


be freely configured by developers. GitHub uses this metadata
to generate links from commits to user profiles; exploiting
this behavior, attackers can spoof commit authorship and OSS
project contributions [15]. As a countermeasure, GitHub
and organizations like the Open Source Security Foundation
(OpenSSF) and the Linux Foundation recommend using Git’s
built-in commit signing mechanism to add authenticity to a
commit and prevent impersonations [16]–[19]. However, in the
light of previous experiences with the adoption of signatures like
digital signatures for email with OpenPGP or S/MIME [20], the
question arises whether signatures are adopted by users and if
GitHub’s handling helps against the attacks. This is backed by a
statement of Scott Chacon, co-founder of GitHub and co-author
of the most widely used Git documentation git-scm, who
confessed on his blog that his article about commit signing was
flawed (“I may have misled a generation”) [16], [21]. While
GitHub acknowledges the risk stemming from their handling
of Git metadata [17], our work illustrates a false assessment.

We shed light on the security issues created by social
coding platforms’ interaction with untrustworthy Git metadata
and demonstrate how trust-creating user interfaces could be
manipulated. Furthermore, we investigate whether current
countermeasures such as signed commits help to address this
problem and how they are currently used by critical OSS
projects and covered by security advice for developers.

RQ1 How credible are open-source code contributions dis-
played on social coding platforms? GitHub user profiles are
fueled by Git metadata and illustrate contributors’ activities,
and participation in OSS projects is a critical source of
contributors’ reputations [22]–[24]. We demonstrate that
this metadata is not robust against manipulation, which
allows attackers to impersonate contributors and hijack
their commits. We illustrate widespread implications for
critical OSS projects.

RQ2 How vulnerable are critical open-source projects to these
weaknesses, and what countermeasures are in place?
Showing the weaknesses under lab conditions is one thing,
but we measure the risk for real projects. We investigate
the handling of the Git metadata weaknesses for 50,628
critical OSS projects and 578,897 associated contributors
on GitHub. We also measure how GitHub’s advice on
signing commits is used in these projects.

RQ3 How does online advice for open source contributors
address the challenges of unreliable Git metadata related
to contributor attribution? Git metadata can easily be
manipulated and might mislead users of social coding plat-
forms into making false assumptions about the reputation
and activities of contributors. We analyze 55 pieces of
security advice for OSS contributors, focusing on problem
awareness and proposed countermeasures.

RQ4 What can Git and Git-based social coding platforms do to
provide stronger protection against impersonation attacks,
and how can the reliability of authorship attributions for
Git commits be improved? Based on our findings, we
propose several changes for Git and GitHub and offer
advice for maintainers and OSS developers.

We conducted a mixed-methods study to address our
research questions. First, we demonstrate three attack scenarios
for manipulating Git metadata that can be used to forge
representations on the official GitHub website and refer to

previous attacks that have been utilizing them. Second, we took
the source code repositories of the top 50,628 OSS packages
by dependents count and analyzed their 26,170,564 commits to
estimate the attack surface. We also evaluated the repositories
for present countermeasures like commit signing and assessed
the added protection. Lastly, we leveraged a Gray Literature
Analysis (GLA) to determine whether the weaknesses are
known and what countermeasures are recommended, e.g., by
social coding platforms. We analyzed 55 online security advice
resources to investigate sources OSS contributors might consult
on this topic.

With our paper, we make the following contributions:

• Contributor Impersonations in OSS Projects. We
demonstrate three ways to tamper with Git’s metadata to
manipulate attributions on GitHub: Contributor Spoofing,
Reputation Hijacking, and Contribution Hijacking.

• Measuring Weaknesses in Critical OSS Projects. We
measure which and how many critical OSS projects and
their contributors are vulnerable to these weaknesses. We
also show what is done to protect projects.

• Commit Signing in Critical OSS Projects. Although we
see a small trend towards more signed commits, about
50% of commits are not protected by a signature in
2023. However, there are significant differences in the
programming languages and environments. GitHub’s effort
to increase adoption also seems to affect the commit
signing rate positively.

• Analyzing Authorship Metadata Spoofing in Advice for
OSS Developers. We show that online security advice for
OSS developers addresses the risk of contributor spoofing.
Still, no source mentions the problem of unattributed
emails in GitHub repositories (Contribution Hijacking).
Almost all sources recommend signed commits as a
solution, but some also mention problems with commit
signing.

• Consequences for the OSS Software Supply Chain.
We emphasize that commit signing can play an essential
role in the transparency and traceability of open-source
software components. That said, only a few projects and
contributors achieve a level of coverage with signatures that
allow the signed Git history to be considered a trustworthy
source for authenticity.

• Changes to Git and GitHub to Reduce the Attack
Surface of Authorship Metadata Spoofing. We provide
recommendations for OSS developers, projects, GitHub
and Git to reduce the attack surface and improve the
usability and effect of countermeasures.

Responsible Disclosure: We disclosed our findings to GitHub.
We report the process timeline and details in Appendix B.

II. RELATED WORK

We introduce related work on SSC security, security issues
utilizing Git, and work on adopting cryptographic signatures.

A. Software Supply Chain Security

The SSC is vulnerable from various angles, and its pro-
tection must include more than one measure [13], [25]–[27].
Enck and Williams mention updating vulnerable dependencies,
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leveraging the concept of Software Bill of Materials (SBOM)
for security purposes, choosing trusted supply chain depen-
dencies, securing the build process, and getting industry-wide
participation as core defensive measures, but those measures
pose significant challenges for organizations [27]. SBOM
is becoming increasingly widespread as an instrument for
validating software and its dependencies [28]. However, not
all components, such as Git commits [29], can be mapped
in SBOM, and there are high error rates when generating
reports with different tools [30]. Lamb and Zacchiroli propose
reproducible builds of software packages [31], which in the
context of SSC has been highlighted by Fourné et al. as
necessary [32] to solve [33] the Trusting Trust attack [10].
Torres-Arias et al. introduced the in-toto framework, that uses
chained signatures from the Git commit throughout the build
and packaging process to the package manager [34]. Both,
reproducible builds and in-toto, aim to prevent tampering with
third parties’ SSC. Okafor et al. shed light on the costs of
protective measures. They propose three security dimensions
for software projects involved in the SSC: Transparency,
Validity, and Separation [25]. Different security properties
are applied to artifacts, operations, and actors, and various
security mechanisms are considered. Git’s commit signing is
named as a protection mechanism for actors at the Transparency
level and for artifacts at the Validity level [25]. Ohm et al. and
Ladisa et al. analyzed previous attacks on the open-source SSC
and the vectors exploited in these incidents [13], [26]. Forged
packages or compromised accounts were significant vectors in
the SSC. Ladisa et al. found that most developers oppose using
signatures for utility and cost reasons [13]. When selecting
trustworthy packages, Zimmermann et al. noted that maintaining
packages is becoming increasingly difficult. For NPM, an
increasing number of unmaintained OSS packages exist, and
security patches are released less and less frequently [35].
Expired domains are another problem. If they belong to email
addresses of contributors. they can be taken over [36]. The
security of OSS is directly connected to SSC issues, as its
components are used by many other software projects [11],
[13]. In contrast to proprietary software, the often decentralized
and open contribution possibilities of the OSS community
represent a different development environment [22], [37], [38].
In interviews, Wermke et al. found that open-source projects are
very heterogeneous in their setup and processes. The security
levels of projects also vary, and the decentralized and impersonal
structure makes trust an essential factor [9], [23], [39].

Our Contributions. We extend current research with the per-
spective of how Git’s metadata can be abused to manipulate
representations on GitHub and to exploit trust structures within
OSS projects.

B. Git-related Security Issues

There has been some research on security issues of Git and
how to tackle them. Using manipulated metadata, Torres-Arias
et al. showed an attack on how to get malicious states into a Git
history [40]. They propose a cryptographically signed log of
developer actions to detect irregularities [40]. Alarcon et al. also
propose using commit signing as a countermeasure [24]. To
detect similar attacks, tools are proposed, such as Anomalicious,
which uses commit logs and repository metadata to detect
potentially malicious commits, achieving a 53.33% detection

rate on malware-infected repositories while maintaining a low
false-positive rate [41]. Afzali et al. propose le-git-imate
to extend the audit trail towards social code platforms [42].

Our Contributions. Previous academic research emphasized com-
mit signing to deter malicious contributions and increase auditability.
Our analysis of security advice explores recommendations and
countermeasures from the developer community on this topic.

C. Research on PGP and Digital Signatures

Git, GitHub, and GitLab allow commit signing with PGP.
PGP has been studied over the last decades but primarily
for end-to-end encrypted (E2EE) emails. Whitten and Tygar
studied the usability of an early PGP version [43]. They found
several usability issues, e. g., participants sending clear text
secrets instead of encrypted email or not publishing the public
key. Various researchers proposed user interfaces and user
workflows to improve the usability of E2EE emails [44]–[51].
Atwater et al. suggested users prefer encryption tools with
tight integration into their system [49]. Others proposed user
interfaces for E2EE messengers. Most of them focus on
(public key) encryption [52]–[56]. Only Garfinkel et al. focus
on digital signatures and the authenticity of emails. They
showed that minor UI improvements can increase security [57],
[58]. Gutmann proposed key continuity management as a trust
model for public keys where users trust the first public key
for others’ identities [59]. It does not require a Public Key
Infrastructure (PKI) and is also known as trust on first use [60],
[61]. Garfinkel and Miller argue that users can hardly decide
to trust a key for an unknown email address [62]. Other PKIs
suffer from the same problem. PGP’s original trust model
is the Web of Trust (WoT) [63]. In this model, users sign
others’ public keys if they trust them. Users can upload
their signed public keys to keyservers. A user can trust an
unknown public key based on the signatures and the trust chain.
Email communication is an everyday use case, and various
researchers have studied this model [64]–[66]. Ulrich et al.
studied published PGP keys from 2009 [64]. However, of about
2.7 million public keys, only about 325,000 were signed by
other keys and, hence, part of the WoT. Lerner et al. used
another trust model for their email encryption prototype [67].
They followed the KeyBase approach, linking public keys to
social media or other online accounts [68]. Users can trust
public keys based on these accounts. Commit signing with
PGP on platforms like GitHub or GitLab follows the same
approach and can be a trust model for developers as a subgroup
of PGP users. Lerner et al. showed that automatic public key
management via KeyBase mitigates critical user errors, e. g.,
forgetting to import or distribute public keys. In 2022, Stransky
et al. studied E2EE emails [20]. Their analysis indicates that
E2EE emails are rare, but digitally signed emails were slightly
more common. Other researchers showed that specific user
groups, e. g., activists or investigative journalists, use PGP
for email encryption [69], [70]. For software development,
Schorlemmer et al. investigated the prevalence of signatures for
package/software signing. They highlight the role of package
managers who must actively mandate signatures and emphasize
the role of helpful tooling [71]. To maintain anonymity and
guarantee zero-knowledge properties, Merrill et al. propose
Speranza to bridge the gap between usable developer-managed
keys and certificate-based systems [72].
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Our Contributions. Previous research has mainly focused on
PGP for encrypting emails, and digital signatures are primarily
examined in the same context or when signing software packages.
Our study examines PGP and digital signatures when used for Git
commits and explores their use with a tech-savvy population of
OSS contributors under real-world conditions.

III. THE FLOW OF GIT’S METADATA

Version Control System (VCS) are the infrastructure back-
bone of the OSS ecosystem. Developers can collaborate, track
changes, try out ideas via branching, and revert unsuccessful
changes. 96.65% of professional developers on StackOverflow
use Git [73]. It is the de facto standard VCS for OSS projects,
and through features like pull requests and forks, it indirectly
defines contributor roles and interactions [73], [74]. Below,
we illustrate Git’s workflows, show how metadata represents
contributor interactions, and describe how GitHub uses this
metadata.

A. Local Generation of Git Contributor Metadata

Linus Torvald developed Git focusing on a simple design,
efficiency, and scalability [75]. Users locally configure their
Git environment with their name and email address, and they
can set arbitrary names and email addresses. Git uses this
information to add authorship information to commits [75].
Git defines three major roles for submitting source code to a
remote repository [75]. They are depicted in Figure 1.

Fig. 1. The different role interactions for a contribution with Git.

Author: The author is the developer who modifies, adds, or
deletes files using git add and git rm in a Git repository.
Git then generates a patch file that contains all current changes
in the repository. This role is represented by the author field
of a commit, and it contains the name and email address from
the local Git environment [75].

Committer: The committer stages and bundles a patch’s
changes into a single commit, which is then added to the
local Git history. A commit contains the version history of
the patch file linked to its parent commit [75]. While creating
a commit, the committer can add a signature generated by
signing a temporary content hash over the patch file, the commit
message, the author, the committer, and the tree state. The
committer for a commit can be found in the committer

field [75]. Typically, the committer and author are the same
user, but in some cases, they differ. For instance, code changes
for the Linux Kernel are discussed and handled via email [76].

Only a few contributors can make commits; consequently, the
author of the change and the committer can be different users.

Pusher: To make a commit appear upstream, it has to be
pushed to a remote repository [75]. The pusher needs permis-
sions for the remote repository, e. g., on GitHub. Before pushing
commits from local to remote, the pusher must authenticate
their local Git client for the upstream repository [77]. Git
supports authentication via SSH [78] and HTTP [75].

B. Git’s Commit Signing

To add authenticity and non-repudiation to Git commits,
users can sign commits using digital signatures with a private
key. Git supports the public key schemes PGP, SSH, and
S/MIME [75]. For this process, a temporary file is created that
contains the patch file, the corresponding Merkle tree status
and the contributors. A local signature agent then signs a hash
of the file. A third party can verify a signed commit using
a given public key. The remote server, project maintainer, or
other contributors can link signed commits to a private key
owner and, after a key verification, to a certain user.

C. Fueling GitHub’s Social Network with Git’s Metadata

Since GitHub is the most widely used social coding platform,
it is a particularly critical component in the OSS ecosystem.
GitHub user profiles are often used as a source for assessing a de-
veloper’s skills and reputation [79]–[81] and contribute to estab-
lishing trust between stakeholders in the OSS community [23],
[24]. Hence, GitHub user profiles are often used in technical
recruitment processes, are part of job applications [82], [83],
and are used by OSS maintainers to assess the trustworthiness
of contributors [9], [24]. Since Git’s authorship metadata are
locally configured, they are untrustworthy. However, GitHub
uses this metadata to fuel their social network. GitHub uses
the author field of a Git commit as the source for attributing
a commit’s authorship [14]. It creates a clickable hyperlink to
user profiles for all email addresses in Git commits registered
for GitHub accounts—for both primary and secondary account
email addresses [84]. Thus, the contributions displayed for
user accounts and project pages on GitHub are generated using
untrustworthy email addresses. GitHub also supports the custom
Git tag Signed-off-by: NAME <EMAIL>, which can be
added to the commit message. This indicates that a commit
was not made by a single author alone but by other contributors
as well. This happens, for example, with squash merges, which
merge changes from multiple commits into a single commit.
GitHub adds all authors of the squashed commits as co-authors
to the new commit. In GitHub’s UI, they are displayed as
co-authors. While this practice helps GitHub improve its
social network features, it allows malicious users to spoof
commit authorship and hijack contributions and reputation (see
Section IV below).

D. GitHub’s Perspective: From Untrustworthy Metadata to
Trust Signals

GitHub acknowledges the risk of using untrustworthy
commit authorship metadata [17], [21]. They argue that the
attribution of commits is not a severe security issue, and
changing their attribution system would result in an incorrect
display of commit histories: “It would be incorrect to assign
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all of the commits to the person doing the push, so we
use the commit log email addresses to assign attribution on
GitHub.com” [17]. However, GitHub also states:

“[. . .][We] consider impersonation an account abuse issue
that we take very seriously. If someone is wrongfully
impersonating you, please let us know, and we will
investigate the matter and deal with it as quickly as possible”
— GitHubSecurity [17]

As a countermeasure, GitHub recommends Git’s built-in
commit signing feature (“check out the git commit -S

command ”[16]). However, the proof that the committer with a
private key is the account owner is still missing, and uploading
a public key to the account does not imply that the account
owner knows the corresponding private key.

GitHub added the so-called Vigilant Mode for users. If
users activate it, an unsigned commit or a commit with an
unfamiliar signature in which they occur will be marked as
Unverified on GitHub. If the committer signs a commit, but the
author differs from the committer and has the Vigilant Mode
activated, GitHub displays a Partly Verified badge. Only if the
committer and author are the same individual of a verifiable
signed commit, GitHub displays the Verified badge [85].

GitHub discusses the lack of email address verification for
commit attribution [17]. This seems to be an intentional design
decision, and it is recommended that affected users resolve
related issues via GitHub’s customer support:

“Any email address that is not already associated with
an account on GitHub may be claimed, and this will give
commit attribution to the claiming user. While we allow
this attribution without requiring email address verification,
any disputes around emails on accounts can be resolved
by contacting our support team.” — GitHub Security [17]

In summary, GitHub acknowledges the security drawbacks of
its lax commit attribution strategy but prioritizes its social net-
working features over in-depth defense of the OSS ecosystem:

“We consider a handful of reports ineligible, either because the
feature is working as intended or we accept the low risk as a
security/usability tradeoff” [17].

IV. ABUSING GITHUB’S REPRESENTATION OF GIT

The author, committer, co-authors, and other contributor
attributes are unauthenticated metadata in Git commit objects.
Before adding a commit to the tree, the pusher of a commit can
modify the metadata freely and without restrictions, making
it untrustworthy information. However, GitHub uses this
untrustworthy information to fuel their social network compo-
nents and link GitHub user profiles to commits and projects.
Consequently, malicious pushers can impersonate legitimate
contributors and hijack project contributions in multiple ways.
Below, we illustrate how the use of Git’s untrustworthy metadata
as trust signals by platforms like GitHub can be exploited
for impersonation attacks on OSS packages. We analyze the
prevalence of these weaknesses in critical OSS projects and
make a risk assessment.

A. Selecting Critical OSS Projects

We aimed to select critical OSS projects that are part of the
SSC and hosted on GitHub. We collected metadata and content

Source
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Top 500 NPM & non-NPM
OSS Projects

Dataset
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Fig. 2. Overview of projects and data collected.

properties to investigate the prevalence of our impersonation
attacks and how projects handle authenticity. Figure 2 illustrates
our selection process and the selected data.

Selected Projects: We aimed to analyze projects that play a
critical role in the SSC. Therefore, like previous work [86], [87],
we use the count of dependent packages as an indicator for the
criticality of a project. The result is a ranked set sampling (RSS)
approach that uses the number of dependents as the ranking
characteristic. RSS typically provides a fitting representation
of a population [88]. We based the OSS project selection on
the Linux Foundation’s Open Source Census 2022 [86] and the
Libraries.io [89] dataset. These sources, in combination with
our criticality indicator from the RSS, allow us to narrow down
our selection to software projects that are part of the SSC. As
an additional benefit of our sampling approach, repositories that
are not part of the SSC, e. g., awesome lists or tutorials, are not
considered by design. Like Nagle et al., we included critical
OSS projects from 17 OSS package managers, including NPM,
PyPi, Maven, Homebrew, Cargo, and CRAN. We aimed to
analyze the 50,000 most critical OSS projects based on their
number of dependents. We cleaned our dataset as follows: First,
we removed duplicate entries from the Libraries.io dataset that
pointed to the same repository. Second, we excluded forks and
projects whose commit histories were subsets of other projects
in our sample. We decided against repositories’ archival status,
age, or activity as further cleaning criteria because their commits
can still be exploited for contribution hijacking. Ultimately,
our sample encompassed 50,328 GitHub projects with at least
five dependents.1 Our replication package contains a list of all
projects (cf. Appendix A).

Collected Data: We collected the title, topics, stars, primary
programming language, dependents, OpenSSF Scorecard values,
the source code, the history of all commits, and the output of
the GitHub Events-API for all repositories.

For each commit, we collected the author’s and committer’s

1Since more than 50,000 projects had five dependents or more, we included
the surplus of 328 more packages.
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GitHub account ID, name, and email address. If available,
we fetched commit signatures, including GitHub’s verification
results. We also downloaded the SSH and PGP signing keys for
all GitHub accounts that authored commits in our dataset. We
collected their public key IDs from the Ubuntu and OpenPGP
keyservers wherever possible. Our replication package describes
all data sources (cf. Appendix A).

B. Tampering with Commit Metadata

When pushing a commit to a remote repository with
respective push permissions, a malicious pusher can freely
set the author and committer fields of a commit to the
email address of an arbitrary GitHub account. While arbitrary
email addresses can be used, addresses of popular, active or
longstanding OSS contributors and maintainers are particularly
attractive. After pushing such a malicious commit with modified
metadata to a repository, GitHub tries to match the email address
to a registered GitHub user account and lists this account as
the committer, author, or co-author in the respective project.

Fig. 3. A spoofed commit pushed to a GitHub repository by one of the
authors in the name of GitHub’s dependabot.

Fig. 4. Output of running git cat-file [HASH] for the spoofed commit.

Figure 3 illustrates a spoofed commit made in the name
of GitHub’s dependabot. In this case, one of the researchers
pushed this commit with the modified email address of the
dependabot account. GitHub also does not notify users if
another GitHub user pushes commits with their email addresses.
Figure 4 shows that detecting a spoofed commit in the Git
history is challenging. The GitHub UI displays this commit
just like other legit (dependabot) commits. Hence, assessing
the authenticity and trustworthiness of commits’ authorship
information is hard for GitHub users when there is no signature.
This behavior results in two abuse scenarios:

1) Contributor Spoofing: Malicious actors can disguise them-
selves to sneak commits containing malicious code into third-
party repositories. The actor can create pull requests with
commits pretending to originate from trusted contributors
and leverage the effect of trust (e. g., in an attack with
GitHub’s dependabot account [15]).

2) Reputation Hijacking: Malicious pushers can add popular
OSS contributors with GitHub accounts, e.g., Linus Torvalds,
to their potentially malicious repositories. This can make
repositories look more legitimate and affect signals from
third parties like the OpenSSF Scorecards [8]. GitHub was
affected by mass repository confusion attacks in February

TABLE I. COLLECTED DATA FOR PUSH EVENTS.

Description Mean Std.

Commits per Repository 57.9 110.3
Commits per Push Event 3.3 6.0
Commits per Pusher 65.8 1122.7

2024, which also included new malicious commits in the
name of former contributors [2].

Detecting cases of these two attacks is not easy. However,
assessing the disparity of pushers and authors in commits can
help to estimate an upper bound for projects at risk. Contribu-
tion practices in which all commits have the same person in
all roles are less at risk, as GitHub always authenticates the
pusher. However, pushing commits in the name of others is
a common practice for mirrored projects and projects using
bots [90], [91]. The commit authors are part of our collected
metadata (cf. Figure 2). Still, we had to collect the associated
push events using GitHub’s Events-API to get the identity of
the pusher. However, this API endpoint is restricted to 90 days
and 300 events for a project [92], limiting our analysis.

Results: We collected 132,281 push events for 7,546 GitHub
repositories between April and July 2024. These events were
triggered by 6,649 GitHub accounts and contained 437,211
commits. Table I gives more insight into the commits’
distribution among repositories, push events and pushers.

The share of commits pushed by the same account that
GitHub also attributes to the committer and the author is
30.1%. This is the most benign case since all three roles
point to the same account, which is authenticated by GitHub
and authorized to push commits to a repository. However, this
leaves 305,454 commits with different committers, authors,
and pushers. While this commit behavior reflects typical
project behavior, such as the code review process or utilization
of bots [93], it can indicate abuse. 1,067 (14.1%) of the
repositories in our dataset only contained commits with equality
in all three roles, while 2,368 (31.4%) of the repositories only
contained commits with inequality in the three roles. Most of
the repositories (6,479; 85.9%) could be at risk, as they have a
contributing workflow that allows inequality in these roles. We
also found repositories for which all the commits in our dataset
differ in all roles, such as JetBrains IntelliJ Community2 and
Drupal3. Though both share the same characteristic, the origin
is different. For the JetBrains project, this stems from their
use of the intellij-monorepo-bot, which shows up as
both committer and pusher but not as the author. As indicated
by GitHub, Drupal is a mirror that uses the hubot account
for pushing code. These two examples illustrate legitimate
scenarios where pusher, committer, and author differ.

When inspecting the data for pushers, we find that
some accounts only push commits that list someone
else as the committer or author. Some, like the
aforementioned intellij-monorepo-bot, indicate
themselves as bots via their name, and others carry
the official [bot] suffix, like dependabot[bot].
However, others like the account zeke only use the email

2https://github.com/jetbrains/intellij-community
3https://github.com/drupal/drupal
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TABLE II. A COMPARISON OF SIGNATURE VERIFICATION RESULTS

BETWEEN USERS AND GITHUB AND ACROSS SIGNATURE TECHNOLOGIES.
GITHUB PROVIDES A DETAILED ERROR CODE DESCRIPTION [98].

Result PGP SSH S/MIME GitHub PGP

Valid 890,171 82% 10,660 90% 2 0% 2,960,651 100%

Unknown key 104,760 10% 810 7% – – 1 0%

No user 53,973 5% 119 1% 157 29% 0 0%

Bad email 19,918 2% – – 0 0% 0 0%

Unverified email 19,690 2% 273 2% 0 0% 0 0%

Invalid 212 0% 2 0% 1 0% 941 0%

GPG error 384 0% – – – – 111 0%

Bad certificate
† – – – – 363 67% – –

No signing key 162 0% – – – – 0 0%

OCSP revoked
* – – – – 15 3% – –

We also found 5 instances of unknown signature types we could not process.
* Entry in the certificate chain was revoked. † Certificate could not be verified.

Figure 5 shows a peak of new commits in 2015, which
means our dataset is skewed toward older repositories. This
could result from our sampling process, which favors older
projects due to the required number of dependents. While the
number of new commits has declined since then, the number of
signed commits remains steady, leading to a relative increase in
signed commits. SSH signatures appeared before August 2022
when GitHub announced their support [99]. Before that, PGP
signatures were dominant, with S/MIME never reaching any
relevant adoption rate. The GitHub API reports the verification
status of commit signatures [98]. 82% of all PGP and 90% of
all SSH signed commits were valid. The most common error
was a missing public key to verify the signature (10% of PGP
commits and 7% of SSH commits). Table II illustrates these
verification results across different technologies.

Apart from one commit with an unknown key, the 941
commits marked as invalid, and the 111 errors due to GPG
verification, all web-flow commit signatures were verified. The
GPG errors are transient and the result of a failure in GitHub’s
backend. The unknown key is the result of a commit where
the user supplied the email address (noreply@github.com) used
for the web-flow account as the committer email address but
tried to sign the commit with a different key than the one used
by GitHub. The invalid entries are inexplicable.

Most of the signatures provided by users are valid. The
most common reason for failed verification is missing keys
that were not uploaded to GitHub by the users (Unknown key).
Other reasons for failure are associated with the committer’s
email address: Either it is not associated with any GitHub
account (No user), it is not part of the PGP key that was used
(Bad email), or the email address was added to the GitHub
account but not verified (Unverified email). There also exist 5
commits in our dataset that did not contain valid signatures at
all (Unknown signature).

B. Signing Keys

Of GitHub accounts that committed to one of the projects
in our dataset, 48,123 (22.7%) users either uploaded a PGP
or SSH key for signing commits; 41,733 (19.7%) uploaded
PGP keys, 3,246 (1.5%) uploaded SSH keys, and 3,144 (1.5%)
uploaded keys of both types. Apart from GitHub, roughly one-
third of the PGP keys can be found on public keyservers, with
10.0% on keys.openpgp.org, 3.3% on keyserver.ubuntu.com and
19.4% on both.

Table V in the Appendix shows the different algorithms
used for PGP and SSH signing keys. For PGP, RSA-4096 is the
dominant algorithm (61% of PGP keys), followed by ED25519
(12%). For SSH, the popularity of the top two algorithms is
reversed (ED25519: 73%, RSA-4096: 8%). Overall, more
PGP keys were uploaded by users, which could be a result of
the longer support for PGP by GitHub, with SSH only being
recently adopted. There also exist 626 DSA-1024 keys, whose
algorithm was already considered insecure by the time GitHub
announced its Verified badge in 2016 [100]. An expiry date
is set for 36.6% of PGP keys, with an average time span of
4.8 years between their creation and expiration; 20.3% were
marked as expired. There is no expiration date for SSH keys.

C. Repositories

Our dataset contains 50,328 repositories. On average,
a repository contains around 100 commits (see Figure 11).
72.1% of repositories do not have any signed commits. The
prevalence of signed commits increases slightly when looking
at repositories that leverage commit signing. The repositories
with signed commits have an average signing frequency of
around 5%.

The GitHub API reports 105 different primary programming
languages for these repositories. With almost 30,000 reposito-
ries, JavaScript is the most used language. Rust and TypeScript
have the highest percentage of signed commits at over 8%, while
Java shows less commit signing at under 4%. Figure 8 in the
Appendix shows the distribution of signed commits across these
languages and their overall share of our dataset. We also found
that the signing frequency diminishes if a project has more
committers or commits (Figure 9). This could be because in a
project with many committers, most do not sign their commits
unless mandated by policy. The OpenSSF Scorecard [8] is a
value that aims to represent whether repositories follow security
best practices. We found that if the contributors to a repository
sign their commits, the repository has a Scorecard value above
1 (Figure 10). The Scorecard documentation does not mention
commit signing as a measure considered when calculating the
score. Therefore, this observation could result from an omission
in the documentation. Figure 10 also shows the commit signing
frequency concerning dependents, as calculated by the GitHub
API and measured by the number of dependent repositories
and packages. The dependencies show a similar influence as
the number of commits and contributors, primarily dependent
packages. Repositories with many dependents are probably
more popular, inviting more contributors.

D. Committers

The commits in our dataset show 348,662 distinct committer
email addresses. The average committer contributed less than
ten signed commits to the repositories in our dataset (see
Figure 12). 95.4% of all committers do not have any signed
commit. Those who sign their commits show an increase in
contributed commits over time.

71.0% of the committer’s email addresses can be linked
to a GitHub account. Their signing behavior differs when
comparing contributors linked to a GitHub account and those
without a corresponding account. GitHub account users issued
19,087,501 commits, with 1,047,475 (5.5%) of the commits
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TABLE III. OVERVIEW OF ANALYZED DOCUMENTS BASED ON OUTLET

TYPE WITH ASSOCIATED IDS OF SOURCES, DISTRIBUTION, AND CATEGORY

DESCRIPTION.

Outlet Type [IDs]
∑

Description

CVE Report [D1] 1 Mitre CVE Report
Company Blog

[D2–D14]

13 Blogs frequently hosted on company web-
sites serve as platforms where employees
share their expertise through articles

Institutional

Report [D15, D16]

2 Reports issued by governmental and private
institutions

Learning Platform

[D17, D18]

2 Contributions to websites that are digital
hubs for education

Online Magazine

[D19–D34]

16 Private Publishers of (non-peer-reviewed)
articles

Personal Blog or

Website [D35–D51]

17 Personal blogs authored by (often) experi-
enced developers, exploring topics they are
knowledgeable or passionate about

Technical

Documentation
[D52–D55]

4 Websites tied to specific applications, pro-
viding technical assistance within these ap-
plications

exclude security advice written by generative AI. As GPTzero
considered all texts as “mostly human written,” we excluded
no further documents. We provide our selection criteria, all
examined documents, and the AI reports in our replication
package (cf. Appendix A).

2) Analysis: We applied qualitative coding to analyze all
security advice documents in our sample, creating themes
and patterns to structure their content. We double-coded all
documents using a semi-open approach: Two co-authors coded
all documents independently, using ATLAS.ti. One author
started by coding the documents, using a deductive approach
and predefined codes that emerged from our RQs. Thus, we
searched for segments in the documents resembling those
codes, including: Contributor Spoofing, Reputation Hijacking,
Contribution Hijacking, Motivations, Countermeasures, and
Obstacles. In the second phase, we examined the documents
for new codes, using thematic analysis to enhance the initial
codebook [108]. After the initial coding, the second researcher
also coded all documents. We resolved all emerging code
conflicts through discussion. As our methodology is purely
qualitative, we follow previous work and omit the reporting of
inter-rater reliability (IRR) [109]–[111].

B. Results

We analyzed 55 documents that give security advice
on contributor impersonations and potential countermeasures.
Table III gives an overview of the document types and the
associated source identifiers used. The complete codebook is
provided in the replication package (cf. Appendix A). For this
section, given codes are reported in bold, with the number of
documents in which the code occurs at least once in brackets.

1) Impersonation Attacks: When looking at potential ex-
ploits or attacks via Git, we found that some documents mention
the potential to fabricate metadata (12), e.g., timestamps,

“to make a repository appear older than it is” (D26). Some
sources also mention GitHub’s behavior to link user profiles to
commits (9) based on the commit header, defined by the local
Git configuration when the commit is created. Contributor
spoofing (30) is the most named impersonation attack in our
documents. It is often stated in combination with the example

that “someone is able to push a change with malicious content
to a repository under a name of a regular contributor” (D9).
In contrast to contributor spoofing, a reputation hijacking
(10) attack tries to make the attackers’ repository look more
trustworthy: “To make their project look reliable, attackers
can use this technique once or multiple times and populate
their repository’s contributors section with known reliable
contributors” (D25). Interestingly, no document identifies the
possibility of contribution hijacking (0).

Numerous documents emphasize the importance of trust
(17) as a higher-level security concern in the context of
impersonation attacks: “It is important that the sources used
are trustworthy. This also applies to source code” (D40). The
question of trust is crucial, considering the risks of unverified
code (6): “maintainers and developers should only trust those
contributors that are known to them and have an extensive and
verifiable commit history” (D29).

2) Commit Signing as Primary Countermeasure: Commit
signing is the most considered countermeasure against imper-
sonation attacks in Git-based software development. This led us
to analyze how commit signing is described in our documents.

Due to the tutorial-centric nature of many documents in
our sample, the bulk covers GPG (28) as a signing method,
as opposed to SSH (14). Some documents state that SSH
familiarity simplifies setup (4) of commit signing. According
to them, the widespread ownership and utilization of SSH keys
among developers is an advantage over GPG, highlighting a
potential easier usage in commit signing. Only a few documents
mention S/MIME (5), and only one (D13) provides practical
guidance on its utilization. A common recommendation for
commit signing is to use the autosign (19) function, which
configures the local Git agent to sign all commits automatically.

Linked to the importance of trust is the question of how
to verify trust. One approach is the PGP-based Web of Trust.
Interestingly, while referenced several times, the Web of Trust
(9) is often glossed over, sometimes even dismissed, without
detailed explanation: “No one uses PGP’s web-of-trust, so
anyone checking the signatures has to rely on the public keys
uploaded to the GitHub account [. . .]” (D23). Moreover, only
two documents mention uploading keys to public keyservers.
Consequently, the majority of documents tend to rely on
GitHub as a de facto centralized trust entity (11) for storing,
managing, and verifying signature keys, by linking them to
GitHub profiles: “At this point GitHub becomes one massive
allowed_signers file, arguably with much better security
and trust than the one on your computer” (D48). The vigilant
mode (11) is named as an essential anti-spoofing tool for
GitHub users. Eleven documents recommend the vigilant
mode to “[make] it more accessible for potential users to spot
impersonation attempts” (D27). Eight documents recommend
to enforce signing for contributions (8) using GitHub’ branch
protection rule to enforce signed commits.

3) Contributions to Software Supply Chain Security:
The security of the Software Supply Chain (16) is a main
motivation in our documents: “As a core committer, you have
the ability to affect over a million websites” (D52). For many
of the analyzed documents, the proof of authenticity (16) is
the central contribution that commit signing provides. “The
receiver of the data can verify that the signature is authentic,

10



and therefore must’ve come from the signatory” (D17). Given
its role as the main countermeasure against contributor spoofing
and reputation hijacking attacks, it is unsurprising that authen-
ticity receives considerable attention. Furthermore, it is often
closely linked to proof of authorship (10), despite emphasizing
the difference between author and committer (6). “when
you see a verified commit, the author has nothing to do with the
verified status” (D17). Eleven documents mention the positive
impact of commit signing on the trustworthiness of commits and
projects. This link between commit signing and trustworthiness
is based on the perception that commit signing provides proof
of project/commit integrity (8). Related to authenticity, some
documents consider a history of signed commits a good way
to ensure accountability and non-repudiation (7). For twelve
documents, this seems important since “signed commits could
act as a reliable source for an audit trail” (D6).

4) Alternative Countermeasures: Since account-based so-
cial coding platforms, like GitHub, play an essential role in
the OSS ecosystem, one countermeasure against impersonation
attacks is account-bound accessibility rights. Scott Chacon
writes in a document: “At GitHub we were never really
majorly concerned with spoofing because you can’t push
into a repository you don’t have access to” (D48). The
biggest security risk in that case are account/infrastructure
compromises (4), which are countered by GitHub/GitLab
account hygiene (4). In this case, the mentioned trust is
mostly centralized on GitHub.

Some documents discuss alternatives or extensions to current
Git commit signing, such as Git push signing, Gitsign by
Sigstore and OpenPubkey. D35 mentions there is no way to
dual-sign a commit, representing a design aspect of Git itself.
Further, three documents commented on the fact that there
is no notification when someone else refers to one’s GitHub
identity. One of our more comprehensive documents (D50)
specifies three expectations towards a good commit signing
solution: “[1] short-lived cryptographic identities [. . .][2] clear
revocation procedures (backed by trusted timestamps) [. . .][3]
straightforward local verification (no web UI badges)” (D50).

Security Advice on Contributor Impersonation. While Con-
tribution Hijacking is not discussed, Contributor Spoofing and
Reputation Hijacking are known attacks and considered to be best
counter-measured by commit signing. Moreover, a signed commit
history is believed to offer authenticity and a reliable audit trail,
thereby enhancing SSC security.

VII. ETHICS

We were committed to upholding high ethical standards and
protecting individuals’ rights and privacy. Thus, we aligned
our studies with the Menlo Report for research in the field of
computer science [112]. We responsibly disclosed our findings
to GitHub (still ongoing, see Appendix B) and conducted no
active attacks on projects. We only tested our exploits in our
setups according to the GitHub BugBounty program [17]. Our
measurement of the threat to OSS projects was also only carried
out passively so that no projects were at risk. All data we used
was taken from publicly available sources, including commit
histories in OSS projects and cryptographic keys that must
be publicly accessible as part of the WoT. For datasets that
allow the identification of individuals, e. g., by an email address

linked to cryptographic keys, we only report information in
aggregated form to protect the privacy of these individuals.

VIII. LIMITATIONS

For our repository analysis, evaluating all commits of all
repositories on GitHub or even beyond GitHub is infeasible.
Without a reference set we could use, we had to sample our
own, which automatically imposes restrictions on our dataset.
Our initial method of sampling projects required them to be
marked as the dependency of multiple other projects. Since that
can only be the case for projects that have seen some adoption
in the past, they must have been around for some time. This
leads to our dataset being more influenced by older projects,
showing commit signing behavior in the past. A project’s age
also influences the ratio between signed and unsigned commits
because unsigned commits in the past will remain unsigned
and, therefore, be an obstacle to a fully signed commit history.
Commit metadata, such as the commit time and email address,
are self-reported by users. While working with these, e.g., to
establish trends over time or to distinguish users, we have to
assume that most users set them in good faith without modifying
them with an ulterior motive. The analysis of the SOA records
can also only be considered a lower bound since resellers have
presumably registered further claimable domains and thus have
a SOA entry. Furthermore, forks of projects with a high number
of signed or unsigned commits in their shared history can bias
the previously shown results in either direction, leading to
over- or under-representation of the respective characteristic.
Ultimately, our approach also depends on the quality of the
data obtained from Libraries.IO. We excluded projects because
their Git repository could no longer be tracked. As a result,
some projects may not be part of our sample.

While the qualitative analysis of online sources is valuable
for synthesizing diverse perspectives and insights beyond
traditional academic sources, it is subject to inherent limita-
tions [101]. These limitations stem primarily from the sources’
quality, depth, and representativeness variability. As a result,
interpretations derived from online sources may be subject to
bias, lack generalizability, and require cautious interpretation
within the study’s objectives and methodological framework.
We address this through our approach. In line with Garousi et
al. and Giustini, we chose a general methodology applicable
to the SE community at large [101], [102]. We used common
search terms and selected and categorized articles for different
stakeholders. Therefore, we believe that our sources represent
advice developers find and consult for their work. Another
critical factor is that our collection of online sources only
provides the current state of online sources. To make our
analysis understandable and comparable to future studies, we
provide PDF versions of all the sources examined in our
replication package in Section A.

IX. DISCUSSION

Below, we answer our research questions and discuss our
findings. We also provide a blueprint for project categorizations
and describe future work.

A. The Research Questions

We start by presenting the implications of our results for
each research question.
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[RQ1] Trust Signals from Untrustworthy Origins: Pre-
vious research on the security of the SSC [13], [25]–[27],
recommendations from large open-source organizations [18],
[19], and the provenance requirements from CISA [7] indicate
a need for verifiable authenticity and integrity of software
products and their development. In this context, trust becomes
a relevant aspect. Previous research has shown that trust is
often the basis for decisions in code reviews [23], for accepting
changes [24], or even for assigning project roles and access
rights [9], e.g., as happened in the XZ incident [5]. However,
we showed that the link between Git and GitHub for the
attribution of contributions is weak and can be abused. Our three
attack scenarios (Contributor Spoofing, Reputation Hijacking,
Contribution Hijacking) show that attackers can either spoof
contributors or build up a fake legend for more sophisticated
attacks leveraging signals used for trust on GitHub.

We point out that these interactions not only affect the UI of
GitHub, but the resulting data is also used by other projects via
the official GitHub API. For example, the OpenSSF Scorecards
consider the affiliation of contributors to organizations as a
positive sign, and projects like djangopackages.org list
contributors and commit frequency as a health metric for a
package. In 2015, GitHub posted their security statement about
contributor spoofing, and they are aware that attackers can fool
users [113]. We are doubtful whether the previous risk analysis
is still correct under these circumstances, and we argue that
GitHub should consider a reevaluation.

[RQ2] Threats and Countermeasures: Our measurement
study of critical OSS projects indicates that many projects
and their contributors are vulnerable to our attacks due to
not signing and assigning their commits. For contributor
spoofing and reputation hijacking, we show for 6,479 GitHub
repositories that it is difficult to distinguish between legitimate
push events and malicious ones, i.e., malicious contributions
in the name of a project maintainer. GitHub, mirrors, and
bots use different roles when creating and pushing commits,
so the author, committer, and pusher are only identical for a
minority of commits (Section IV-B). This depicts the threat
model: Malicious actors can hide their contributions in these
commits, and it is challenging to distinguish between evil and
legitimate ones. We also identified 3,013,817 commits in critical
OSS projects that are not attributed to any GitHub account
and can, therefore, be hijacked. For 4,107 email domains,
we could also show that malicious actors can reacquire the
corresponding domains. Thus, a complete takeover of the
respective contributors’ current and historical identity on GitHub
is possible. This also includes new signed commits because
these email addresses can be successfully verified on GitHub
when the malicious actor takes over and controls the domain
and uploads a corresponding public key to their GitHub account.

Commit signing seems to be the most prominent protection
against impersonation. However, the commit histories in our
measurement study show a low prevalence of signed commits
in the repositories. We could only find 15% signed commits in
the Git histories, of which two-thirds came from the GitHub
web-flow account. Only if a user signs all commits is it possible
to identify commits that do not originate from them (i.e., a
potential malicious impersonation) because those do not have a
signature or an invalid signature. At the individual committer
level, our analysis shows that while many of the security advice

documents recommend the autosign function (19/55), only
2.0% of all committers in our dataset sign all commits. Our
analysis further shows that only about one-third of PGP keys can
be found outside GitHub, rendering local verification without
GitHub unreliable. This observation also extends to SSH-based
commit signing, where verification is only viable through keys
uploaded to GitHub, as there is no public keyserver—resulting
in a complete dependence on the platform.

[RQ3] Analyzing Security Advice: Surveying online se-
curity advice shows that many documents acknowledge the
untrustworthiness of Git metadata but mostly warn people
about contributor spoofing. A few sources also mention that
malicious repositories can be filled with renowned open-source
contributors to look more legitimate. Still, we have not seen
any reference to the issue of old unattributed email addresses
in commit histories on GitHub. Thus, contribution hijacking
appears to be unknown so far. However, as shown in Section IV,
many projects are vulnerable to this threat.

Commit signing is frequently mentioned as a counter-
measure, and eight documents also recommend using branch
protection rules for projects to enforce signed commits. This
recommendation, however, is not reflected in our measurement
results. The documents also emphasize the value of improving
the authenticity of contributions in an OSS project to promote its
integrity for the SSC, with twelve considering signed commits
as a good source for a reliable audit trail. However, some also
mention several problems with the current signing procedure,
mainly criticizing the “awful user experience” (D42) of GPG
and the issues with several external tools. The added support
of SSH keys by GitHub resulted in many new articles on
commit signatures, emphasizing their usefulness due to the
widespread use of SSH. In summary, there is much demand
for the authenticity and protection that commit signatures can
offer. Still, existing methods are only used reluctantly because
they encompass severe user challenges.

[RQ4] Improvements for Git & GitHub: We see several
actions different stakeholders can undertake to improve the
current situation and provide authenticity for the SSC. We
argue that Git should add a signature field for the author

to their commit objects. As both committer and author

can be spoofed, providing authenticity for both roles via
separate signatures would be beneficial. We suggest several
improvements for GitHub dealing with Git metadata:

1) Email Validation. Our findings illustrate that relying on
email addresses for functionalities such as commit attribution
without user authentication of email submission and retrieval
can be a security risk—especially if legit users cannot claim
their email address once another (malicious) user has added
it. Furthermore, the current text in the verification email
is misleading because it advises users to ignore malicious
claims. We urge GitHub to rethink the email verification
process for improved security and not rely on unverified
email addresses for authorship contribution anymore.

2) Adoption of Novel Commit Signing Technologies. Modern
signature schemes such as Sigstore are currently not sup-
ported by GitHub; their signed commits appear as Unverified.
Supporting these technologies could help their adoption and
authenticity of signatures.
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Fig. 7. A decision tree for project risk categorization and the proposed
mitigation techniques.

3) User Interface. The current design of the GitHub UI may
create misconceptions about the origin, authenticity, and
security of the displayed information. Based on our findings,
we propose the following UI changes to match the technical
implications:

a) Distinguish GitHub and Developer Signatures: We
suggest adding a different display of commits signed
by GitHub as the authenticity is based on various secu-
rity principles, namely authentication versus public key
cryptography.

b) Display Pusher: Only the committer and author of a
commit are shown in the UI. We suggest adding a notice
about the pushing account to display all involved actors.

c) Limit Attributions: The visual linking of untrustworthy
email metadata to GitHub user profiles is a root cause
of our impersonation scenarios. Limiting the visual
attribution to commits without disparity and introducing
the same interaction requirements as for the profiles’
heatmap would streamline functionalities and ensure the
display of only trustful information.

4) Transparency Log for Signing Keys. Our findings suggest
that GitHub has become the sole PKI for commit verification
in the OSS ecosystem. To fulfill this role, we suggest the
introduction of a transparency log for signing keys, such
as CONIKS [114] or one of its further refinements like
SEEMless [115] or Parakeet [116], in which key material is
publicly available. Ideally, this service would be independent
of GitHub’s API and UI, enabling independent and local
signature verification.

B. Recommendations for Open Source Projects

Based on our results, we propose three questions for project
risk assessment and four mitigation techniques for high-risk
projects, as shown in Figure 7. We also discuss the importance
of code reviews and how the issue of forged trust signals can
be addressed.

Defining Project Scope: The three questions for risk assess-
ment determine whether a project is in the scope of our attack
scenarios.

1) Part of SSC: Projects that are not part of the open-source
SSC are not of particular interest for either Contributor
Spoofing or Contribution Hijacking, as only limited reputa-
tion can be gathered and malicious contributions are limited
in their impact.

2) Contributors Unknown: The project structures are impor-
tant. Suppose a project is only developed by a single person
or a group of developers who know each other, and all the

commits come from them. In that case, it is difficult for
attackers to infiltrate these social structures.

3) Contribution Sharing: Contribution sharing is a practice
that is a root cause for the weaknesses. If the pusher,
committer, and author are identical in all commits in the
project, the authenticated pusher guarantees authenticity,
and no unassigned commits should exist.

Mitigating Project Risk: If a project is in the scope of our
attack scenarios, we define four mitigation techniques that
projects should evaluate.

1) Free or Pseudo Emails: Project maintainers should check
whether the commit history contains free or pseudo email
addresses and whether these are assigned to the correct
GitHub accounts. If such email addresses exist, the affected
contributors should be asked to add them to their GitHub
account.

2) How are Bots Used: Project maintainers should evaluate
how bots are used in the project. The attack with the fake
dependabot showed that bots are used for spoofing, and
our findings illustrate that bots are a dominant source for
the disparity in commit data. GitHub supports the signing
of bot commits to provide authenticity, and for projects
working with bots, it should be checked whether this is
configured [85].

3) Vigilant Mode/Enforced Signing: The signing behavior
within the project should be investigated. Although signed
commits are not perfect, signed commits with verifiable sig-
natures are currently the best way to provide authenticity for
a contribution. Hence, the introduction of contribution rules
for signed commits should be considered, and contributors
can use the Vigilant Mode.

4) GitHub-independent Contributions: Not all contributions
are made on GitHub but are, for example, represented by
mirrors, or the project was imported to GitHub at some
point. This may result in many unassigned commits and
also complicates signing. It should be evaluated whether
there are legacy contributions in the project and whether
they can be exploited, e. g., because not all contributors are
linked on GitHub.

Importance of Code Reviews: While the profile of an
OSS contributor might be considered an indicator of whether
a contribution is trustworthy or secure, this is not the only
indicator. In OSS projects, there is typically a review of the
code of pull requests before the merge—often including running
test suites, static (security) analysis tools (SAST), and alike
using automated CI pipelines. While OSS contributions are not
merged solely based on the contributor’s identity, prior research
found that trust in individuals and their identity benefits these
decisions [9], [24]. This emphasizes the potential impact of
the weaknesses we described and that GitHub’s reliance on
unauthenticated Git metadata might be dangerous—especially
as it is likely that only a tiny fraction of Git and GitHub users
are aware of the risks. An adversary might use this to create
the illusion of reputation and increase the chances of getting
pull requests merged that contain malicious code.

All in all, this makes a critical code review all the more
important. Ideally, it would not matter who is the author
or committer of some contribution to an OSS project. Only
what is contributed, i.e., the source code should be checked to
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determine whether a contribution gets merged. The maintainers
responsible for merging pull requests should especially be
aware of the weaknesses we describe and focus solely on
the contribution. We call this an ideal state, but in practice, this
requires a lot of time from OSS contributors who are volunteers,
and many projects already lack time and resources.

C. Future Work

An interview study with OSS developers on that topic would
be interesting to understand the awareness of the problem better
and also learn about practices and countermeasures that are
not recognizable in our data. Furthermore, a more detailed
examination of legend building in the OSS ecosystem could
help estimate the overall criticality.

X. CONCLUSION

Our work illustrates three scenarios that can be used for
impersonations using GitHubs’ user and project profiles. While
GitHub describes their handling of Git’s metadata as not critical
for security, we think this perspective should be reassessed. We
show how our attack scenarios can generate critical trust signals
that malicious actors could abuse. We analyzed repositories
on GitHub for 50,328 critical OSS packages and measured
their vulnerability to these weaknesses. Additionally, we
investigated whether countermeasures against these weaknesses
were taken in projects, and we measured how widespread
GitHub’s recommendation to sign commits is in practice. We
further analyzed security advice for developers for dealing with
impersonations on GitHub. Our results show that GitHub’s
current presentation makes it hard for users to attribute commits
correctly. We also identified 3,013,817 commits with no
linked GitHub account that malicious attackers can use to
attribute open-source contributions. Although security advice
recommends signing commits, it is rare in critical OSS
projects.
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APPENDIX A
AVAILABILITY

Additional materials can be found at our OSF repository:
https://doi.org/10.17605/OSF.IO/9RVSX

APPENDIX B
RESPONSIBLE DISCLOSURE

We disclosed our findings to GitHub via HackerOne:

• July 15, 2024: We submitted a vulnerability report via
HackerOne to GitHub, which included our PoCs with
videos, our publication, and an impact assessment.

• July 15, 2024: Hubot replied with an automated message
thanking for the report, which will now be validated in a
triage process before being forwarded to a team (Quote:
“Once validated, we will let you know and triage this issue
to the appropriate team.”).

• August 23, 2024: A member of the GitHub Security team
contacted us via HackerOne, stating that their investigation
is still ongoing. They asked when we plan to publish our
findings (Quote: “Thanks again for the submission! We
are still investigating and hope to have more information
for you soon. Do you have a date in mind for publication?
Thank you!”).

• August 26, 2024: We replied that we plan to publish our
findings in February 2025 (NDSS).

• September 16, 2024: We asked for an update for NDSS’
interactive rebuttal phase.

• October 21, 2024: GitHub closed our report as an
informative disclosure. The security team confirmed that
our PoCs are correct, but the behaviors we have highlighted
are working as intended. However, GitHub might consider
making this functionality more strict in the future.

APPENDIX C
SEARCH TERMS

Used search terms for finding online security advice and
the analysis of project guidelines: commit spoofing, github
contribution spoofing, author impersonation git, github con-
tribution hijacking, github false contributor, tampered git
commits, git author spoofing, commit identity spoofing, github
reputation hijacking, commit signing, trustworthy source code
commits, commit signature, commit signing guidelines, commit
authentication, version control system signatures, and digital
signatures in source code.

APPENDIX D
MEASUREMENT STUDY

A. Results of the Linear Regression Analysis

We modeled the proportion of user-signed commits (depen-
dent variable) in a project based on: project age, programming
language, number of contributors, project topic, Scorecard value
and number of dependents. For statistical stability, programming
languages that occur in less than 1% of the data set were
excluded. score refers to the Scorecard value of a repository,
100k_dependent_repositories is true for projects that
have more than 100,000 dependent projects, and 1k_stars is
true for projects with more than 1000 stars on GitHub. Table IV
shows the results for the regression.

TABLE IV. RESULTS OF THE REGRESSION ANALYSIS.

Factor Coef. C.I. p-value

Intercept 0.09 [0.08, 0.09] <0.001*

language_Ruby 0.03 [0.02, 0.03] <0.001*

language_TypeScript 0.02 [0.01, 0.02] <0.001*

language_PHP 0.007850 [0.00, 0.01] <0.001*

language_Rust 0.02 [0.01, 0.02] <0.001*

language_HTML -0.01 [-0.02, -0.00] 0.015*

language_CoffeeScript -0.008494 [-0.02, 0.00] 0.052

age -0.01 [-0.01, -0.01] <0.001*

score 0.02 [0.02, 0.02] <0.001*

100k_dependent_repositories 0.0001682 [0.00, 0.00] <0.001*

1k_stars -0.0002891 [-0.00, -0.00] 0.048*

B. GitHub’s Verification

We found two undocumented verification reasons when
working with the GitHub API [98].

ocsp_revoked are signatures that are no longer valid
because a certificate in their chain has been revoked. Unverified
commits with the bad_cert status also include commits
signed with Sigstore and gitsign [117], [118]. As GitHub does
not accept Sigstore as a certificate authority, they are shown as
Unverified. This is only shown in the GitHub UI and not in the
GitHub API. This means we can only report an upper bound
of 363 for Sigstore since the bad_cert verification reason
appears frequently in our dataset. The documentation also
states that the unknown_signature_type error occurs if
the verification encounters a non-PGP signature. However, this
is outdated, as shown by the data in Table II.

Apart from that, we found a few commits that are still
shown as verified, even though the commit was made after the
key expired. GitHub displays commits signed with this key as
Verified with an additional key expiration note, independently
of the commit or upload date. A few keys GitHub specified as
expired were renewed by users on keyservers.
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APPENDIX A
ARTIFACT APPENDIX

Our research focused on potential impersonation attacks on
GitHub, which utilize manipulated Git metadata and GitHub’s
interpretation of this metadata. After we defined our attack
scenarios, we took the top 50,328 critical open-source packages
and estimated their risk and vulnerability. We also investigated
potential countermeasures which were used by projects and
discussed in online security advice.

A. Description & Requirements

Our artifacts consist of three parts, each of which supports
a different aspect of our study.

• Proof of Concept Videos: For each of our three attacks,
we provide a proof of concept video to show our attack
techniques and what kind of representation they create in
GitHub’s UI.

• Project List and Analysis Code: For the large-scale
measurement study, we provide the complete list of the
examined projects and scripts used in their analysis. This
includes scripts for crawling the GitHub API for projects
and contributors, our crawling of PGP keyservers, the
exploration of hijackable top-level domains (TLDs), and
jupyter-notebook containing some of our analysis steps.

• Materials for the Analysis of Online Advice: We provide
all investigated online sources, our sampling materials, the
AI evaluation results and our codebook for the analysis
of the online sources.

All artifact parts contain a separate README.MD file
describing the content and how to interact with it.

1) How to access: We host our artifacts on OSF. They are
available via this link: https://doi.org/10.17605/OSF.IO/9RVSX

2) Hardware dependencies: None.

3) Software dependencies: The following packages are
required as prerequisites to access the content of our package:

• Media Player (like VLC) (https://www.videolan.org/vlc/)
• npm (https://docs.npmjs.com/downloading-and-installin

g-node-js-and-npm)
• yarn (https://classic.yarnpkg.com/lang/en/docs/install/#de

bian-stable)
• Python(3.8+) (https://www.python.org/downloads/)
• poetry (https://python-poetry.org/docs/)
• jupyter-notebook (https://jupyter.org/install)

Additionally, a developer token is required to access the
GitHub API. This means that the user needs a GitHub account
and has to create a classic token without any assigned scopes
using the developer settings4.

4) Benchmarks: Our artifacts include our crawling scripts
to create our dataset. No further external models/datasets were
used.

4https://docs.github.com/en/authentication/keeping-your-account-and-dat
a-secure/managing-your-personal-access-tokens

B. Artifact Installation & Configuration

To generate the dataset for the measurement study, several
prerequisites must be installed for our scripts (cf. Section
A-A3). In addition, the GitHub API token must be copied
to the gh_keys.json file so that it can be accessed by
the scripts. The format of the API keys is described in
github-api/README.md.

C. Experiment Workflow

First, we show the feasibility of our attacks using the videos
as a proof of concept. Secondly, we conduct a risk assessment
on critical open-source packages that can be considered the
main victims of such attacks. To achieve this, a dataset for the
projects and their contributors is first created using the sources
described in the Dataset_Description_GitHub.pdf

(e.g., GitHub API, keyservers, domain registrations). Using
this dataset, we conduct a number of analyses, such as searching
for unassigned commits and the usage of commit signing as a
countermeasure.

The analysis of online sources took place independently
and deals with discussions about impersonation on GitHub and
possible countermeasures.

D. Major Claims

Our artifacts are supporting several claims from our paper:

• (C1): We demonstrate three ways to tamper with Git’s
metadata to manipulate attributions on GitHub: Contrib-
utor Spoofing, Reputation Hijacking and Contribution
Hijacking. These attacks are shown by our Proof of
Concepts (PoC) on real GitHub repositories. The videos
are included in the Impersonation Techniques

directory and referenced in Sections IV-B and IV-C.
• (C2): We measure which and how many critical open-

source projects and their contributors are vulnerable to
these exploits. This claim is proven by our experiments
E1-E4 which results are reported in Section IV.

• (C3): We show that only a minority of contributors signs
their commits. Our utilized procedure is shown in E3 and
the results are displayed in Figures 5 & 6 and Tables 2 &
3.

• (C4): We show that online security advice for develop-
ers addresses the risk of contributor spoofing, but no
source mentions the problem of unattributed emails in
GitHub repositories (Contribution Hijacking). Almost
all sources recommend signed commits as a solution,
but some also mention problems with their use. All
materials for this analysis are included in directory
Gray Literature Analysis and key findings of
the codebook are referenced in Section VI-B.

E. Evaluation

We present 4 experiments to display the functionality of
our approach. E1 and E2 show how we collect our dataset for
projects and contributors. E3 describes the analyzing steps for
our major findings. E4 explains how we checked for vulnerable
top-level domains with the commit data that can be taken over.

Important Note: We only provide a small sample
of 5 projects for the functionality evaluation for
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E1-3 and a random sample of 49 real domains
for E4. The sampled projects are available in
ae-repositories.txt and the complete projects list is
provided in github_repositories_cleaned.txt.

1) Experiment (E1): [Creation of Repository Dataset] [15
human-minutes + 0.5 compute-hour]: We create a dataset of
critical projects and their commits.

[Preparation] Open the github-api directory with your
console. The file gh_keys.json must contain a valid GitHub
developer key, and all prerequisites must be installed (see
github-api/README.md installation steps).

[Execution] Follow the instructions in the
README.md and run the first two commands
(e.g., download-repo-information.ts and
augment-repo-info.ts)

[Results] Our scripts will create a JSON for each project
from ae-repositories.txt that contains all contributor
information about the project.

2) Experiment (E2): [Creation of Contributor Dataset]
[15 human-minutes + 3 compute-hour]: We create a dataset
for all contributors in our projects. We also check whether
they have any public keys available on GitHub or on PGP
keyservers.
Important notice: It may happen that the keyservers slow
down or block the requests after a while. Restarting the script
usually solves this issue.

[Preparation] Open the github-api directory with your
console. The file gh_keys.json must contain a valid GitHub
developer key, and all prerequisites must be installed (see
github-api/README.md installation steps).

[Execution] Execute the complete last three commands
from the README.md in the correct order. For
reference, these are collect-user-information.ts,
download-user-keys.ts and
/download-from-keyserver.ts.

[Results] Our scripts will create two directories and one
JSON file. The first (userKeys) contains all signing keys that
GitHub has from a user, and the second (keyIDsPerServer)
contains three sub folders with information from each keyserver.
The JSON file (user-info.json) contains a list of all found
user accounts from the GitHub API and their contribution
behavior.

3) Experiment (E3): [Analyze commits & contributors]
[10 human-minutes + 1 compute-hour]: In this experiment, we
conduct a number of analyzing steps that were also referenced
in the paper.

[Preparation] Open the github-api directory with your
console.

[Execution] Start the contained jupyter-notebook or run
the last command from the README.md to get a HTML
representation. You can take a look at all analyses steps and
also re-run the whole notebook to check its functionality.

[Results] The results from the notebook shows how we
check for unassigned commits, signed commits and the general
signing behavior within a repository and from a certain user.

4) Experiment (E4): [Check Free Domains] [10 human-
minutes + 0.5 compute-hour]: In this experiment, we investigate
whether found domains from the commit data are available for
hijacking.

[Preparation] Open the Measurement Study directory
with your console. Let poetry create a virtual environment by
following the installation steps in the README.md file.

[Execution] Execute the script by following the description
from the README.md file.

[Results] The script takes the domains from
domains.txt and checks all domains for their Start
of Authority (SOA) DNS resource records. The results are
listed in 5 different files depending on the SOA response.
The vulnerable domains from the commits can be found in
free_domains.txt.

F. Notes

With these artifacts, we only want to demonstrate the
functionality of our scripts on a small dataset because the
entire analysis took several days with multiple nodes on a HPC
infrastructure. It involves more than 50 GB of compressed data.
For this reason, it is rather difficult to reproduce our concrete
results, but we want to be transparent about our scientific
process. Therefore, we only applied for the Available and
Functional artifact badges.

20


	Introduction
	Related Work
	Software Supply Chain Security
	Git-related Security Issues
	Research on PGP and Digital Signatures

	The Flow of Git's Metadata
	Local Generation of Git Contributor Metadata
	Git's Commit Signing
	Fueling GitHub's Social Network with Git's Metadata
	GitHub's Perspective: From Untrustworthy Metadata to Trust Signals

	Abusing GitHub's Representation of Git
	Selecting Critical OSS Projects
	Tampering with Commit Metadata
	Contribution Hijacking

	Commit Signing in Critical OSS Projects
	Commit Signatures and Signing Technologies
	Signing Keys
	Repositories
	Committers

	Analyzing Online Security Advice on GitHub Impersonations for OSS Developers
	Method
	Sampling
	Analysis

	Results
	Impersonation Attacks
	Commit Signing as Primary Countermeasure
	Contributions to Software Supply Chain Security
	Alternative Countermeasures


	Ethics
	Limitations
	Discussion
	The Research Questions
	Recommendations for Open Source Projects
	Future Work

	Conclusion
	Acknowledgments
	Appendix A: Availability
	Appendix B: Responsible Disclosure
	Appendix C: Search Terms
	Appendix D: Measurement Study
	Results of the Linear Regression Analysis
	GitHub's Verification
	Key Algorithms

	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

	Notes


