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Abstract—This letter explores safety-critical control of
nonlinear systems in settings where a finite-rate commu-
nication channel stands in the path of state feedback. We
show that the mere existence of a hominally safe control
law (certified by an exponential barrier function) suffices
to provide safe control in these limited-information set-
tings. We introduce the notion of “safety escape time”, the
minimum time a system takes to become unsafe in the
absence of actuation. The results complement the existing
literature on stabilizing control with limited information
and represent a step towards a complete understanding of
safety-critical control with limited information.

Index Terms—Safety escape time, safety, control with
limited information, barrier function, networked control.

[. INTRODUCTION

ETWORKED SYSTEMS enable ubiquitous communi-
Ncation and control—while presenting new challenges
and design constraints. In the theory of networked systems,
tremendous effort has been poured into tackling the problem
of control with limited information [1], [2]. As connected
technologies become ever more prevalent, safely control-
ling [3], [4], [5] networked systems is of paramount interest.
However, in the vast literature on control with limited
information (e.g., see [6] and the references therein), little
attention has been paid to the problem of safety.

Stabilizing control over finite capacity channels was pio-
neered around the turn of the 215¢ century [7], [8], [9]. After
initially focusing on linear systems, the theory was expanded
to encompass stabilizing nonlinear systems under communi-
cation constraints and with quantized inputs [10], [11], [12].
Researchers also developed state estimation [13], [14] and
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distributed filtering strategies [15], [16], [17], [18] both in the
presence of limited information. An exposition on control of
networked systems is given in [19]. Inspired by this literature
on stabilizing control with limited information, an interesting
open question is how to achieve safety-critical control with
limited information. This letter provides an initial answer to
this question in the scenario where a finite-rate communica-
tion channel stands in the path of state feedback. Whereas
traditional feedback paths are assumed perfect, a finite-rate
feedback channel limits the state information available to
the controller. Exploiting a topological robustness property
that naturally occurs in barrier functions, we show that the
mere existence of a nominally safe control (whose safety
is certified by an exponential barrier function) guarantees
the existence of a safe control in the limited-information
setting (referred to as a “limited-information safety control”).
The key contributions of this letter can be summarized as
follows, we

e cstablish how topological robustness can be used to
certify the safety of a system with only an estimate of its
state;

e introduce the notion of “safety escape time”, the time it
takes for an unactuated system to go unsafe, as well as
derive a lower bound on the safety escape time; and

e construct a class of limited-information safety controllers
that guarantee the safe operation of a dynamical system
over a finite-rate state feedback channel.

The results established herein leverage the approach to limited-
information observers developed in [11], [14], [20] and are
inspired by exponential barrier function-based control method-
ologies from the traditional control setting [4].

Notation: Vectors and matrices are denoted by bold lowercase
and uppercase letters, respectively. The norm || - || : R® — R
is taken to be the co-norm. The closed n-ball of radius » > 0
centered at z is denoted B(z,7) = {y € R" : ||y —z|| < 7}.
The diameter of a bounded set C C R is denoted diam(C) =
sup{ |z —y|| : =,y € C}. Given a continuous function
f : R™ — R™ and a compact set D C R"*, the maximum
of || f(x)|| over all & € D is denoted B(D). Given locally
Lipschitz f, the Lipschitz constant (in terms of the metric
induced by || - ||) of f restricted to the compact set D is denoted
Cy (D). TheLie derivativeof h : R™ — Ralong f : R* — R”
is denoted Lyh(xz). The set of all non-negative integers is
denoted N. The time derivative is denoted with a dot as in .
The symbol U denotes the set of all bounded piecewise
continuous functions from [0, 0o) into R™, i.e., each u(-) € U
has a finite number of discontinuities on any subinterval [a, b] C
[0, 00).
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[I. PROBLEM FORMULATION

Consider an input-affine nonlinear system with state z € R"
and input u(-) € U. The system’s dynamics are given by

& = f(@)+g(@)u, 2(0) = o (1)

where f R"™ — R™ and ¢ R™ — R™ ™ are locally
Lipschitz. The goal of a safety-critical controller is to choose
a control law that ensures the state x(¢) remains “safe”. We
define safety using a continuously differentiable scalar test
function & : R™ — R.If h(x) > 0 then the state is safe; oth-
erwise the state is unsafe. The set of all safe states is denoted
C2{zeR" h(x) > 0} and is known as the “safe
set”. Notice that this definition of safety is common in the
literature [5]. It is useful define the notation

{xeR™ : h(z) € [a,5]}
{xeR™ : h(z) >a}

(2a)
(2b)

Cap =
Co =

for 5 > a > 0. In general, the goal of safety-critical control
is to design feedback control laws that render the safe set
forward-invariant. Henceforth, the following assumption about
the safe set C will be made.

Assumption 1: The safe set C is bounded (i.e., compact
since C is closed by definition) and has non-empty interior (i.e.,
there exists & € C with the property h(x) > 0). i

Because u(-) is bounded piecewise continuous, the solution'
x(t) to (1) is unique over some maximal time interval
Z = [0,b) with b > 0 [21]. For now, suppose that &(t) is
an estimate of the state x(¢) over the same maximal time
interval Z and that e(t) £ &(t) — x(t) is the state estimation
error for all ¢ € Z. Since the function h is continuously
differentiable, it is Lipschitz on the compact set C. Denote the
Lipschitz constant of i on C by C},(C). The results established
in this letter are based on the following lemma regarding
the topological robustness of barrier functions. This lemma is
likely also of interest in non-limited information settings.

Lemma 1: Let u(-) be any bounded piecewise continuous
function and let x( € C. If the inequality

h(#(t)) > Cr(C)lle(®)]| 3)
holds for all time ¢ € Z, then the solution (¢) to (1) is safe
for all time ¢t € Z = [0, 00). O

Proof: Due to (3) and the fact that ||e(t)| > 0, the state
estimate &(t) is always safe. Suppose that the system’s state
x(t) goes unsafe during the maximal interval of existence
7. By continuity, there exists some time 7 > 0 such that
h(z(7)) = 0. Since x(7) € C, the Lipschitz condition reveals
the inequality

h&(7)) = |h(@(1)) — h(z(T))|

which contradicts the lemma’s hypothesis. Therefore
x(t) is safe for all ¢ € Z. On the other hand, if the
maximal interval of existence is finite (i.e., the solution
has finite escape time), then the proof of [22, Th. 3.3,
p.- 94] shows that there must be a time 7 € Z where
x(r) ¢ C. This is a contradiction; therefore, the maximal
interval of existence for the unique solution x(t) to (1) is
[0, 00). X

< Cr(C)lle(r)]]

I The solutions to the initial value problem (1) are defined in the sense of
Carathéodory [21].

|
o)

Controller

Fig. 1. Block diagram of a limited-information safety controller. Encoded
messages m, describing the plant’s state (¢) are sent to the controller
over a finite-rate channel (dashed line) at each transmission time t;.
The controller consists of two parts: an observer and a nominally safe
control law kg,f. (). The observer constructs a state estimate &(t) using
the messages received from the channel and the controller applies the
control u(t) = ksafe(Z(t)) to the input of the plant.

my

The lemma states that, if the state estimate is far enough
into the interior of the safe set with respect to the estimation
error, then the system is itself safe. For arbitrary choice of
1 > 1, the prior lemma proves that the inequality

h(z(t)) = nCu(C)lle@)] )

certifies the safety of system (1). This style of safety certificate
will be useful in our subsequent analysis.

The scenario of interest in this letter is that in which state
measurements are sent to the controller over a finite-rate
communication channel, as shown in Figure 1. In particular,
we will construct a general class of controllers that, under
appropriate conditions, can guarantee safety in this scenario.
These controllers will consist of two parts: a state observer and
a nominally safe control law kguge : C — R™. Further details
regarding each of these two components are forthcoming.
Scenarios similar to that depicted in Figure 1 have been
previously studied in seminal works on stabilizing control over
finite-capacity channels, including [9]. See [19, p. 55] for a
study of observers located prior to the communication channel.

A. Safety Escape Time

The system (1) may become unsafe over time if no actuation
is applied. After all, this is why control is needed to ensure
safety. Henceforth the following assumption is made.

Assumption 2: The initial state x( of the system lies in the
interior of the safe set C. Therefore, there exists some § > 0
such that h(xzg) > 4. H

The particular value of § need not be known by the con-
trollers developed here, which is further clarified in Section III.
We are interested in the minimum time for a system whose
initial state satisfies h(zgp) = ¢ > 0 to become unsafe when
no actuation is applied. We refer to this time as the “safety
escape time”. Let &(x, t) be the solution (on a maximal time
interval Z) of

@ = f(x),
at time ¢ € Z. The safety escape time is defined as
Ti(6) £ inf{t>0 : xg € R™, h(zg) =4,
h(&(zo,t)) < 0}. (6)

Following the same logic as the proof of Lemma 1, if the
interval of existence Z of the solution &(xo, -) is finite, then
there indeed exists some time ¢ € Z such that h(&(xo,t)) < 0.

z(0) = zo )
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6('770’ tl)

Fig. 2. Visualization of the trajectory &(xo, ) studied in the proof of

Theorem 1. The gray area denotes the set C; = {z : h(z) > ¢} and
the lilac area represents the set Cp s = {z : h(zx) € [0, d]}; the safe set
C = {x : h(x) > 0} is the union of these two areas. The system starts
at time ¢t = 0 in the state xo with h(xo) = J. At time o, the trajectory is
at point &£(xo, to) which also satisfies h(&(xo, to)) = §. For time t in the
interval [to, t1] the solution &(xo, t) lies entirely within the compact set
Coy(;. At time ¢; the solution reaches the boundary of the safe set and
h(&(xo,t1)) = 0.

In the uninteresting case where the set on the right side of (6)
is empty, the system initiating from x with h(xg) = J is safe
for all time with zero actuation and the safety escape time is
defined to be T} () £ +o0.

Calculating the safety escape time would be difficult in
practice for arbitrary nonlinear systems; however, the next
theorem will provide a useful lower bound. Recall that B (D)
is the maximum of ||f(z)|| over all « in a compact set D C R™.
Given 6 > 0, the set Cy s C C may be expressed as Cy s =
h=1(]0, 8]). It follows that Cy s is closed because h is continuous,
and Cy s is bounded because it is contained in C. By the Heine-
Borel theorem, Cp 5 is compact. Let f and i be non-trivial so
that C},(Cy5) and Bf(Co,s) are non-zero.

Theorem 1: The safety escape time is lower bounded by a
positive constant as given by

1)
T(9) > CrlCon) By Cos) @)
O
Proof: Consider xo with h(xy) = ¢ such that the solution
&(xo, -) to (5) goes unsafe. By continuity of this solution and

continuity of h, there exists some time ¢; > 0 where
h(§(xo,t1)) = 0. 3

Choose t; to be the smallest time for which (8) occurs. Due
to continuity, there exists a time ¢y with 0 < £g < 1 so that
&(xo,t) € Cos forall t € [to, t1]. This is depicted in Figure 2.
The width of the interval [to,t1] provides a lower bound on
the safety escape time.

By Lipschitz continuity of & on the compact set Cg s,

h(&(xo,t1)) = h(&(xo,t0))

— Ci(Coys) 1€(x0,t1) — &(x0, t0)|| (D)

and therefore

_ 0
Cn(Cos)

as h(&(xo,t9)) = ¢ and h(&(xo,t1)) = 0. Applying the
integral form of the mean value theorem [23, p. 247] to the

1€(0, 1) — &(@o, to) || > (10)

function || f(&(xo,-))|| on the compact interval [to, 1] reveals
that there exists a time ¢’ € (¢o,¢;) such that

1€, 1) — &(@o, to) | < (t1 — to) [1f (€ (o, )| . (A1)
Since E(Il?o,t) S Co)(; forall t € [to, tl],

[€(x0,t1) — &(xo, to)|| < (t1 —to) B (Cos) . (12)
Combining this with (10) shows that
6

(t1 — (13)

t > .
0) 2 GCos) Br (o)

In the worst case scenario ty = 0, and the earliest time ¢; that
h(&(xo,t1)) = 0 can occur is t; = 6/(Cr(Co,5) Bf(Co,s))-
This proves the theorem. X

An alternative version of this theorem can be stated without
using the subset Cy s of C. While it is a looser bound in general,
the constants involved may be easier to calculate.

Corollary 2: The safety escape time is lower bounded by a
positive constant as given by

]

T5(0) > W .

(14)
O
Proof: Since Cy s C C, it follows that Cp(Co,5) < Cp(C)

and Bf(Cps) < By(C). The proof follows by

Theorem 1. X
The limited-information safety controllers proposed in this

letter consist of a transient estimation-only phase. This phase

begins at time ¢ = 0. For the duration of this phase no
actuation is applied to the system, and the goal of this phase
is to quickly compute a state estimate which is precise enough
to select a safe control law. This phase cannot take too long
otherwise the system will go unsafe. It is for this reason that

we have defined the safety escape time 75(0).

Remark 1: Theorem 1 provides a bound on the time that the
controller is allowed to “do nothing”, i.e., apply zero actuation,
before the system becomes unsafe. As such, we informally
refer to this result as the “do nothing theorem.” a

B. Limited-Information State Observer

This section describes the limited-information state observer
considered in this letter. This observer is a variant, adapted
specifically to the input-affine dynamics (1), of the exist-
ing approach for both linear and nonlinear state observers
over finite-rate channels such as [11], [14], [20]. Recall the
system’s block diagram from Figure 1. The encoder measures
the system’s state (¢) and transmits messages to the observer
over a finite-rate channel. Specifically, at each transmission
time t, = kT, where kK € N and T > 0, the encoder transmits
a symbol my € {1,2,..., M} £ M over the channel. The
set M is known as the coding alphabet and 7" is known as the
transmission period. The job of the observer is to decode the
received messages and to use them in computing an estimate
Z(t) of the system’s state a(¢). This estimate is called the state
of the observer. At each time ¢; the observer is allowed to
update its state abruptly (discontinuously) based on messages
received from the encoder. However, for ¢ € (tg, tx4+1) the
observer’s state is updated according to the system’s dynamics:

& = f(&) + g(®)u, @(ty) = @ (15)
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where &y is the state at the update time ¢;, (the latter equation
in (15) plays the role of the “initial condition™ at time t).

The control input applied to (1) will be a continuous
function u(t) 2 Kkgpo(2(t)) of the observer’s state (i),
and hence wu(-) € U. Suppose that the control ensures
the observer’s state &(¢) is confined to some compact set
D C R™ over the time period of interest. Note that this does
not imply that D is a subset of C. Since kgato(+) is continuous
and D is bounded, there exists some By_., (D) > 0 such that
|ksate(2)|| < B, (D) for all z € D. Let C¢(D) and Cy(D)
denote the Lipschitz coefficients of f and g, respectively, on
D. Define

Ga £ exp{[C(D) + Cy(D) B.,,.(D)] T}, and  (16a)
Ge 2 exp{C;(D)T} . (16b)

Between transmission times t; and ?;; the observer error’s
growth is bounded by |le(tr)|| < Ga |le(tk—1)| (resp.
lle(tx)|l < Ge |le(tk—1)]|) if actuation (resp. no actuation) is
applied to the system.” This is a direct result of Gronwall’s
inequality. Here G, and G, are known as “growth bounds.”
The encoding strategy and observer updating strategy at

the transmission times are as follows. The encoder and
decoder start by considering a common safe reference point
r € C. Note that ||r — xy|| < diam(C). The encoder divides
B(r,diam(C)) into M equal hypercubes and transmits the
symbol j € {1,2,..., M} associated with the cube containing
x(tp). When the symbol j is received, the observer knows
that the true state lies in cube j and defines &(ty) to be
the center of said cube. The state estimation error is then
bounded by ||&(to) — xo|| < diam(C)/M/™ £ &,. Using this
initial condition, one can iteratively define an upper bound &y
on the observer error at each step k € N. For the first few
transmissions, say until step [ € N, no actuation is applied to
the system. Exact details regarding time step [ are provided
in Section III. During this estimation-only phase, the observer
knows with certainty that x(tx) € B(&(tr—1), Gebr—1) at
each transmission time ¢5.°> Let &(¢;, ) be the observer’s state
just before time ¢,. The encoder divides B(Z(t; ), Ge€r—1)
into M cubes of equal volume, as it did at time ¢y, and
transmits the symbol associated with the cube containing
x(tr). When the symbol j is received, the observer defines
&(tx) to be the center of cube j. As a result, the error bound
at each step is

(i)l < poe e 2
For k > [, the same estimation strategy is performed by
replacing the growth bound G, with the larger quantity G,
which accounts for the effects of actuation:

le(ti)ll < e 2
If T and M are chosen such that G, < M 1/n (and therefore
Ge < Ml/"), then (17) and (18) will produce a sequence
{lle(tx)||}x ey which is exponentially convergent to zero.
Further details, including how to confine x(t) and &(t) to an
appropriate compact set D, are provided below.

ey . (17)

e . (18)

2More precise bounds can be given if f, g, and w are continuously
differentiable functions of the state x, e.g., see [14].

31t is not the focus of this letter to consider disturbances in the dynamics,
which could put z(t;) outside the ball B(@(tg_1), Gelr_1).

Algorithm 1: Limited-Information Safety Controller—
State Observer and Control Parameter Updates
Initialize: (¢, ) £ r € C, D £ B(r,2 diam(C)),
é_; = diam(C), 6_1 2 7 C,(C) G, diam(C), G = 1;
for £k =0,1,2,... do
Divide B(x(t, ), Géx—1) into M equal hypercubes
and let &(tx) equal the center of the hypercube that
x(ty) falls into;
Set &, = Gékfl/Ml/n and 0, = Gékfl/Ml/n;

if h(ii'(t]g) < 0;, then

Set G = Go; > estimation-only phase
‘ Set u(t) = 0 for t € [ty, tkt1);
else
Set G = Gy; > estimation-actuation phase

Set u(t) = ksafe(SE(t)) for t € [tk,tk+1) ;

end

Simulate &(t) over the interval [t,t;4+1) according
to (1) whilst applying w(t) to the real system;

end

II1. LIMITED-INFORMATION SAFETY CONTROLLERS

In this section we will show how safety can be ensured
using a nominally safe controller that is certified by an
exponential barrier certificate, and we will present a class
of separation-principle style limited-information safety con-
trollers. As depicted in Figure 1, these controllers operate
by cascading the observer described in Section II-B with a
nominally safe control law. The proposed methodology is
summarized in Algorithm 1. This algorithm consists of two
sequential phases. The first is an estimation-only phase during
which no actuation is applied to the system. The goal during
this time is to sufficiently reduce the state estimation error
so that state estimate &(¢) may be used to select a control
law which will keep the true state a(t) safe. This phase
should last no longer than the safety escape time described in
Section II-A—as waiting any longer to apply actuation could
result in the system going unsafe. The controller will apply
actuation if the condition

Mz(t)) = 0 (19)

is satisfied for some transmission time ¢;, where §;, for £ € N
is defined to be

8k 2 nCu(C) Gaty. (20)

It will be shown that 7" and M can be chosen such that
the estimation-actuation phase begins within the safety escape
time 74(0). Once the estimation-actuation phase begins, the
controller uses a control law w(t) = ksate(Z(¢)) which is
assumed to satisfy the exponential barrier condition

Lh(#(t)) + Loh(2(t)) ksate(2(t)) > —oh(&(1))

forsome o > 0overeachtime intervalt € [ty,tg41),k = (. The
control law is piecewise continuous: it is continuous between
transmission times but is allowed to update discontinuously
each time the observer updates.

The main result of this section is stated below. The
significance of the Theorem 2 is that the existence of a

2n
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nominally safe control law, certified by an exponential barrier
function, guarantees the existence of a limited-information
safety controller. This is proved by showing that Algorithm 1 is
one particular safe controller. Notably in Algorithm 1, § does
not need to be known. Rather, a limited-information safety
controller with given 7" and M can be certified to keep safe
all system trajectories with h(xg) > ¢ down to a particular
value of § given by

s Ge \* diam(C)
1) _mlrl\ll {(1+77Ga)ch(c) (Ml/n> M1/n

+ (Ch(C) B4 (C)T) k} .22

Theorem 2: Let the transmission period 7' and size of the
coding alphabet M satisfy
(77 Tn—1) M=

= nG,. (23)

Then, any trajectory of (1) originating from Cu will remain in
C for all time under the Algorithm 1. O

Note that, by monotonicity, for any § > 0 there exists
T and M so that 6 < & and (23) is satisfied. Regarding
the hypotheses of Theorem 2, xy € C. ensures that the
estimation-only phase terminates before the safety escape
time. Inequality (23) ensures that the state estimation error
converges exponentially and that, once Algorithm 1 enters
the estimation-actuation phase, it remains in this for all time.
The proof of Theorem 2 will be given after the presentation
of preliminary lemmata. The following lemma proves that
Algorithm 1 enters the estimation-actuation phase before the
system (1) goes unsafe due to the free evolution of the
estimation-only phase. It also proves that &(¢) is confined to
the compact set D = B(r,2diam(C)) up until that point,
recalling from Section II-B that 7 is the initial reference point
of the observer.

Lemma 2: Let I’ € N be the minimizing argument of (22).
If inequality (23) holds and h(zo) = § > 6 then:

1) the time ¢t = I'T is strictly less than the safety escape

time T5(9);

2) throughout the initial estimation-only phase of
Algorithm 1, Z(t) lies in D; and,

3) the algorithm enters the estimation-actuation phase
at some time t; < tp, i.e., within the safety escape
time. O

Proof: One can see from (22) that ¢ < 6/(Cp(C) B¢(C)).
By Theorem 1 one may conclude ¢;; < Ty(6). This proves the
first part of the lemma.

Next, manipulating (23) and basic algebra reveal that
Ga/MY™ < 1. Because G, < G, it follows that G, /M'/™ <
1. If the algorithm immediately enters the estimation-actuation
phase then the second and third parts of the lemma are
vacuously true, so consider the contrary. The algorithm selects
&y which is contained in D = B(r,2diam(C)). Suppose
for contradiction that &(t) leaves D within the time interval
[to, t1) over which x(t) € C. By continuity there exists some
time 7 € [to, t1) such that ||&(7) —r| = 2diam(C). However,
an application of Gronwall’s inequality reveals

lz(r) = &(r)l| < Pz (ty) — & (to)|
< Ml/ diam(C) < diam(C). (24)

On the other hand, because x(7) is still safe it follows that

|z(7) — r|| < diam(C). The triangle inequality gives
2(r) =7l < [J&(7) —2(7)[| + llz(7) — |l
< 2diam(C) (25)

which is a contradiction. Therefore &(t) € D for all time
t € [to,t1). The same argument shows that &(t) lies in D
throughout the initial estimation-only phase so long as t is
within the safety escape time. This point will be addressed
next, which will complete the proof of the lemma’s second
and third parts.

As previously stated, the point of the assumption xy € CS is
to ensure the algorithm exits the estimation-only phase within
the safety escape time. We already know that ¢, < Ty(9).
If the algorithm remains in the estimation phase up to time
t;/, the proof of Theorem 1 can be modified to show

h(w(tl/)) > 06— Ch(C) Bf(C) ty .

Combining this with (22) and the lemma in the Appendix
proves

(26)

h(&(tr)) =

Therefore, by at least time step ¢ < T5(J) the condition
necessary for Algorithm 1 to enter the estimation-actuation
phase is satisfied. This completes the proof of the lemma’s
second and third parts. X

Algorithm 1 applies actuation once h(Z(t;)) > d; for some
I € N. Next it is shown that this inequality is satisfied at each
subsequent £ > [ so long as x(t) € D (which happens, in
particular, if «(t) remains safe).

Lemma 3: Assume that T" and M satisfy the assumptions
of Theorem 2. If for some time ¢;, inequality (19) holds, then
inequality (19) also holds at time ¢ so long as x(¢) € D for
all t € [tk,tk-i-l)- O

Proof: Suppose that for some k¥ € N the condition (19) is
satisfied so that Algorithm 1 chooses to apply actuation over
the interval [tx, tx+1). Applying Gronwall’s inequality to (21)
reveals that

nCh(C) Gaél/ = (51/. (27)

h@(t)) > e (@ (1)

for all ¢ in the interval [tg,txy1). Therefore, the state of
the observer right before updating at time ?;.; satisfies
h(&(t, 1)) = e "Th(@(tx)) > 0. The goal of the proof is
to show that the new state estimate &(tx41) chosen by the
observer is safe. For contradiction, suppose that the observer
chooses an unsafe state. By the lemma’s assumption on the
true state x(t), the observer chooses &(tx1) from the ball
B(@(t; 1), Gaég). Since h(2(t, ) > 0, h(Z(tk11)) <O,
and h is continuous, there exists some z € B(&(t, ), Ga€x)
such that h(z) = 0 and ||z — &(t k+1)|| < G,L8. Note that z
is safe. By C},(C)-Lipschitz continuity of A on C,

= e

(28)

0=n"n(z) > 2 (tk+1)) Ch( HZ (tl;Ll)H
> Wz (tk+1)) Ch(C) Gaty
Eq. (28) — = e 7T h(&(t;)) — CL(C) Ga &
Eq. (19), 20) = > (¢ 7" — 1) Cy(C) Ga &,

Ga

Bq. 03) > > n(Ml/n) CH(0) Galle(ti)]l - @9)
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Therefore the state estimation error is zero and
&(t, 1) = ®(tr41) since M*'/™ is odd. This gives the contra-
diction h(&(tx+1)) > 0. We have shown that at time ¢4 the
state estimate &(t;4+1) chosen by the observer is safe. Since
&(tk+1) € C, the same Lipschitz continuity argument shows

M&(ter1)) = NCOW(C) Galrpr = Ok - (30)

Therefore, at time step k + 1, Algorithm 1 remains in the
estimation-actuation phase, and so on. X
Proof of Theorem 2: To this point it has been shown that
the controller enters the estimation-actuation phase by time
t;/. Since time ¢ is smaller than the safety escape time T5(0),
the system is safe up until ¢;; despite the lack of actuation.
Let ¢; be the time step in which actuation is first applied. We
need only to show that x(t) € C for all ¢ € [¢;,¢;41), and then
the theorem follows from Lemma 3 and induction on k& > [.
Suppose that x(t) leaves the safe set within the time interval
of interest. Then there exists a first time 7 € [t;,%;41) such
that hA(x(7)) = 0. Up to that point,
le()] < Gaty. 31)
On the other hand, in light of equations (20), (23), and (28),
the inequality
Wa(r)) = e 7 nCh(C)Gaty > Cu(C)Gatr  (32)
holds for all ¢ € [t;,¢;4+1). Combining this inequality with
the error bound (18) and applying Lemma 1 yields a
contradiction. Thus, the true state (¢) remains safe for all time
te [tl;tl—i-l)‘ X

[V. CONCLUSION

This letter explored safety-critical control of nonlinear
systems over finite-rate state feedback channels. We showed
that the existence of a nominally safe control law, certified by
an exponential barrier function, suffices to provide safe control
in limited-information scenarios. We introduced the notion of
safety escape time and derived a lower bound on this time,
enabling the construction of a class of limited-information
safety controllers. This letter represents a starting point for a
theory of safety-critical control with limited information.

APPENDIX
Lemma 4: 1f for some time k € N the inequality
h(x(tr)) 2 (1+nGa)Cr(C) ek (33)
holds then h(&(t;)) > nChr(C) G, éx also holds. i

Proof: Inequality (33) ensures x(t;) € C. The Lipschitz-
style argument that has been used throughout this letter can
be used to show that &(¢;) € C also. By Lipschitz continuity
of hon C

h(z(tx)) — Cn(C) [z — 2 (ts) |l

Mz(ty)) >
> h(@(ty)) — Ch(C) éx

and hence h(Z(tr)) = nCh G,ey as given in the lemma’s
statement. X
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