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Abstract—This letter explores safety-critical control of
nonlinear systems in settings where a finite-rate commu-
nication channel stands in the path of state feedback. We
show that the mere existence of a nominally safe control
law (certified by an exponential barrier function) suffices
to provide safe control in these limited-information set-
tings. We introduce the notion of “safety escape time”, the
minimum time a system takes to become unsafe in the
absence of actuation. The results complement the existing
literature on stabilizing control with limited information
and represent a step towards a complete understanding of
safety-critical control with limited information.

Index Terms—Safety escape time, safety, control with
limited information, barrier function, networked control.

I. INTRODUCTION

N
ETWORKED SYSTEMS enable ubiquitous communi-

cation and control—while presenting new challenges

and design constraints. In the theory of networked systems,

tremendous effort has been poured into tackling the problem

of control with limited information [1], [2]. As connected

technologies become ever more prevalent, safely control-

ling [3], [4], [5] networked systems is of paramount interest.

However, in the vast literature on control with limited

information (e.g., see [6] and the references therein), little

attention has been paid to the problem of safety.

Stabilizing control over finite capacity channels was pio-

neered around the turn of the 21st century [7], [8], [9]. After

initially focusing on linear systems, the theory was expanded

to encompass stabilizing nonlinear systems under communi-

cation constraints and with quantized inputs [10], [11], [12].

Researchers also developed state estimation [13], [14] and
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distributed filtering strategies [15], [16], [17], [18] both in the

presence of limited information. An exposition on control of

networked systems is given in [19]. Inspired by this literature

on stabilizing control with limited information, an interesting

open question is how to achieve safety-critical control with

limited information. This letter provides an initial answer to

this question in the scenario where a finite-rate communica-

tion channel stands in the path of state feedback. Whereas

traditional feedback paths are assumed perfect, a finite-rate

feedback channel limits the state information available to

the controller. Exploiting a topological robustness property

that naturally occurs in barrier functions, we show that the

mere existence of a nominally safe control (whose safety

is certified by an exponential barrier function) guarantees

the existence of a safe control in the limited-information

setting (referred to as a “limited-information safety control”).

The key contributions of this letter can be summarized as

follows, we

• establish how topological robustness can be used to

certify the safety of a system with only an estimate of its

state;

• introduce the notion of “safety escape time”, the time it

takes for an unactuated system to go unsafe, as well as

derive a lower bound on the safety escape time; and

• construct a class of limited-information safety controllers

that guarantee the safe operation of a dynamical system

over a finite-rate state feedback channel.

The results established herein leverage the approach to limited-

information observers developed in [11], [14], [20] and are

inspired by exponential barrier function-based control method-

ologies from the traditional control setting [4].

Notation: Vectors and matrices are denoted by bold lowercase

and uppercase letters, respectively. The norm ‖ · ‖ : R
n → R

is taken to be the ∞-norm. The closed n-ball of radius r > 0
centered at z is denoted B(z, r) � {y ∈ R

n : ‖y− z‖ � r}.

The diameter of a bounded set C ⊂ R
n is denoted diam(C) =

sup { ‖x − y‖ : x, y ∈ C }. Given a continuous function

f : R
n1 → R

n2 and a compact set D ⊂ R
n1 , the maximum

of ‖f(x)‖ over all x ∈ D is denoted Bf (D). Given locally

Lipschitz f , the Lipschitz constant (in terms of the metric

induced by ‖ ·‖) of f restricted to the compact set D is denoted

Cf (D). The Lie derivative ofh : Rn → R along f : Rn → R
n

is denoted Lfh(x). The set of all non-negative integers is

denoted N. The time derivative is denoted with a dot as in
.
x.

The symbol U denotes the set of all bounded piecewise

continuous functions from [0,∞) into R
m, i.e., each u(·) ∈ U

has a finite number of discontinuities on any subinterval [a, b] ⊂
[0,∞).
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II. PROBLEM FORMULATION

Consider an input-affine nonlinear system with state x ∈ R
n

and input u(·) ∈ U. The system’s dynamics are given by

.
x = f(x) + g(x)u, x(0) = x0 (1)

where f : R
n → R

n and g : R
n → R

n×m are locally

Lipschitz. The goal of a safety-critical controller is to choose

a control law that ensures the state x(t) remains “safe”. We

define safety using a continuously differentiable scalar test

function h : R
n → R. If h(x) � 0 then the state is safe; oth-

erwise the state is unsafe. The set of all safe states is denoted

C � {x ∈ R
n : h(x) � 0 } and is known as the “safe

set”. Notice that this definition of safety is common in the

literature [5]. It is useful define the notation

Cα,β � {x ∈ R
n : h(x) ∈ [³, ´] } (2a)

Cα � {x ∈ R
n : h(x) � ³ } (2b)

for ´ � ³ � 0. In general, the goal of safety-critical control

is to design feedback control laws that render the safe set

forward-invariant. Henceforth, the following assumption about

the safe set C will be made.

Assumption 1: The safe set C is bounded (i.e., compact

since C is closed by definition) and has non-empty interior (i.e.,

there exists x ∈ C with the property h(x) > 0). �

Because u(·) is bounded piecewise continuous, the solution1

x(t) to (1) is unique over some maximal time interval

I = [0, b) with b > 0 [21]. For now, suppose that x̂(t) is

an estimate of the state x(t) over the same maximal time

interval I and that e(t) � x̂(t)− x(t) is the state estimation

error for all t ∈ I. Since the function h is continuously

differentiable, it is Lipschitz on the compact set C. Denote the

Lipschitz constant of h on C by Ch(C). The results established

in this letter are based on the following lemma regarding

the topological robustness of barrier functions. This lemma is

likely also of interest in non-limited information settings.

Lemma 1: Let u(·) be any bounded piecewise continuous

function and let x0 ∈ C. If the inequality

h(x̂(t)) > Ch(C)‖e(t)‖ (3)

holds for all time t ∈ I, then the solution x(t) to (1) is safe

for all time t ∈ I = [0,∞). �

Proof: Due to (3) and the fact that ‖e(t)‖ � 0, the state

estimate x̂(t) is always safe. Suppose that the system’s state

x(t) goes unsafe during the maximal interval of existence

I. By continuity, there exists some time τ � 0 such that

h(x(τ)) = 0. Since x(τ) ∈ C, the Lipschitz condition reveals

the inequality

h(x̂(τ)) = |h(x̂(τ))− h(x(τ))| � Ch(C)‖e(τ)‖

which contradicts the lemma’s hypothesis. Therefore

x(t) is safe for all t ∈ I. On the other hand, if the

maximal interval of existence is finite (i.e., the solution

has finite escape time), then the proof of [22, Th. 3.3,

p. 94] shows that there must be a time τ ∈ I where

x(τ) �∈ C. This is a contradiction; therefore, the maximal

interval of existence for the unique solution x(t) to (1) is

[0,∞). �

1The solutions to the initial value problem (1) are defined in the sense of
Carathéodory [21].

Fig. 1. Block diagram of a limited-information safety controller. Encoded
messages mk describing the plant’s state x(t) are sent to the controller
over a finite-rate channel (dashed line) at each transmission time tk.
The controller consists of two parts: an observer and a nominally safe
control law ksafe(·). The observer constructs a state estimate x̂(t) using
the messages received from the channel and the controller applies the
control u(t) = ksafe(x̂(t)) to the input of the plant.

The lemma states that, if the state estimate is far enough

into the interior of the safe set with respect to the estimation

error, then the system is itself safe. For arbitrary choice of

η > 1, the prior lemma proves that the inequality

h(x̂(t)) � η Ch(C)‖e(t)‖ (4)

certifies the safety of system (1). This style of safety certificate

will be useful in our subsequent analysis.

The scenario of interest in this letter is that in which state

measurements are sent to the controller over a finite-rate

communication channel, as shown in Figure 1. In particular,

we will construct a general class of controllers that, under

appropriate conditions, can guarantee safety in this scenario.

These controllers will consist of two parts: a state observer and

a nominally safe control law ksafe : C → R
m. Further details

regarding each of these two components are forthcoming.

Scenarios similar to that depicted in Figure 1 have been

previously studied in seminal works on stabilizing control over

finite-capacity channels, including [9]. See [19, p. 55] for a

study of observers located prior to the communication channel.

A. Safety Escape Time

The system (1) may become unsafe over time if no actuation

is applied. After all, this is why control is needed to ensure

safety. Henceforth the following assumption is made.

Assumption 2: The initial state x0 of the system lies in the

interior of the safe set C. Therefore, there exists some δ > 0
such that h(x0) � δ. �

The particular value of δ need not be known by the con-

trollers developed here, which is further clarified in Section III.

We are interested in the minimum time for a system whose

initial state satisfies h(x0) = δ > 0 to become unsafe when

no actuation is applied. We refer to this time as the “safety

escape time”. Let ξ(x0, t) be the solution (on a maximal time

interval I ) of

ẋ = f(x), x(0) = x0 (5)

at time t ∈ I. The safety escape time is defined as

Ts(δ) � inf { t > 0 : x0 ∈ R
n, h(x0) = δ,

h(ξ(x0, t)) < 0} . (6)

Following the same logic as the proof of Lemma 1, if the

interval of existence I of the solution ξ(x0, ·) is finite, then

there indeed exists some time t ∈ I such that h(ξ(x0, t)) < 0.
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Fig. 2. Visualization of the trajectory ξ(x0, ·) studied in the proof of
Theorem 1. The gray area denotes the set Cδ = {x : h(x) > δ} and
the lilac area represents the set C0,δ = {x : h(x) ∈ [0, δ]}; the safe set

C = {x : h(x) � 0} is the union of these two areas. The system starts
at time t = 0 in the state x0 with h(x0) = δ. At time t0, the trajectory is
at point ξ(x0, t0) which also satisfies h(ξ(x0, t0)) = δ. For time t in the
interval [t0, t1] the solution ξ(x0, t) lies entirely within the compact set
C0,δ . At time t1 the solution reaches the boundary of the safe set and
h(ξ(x0, t1)) = 0.

In the uninteresting case where the set on the right side of (6)

is empty, the system initiating from x0 with h(x0) = δ is safe

for all time with zero actuation and the safety escape time is

defined to be Ts(δ) � +∞.

Calculating the safety escape time would be difficult in

practice for arbitrary nonlinear systems; however, the next

theorem will provide a useful lower bound. Recall that Bf (D)
is the maximum of ‖f(x)‖ over all x in a compact set D ⊂ R

n.

Given δ > 0, the set C0,δ ⊆ C may be expressed as C0,δ =
h−1([0, δ]). It follows thatC0,δ is closed becauseh is continuous,

and C0,δ is bounded because it is contained in C. By the Heine-

Borel theorem, C0,δ is compact. Let f and h be non-trivial so

that Ch(C0,δ) and Bf (C0,δ) are non-zero.

Theorem 1: The safety escape time is lower bounded by a

positive constant as given by

Ts(δ) �
δ

Ch(C0,δ)Bf (C0,δ)
. (7)

�

Proof: Consider x0 with h(x0) = δ such that the solution

ξ(x0, ·) to (5) goes unsafe. By continuity of this solution and

continuity of h, there exists some time t1 > 0 where

h(ξ(x0, t1)) = 0 . (8)

Choose t1 to be the smallest time for which (8) occurs. Due

to continuity, there exists a time t0 with 0 � t0 < t1 so that

ξ(x0, t) ∈ C0,δ for all t ∈ [t0, t1]. This is depicted in Figure 2.

The width of the interval [t0, t1] provides a lower bound on

the safety escape time.

By Lipschitz continuity of h on the compact set C0,δ,

h(ξ(x0, t1)) � h(ξ(x0, t0))

−Ch(C0,δ) ‖ξ(x0, t1)− ξ(x0, t0)‖ (9)

and therefore

‖ξ(x0, t1)− ξ(x0, t0)‖ �
δ

Ch(C0,δ)
(10)

as h(ξ(x0, t0)) = δ and h(ξ(x0, t1)) = 0. Applying the

integral form of the mean value theorem [23, p. 247] to the

function ‖f(ξ(x0, ·))‖ on the compact interval [t0, t1] reveals

that there exists a time t′ ∈ (t0, t1) such that

‖ξ(x0, t1)− ξ(x0, t0)‖ � (t1 − t0) ‖f(ξ(x0, t
′))‖ . (11)

Since ξ(x0, t) ∈ C0,δ for all t ∈ [t0, t1],

‖ξ(x0, t1)− ξ(x0, t0)‖ � (t1 − t0)Bf (C0,δ) . (12)

Combining this with (10) shows that

(t1 − t0) �
δ

Ch(C0,δ)Bf (C0,δ)
. (13)

In the worst case scenario t0 = 0, and the earliest time t1 that

h(ξ(x0, t1)) = 0 can occur is t1 = δ/(Ch(C0,δ)Bf (C0,δ)).
This proves the theorem. �

An alternative version of this theorem can be stated without

using the subset C0,δ of C. While it is a looser bound in general,

the constants involved may be easier to calculate.

Corollary 2: The safety escape time is lower bounded by a

positive constant as given by

Ts(δ) �
δ

Ch(C)Bf (C)
. (14)

�

Proof: Since C0,δ ⊆ C, it follows that Ch(C0,δ) � Ch(C)
and Bf (C0,δ) � Bf (C). The proof follows by

Theorem 1. �

The limited-information safety controllers proposed in this

letter consist of a transient estimation-only phase. This phase

begins at time t = 0. For the duration of this phase no

actuation is applied to the system, and the goal of this phase

is to quickly compute a state estimate which is precise enough

to select a safe control law. This phase cannot take too long

otherwise the system will go unsafe. It is for this reason that

we have defined the safety escape time Ts(δ).
Remark 1: Theorem 1 provides a bound on the time that the

controller is allowed to “do nothing”, i.e., apply zero actuation,

before the system becomes unsafe. As such, we informally

refer to this result as the “do nothing theorem.” �

B. Limited-Information State Observer

This section describes the limited-information state observer

considered in this letter. This observer is a variant, adapted

specifically to the input-affine dynamics (1), of the exist-

ing approach for both linear and nonlinear state observers

over finite-rate channels such as [11], [14], [20]. Recall the

system’s block diagram from Figure 1. The encoder measures

the system’s state x(t) and transmits messages to the observer

over a finite-rate channel. Specifically, at each transmission

time tk = k T , where k ∈ N and T > 0, the encoder transmits

a symbol mk ∈ {1, 2, . . . ,M} � M over the channel. The

set M is known as the coding alphabet and T is known as the

transmission period. The job of the observer is to decode the

received messages and to use them in computing an estimate

x̂(t) of the system’s state x(t). This estimate is called the state

of the observer. At each time tk the observer is allowed to

update its state abruptly (discontinuously) based on messages

received from the encoder. However, for t ∈ (tk, tk+1) the

observer’s state is updated according to the system’s dynamics:

˙̂x = f(x̂) + g(x̂)u, x̂(tk) = x̂k (15)
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where x̂k is the state at the update time tk (the latter equation

in (15) plays the role of the “initial condition” at time tk).

The control input applied to (1) will be a continuous

function u(t) � ksafe(x̂(t)) of the observer’s state x̂(t),
and hence u(·) ∈ U. Suppose that the control ensures

the observer’s state x̂(t) is confined to some compact set

D ⊂ R
n over the time period of interest. Note that this does

not imply that D is a subset of C. Since ksafe(·) is continuous

and D is bounded, there exists some Bksafe
(D) > 0 such that

‖ksafe(z)‖ � Bksafe
(D) for all z ∈ D. Let Cf (D) and Cg(D)

denote the Lipschitz coefficients of f and g, respectively, on

D. Define

Ga � exp{[Cf (D) + Cg(D)Bksafe
(D)]T}, and (16a)

Ge � exp{Cf (D)T} . (16b)

Between transmission times tk and tk+1 the observer error’s

growth is bounded by ‖e(tk)‖ � Ga ‖e(tk−1)‖ (resp.

‖e(tk)‖ � Ge ‖e(tk−1)‖) if actuation (resp. no actuation) is

applied to the system.2 This is a direct result of Grönwall’s

inequality. Here Ga and Ge are known as “growth bounds.”

The encoding strategy and observer updating strategy at

the transmission times are as follows. The encoder and

decoder start by considering a common safe reference point

r ∈ C. Note that ‖r − x0‖ � diam(C). The encoder divides

B(r, diam(C)) into M equal hypercubes and transmits the

symbol j ∈ {1, 2, . . . ,M} associated with the cube containing

x(t0). When the symbol j is received, the observer knows

that the true state lies in cube j and defines x̂(t0) to be

the center of said cube. The state estimation error is then

bounded by ‖x̂(t0)−x0‖ � diam(C)/M1/n � Se0. Using this

initial condition, one can iteratively define an upper bound Sek
on the observer error at each step k ∈ N. For the first few

transmissions, say until step l ∈ N, no actuation is applied to

the system. Exact details regarding time step l are provided

in Section III. During this estimation-only phase, the observer

knows with certainty that x(tk) ∈ B(x̂(tk−1), Ge
Sek−1) at

each transmission time tk.3 Let x̂(t−k ) be the observer’s state

just before time tk. The encoder divides B(x̂(t−k ), Ge
Sek−1)

into M cubes of equal volume, as it did at time t0, and

transmits the symbol associated with the cube containing

x(tk). When the symbol j is received, the observer defines

x̂(tk) to be the center of cube j. As a result, the error bound

at each step is

‖e(tk)‖ �
Ge

M1/n
Sek−1 � Sek . (17)

For k � l, the same estimation strategy is performed by

replacing the growth bound Ge with the larger quantity Ga

which accounts for the effects of actuation:

‖e(tk)‖ �
Ga

M1/n
Sek−1 � Sek . (18)

If T and M are chosen such that Ga < M1/n (and therefore

Ge < M1/n), then (17) and (18) will produce a sequence

{‖e(tk)‖}k∈N which is exponentially convergent to zero.

Further details, including how to confine x(t) and x̂(t) to an

appropriate compact set D, are provided below.

2More precise bounds can be given if f , g, and u are continuously
differentiable functions of the state x, e.g., see [14].

3It is not the focus of this letter to consider disturbances in the dynamics,
which could put x(tk) outside the ball B(x̂(tk−1), Ge

Sek−1).

Algorithm 1: Limited-Information Safety Controller—

State Observer and Control Parameter Updates

Initialize: x̂(t−0 ) � r ∈ C, D � B(r, 2 diam(C)),
Se−1 � diam(C), δ−1 � η Ch(C)Ga diam(C), G � 1 ;

for k = 0, 1, 2, . . . do

Divide B(x̂(t−k ), G
Sek−1) into M equal hypercubes

and let x̂(tk) equal the center of the hypercube that

x(tk) falls into ;

Set Sek = GSek−1/M
1/n and δk = Gδk−1/M

1/n ;

if h(x̂(tk)) < δk then
Set G = Ge ; � estimation-only phase

Set u(t) = 0 for t ∈ [tk, tk+1) ;

else
Set G = Ga ; � estimation-actuation phase

Set u(t) = ksafe(x̂(t)) for t ∈ [tk, tk+1) ;

end

Simulate x̂(t) over the interval [tk, tk+1) according

to (1) whilst applying u(t) to the real system ;

end

III. LIMITED-INFORMATION SAFETY CONTROLLERS

In this section we will show how safety can be ensured

using a nominally safe controller that is certified by an

exponential barrier certificate, and we will present a class

of separation-principle style limited-information safety con-

trollers. As depicted in Figure 1, these controllers operate

by cascading the observer described in Section II-B with a

nominally safe control law. The proposed methodology is

summarized in Algorithm 1. This algorithm consists of two

sequential phases. The first is an estimation-only phase during

which no actuation is applied to the system. The goal during

this time is to sufficiently reduce the state estimation error

so that state estimate x̂(t) may be used to select a control

law which will keep the true state x(t) safe. This phase

should last no longer than the safety escape time described in

Section II-A—as waiting any longer to apply actuation could

result in the system going unsafe. The controller will apply

actuation if the condition

h(x̂(tl )) � δl (19)

is satisfied for some transmission time tl, where δk for k ∈ N

is defined to be

δk � η Ch(C)Ga
Sek . (20)

It will be shown that T and M can be chosen such that

the estimation-actuation phase begins within the safety escape

time Ts(δ). Once the estimation-actuation phase begins, the

controller uses a control law u(t) = ksafe(x̂(t)) which is

assumed to satisfy the exponential barrier condition

Lfh(x̂(t)) + Lgh(x̂(t)) ksafe(x̂(t)) � −σh(x̂(t)) (21)

for someσ � 0 over each time interval t ∈ [tk, tk+1), k � l. The

control law is piecewise continuous: it is continuous between

transmission times but is allowed to update discontinuously

each time the observer updates.

The main result of this section is stated below. The

significance of the Theorem 2 is that the existence of a
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nominally safe control law, certified by an exponential barrier

function, guarantees the existence of a limited-information

safety controller. This is proved by showing that Algorithm 1 is

one particular safe controller. Notably in Algorithm 1, δ does

not need to be known. Rather, a limited-information safety

controller with given T and M can be certified to keep safe

all system trajectories with h(x0) � δ down to a particular

value of δ given by

N

δ � min
k∈N

{

(1 + η Ga)Ch(C)
( Ge

M1/n

)k diam(C)

M1/n

+ (Ch(C)Bf (C)T ) k
}

. (22)

Theorem 2: Let the transmission period T and size of the

coding alphabet M satisfy

(e−σTη − 1)M
1

n � η Ga . (23)

Then, any trajectory of (1) originating from CN

δ
will remain in

C for all time under the Algorithm 1. �

Note that, by monotonicity, for any δ > 0 there exists

T and M so that
N

δ < δ and (23) is satisfied. Regarding

the hypotheses of Theorem 2, x0 ∈ CN

δ
ensures that the

estimation-only phase terminates before the safety escape

time. Inequality (23) ensures that the state estimation error

converges exponentially and that, once Algorithm 1 enters

the estimation-actuation phase, it remains in this for all time.

The proof of Theorem 2 will be given after the presentation

of preliminary lemmata. The following lemma proves that

Algorithm 1 enters the estimation-actuation phase before the

system (1) goes unsafe due to the free evolution of the

estimation-only phase. It also proves that x̂(t) is confined to

the compact set D � B(r, 2 diam(C)) up until that point,

recalling from Section II-B that r is the initial reference point

of the observer.

Lemma 2: Let l′ ∈ N be the minimizing argument of (22).

If inequality (23) holds and h(x0) = δ �
N

δ then:

1) the time tl′ = l′T is strictly less than the safety escape

time Ts(δ);
2) throughout the initial estimation-only phase of

Algorithm 1, x̂(t) lies in D; and,

3) the algorithm enters the estimation-actuation phase

at some time tl � tl′ , i.e., within the safety escape

time. �

Proof: One can see from (22) that tl′ < δ/(Ch(C)Bf (C)).
By Theorem 1 one may conclude tl′ < Ts(δ). This proves the

first part of the lemma.

Next, manipulating (23) and basic algebra reveal that

Ga/M
1/n < 1. Because Ge < Ga it follows that Ge/M

1/n <
1. If the algorithm immediately enters the estimation-actuation

phase then the second and third parts of the lemma are

vacuously true, so consider the contrary. The algorithm selects

x̂0 which is contained in D = B(r, 2 diam(C)). Suppose

for contradiction that x̂(t) leaves D within the time interval

[t0, t1) over which x(t) ∈ C. By continuity there exists some

time τ ∈ [t0, t1) such that ‖x̂(τ)−r‖ = 2diam(C). However,

an application of Grönwall’s inequality reveals

‖x(τ)− x̂(τ)‖ � eCf (D)(τ−t0)‖x(t0)− x̂(t0)‖

�
Ge

M1/n
diam(C) < diam(C) . (24)

On the other hand, because x(τ) is still safe it follows that

‖x(τ)− r‖ � diam(C). The triangle inequality gives

‖x̂(τ)− r‖ � ‖x̂(τ)− x(τ)‖+ ‖x(τ)− r‖

< 2 diam(C) (25)

which is a contradiction. Therefore x̂(t) ∈ D for all time

t ∈ [t0, t1). The same argument shows that x̂(t) lies in D
throughout the initial estimation-only phase so long as t is

within the safety escape time. This point will be addressed

next, which will complete the proof of the lemma’s second

and third parts.

As previously stated, the point of the assumption x0 ∈ CN

δ
is

to ensure the algorithm exits the estimation-only phase within

the safety escape time. We already know that tl′ < Ts(δ).
If the algorithm remains in the estimation phase up to time

tl′ , the proof of Theorem 1 can be modified to show

h(x(tl′)) � δ − Ch(C)Bf (C) tl′ . (26)

Combining this with (22) and the lemma in the Appendix

proves

h(x̂(tl′)) � η Ch(C)Ga
Sel′ = δl′ . (27)

Therefore, by at least time step tl′ < Ts(δ) the condition

necessary for Algorithm 1 to enter the estimation-actuation

phase is satisfied. This completes the proof of the lemma’s

second and third parts. �

Algorithm 1 applies actuation once h(x̂(tl)) � δl for some

l ∈ N. Next it is shown that this inequality is satisfied at each

subsequent k � l so long as x(t) ∈ D (which happens, in

particular, if x(t) remains safe).

Lemma 3: Assume that T and M satisfy the assumptions

of Theorem 2. If for some time tk inequality (19) holds, then

inequality (19) also holds at time tk+1 so long as x(t) ∈ D for

all t ∈ [tk, tk+1). �

Proof: Suppose that for some k ∈ N the condition (19) is

satisfied so that Algorithm 1 chooses to apply actuation over

the interval [tk, tk+1). Applying Grönwall’s inequality to (21)

reveals that

h(x̂(t)) � e−σ(t−tk)h(x̂(tk)) (28)

for all t in the interval [tk, tk+1). Therefore, the state of

the observer right before updating at time tk+1 satisfies

h(x̂(t−k+1)) � e−σTh(x̂(tk)) > 0. The goal of the proof is

to show that the new state estimate x̂(tk+1) chosen by the

observer is safe. For contradiction, suppose that the observer

chooses an unsafe state. By the lemma’s assumption on the

true state x(t), the observer chooses x̂(tk+1) from the ball

B(x̂(t−k+1), Ga
Sek). Since h(x̂(t−k+1)) > 0, h(x̂(tk+1)) < 0,

and h is continuous, there exists some z ∈ B(x̂(t−k+1), Ga
Sek)

such that h(z) = 0 and ‖z − x̂(t−k+1)‖ � Ga
Sek. Note that z

is safe. By Ch(C)-Lipschitz continuity of h on C,

0 = h(z) � h(x̂(t−
k+1)) − Ch(C)

∥

∥z − x̂(t−
k+1)

∥

∥

� h(x̂(t−
k+1)) − Ch(C)Ga

Sek

Eq. (28) → � e−σT h(x̂(tk)) − Ch(C)Ga
Sek

Eq. (19), (20) → � (e−σTη − 1)Ch(C)Ga
Sek

Eq. (23) → � η

(

Ga

M1/n

)

Ch(C)Ga ‖e(tk)‖ . (29)
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Therefore the state estimation error is zero and

x̂(t−k+1) = x̂(tk+1) since M1/n is odd. This gives the contra-

diction h(x̂(tk+1)) > 0. We have shown that at time tk+1 the

state estimate x̂(tk+1) chosen by the observer is safe. Since

x̂(tk+1) ∈ C, the same Lipschitz continuity argument shows

h(x̂(tk+1)) � η Ch(C)Ga
Sek+1 = δk+1 . (30)

Therefore, at time step k + 1, Algorithm 1 remains in the

estimation-actuation phase, and so on. �

Proof of Theorem 2: To this point it has been shown that

the controller enters the estimation-actuation phase by time

tl′ . Since time tl′ is smaller than the safety escape time Ts(δ),
the system is safe up until tl′ despite the lack of actuation.

Let tl be the time step in which actuation is first applied. We

need only to show that x(t) ∈ C for all t ∈ [tl, tl+1), and then

the theorem follows from Lemma 3 and induction on k � l.
Suppose that x(t) leaves the safe set within the time interval

of interest. Then there exists a first time τ ∈ [tl, tl+1) such

that h(x(τ)) = 0. Up to that point,

‖e(τ)‖ � Ga
Sel . (31)

On the other hand, in light of equations (20), (23), and (28),

the inequality

h(x̂ (τ)) � e−σT η Ch(C)Ga
Sel > Ch(C)Ga

Sel (32)

holds for all t ∈ [tl, tl+1). Combining this inequality with

the error bound (18) and applying Lemma 1 yields a

contradiction. Thus, the true state x(t) remains safe for all time

t ∈ [tl, tl+1). �

IV. CONCLUSION

This letter explored safety-critical control of nonlinear

systems over finite-rate state feedback channels. We showed

that the existence of a nominally safe control law, certified by

an exponential barrier function, suffices to provide safe control

in limited-information scenarios. We introduced the notion of

safety escape time and derived a lower bound on this time,

enabling the construction of a class of limited-information

safety controllers. This letter represents a starting point for a

theory of safety-critical control with limited information.

APPENDIX

Lemma 4: If for some time k ∈ N the inequality

h(x(tk)) � (1 + η Ga)Ch(C) Sek (33)

holds then h(x̂(tk)) � η Ch(C)Ga
Sek also holds. �

Proof: Inequality (33) ensures x(tk) ∈ C. The Lipschitz-

style argument that has been used throughout this letter can

be used to show that x̂(tk) ∈ C also. By Lipschitz continuity

of h on C

h(x̂(tk )) � h(x(tk))− Ch(C) ‖z − x(tk)‖

� h(x(tk))− Ch(C) Sek

and hence h(x̂(tk)) � η Ch Ga
Sek as given in the lemma’s

statement. �
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