and Yasemin Acar. 2023.
“Securityisnotmyfield, I’ m a stats guy”’: A Qualitative Root Cause Analysis of
Barriers to Adversarial Machine Learning Defenses in Industry. In 32nd USENIX
Security Symposium (USENIX Security 23). 3763-3780.

Siddharth Muralee, Igibek Koishybayev, Aleksandr Nahapetyan, Greg Tystahl,
Brad Reaves, Antonio Bianchi, William Enck, Alexandros Kapravelos, and Ar-
avind Machiry. 2023. ARGUS: A Framework for Staged Static Taint Analysis of
GitHub Workflows and Actions. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX, 6983-7000.

Shradha Neupane, Grant Holmes, Elizabeth Wyss, Drew Davidson, and Lorenzo
De Carli. 2023. Beyond typosquatting: an in-depth look at package confusion. In
32nd USENIX Security Symposium (USENLX Security 23). 3439-3456.

Alfred Ng. 2018. US: Russia’s NotPetya the Most Destructive Cyberat-
tack Ever. https://www.cnet.com/news/privacy/uk-said-russia-is-behind-
destructive-2017-cyberattack-in-ukraine/ Checked 2023-11-10..

Sabato Nocera, Simone Romano, Massimiliano Di Penta, Rita Francese, and
Giuseppe Scanniello. 2023. Software bill of materials adoption: a mining study
from GitHub. In 2023 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 39-49.

Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-
ber’s knife collection: A review of open source software supply chain attacks. In
Detection of Intrusions and Malware, and Vulnerability Assessment: 17th Interna-
tional Conference, DIMVA 2020, Lisbon, Portugal, June 24-26, 2020, Proceedings 17.
Springer, 23-43.

Chinenye Okafor, Taylor R Schorlemmer, Santiago Torres-Arias, and James C
Davis. 2022. Sok: Analysis of software supply chain security by establishing
secure design properties. In Proceedings of the 2022 Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses (SCORED’22). ACM, 15-24.
OpenSSF. [n. d.]. OpenSSF Scorecard. https://securityscorecards.dev/.

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2018. Vulnerable open source dependencies: Counting those that
matter. In Proceedings of the 12th ACM/IEEE international symposium on empirical
software engineering and measurement. 1-10.

Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. 2020. A qualitative study of
dependency management and its security implications. In Proceedings of the 2020
ACM SIGSAC conference on computer and communications security. 1513-1531.
Sean Peisert, Bruce Schneier, Hamed Okhravi, Fabio Massacci, Terry Benzel, Carl
Landwehr, Mohammad Mannan, Jelena Mirkovic, Atul Prakash, and James Bret
Michael. 2021. Perspectives on the solarwinds incident. IEEE Security & Privacy
19, 2 (2021), 7-13.

Akond Rahman, Effat Farhana, and Laurie Williams. 2020. The ‘as code’ activi-
ties: Development anti-patterns for infrastructure as code. Empirical Software
Engineering 25 (2020), 3430-3467.

Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The seven sins: Security
smells in infrastructure as code scripts. In IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 164-175.

Mario Silic and Andrea Back. 2013. Information Security and Open Source
Dual Use Security Software: Trust Paradox. In Open Source Software: Quality
Verification, Etiel Petrinja, Giancarlo Succi, Nabil El Ioini, and Alberto Sillitti
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 194-206.

Vibha Singhal Sinha, Diptikalyan Saha, Pankaj Dhoolia, Rohan Padhye, and
Senthil Mani. 2015. Detecting and mitigating secret-key leaks in source code
repositories. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, 396-400.

Sonatype. 2024. What is a software supply chain? https://www.sonatype.com/
resources/software-supply-chain-management- part- 1-what-is-a-software-
supply-chain

Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Massimiliano Di Penta,
Daniel M German, and Denys Poshyvanyk. 2024. Boms away! inside the minds of
stakeholders: A comprehensive study of bills of materials for software systems. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1-13.

The White House. 2021. Executive Order on America’s Supply Chains
(EO14017). https://www.whitehouse.gov/briefing-room/presidential-actions/
2021/05/12/executive-order-on-improving- the-nations-cybersecurity/.

Developers’ Approaches to Software Supply Chain Security

[64]

[65

[66

[67]

[68]

[69]

[70

71

[72]

[73]

[75

[76

[77]

[78

[79

[80

A

The White House. 2021. Executive Order on Improving the Nation’s Cyber-
security (EO14028). https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/05/12/executive-order-on-improving-the-nations- cybersecurity/.
Tyler W Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. 2018. Security
during application development: An application security expert perspective. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1-12.

Greg Tystahl, Yasemin Acar, Michel Cukier, William Enck, Christian Kastner,
Alexandros Kapravelos, Dominik Wermke, and Laurie Williams. 2024. S3C2
Summit 2024-03: Industry Secure Supply Chain Summit. arXiv:2405.08762 [cs.CR]
https://arxiv.org/abs/2405.08762

Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 644-655.

Duc-Ly Vu, Fabio Massacci, Ivan Pashchenko, Henrik Plate, and Antonino Sabetta.
2021. Lastpymile: identifying the discrepancy between sources and packages.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 780-792.
Dominik Wermke, Jan H Klemmer, Noah Woéhler, Juliane Schmiiser, Harshini Sri
Ramulu, Yasemin Acar, and Sascha Fahl. 2023. "Always Contribute Back": A
Qualitative Study on Security Challenges of the Open Source Supply Chain. In
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1545-1560.

Dominik Wermke, Noah Wohler, Jan H Klemmer, Marcel Fourné, Yasemin Acar,
and Sascha Fahl. 2022. Committed to trust: A qualitative study on security &
trust in open source software projects. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 1880-1896.

Evan D Wolff, KM Growley, MG Gruden, et al. 2021. Navigating the solarwinds
supply chain attack. The Procurement Lawyer 56, 2 (2021).

Elizabeth Wyss, Lorenzo De Carli, and Drew Davidson. 2023. (Nothing But) Many
Eyes Make All Bugs Shallow. In Proceedings of the 2023 Workshop on Software
Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23). ACM,
53-63.

Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2019. Why rein-
venting the wheels? An empirical study on library reuse and re-implementation.
Empirical Software Engineering 25, 1 (Sept. 2019), 755-789. https://doi.org/10.
1007/s10664-019-09771-0

Dapeng Yan, Yuqing Niu, Kui Liu, Zhe Liu, Zhiming Liu, and Tegawendé F
Bissyandé. 2021. Estimating the attack surface from residual vulnerabilities in
open source software supply chain. In 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security (QRS). IEEE, 493-502.

Awad A Younis, Yi Hu, and Ramadan Abdunabi. 2023. Analyzing Software
Supply Chain Security Risks in Industrial Control System Protocols: An OpenSSF
Scorecard Approach. In 2023 10th International Conference on Dependable Systems
and Their Applications (DSA). IEEE, 302-311.

Nusrat Zahan, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan, and
Laurie Williams. 2023. Openssf scorecard: On the path toward ecosystem-wide
automated security metrics. IEEE Security & Privacy 21, 6 (2023), 76-88.

Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and Laurie
Williams. 2023. Software bills of materials are required. are we there yet? IEEE
Security & Privacy 21, 2 (2023), 82-88.

Nusrat Zahan, Shohanuzzaman Shohan, Dan Harris, and Laurie Williams. 2023.
Do software security practices yield fewer vulnerabilities?. In 2023 IEEE/ACM
45th International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 292-303.

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What are weak links in the npm supply
chain?. In Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice. 331-340.

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(SEC’19) (Santa Clara, CA, USA). USENIX, USA, 995-1010.

Interview Guide

Q1: Introduction

66

SCORED ’24, October 14-18, 2024, Salt Lake City, UT, USA

(1) Please tell me a bit about your biography, how did you get into the field of
software development?
(a) What is your experience in software development?
(b) What industry do you work in?
(c) Do you attend any conferences, workshops or seminars as part of your
professional activities?
(2) Does your employer offer benefits in the form of funding (full or partial) for
educational courses?

If yes: (a) Have you taken software security courses as part of this funding?
(b) Do you consider this experience useful? Has it been helpful in your

work? How?
If no: (a) Inwhich field would you take a course if the opportunity were available?

Q2: Awareness of Software Supply Chain and Security Methods

(1) Are you familiar with the concept of software supply chain?
If yes: (a) Can you name key components of a software supply chain?
[Share information and ask b & c]
(b) Which components do you use in your daily work?
(c) In your opinion, which component is the most vulnerable in terms of
security? Why?
[Next share the main methods for SSC security and proceed]
(2) Were any of these methods familiar to you?
If yes: (a) Which methods do you use in your everyday work?
(b) In your opinion, which of these methods are the most challenging to
implement or use? Why?
(3) Does your company organize seminars or workshops on security-related
topics?
(4) Have you used any sources of information to broaden your knowledge of
security? If so, which ones?

Q3: Security Issues and Challenges

(1) How would you rate the security status of the current project you are working
on on a scale from 1 to 5, where 1 indicates insecure and 5 indicates highly
secure? Do you think there are security vulnerabilities?

(2) What are the main challenges you face in securing your project (e.g.: time,
cost, specificity of some tools: difficult to use or need additional training, etc.)?

(3) Are there specific guidelines or standards that you follow to ensure project
security?

(4) What recommendations would you give to other developers regarding ap-
proaches to ensuring the security of their projects? What would you consider
very important in terms of project security?

(5) Can you think of any supply chain related security issues your projects have
faced in the past?

Q4: Tools and Methods

(1) What problems do you most often encounter when using security tools? Have
you had to change or stop using certain tools or components (e.g.: frequent
updates which caused inconveniences, or the project was abandoned, etc.)? If
so, why?

(a) What do you think could be improved or enhanced?

(2) If and when you want to include third-party components into your projects,
do you check them for vulnerabilities? If so, how do you do that?

(3) Do you audit the dependencies used in your project?

(4) Are there roles in your project related to security?

(5) Do you keep your knowledge of new security tools and techniques up to date?
If yes, how?

Q5: Security in the Development Lifecycle

(1) During which phases of the development process do you place specific em-
phasis on security?
(2) Do you sometimes have to find a compromise between security concerns and
the need for speed of development?
(a) How do you allocate time for product development and security? What do
you prioritize?
(3) Have you had to make changes in the development process to improve secu-
rity? If yes, please tell us what changes were made?
(4) If you want to use third-party components or tools in your projects, what is
the criteria for choosing them, what metrics?
(a) Do you document all third-party dependencies or tools that are included
in the project?
(5) Opinion about having security guidelines within a company/team/project?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Supply Chain Security
	2.2 Security Interview Studies

	3 Methodology
	3.1 Interview Guide
	3.2 Recruitment
	3.3 Interview Procedure
	3.4 Data Analysis
	3.5 Ethical Consideration
	3.6 Limitations

	4 Results
	4.1 Participants
	4.2 Developers' Awareness of the SSC
	4.3 Security Issues and Challenges
	4.4 Security Tools and Methods
	4.5 Developers’ Security Recommendations

	5 Discussion
	6 Conclusion
	References
	A Interview Guide

