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eLife assessment
Through anchored phylogenomic analyses, this important study offers fresh insights into the evolu-
tionary history of the plant diet and geographic distribution of Belidae weevil beetles. Employing 
robust methodological approaches, the authors propose that certain belid lineages have maintained 
a continuous association with Araucaria hosts since the Mesozoic era. Although the biogeograph-
ical analysis is somewhat limited by uncertainties in vicariance explanations, this convincing study 
enhances our understanding of Belidae's evolutionary dynamics and provides new perspectives on 
ancient community ecology.

Abstract The rise of angiosperms to ecological dominance and the breakup of Gondwana 
during the Mesozoic marked major transitions in the evolutionary history of insect- plant interac-
tions. To elucidate how contemporary trophic interactions were influenced by host plant shifts and 
palaeogeographical events, we integrated molecular data with information from the fossil record to 
construct a time tree for ancient phytophagous weevils of the beetle family Belidae. Our analyses 
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indicate that crown- group Belidae originated approximately 138 Ma ago in Gondwana, associated 
with Pinopsida (conifer) host plants, with larvae likely developing in dead/decaying branches. Belids 
tracked their host plants as major plate movements occurred during Gondwana’s breakup, surviving 
on distant, disjunct landmasses. Some belids shifted to Angiospermae and Cycadopsida when and 
where conifers declined, evolving new trophic interactions, including brood- pollination mutualisms 
with cycads and associations with achlorophyllous parasitic angiosperms. Extant radiations of belids 
in the genera Rhinotia (Australian region) and Proterhinus (Hawaiian Islands) have relatively recent 
origins.

Introduction
The evolutionary interplay between plant- feeding (phytophagous) insects and vascular plants has 
fundamentally shaped terrestrial biodiversity for over 400 million years (e.g. Ehrlich and Raven, 1964; 
Farrell et al., 1992; Wilf, 2008; Misof et al., 2014; Swain et al., 2022). The fossil record has provided 
insights into the historical context and evolutionary processes that have shaped modern insect- plant 
interactions (Labandeira and Currano, 2013). However, (1) the degree to which contemporary trophic 
interactions reflect those in the past, e.g., representing relatively ancient primary associations versus 
more recent secondary associations, and (2) the relative roles of vicariance (including major palaeo-
geographical events) and dispersal in the evolution of host shifts, remain unclear.

Gymnosperms (cycads, conifers and relatives), the dominant plant group during the Mesozoic 
Era, thrived from the Permian to the Cretaceous period, dominating most terrestrial ecosystems and 
forming intimate associations with many groups of phytophagous insects (Anderson et al., 2007). 
The transition to the Cretaceous marked the rise of angiosperms (flowering plants), which gradually 
replaced gymnosperms in many ecological settings to become the dominant plant group (Anderson 
et  al., 2007). This transition was not only a botanical shift but also marks a critical period in the 
evolutionary history of insect- plant interactions. Angiosperms introduced novel ecological niches 
and resources, leading to the diversification of phytophagous insects and a reconfiguration of insect- 
plant associations (e.g. Farrell, 1998; Wilf, 2008; McKenna et al., 2009; Mckenna et al., 2015; 
Swain et al., 2022). By the end of the Mesozoic, the continents had rifted into nearly their present 
forms, though their positions would continue to change. Gondwana split into South America, Africa, 
Australia, Antarctica and the Indian subcontinent, while Laurasia became North America and Eurasia.

On account of their extraordinary taxonomic diversity and varied trophic interactions with contem-
porary gymnosperms and flowering plants, beetles (order Coleoptera; >400,000 described extant 
species) have been widely used as models to study the evolution of diversity at the insect- plant inter-
face (e.g. Farrell, 1998; McKenna et al., 2009; McKenna et al., 2019). The present paper addresses 
a significant gap in our understanding of the biogeography and evolution of host plant associations 
in the family Belidae (belid weevils), an ancient group of phytophagous beetles whose extant species 
exhibit specialized trophic associations with gymnosperms and flowering plants. By reconstructing 
the evolutionary history of belid weevils and examining the dynamics of their host plant associations 
and geographical distributions over time, this paper seeks to yield new insights into the evolution of 
modern insect- plant interactions.

Belidae, with approximately 360 described extant species in 40 genera and two subfamilies 
(Marvaldi and Ferrer, 2014; O’Brien and Tang, 2015), comprise an early branch of Curculionoidea 
(Oberprieler et al., 2007; McKenna et al., 2009; McKenna et al., 2018; McKenna, 2011; Figure 1). 
Belidae are indicated to have originated during the Jurassic in association with gymnosperms and 
subsequently colonized angiosperms, as the latter diversified and rose to ecological dominance during 
the Late Cretaceous and Paleogene (e.g. Farrell, 1998; McKenna et al., 2009; Shin et al., 2018). 
They exhibit their highest generic diversity in the Southern Hemisphere and collectively are associated 
with a variety of plants, including conifers, cycads and a few families of angiosperms, including Areca-
ceae, Balanophoraceae, Hydnoraceae, Celastraceae, Myrtaceae and Vitaceae (Marvaldi and Ferrer, 
2014). The adults appear to feed mainly on stem tissues but sometimes also on pollen, some being 
important pollinators, and the larvae develop in the bark and woody tissues of decaying branches or 
twigs, gymnosperm strobili, flower buds or fruits. Neotropical Belidae in the subtribe Allocorynina 
develop as brood pollination mutualists in the pollen cones (or ‘male strobili’) of cycads (e.g. Tang, 
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1987; Marvaldi and Ferrer, 2014; Salzman et al., 2020), a biotic interaction that has several inde-
pendent origins in weevils.

The historical biogeography and evolution of host associations of Belidae have long drawn the 
attention of scientists (Kuschel, 1959; Anderson, 2005; Marvaldi et al., 2006). However, our under-
standing of belid evolution remains limited due to the lack of dated phylogeny estimates. Since the 
landmark study of weevil family- level phylogeny by Kuschel, 1995, several studies based on morpho-
logical characters of adults and larvae have inferred the phylogenetic relationships of Belidae and 
revised their tribal- level classification (Kuschel and Leschen, 2003; Anderson, 2005; Marvaldi, 2005; 
Marvaldi et al., 2006), and hypotheses for generic phylogenetic relationships based on analyses of 
morphological data have been proposed for both the subfamilies Belinae (Kuschel and Leschen, 2003) 
and Oxycoryninae (Marvaldi et al., 2006; Anderson and Marvaldi, 2013). However, beyond including 
small numbers of exemplar taxa in higher- level studies of weevils (e.g. McKenna et al., 2009; Shin 
et al., 2018), the phylogeny and evolution of Belidae have not been explored using molecular data.

We conducted molecular phylogenetic analyses and divergence dating of belid weevils to investi-
gate their relationships and evolution. We also reconstructed ancestral states of host plant associations 
and undertook a biogeographical analysis to explore geographical patterns of diversification and the 
evolution of host plant organ and taxon associations. We integrated phylogenomic and Sanger data 
for Belidae, sampling all seven tribes and 60% of the extant genera (Combining Sanger sequences 
data with genomic data for phylogenetic inference has been demonstrated as a feasible approach 
to resolving deep- level relationships while adding taxa to the phylogeny for tracing the evolutionary 
history of characters e.g., Zhang et al., 2016; Song et al., 2020; Li et al., 2022a; Li et al., 2022b). 
We performed ancestral- state reconstruction using the resulting chronogram with stochastic character 
mapping and event- based likelihood ancestral- area estimation. We sought to answer two main ques-
tions about the distribution and host plant associations of crown group Belidae: (1) is the development 
of larvae of Agnesiotidini and Pachyurini (Belinae) and Oxycraspedina (Oxycoryninae) in conifer hosts 
an ancient, primary association (Farrell, 1998) or the result of more recent, secondary colonization, 
and (2) how did the interplay between biogeographical process and host plant shifts influence and 
shape the trophic associations of belids?

eLife digest For over 400 million years, insects and plants have evolved alongside one another, 
shaping each other’s development while adapting to major environmental changes. Studying fossils 
can provide clues about how ancient interactions between plants and insects developed as well as 
how environmental changes influenced these relationships.

During the Mesozoic era (around 252 to 66 million years ago) two events led to major changes in 
how insects and plants interacted. Firstly, flowering plants began to replace gymnosperms – plants 
whose seeds are not enclosed in a protective case – such as conifers, which were dominant at the 
time. Secondly, the supercontinent Gondwana split into the separate land masses of today, including 
South America, Africa, Antarctica and Australia.

To understand how these changes affected insect- plant relationships, Li et al. studied the evolu-
tionary history of the Belidae family of beetles. During the Jurassic period (around 200- 150 million 
years ago) these beetles lived off gymnosperms, but later they began to feed on flowering plants.

By combining genetic information from the DNA of 38 species of Belidae beetles with informa-
tion from fossils, Li et al. constructed a timeline of the beetles’ evolution. This revealed that Belidae 
beetles first appeared around 138 million years ago in Gondwana. Their larvae likely developed in 
the dead and decaying branches of the conifer plants on which they fed. As Gondwana split, these 
insects remained with their conifer hosts on the newly formed land masses. However, when conifers 
became less common, some of the beetles switched to feeding and developing larvae on flowering 
plants instead, diversifying again.

Understanding how changes in the availability of plants and the Earth’s geography have affected 
insects in the past can help scientists understand evolutionary history as well as current ecosystem 
stability and biodiversity. With further research, this may help scientists to devise strategies to better 
manage and preserve ecosystems.

https://doi.org/10.7554/eLife.97552


 Research article      Evolutionary Biology

Li et al. eLife 2024;13:RP97552. DOI: https://doi.org/10.7554/eLife.97552  4 of 26

Results
The 33t423g dataset comprised 97 334 nucleotides, with 37 154 parsimony- informative sites and 
31.8% missing data. The 33t424g and 46t424g datasets contained 107 199 nucleotides each, with 45 
046 and 45 157 parsimony- informative sites and 33.3% and 51.6% missing data, respectively. These 
data are summarized in Supplementary file 1.

Flanking regions used in the present study are much shorter than those from most ultraconserved 
elements (9865 bp in this study, averaging 23 bp per locus versus 400–1000 bp per locus) and contrib-
uted less to missing data (increasing the amount by less than 1.5%). The impact of flanking regions 
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Figure 1. Phylogeny estimate of Belidae. Topology obtained from analysis of the 46t424g matrix via maximum likelihood (ML), partitioned by gene. 
Squares along branches are ML SH- aLRT and UFBoot values for 1–3: 1. partition by gene, 2. unpartitioned, and 3. partition by gene and codon 
positions. Astral support for 4, Quartet Concordance (QC) for 5, and gene concordance factor (gCF) for 6. Branches without squares indicate the 
highest support in all analyses. Taxa displayed on the right: a. Cyrotyphus vestitus (Agnesiotidini) (photo credit: Rolf Oberprieler), b. Pachyura australis 
(Pachyurini) (photo credit: Simon Grove), c. Isacanthodes ganglionicus (Belini) (photo credit: Rolf Oberprieler), d. Homalocerus sp. (Belini) (photo credit: 
Jeff Gruber), e. Rhinotia sp. (Belini) (photo credit: Rolf Oberprieler), f. Oxycraspedus cribricollis (Oxycorynini, Oxycraspedina) (photo credit: Adriana 
Marvaldi), g. Oxycorynus missionis (Oxycorynini, Oxycorynina) (photo credit: Adriana Marvaldi), h. Rhopalotria slossoni (Oxycorynini, Allocorynina) (photo 
credit: Shayla Salzman).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phylogeny estimate of Belidae and nodal test excluding Sanger data.

Figure supplement 2. Topology generated by maximum likelihood (ML) analysis of the 46t424g matrix partitioned by gene, with node numbers.

https://doi.org/10.7554/eLife.97552
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on the backbone (tribal- level) relationships has been tested using the reduced datasets (33t423g and 
33t424g) with three different partitioning schemes. All six analyses yielded congruent tribal- level rela-
tionships and all backbone nodes were robustly supported, except the monophyly of Oxycraspedina 
+ Aglycyderini (Figure 1—figure supplement 1a). Analyses of datasets including flanking regions 
(33t434g) consistently recovered higher statistical support for the sister- group relationship between 
Oxycraspedina and Aglycyderini, which was further supported by the four- cluster likelihood mapping 
analyses (Figure 1—figure supplement 1b, c). Flanking regions were included in subsequent anal-
yses because this increased the resolution and backbone nodal support values. Backbone topolo-
gies generated from the combined dataset (46t424g) were congruent with those from the reduced 
datasets (Figure  1, Figure  1—figure supplement 1). The family Belidae, the subfamilies Belinae 
and Oxycoryninae, the tribes of Belinae (Agnesiotidini, Belini and Pachyurini) and most subtribes of 
Oxycoryninae (Oxycraspedina, Metrioxenina, Aglycyderina and Oxycorynina) were robustly supported 
as monophyletic (UFBoot ≥95 AND SH- aLRT ≥80) in the trees resulting from the three partitioning 
schemes (Figure 1). Tribal- level relationships were robustly recovered in Belinae, but generic rela-
tionships were only weakly supported even excluding the taxa without anchored- hybrid- enrichment 
data (33t423g and 33t424g) (Figure 1—figure supplement 1). The tribe Oxycorynini in its current 
concept (Marvaldi et al., 2006), was not recovered as a monophylum, Oxycraspedina instead forming 
the sister- group of Aglycyderini + Metrioxenini, and Archicorynus was found to be the sister- group 
of Allocorynina rather than of all other Oxycoryninae (Anderson and Marvaldi, 2013). The phyloge-
netic positions of Metrioxenini and Archicorynini were unstable across different partitioning schemes 
(Figure 1). This is most likely due to insufficient data, as only Sanger data were generated for repre-
sentatives of these two tribes. The phylogeny estimate generated with the partition- by- locus scheme 
was selected as optimal because it closely matches hypotheses based on the analysis of morpholog-
ical characters (Marvaldi et al., 2006). Therefore, the ML tree generated by the 46t424t dataset and 
partitioned by locus was used for downstream analyses. Details of node supports are summarized in 
Figure 1—figure supplement 2 and Supplementary file 2.

BEAST analyses with different tree priors/clock schemes yielded similar results, with the crown 
age of Belidae ranging from 160.0 to 125.6 Ma (Table 1). The preferred BEAST analysis, applying 
a birth- death tree prior with 13 unlinked molecular clocks, was identified using marginal- likelihood 
estimation (Table 1). Divergence- time estimation results revealed an origin of stem Belidae in the 
Middle Jurassic at 167.8 Ma (95% highest posterior density=185.9–160.0 Ma) and of crown- group 
Belidae in the early Lower Cretaceous at 138.5 Ma (154.9–125.6 Ma) (Figure 2). The highest likeli-
hood among the six biogeographical models tested was DIVALIKE with the unconstrained analysis 
(M0) (Supplementary file 3). Belidae were reconstructed as having a Gondwanan origin, with the two 
extant subfamilies Belinae and Oxycoryninae originating in the Australian and Neotropical regions, 
respectively (Figure 2).

The most likely ancestral host plants of Belidae were reconstructed as Pinopsida (0.53) or Angio-
spermae (0.43) (Figure 1—figure supplement 2, Supplementary file 2). In Belinae, Pinopsida were 

Table 1. Marginal- likelihood estimate (MLE) scores for various BEAST analyses performed for this 
study, and estimated ages (in Ma) for Belidae crown nodes for each tree prior/clock scheme in 
BEAST.
Notes: SS, stepping- stone sampling marginal- likelihood estimation; PS, path- sampling marginal- 
likelihood estimation; median post- burn- in divergence times in millions of years (95% credibility 
interval).

Analysis Tree model Clock model MLE SS MLE PS Crown Belidae age (Ma)

A1 birth- death 1 ULRC –142024.6921 –142025.2950 143.8706 [127.5175–159.9967]

A2 Yule 1 ULRC –142024.2190 –142024.9031 144.1718 [128.1144–159.9990]

A3 birth- death 4 ULRC –135931.3312 –135932.0701 140.7353 [125.4955–157.7755]

A4 Yule 4 ULRC –135931.0581 –135931.8383 140.8507 [125.7566–157.9643]

A5 birth- death 13 ULRC –134225.1645 –134225.9867 138.4569 [125.5653–154.8667]

A6 Yule 13 ULRC –134226.8380 –134227.8971 138.3267 [125.5619–154.5464]

https://doi.org/10.7554/eLife.97552
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Figure 2 continued on next page
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the most likely ancestral host plants (0.79), with a shift to Angiospermae occurring in Belini (0.65) and 
two independent colonizations of Polypodiopsida (if indeed these are larval hosts and the two genera 
are not as closely related as indicated by morphology; see Discussion below). The ancestral host plants 
of Oxycoryninae were recovered as Angiospermae (0.76) or Pinopsida (0.21). Extant Oxycraspedina 
are today associated with Pinopsida and Allocorynina with Cycadopsida (Figure 2). Based on the ASR 
analysis, branches of the host plants were used for larval development by ancestral Belidae with the 
high possibility (0.87), with a single shift to flowers and fruits (of Angiospermae) in Oxycorynina and at 
least three shifts to strobili, two to strobili of Pinopsida in Pachyurini and Oxycraspedina and one to 
(pollen) cones of Cycadopsida in Allocorynina (Figure 2).

Discussion
Phylogenetic relationships
This study provides the first target- enrichment- based phylogeny estimate of the weevil family Belidae. 
The monophyly of both subfamilies, Belinae and Oxycoryninae, was recovered, and Aglycyderini were 
found deeply nested in the latter, supporting the now widely accepted two- subfamily system of belid 
classification (e.g. Marvaldi, 2005). In Belinae, all three tribes (Agnesiotidini, Belini, and Pachyurini) 
were recovered as monophyletic, supporting the classification of Kuschel and Leschen, 2003. Generic 
relationships in Belini were generally poorly resolved, especially when taxa with Sanger data only 
were included (Figure 1—figure supplement 1, Figure 1—figure supplement 1). The placements 
of Trichophthalmus and Homalocerus are likely to be artifacts because they result from sparse and 
non- overlapping data (four Sanger and 13 anchored- hybrid- enrichment loci, respectively). In contrast, 
morphological data suggest that these two genera are closely related (Kuschel, 1959; Vanin, 1976; 
Kuschel and Leschen, 2003) and together constitute the sister group of all Australian Belini (Figure 
195 of Kuschel and Leschen, 2003). In Oxycoryninae, the tribe Oxycorynini in its current concept was 
found to be polyphyletic, with Oxycraspedina being more closely related to Aglycyderini + Metri-
oxenini (Figure  1). A close relationship between Aglycyderini and Metrioxenini was also found in 
the phylogeny estimate derived from morphological characters (Marvaldi et  al., 2006). All other 
tribes and the subtribes were recovered as monophyletic groups, in agreement with the results of 
phylogenies reconstructed from morphological characters by previous authors (Marvaldi et al., 2006; 
Anderson and Marvaldi, 2013). However, the placement of Archicorynus as a sister- group of Alloco-
rynina (albeit with weak support, Figure 1) differs from that indicated by morphological characters, 
which resolved the genus as the sister- group of all other Oxycoryninae (Anderson and Marvaldi, 
2013).

Ancestral host plants and larval feeding habits
The larvae of ancestral Belidae were reconstructed as having developed endophytically in branches 
(not strobili) of their host plants, which is consistent with some previous hypotheses (Marvaldi et al., 
2002; Marvaldi, 2005). Even though our reconstruction provides support for their ancestral hosts 
most likely being the Pinopsida, which is in accordance with our clade age estimates, angiosperm 
hosts cannot be completely ruled out, considering that crown angiosperms are now thought to have 
originated earlier than Belidae, in the interval between the late Permian and the latest Jurassic (256–
149 Ma) (Barba- Montoya et al., 2018). However, angiosperm families known to be belid hosts, such 
as Arecaceae, Hydnoraceae, Balanophoraceae, and Fabaceae, did not diversify until the Cretaceous 
(Barba- Montoya et al., 2018; Li et al., 2019). During the early evolutionary history of Belidae, conifer 
lineages were dominant (Crisp and Cook, 2011; Anderson et  al., 2007; Wang and Ran, 2014), 
consistent with Pinopsida being the most likely ancestral host plants of Belidae.

Based on our phylogeny estimate, the host plant shift to Angiospermae may have occurred during 
the branching of Belini in the Middle to Late Paleogene. Possible host shifts to ferns in the Paleogene 
in the Neotropical genera Trichophthalmus and Homalocerus must be viewed with great reservation, 
as all host records of these genera are only based on the collection of adults, without any evidence of 

right of the chronogram. A single most probable ancestral area is mapped at each node. Ancestral state reconstruction of belid larval host plant group 
and host organ usage under the ER model.

Figure 2 continued
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adult feeding, oviposition or larval development (Kuschel, 1959; Vanin, 1976). As mentioned above, 
Homalocerus and Trichophthalmus might form the earliest- branching lineage of Belini. Therefore, the 
more plausible scenario for host plant shifts is a single shift to ferns from conifers during the Early to 
Middle Paleogene, perhaps tracking the radiation of ferns in the late Cretaceous (Schneider et al., 
2004; Schuettpelz and Pryer, 2009).

In Oxycoryninae, the South American genus Oxycraspedus (the only extant genus of Oxycraspe-
dina) retains the reconstructed ancestral host association with Pinopsida. Its current hosts, Araucaria-
ceae, were widely distributed in Mesozoic times, and when the oxycorynines diverged by the Lower 
Cretaceous according to our dated phylogeny estimate, Araucaria still constituted an abundant and 
widely distributed host for beetles (Sequeira et al., 2000). It is plausible, then, that the ancestors 
of the remaining oxycorynine tribes/subtribes were originally associated with these conifers before 
their decline by the Eocene (Kershaw and Wagstaff, 2001) and that these oxycorynine lineages 
adapted to this decrease in conifer availability by host- shifting to various distantly related taxa of 
Angiospermae and Cycadopsida.

As is true for weevils generally, the association of Metrioxenini with palms (Arecaceae) may date 
to the Upper Cretaceous, given our dating and the fossil record of the family (Marvaldi et al., 2002; 
Matsunaga and Smith, 2021). However, extant Metrioxenina may only be associated with the genus 
Arenga (Marvaldi et al., 2006) — though possible associations with other members of the tribe Cary-
oteae and the subfamily Coryphoideae have not been explored. The Aglycyderini evidently shifted 
onto angiosperms as well, but their pattern of host associations is complex and indeterminate as 
the larvae of most species develop in dead bark and twig tissues of a variety of plants. The larvae of 
Oxycorynina develop in the flowers and fruits of achlorophyllous root- parasitic plants belonging to 
two distantly related angiosperm families (Balanophoraceae and Hydnoraceae) (Ferrer et al., 2011). 
The sequence of their host shifts cannot be reconstructed unequivocally; the possibilities include a 
parallel colonization of these taxa or a shift to Balanophoraceae first and then to Hydnoraceae or vice 
versa. In any case, our results suggest that these host shifts occurred in the Paleogene at c. 47.7 Ma 
(68.5–27.5 Ma), consistent with the estimated origins of Balanophoraceae and Hydnoraceae (crown 
age of Hydnoraceae at 54.7 Ma (75–37 Ma) Naumann et al., 2013).

All extant species of Allocorynina are known to develop in pollen cones of cycads of the genera 
Dioon and Zamia (Marvaldi et al., 2006; O’Brien and Tang, 2015). Our analysis recovered an initial 
shift to Dioon (hosts of Parallocorynus and Protocorynus) followed by a subsequent one from Dioon 
to Zamia (hosts of Notorhopalotria and Rhopalotria) (Figure 2). The shift to Dioon is indicated to have 
occurred between the late Cretaceous and the early Paleogene, at 58.4 Ma (67.1–49.9 Ma), which is 
older than the crown age of Dioon (24.6–7.5 Ma) but younger than the stem age (207.9–107.0 Ma) 
(Condamine et al., 2015). Australian cycad weevils have also been found to have colonized cycads 
before their main radiation (Hsiao et al., 2023). The cycad tree of life is known for long branches 
subtending generic- level radiations (Nagalingum et al., 2011; Salas- Leiva et al., 2013; Condamine 
et al., 2015; Liu et al., 2022). The switch from Dioon to Zamia is estimated to have occurred in the 
middle Neogene, at 11.0 Ma (13.5–8.6 Ma), which is in line with the crown group age of Zamia (9.5 
Ma, 22.1–9.0 Ma) (Calonje et al., 2019).

There appears to be a pronounced conservatism in the type of tissue consumed by belid larvae, 
always involving parenchymatous parts of branches or reproductive structures (not pollen or seeds). 
The type of plant organ used for larval development shows few shifts from the ancestral state 
(branches): in Belinae to ovulate and/or pollen cones (or ‘female and/or male strobili’) of Pinopsida 
(arguably a shift; possibly just opportunistic development alongside that in twigs and branches) in 
some Agnesiotidini and Pachyurini, in Oxycoryninae to ovulate cones of Pinopsida in Oxycraspedus, 
fleshy flowers/fruits of parasitic angiosperms in Oxycorynina and pollen cones of cycads in Alloco-
rynina (there does not appear to be any feeding on ovulate cones by Allocorynina in nature although 
they clearly visit them and are presumably capable of feeding on them at least in the short term; 
Simon et al., 2023). As is generally true for plant- feeding beetles (Farrell and Sequeira, 2004), host 
taxon associations are evidently more labile than the use of tissue/organ for larval development. This 
is particularly noticeable even within some belid genera, whose larvae have been found developing 
in similar tissues (under bark and in branches) of different plant families, both between congeneric 
species (e.g. Sphinctobelus) and in single species (e.g. Isacantha, Rhicnobelus); however, there are 
some cases known in Belidae where the use of plant organs is apparently plastic and opportunistic 
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(e.g. Apagobelus brevirostris (Lea) reared from both stems and cones of Araucaria; Zimmerman, 
1994).

Palaeogeographical events and host plant shifts
A Gondwanan origin was recovered for Belidae at c. 138 Ma, when South America and Australia were 
connected via Antarctica. The two subfamilies, Belinae and Oxycoryninae, originated and diverged 
during the separation of East and West Gondwana (McIntyre et al., 2017) and both have lineages 
that still develop on their ancestral host plant. In the East Gondwana clade, Belinae, the divergence 
time between Agnesiotis and Dicordylus was estimated at 44.7 Ma (55.9–34.5 Ma), during the Paleo-
cene–Eocene separation of South America and Australia (Lawver et al., 1992; Briggs, 1995; McIn-
tyre et al., 2017). Thus, the evolutionary history of Dicordylus might best be explained by persisting 
in association with the ancestral host plant despite vicariance. The history of the other two South 
American genera, Homalocerus and Trichophthalmus, could potentially also be elucidated through 
the vicariance process (though we cannot rule out the possibility of dispersal to South America). This 
process may have offered an opportunity for their common ancestor to encounter the new niches 
of South American ferns, thereby facilitating their shift to new host plants. Such palaeogeographical 
events shaping host plant usage have also been documented in other phytophagous arthropods (e.g. 
Calatayud et al., 2016).

Due to the lack of Afrocorynina in our sample and the weakly supported placements of Archico-
rynini and Metrioxenina, the evolutionary history of Oxycoryninae could not be reconstructed with 
high confidence. Nonetheless, a plausible scenario is that the common ancestor of Aglycyderini 
+Metrioxenini shifted to angiosperms in the Lower to Middle Cretaceous at 99.9 Ma (113.9–88.9 Ma) 
(McIntyre et al., 2017), diverged in the Ethiopian region by the Middle to Upper Cretaceous and 
subsequently dispersed to the Palearctic and Oriental regions, the tropical Pacific islands and as far 
south as New Zealand (Aglycyderina). Additional taxon sampling is needed to illuminate whether this 
host shift promoted the dispersal of Aglycyderini +Metrioxenini.

Adaptive radiations in Rhinotia and Proterhinus
In Belidae, notable taxonomic diversity is observed in the genera Rhinotia and Proterhinus, with 87 
and 168 described species, respectively (Marvaldi and Ferrer, 2014; Brown, 2019). In contrast, other 
genera of Belidae comprise fewer than 15 known species (Marvaldi and Ferrer, 2014). Host plants 
of Rhinotia are mostly Acacia (Fabaceae), the most species- rich plant genus in Australia, with more 
than 1000 endemic species (Maslin, 2004; Lewis, 2005). Acacia is particularly dominant in arid and 
semi- arid areas of Australia (Byrne et al., 2008). The crown age of Rhinotia is here estimated at 11.7 
Ma (14.1–9.2 Ma), which postdates the origin of crown Acacia (23.9–21 Ma) (Miller et al., 2013). 
The common ancestor of Rhinotia might have colonized Acacia in the early to middle Miocene when 
Australia was warm and wet (Martin, 2006), and co- diversified during the aridification of Australia 
from 10 to 6 Ma (Byrne et al., 2008). The origin might also have been 20 Ma earlier and involved 
other now- extinct taxa, with Rhinotia being a surviving lineage, or it might have colonized and radi-
ated during the aridification. A similar situation has been postulated for the thrips subfamily Phlaeo-
thripinae, which colonized Acacia and diversified into more than 250 species in 35 genera (McLeish 
et al., 2007; McLeish et al., 2013).

With 159 species described from the Hawaiian Islands, Proterhinus is another example of the spec-
tacular radiation of Hawaiian insects, along with, e.g., the nearly 1000 species of Drosophilidae (Diptera) 
(O’Grady et al., 2011), more than 400 species of Hyposmocoma (Lepidoptera: Cosmopterigidae) 
(Haines et al., 2014), over 110 species of Plagithmysus (Coleoptera: Cerambycidae) (Gressitt, 1975) 
and more than 190 species of Nesophrosyne (Hemiptera: Cicadellidae) (Bennett and O’Grady, 2013). 
Little is known about the host plants of Proterhinus, but what is known suggests that host plant 
ranges (e.g. in P. deceptor Perkins, P. obscurus Sharp and P. vestitus Sharp) are remarkably broader 
than in other species of Belidae (Legalov, 2009). Such host ‘jumps’ are typical for endemic Hawaiian 
phytophagous insects, e.g., Carposina (Lepidoptera: Carposinidae) (Medeiros et al., 2016) and Neso-
sydne (Hemiptera: Delphacidae) (Roesch Goodman et al., 2012), but some lineages have high host 
plant specificity e.g., Philodoria (Lepidoptera, Gracillariidae) (Johns et al., 2018) and Nesophrosyne 
(Hemiptera: Cicadellidae) (Bennett and O’Grady, 2013). Due to limited taxon sampling, we could not 
estimate the crown age of Proterhinus nor when and from where it may have arrived in Hawaii.

https://doi.org/10.7554/eLife.97552
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Materials and methods
Taxon sampling
Forty- six taxa were included in the present study, including eight outgroups representing the chrysom-
eloid families Chrysomelidae and Orsodacnidae and the weevil families Anthribidae, Cimberididae 
and Nemonychidae. Ingroup taxon sampling spanned 38 species of Belidae in 24 genera, repre-
senting all seven tribes from both subfamilies and 60% of extant belid genera. Genomic data from 
33 taxa, 23 newly generated for this study, were used in phylogeny reconstruction. Sanger DNA 
sequence data (CO1, 16 S, 18 S and 28 S) from six outgroup and 34 ingroup species were also used, 
including newly generated data for 28 species, and 13 species were represented by Sanger data only 
(Supplementary file 4).

DNA extraction, library preparation and Illumina DNA sequencing
Total genomic DNA was extracted from the legs, thoracic muscle or the whole body, depending on 
the size of the specimen, using the G- Biosciences OmniPrep kit (G- Biosciences, Catalog #786–136, 
St. Louis, MO, U.S.A.), following the manufacturer’s protocol, except that samples were incubated 
for 15 hr instead of 15 min. Final DNA extractions were eluted with 60 µL of nuclease- free water 
and treated with RNaseA. The remaining body parts were preserved in 95% ethanol as vouchers. 
Genomic DNA QC statistics were generated for each extracted specimen using a Qubit fluorometer, 
and DNA quality (fragmentation/degradation and contamination with RNA) was further assessed via 
gel electrophoresis.

The extracted DNA was fragmented by sonication with a Q800R2 Sonicator (Illumina TruSeq), 
using 50 µL of the DNA extractions in 0.2 mL strip tubes, targeting a modal fragment size of 350 base 
pairs. Genomic DNA libraries were constructed using the NEBNext Ultra II DNA Library Prep Kit (NEB 
#E7645L) with NEBNext Multiplex Oligos for Illumina (Dual Index Primers Sets 1 and 2) (NEB #E7600S 
and #E7780S), with two- sided size selection around a mode of 480 base pairs. Target enrichment 
through hybridization followed the myBaits Hybridization Capture for Targeted NGS (Version 5), with 
65 °C chosen for the hybridization temperature. We used the published Anchored Hybrid Enrichment 
Coleoptera Probe set (Haddad et al., 2018; Shin et al., 2018) and targeted 599 nuclear loci.

Enriched libraries were amplified using KAPA HiFi HotStart ReadyMix. PCR cycling consisted of 
an initial denaturing step at 98 °C for 2 min, followed by eight cycles of denaturing at 98 °C for 20 s, 
annealing at 60 °C for 30 s, elongation at 72 °C for 45 s and a final elongation step at 72 °C for 5 min. 
The 192 enriched and multiplexed libraries were sequenced using 150 bp paired- end reads on an Illu-
mina HiSeq Lane at Novogene Corporation Inc (Sacramento, CA, USA). All raw reads were deposited 
in the Dryad data repository at https://doi.org/10.5061/dryad.hdr7sqvt7.

DNA isolation, PCR amplification and Sanger DNA sequencing
DNA extraction and PCR amplification of Sanger data were performed at IADIZA- CONICET (Mendoza, 
Argentina) and Wellesley College (MA, USA). Total genomic DNA was extracted from adult voucher 
specimens using an adapted ‘salting- out’ protocol (Sunnucks and Hales, 1996) or the DNeasy Blood 
and Tissue Kit (QIAGEN, MD, USA). Tissue was processed from one to two legs or part of the thorax. 
The extracted DNA was stored at –20 °C. Four molecular markers (two nuclear and two mitochondrial) 
were used in this study: 18 S rDNA (entire), 28 S rDNA (regions D2, D3), 16 S rDNA (regions IV, V) and 
COI (‘barcode’ or 5’ region). The primers used for amplification and sequencing of the four Sanger 
loci and PCR conditions are as described by Marvaldi et al., 2018. The PCR products were purified 
and bi- directionally sequenced with the Sanger method, using the Sequencing Service of ‘Unidad 
de Genómica de INTA- Castelar’ (Buenos Aires, Argentina) and, in Wellesley, using an ABI PRISM 
3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Electropherograms were edited 
and contig- assembled using ProSeq v.2.91 (Filatov, 2002) and sometimes Sequencher v.5 (Gene-
Codes Corp.). All new sequences were deposited in GenBank under accession numbers PP832953–
PP832961 and PP840348–PP840386 (Supplementary file 4).

Sequence assembly and orthology prediction
The dataset preparation procedure for anchored- hybrid- enrichment- targeted loci used is as 
outlined by Breinholt et al., 2018. A reference set was prepared using genomic coding sequences 
(CDS) from nine coleopteran genomes: Anoplophora glabripennis (Motschulsky) (Cerambycidae, 
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GCA_000390285.2), Aethina tumida Murray (Nitidulidae, GCA_001937115.1), Callosobruchus macu-
latus (Fabricius) (Chrysomelidae, GCA_900659725.1), Dendroctonus ponderosae (Hopkins) (Curcu-
lionidae, GCA_020466585.1), Diabrotica virgifera LeConte (Chrysomelidae, GCA_003013835.2), 
Gonioctena quinquepunctata (Fabricius) (Chrysomelidae, GCA_018342105.1), Leptinotarsa dece-
mlineata Say (Chrysomelidae, GCA_000500325.2), Sitophilus oryzae (Linnaeus) (Curculionidae, 
GCA_002938485.2), and Tribolium castaneum (Herbst) (Tenebrionidae, GCA_000002335.3). Raw 
reads were assembled using an iterative baited assembly (IBA) after filtering with Trim Galore! 
v.0.4.0 ( bioinformatics. babraham. ac. uk). Orthology was determined using the T. castaneum genome 
as a reference, and single- hit and genome mapping location criteria were used with NCBI Blastn 
(Camacho et al., 2009). Cross- contamination checks were conducted with USEARCH (Edgar, 2010), 
and sequences with >99% identity across different subfamilies were identified and removed. Cleaned 
sequences were aligned in MAFFT v.7.245 (Katoh and Standley, 2013), and isoform consensuses 
were generated using FASconCAT- G 1.02 (Kück and Longo, 2014).

Following the method outlined by Teasdale et al., 2016 and Li et al., 2022a, we used a blast- 
based method to extract Sanger genes from genomic sequences. In short, raw sequence data were 
assembled using SOAPdenovo v.2 (Li et al., 2015), the four Sanger genes were identified using an all- 
by- all tBlastx search, reads were mapped on potential orthologous sequences using BBmap v.35.85 
(Bushnell, 2014), and a final consensus sequence was generated after variants were called using 
GATK v.4.1.1.0 (McKenna et al., 2010). Extracted sequences were compared with Sanger sequencing 
results, and sequences with higher quality and longer reads were maintained for subsequent phylo-
genetic analysis. The sequences of the ribosomal markers (nuclear 18 S and 28 S and mitochondrial 
16 S) were aligned using information on the secondary structure of the arthropod rRNA genes to iden-
tify homologous positions as well as regions of ambiguous alignment to be excluded from analyses 
(Gillespie et al., 2006; Marvaldi et al., 2009; Marvaldi et al., 2018).

Dataset preparation
Anchored- hybrid- enrichment probe sets comprise highly conserved coding probe regions (i.e. exons) 
and more variable, generally, non- coding flanking regions (e.g. introns or intergenic regions) located 
on flanks of the probe region (Lemmon et al., 2012; Haddad et al., 2018; Shin et al., 2018). Following 
the pipeline, we trimmed flanking regions with 1.5 entropy and 50% density cutoffs at each site in the 
nucleotide sequence alignments (Breinholt et al., 2018). AliView v1.18 (Larsson, 2014) was used to 
manually check each nucleotide alignment to separate ‘flanks’ from ‘probe regions’ and ensure that 
the probe region was in the correct open reading frame (ORF). We used a long- branch detection 
protocol to investigate the possibility of external contamination, paralogous sequences, and signif-
icant sequencing/assembly errors ( longbranchpruner. pl available on Osiris, http://galaxy-dev.cnsi. 
ucsb.edu/osiris/). We produced maximum- likelihood (ML) gene trees from nucleotide (NT)- probe- 
region multiple- sequence alignments (MSAs) in IQ- TREE v.2.0.6 (Nguyen et al., 2015), conducting a 
full model test for each gene. We pruned tip sequences that exceeded eight standard deviations from 
the mean tip length of the gene tree from NT MSAs. Loci with <40% taxon coverage were excluded.

Five hundred eighty loci were assembled across 35 taxa, and 419 loci were selected for phylo-
genetic inference. Four Sanger genes were included, and flanking regions were concatenated and 
treated as a single locus. Cleaned MSAs were concatenated using Phyx v.1.1 (Brown et al., 2017) 
to generate the dataset with 46 taxa and 424 loci for phylogenetic inference (46t424g). The 13 taxa 
represented only by Sanger data were excluded to evaluate the impact of missing data and flanking 
regions, generating two datasets, 33t424g with 33 taxa and 424 loci and 33t423g with 33 taxa and 
423 loci (flanking regions excluded).

Phylogenetic analyses and tests of node support
We conducted ML phylogenetic analyses in IQ- TREE v2.1.3 (Nguyen et al., 2015). For the 33t423g 
and 33t424g datasets, three partitioning schemes were used: (1) unpartitioned, (2) partitioned by 
locus, (3) partitioned by locus and codon position. All schemes were model- tested using ModelFinder 
(Kalyaanamoorthy et al., 2017) as implemented in IQ- TREE. The best partitioning scheme for the 
33t423g dataset was found after merging possible partitions (using the ‘-MFP+MERGE’ command) 
and determining the best scheme under the Bayesian information criterion (BIC). For the 33t424g and 
46t424g datasets, the best schemes of the 33t423g dataset were used with the GTR + ASC model 
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added for the flanking regions. An initial 1000 parsimony trees were generated in IQ- TREE with the 
command ‘-ninit 1000’, and 100 trees with the fewest steps were used to initialize the candidate set 
(- ntop 100), considering all possible nearest- neighbor interchanges (- allnni). These 100 trees were 
maintained in the candidate set during the ML tree search (- nbest 100), and unsuccessful runs were 
terminated after 1000 iterations (- nstop 1000). Perturbation strength was set to 0.2 (- pers 0.2), as 
recommended for datasets with many short sequences. We used nearest- neighbor interchange (NNI) 
branch swapping to improve the tree search and limit overestimating branch supports due to severe 
model violations (‘-bnni’ command). Node supports were computed with 1000 UFBoot replicates (‘-B’ 
command) (Minh et al., 2013; Hoang et al., 2018) and SH- aLRT (‘-alrt’ command) (Guindon et al., 
2010).

Both concatenation and gene coalescence approaches were used for tree estimation on dataset 
46t424g. For concatenated analyses, partitioning schemes and parameters used were the same as 
those for the 33t424g and 33t423g datasets. Nodes were classified as ‘robustly supported’ when they 
were recovered with support values of UFBoot ≥95 AND SH- aLRT ≥80, as ‘moderately supported’ 
when UFBoot ≥95 OR SH- aLRT ≥80 and as ‘weakly supported’ when UFBoot <95 AND SH- aLRT <80 
(Minh et al., 2013; Hoang et al., 2018).

The best evolutionary model for coalescence analyses was found using ModelFinder Plus (‘-MFP’ 
command) for each gene, followed by likelihood tree searches using a partitioning scheme generated 
in IQ- TREE. We applied nearest- neighbor interchange (NNI) branch swapping to improve the tree 
search and limit overestimating branch supports due to severe model violations (‘-bnni’ command). 
Nodal support was computed with 1000 UFBoot replicates (‘-B’ command) (Minh et al., 2013; Hoang 
et al., 2018). Multi- species- coalescent (MSC) analyses based on these single trees were calculated 
using ASTRAL- III v5.6.2 (Zhang et al., 2018). Nodes were classified as ‘robustly supported’ when 
recovered with support values ≥0.95.

Four- cluster likelihood mapping (FcLM; Strimmer and von Haeseler, 1997) was performed in 
IQ- TREE using the 33t423g and 33t424g datasets and ModelFinder- determined partitions (partition 
by locus and codon position) to quantify support for the sister relationship between Allocorynina and 
Oxycraspedina. The four schemes used to define the four- taxon clusters are Allocorynina, Aglycy-
derini, Oxycraspedina, and outgroups.

Quartet sampling (Pease et  al., 2018) provided an alternate examination of branch support. 
Quartet sampling of internal node scores included a set of three scores: quartet concordance (QC: 
values near 1 being more concordant and near –1 more discordant), quartet differential (QD: the 
more equal the frequencies of discordant topologies, the closer to 1; 0 indicating that only one other 
discordant topology was found) and quartet informativeness (QI: 1 for all replicates informative, 0 for 
no replicates informative) (Pease et al., 2018).

Concordance and disagreement among genes on the selected ML tree generated by the 46t424g 
dataset were estimated using the gene concordance factor (gCF) implemented in IQ- TREE (Minh 
et al., 2020), as concatenated analyses can return well- supported trees even when the level of gene 
incongruence is high (e.g. Jeffroy et al., 2006; Kumar et al., 2012). Nodes were classified as ‘robustly 
supported’ when gCF was higher than gene discordance factor gDF1 and gDF2, ‘weakly supported’ 
when gCF equaled gDF1 or gDF2 or both and ‘not supported’ when gCF was lower than gDF1 or 
gDF2 (more loci supporting an alternative topology).

Divergence time estimation
Divergence times were estimated in a Bayesian framework using BEAST v1.10.4 (Suchard et al., 2018) 
on the high- performance computing clusters at the University of Memphis and the China Agricul-
tural University. SortaDate (Smith et al., 2018) was used to reduce the nucleotide alignment to a 
computationally tractable matrix (50 loci) using combined results of clock- likeness ( get_ var_ length. py) 
and least topological conflict with the species tree ( get_ bp_ genetrees. py). Four Sanger genes were 
included in the BEAST analyses to ensure that all taxa were present in the reduced matrix, regardless 
of the SortaDate result. Three different initial partitioning strategies were used: (1) unpartitioned; 
(2) four partitions (three codon positions for protein- coding genes and one partition for non- protein 
coding genes); (3) 144 partitions by locus and nucleotide codon position. The best- fit model and parti-
tioning schemes were selected by PartitionFinder2 (Lanfear et al., 2017) using the greedy algorithm 
and the BIC scores across all models included in BEAST (models=beast). The reduced concatenated 
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data matrix was imported into BEAUTi (Drummond et al., 2012). Substitution and clock models were 
unlinked among partitions, and tree models were linked. An uncorrelated relaxed- molecular- clock 
model (Drummond et al., 2006) and a lognormal prior were applied, two tree priors were tested 
for each partitioning scheme, Yule (pure birth) and birth–death, and a fixed cladogram based on the 
topology generated by the concatenated ML analysis was used.

Four internal nodes and the root were constrained for calibration based on the fossil record of 
Belidae. Several supposed belid fossils have been described, but only a few could be confidently 
placed based on evident synapomorphies. After a careful examination following Parham et al., 2012, 
five fossils were selected for calibration of four internal nodes: (1) Sinoeuglypheus daohugouensis Yu, 
Davis & Shih (Yu et al., 2019) (together with other undescribed Daohugou specimens) for the stem 
of Cimberididae, with a minimum age of 160 Ma based on the age of the boundary between the 
Oxfordian and Callovian (ICC 2023); (2) Talbragarus averyi Oberprieler & Oberprieler (Oberprieler 
and Oberprieler, 2012) for the stem of Rhinorhynchinae, with a minimum age of 147.3 Ma based on 
analysis of zircons (Bean, 2006); (3) Preclarusbelus vanini Santos, Mermudes & Fonseca (Santos et al., 
2007) and Cratonemonyx martinsnetoi Legalov (Gratshev and Legalov, 2014) for the stem of Oxyco-
ryninae, with a minimum age of 113 Ma based on the Crato Formation as Upper Aptian following 
Santos et al., 2011; (4) Pleurambus strongylus Poinar & Legalov for the stem of Allocorynini, with 
a minimum age of 15 Ma (Iturralde- Vinent and MacPhee, 1996; Iturralde- Vinent and MacPhee, 
2019). Fossil calibrations were introduced as minimum ages of uniform priors, and the lower margin 
of the estimated timing of origin of Phytophaga (195 Ma) (McKenna et al., 2019) was used as a hard 
maximum age constraint on the calibrated nodes.

Three independent analyses of each clock scheme and tree- prior combination were run to check 
for convergence. We evaluated the convergence and mixing of MCMC chains in Tracer version 1.6 
(Rambaut et al., 2018) to ensure that the effective sample sizes (ESS) exceeded 200. The resulting tree 
files were combined and resampled with a frequency of 100,000 in LogCombiner (BEAST package) 
and a burn- in of 30%. Subsampled trees were summarized as a maximum- clade- credibility tree 
using TreeAnnotator (Rambaut and Drummond, 2015), with median heights as node heights. Path 
sampling and stepping- stone sampling (Xie et al., 2011; Baele et al., 2012; Baele et al., 2013) were 
performed as part of all BEAST analyses to identify the best tree prior and clock scheme combination.

Ancestral host plant reconstructions
Ancestral reconstruction analyses were performed for two host plant characters on the dated 
phylogeny: (i) host plant higher taxa (four states): Angiospermae, Cycadopsida, Pinopsida, and Poly-
podiopsida; (ii) host plant organ (three states): branches, strobili and flower and fruit (Supplemen-
tary file 4). Stochastic character mapping was conducted with the ‘ make. simmap’ command in the R 
package phytools (Revell, 2012) with 1000 simulations. Character state transitions were assumed to 
have equal rates (‘ER’ option).

Ancestral area estimation
We recognize five bioregions that best account for the distribution of the sampled species in Belidae: 
Neotropical region (N), Australian region (A), tropical Pacific islands (I), Oriental region (O) and Pale-
arctic  + Ethiopian regions (P) (Supplementary file 4). We performed an event- based likelihood- 
ancestral- area estimation using BioGeoBEARS (Matzke, 2014). Three models were used: (1) DEC 
(Dispersal Extinction Cladogenesis; Ree and Smith, 2008), (2) DIVALIKE (a likelihood- based imple-
mentation of dispersal vicariance analysis, originally parsimony- based; Ronquist, 1997), (3) BAYARE-
ALIKE (a likelihood implementation of BayArea, originally Bayesian; Landis et al., 2013). All models 
were also evaluated under a constrained analysis (M1), in which we considered palaeogeographical 
events that occurred in the past 160 Ma over four- time slices (160–125 Ma, 125–35 Ma, 35–28 Ma, 28 
Ma to present); sliced by three events: separation of East and West Gondwana, separation of South 
America and Australia (McIntyre et al., 2017), origin of Hawaii islands (Price and Clague, 2002) and 
geographical distance variation for a total of six scenarios. The maximum allowed ancestral area was 
restricted to two. Time slices for geographical events used were those of McIntyre et al., 2017. The 
Akaike Information Criterion (AIC Burnham and Anderson, 1998) and the corrected Akaike Informa-
tion Criterion (AICc Burnham and Anderson, 2002) were calculated to select the best- fitting model.

https://doi.org/10.7554/eLife.97552
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