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Abstract—Location awareness is crucial for a variety of emerg-
ing applications. The accuracy of localization depends heavily
on the spatial topology of the network, especially in complex
and infrastructure-limited wireless environments. In these envi-
ronments, assisting nodes can be deployed to achieve desirable
localization performance. This paper presents efficient strategies
for deploying assisting nodes to improve the localization accuracy of
a target agent. Specifically, it provides a methodology to determine
a finite set of candidate positions for the assisting nodes. Based
on this methodology, we present a convex relaxation method to
select near-optimal positions for the assisting nodes and establish a
theoretical limit on the localization accuracy provided by assisting
nodes. We also propose an approximate dynamic programming
algorithm to deploy assisting nodes with amenable complexity. A
case study validates the proposed strategies and shows the benefits
of deploying assisting nodes for accurate localization.

Index Terms—Localization, assisting nodes, node deployment,
network operation, wireless networks.

I. INTRODUCTION

N
ETWORK LOCALIZATION [1] is a promising paradigm
for providing ubiquitous position information of nodes

in wireless networks [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11]. Such information is crucial for several applications in fifth
generation (5G) and beyond ecosystems [12], [13], [14], includ-
ing autonomy [15], [16], [17], [18], [19], crowdsensing [20],
[21], [22], [23], [24], [25], [26], smart cities [27], [28], [29],
[30], [31], [32], [33], and Internet-of-Things [34], [35], [36],
[37], [38]. The 3rd Generation Partnership Project (3GPP) has
defined performance requirements for seven positioning service
levels [13], [39], [40]. Location-aware networks must satisfy
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Fig. 1. Network localization with an assisting node. The agent receives
insufficient position information from anchors due to the complex wireless
environment and limited network infrastructure. The assisting node moves
from an initial position (faded annulus) to an optimal position (bright annulus)
determined by a node deployment strategy.

service-level requirements regardless of the operation condi-
tions. However, meeting the required performance is challenging
in complex wireless environments, especially if the network
infrastructure is limited.

Location-aware networks consist of anchors with known
positions and agents with unknown positions. The accuracy
of localization depends on the wireless resources, propagation
conditions, and deployment of nodes [41]. In particular, the
exploitation of soft information [34] enables accurate local-
ization in complex wireless environments, and its performance
gain has been demonstrated in 5G and beyond ecosystems [12],
[14], [42]. Furthermore, location-aware networks benefit from
strategies for allocation of wireless resources [43], [44], [45] and
coordination of nodes’ transmissions [46], [47], [48]. Nonethe-
less, localization accuracy degrades in infrastructure-limited
environments where the measurements and geometric relation-
ships among nodes are inadequate for positioning. In these
environments, assisting nodes [49] can be deployed to meet
desirable performance (see Fig. 1). For example, the deployment
of assisting nodes for public safety applications (e.g., via un-
manned aerial vehicles (UAVs) [50], [51], [52] relying on spatial
cooperation and heterogeneous measurements [53], [54], [55])
can enable reliable localization of victims and first responders
in challenging environments [40, Section 5.4].

The deployment of wireless networks is mainly driven by
communication demands [56], [57], [58], [59], [60], [61], [62],
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[63], [64]. In particular, the role of the network topology in the
position error has been studied in [65], [66], [67], and node de-
ployment strategies for localization have been developed in [68],
[69], [70], [71], [72], [73], [74]. The design of node deployment
strategies relies on optimizing a performance metric expressed
as a function of the nodes’ positions. Localization performance
metrics are defined in terms of the Fisher information matrix
(FIM) [75], which describes the position information that agents
obtain from measurements [76]. The structure and interpreta-
tion of the FIM (or equivalent forms such as the covariance
matrix [77], [78]) can be exploited to design node deployment
strategies under different optimality criteria [41].

Conventional node deployment strategies for localization fo-
cus on the anchor placement [69], [70], [71], [72], [73]. Such
strategies are typically based on the assumption that anchors
are placed on the boundary of a convex region containing the
target agent and rely on standard optimization methods [79],
[80]. While conventional node deployment strategies provide
desirable anchor placements, new strategies to deploy possibly
cooperative assisting nodes can enable efficient high-accuracy
localization in complex wireless environments. In particular,
the 3GPP has considered in-coverage, partial-coverage, and
out-of-coverage use cases for localization in 5G and beyond
ecosystems enabled by spatial cooperation among agents via
sidelink communication [81], [82], [83], [84]. Hence, efficient
network localization calls for general strategies to deploy assist-
ing nodes considering knowledge from existing infrastructure,
if any. The computational complexity of such strategies must
be amenable to meet positioning latency requirements without
compromising localization accuracy [12], [13].

The fundamental questions related to the deployment of
assisting nodes are: (i) how does the localization accuracy
of a target agent depend on the positions of assisting nodes;
and (ii) how to determine optimal assisting node positions?
The answers to these questions will provide guidelines for the
deployment of assisting nodes. The goal of this paper is to
develop node deployment strategies with amenable complexity
to improve localization accuracy using assisting nodes. The key
idea consists of determining a finite set of candidate positions
to select near-optimal locations for the assisting nodes.

This paper presents near-optimal strategies to deploy assist-
ing nodes for efficient network localization. Specifically, we
introduce a methodology to determine a finite set of candidate
positions and develop efficient strategies for deploying assisting
nodes based on convex optimization and approximate dynamic
programming (ADP). The key contributions of this paper are as
follows:
� introduction of a methodology to determine candidate po-

sitions for the assisting nodes;
� development of efficient near-optimal strategies for de-

ploying assisting nodes; and
� quantification of the benefits provided by deploying assist-

ing nodes for accurate localization.
The remaining sections are organized as follows: Section II

formulates the node deployment problem. Section III introduces
the methodology to determine a finite set of candidate positions
for the assisting nodes. Section IV presents a convex relaxation

Fig. 2. Node deployment scenario: assisting nodes are deployed to improve
the localization accuracy of a target agent. The positions of assisting nodes are
restricted by K deployment regions (gray areas).

to select near-optimal positions for the assisting nodes and
establish a theoretical limit on the localization accuracy provided
by assisting nodes. Section V develops an ADP algorithm for
deploying assisting nodes with amenable complexity. Section VI
discusses the inverse node deployment problem of assisting
nodes. Section VII presents a case study. Finally, Section VIII
gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a variable is denoted by x; a random
vector and its realization are denoted by x and x, respectively;
a matrix is denoted by X . Sets are denoted by calligraphic
font. For example, a set is denoted by X . The m-dimensional
vector of zeros (resp. ones) is denoted by 0m (resp. 1m): the
subscript is removed when the dimension of the vector is clear
from the context. For a vector x and a matrix X , the transpose is
denoted by xT and XT, respectively. The trace and determinant
of a square matrix X are denoted by tr{X} and det{X},
respectively. The Euclidean norm and direction of a vector x
are denoted by ‖x‖ and ∠x, respectively. The notations a � b

and a � b denote element-wise inequalities between vectors a
and b. Notation diag{·} represents a diagonal matrix with the
arguments being its diagonal elements.

II. PROBLEM FORMULATION

This section presents the system model, describes the localiza-
tion performance metrics, and formulates the node deployment
problem of assisting nodes.

A. System Model

Consider a location-aware network with a target agent and
Nb anchors. The goal is to improve the localization accuracy of
the target agent by deploying Nc assisting nodes (see Fig. 2).
The assisting nodes may be subject to position uncertainty and
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perform measurements with the target agent and neighboring
anchors. The index sets of anchors and assisting nodes are Nb=
{ 1, 2, . . . , Nb} and Nc={Nb+1, Nb+2, . . . , Nb+Nc}, re-
spectively. The target agent is indexed as the node zero. The
position of node i is denoted by pi ∈ R

2. The distance and
angle between the positions of nodes i and j are denoted by
di,j = ‖pi − pj‖ and φi,j = ∠(pi − pj), respectively. The
node deployment strategy aims to determine the assist-
ing node positions, pc = [pT

Nb+1,p
T
Nb+2, . . . ,p

T
Nb+Nc

]T, that
maximally improve the localization accuracy of the target agent.
The positions of assisting nodes are restricted by K disjoint
deployment regions, R1,R2, . . . ,RK , enumerated in counter-
clockwise direction. The set of possible assisting node positions
is denoted by S = ∪K

k=1Rk. This set excludes all the positions
where assisting nodes cannot be deployed due to delimitation
or blockages given map information and knowledge of the
line-of-sight (LOS) and non-line-of-sight (NLOS) conditions in
the environment.

LetJ(p0,pc)denote the equivalent Fisher information matrix
(EFIM) [76] for the positions of the target agent and assisting
nodes, given by (1) shown at the bottom of this page. In (1), the
matrix JA

e (pi) represents the position information that node i
obtains from anchors; and the matrixCi,j represents the position
information that node i obtains from spatial cooperation with
node j. Such matrices are given, respectively, by

JA
e (pi) =

∑

j∈Nb

λi,j Jr(φi,j) (2a)

Ci,j = Cj,i = (λi,j + λj,i)Jr(φi,j) (2b)

where λi,j is referred to as the range information intensity (RII)
between nodes i and j; and Jr(φ) is referred to as the range
direction matrix (RDM) with angle φ [76]. The RII and RDM
depend on the deployment of nodes i and j, and are given by

λi,j = Λ(di,j) =
8π2β2

c2
(1− χi,j) γi,j(di,j) (3a)

Jr(φ) =

[

cos2(φ) cos(φ) sin(φ)

cos(φ) sin(φ) sin2(φ)

]

(3b)

respectively. In (3a), the RII is expressed as a function of distance
di,j in whichβ and c are the effective bandwidth and propagation
speed of the transmitted signal, respectively; χi,j ∈ [0, 1) is a
realization of the path-overlap coefficient (POC) describing the
degradation of the RII due to multipath propagation from node

j to node i;1 and γi,j(di,j) is the signal-to-noise ratio (SNR) of
the first path received at node i from node j as a function of di,j .
The SNR of the first path received from node j at node i is given
by

γi,j(di,j) = G
Pj

dαi,jN0
(4)

where Pj is the transmitting power of node j, α � 0 is the path-
loss exponent, N0 is the one-sided power spectral density of the
noise component, and G is a gain that depends on the center
frequency and antenna directivity. We consider that the target
agent and assisting nodes have transmitting power Pc.2

To design strategies for deploying assisting nodes, consider
the position information of the target agent. From (1), the 2× 2
EFIM for the position of the target agent as a function of the
assisting node positions is given by

Je(pc;p0) = JA
e (p0) +

∑

j∈Nc

ξ0,jJr(φ0,j) (5)

where ξ0,j = ς(d0,j , φ0,j) denotes the equivalent ranging co-
efficient (ERC) obtained from spatial cooperation between the
target agent and assisting node j. The ERC is given by

ς(d0,j , φ0,j) =
r0,j

1 + r0,j∆0,j
(6)

where r0,j = λ0,j + λj,0 depends on the deployment of the
target agent and assisting node j according to (3a), and

∆0,j = tr
{

Jr(φ0,j)
[

JA
e (pj)

]−1
}

. (7)

The term ∆0,j penalizes the ERC from spatial cooperation with
assisting node j due to its position uncertainty, and, as a special
case, ∆0,j = 0 if it has perfect knowledge of its own position.
In this special case, the assisting node j may be viewed as an
assisting anchor with r0,j = λ0,j .3

B. Localization Performance Metrics

The localization accuracy of the target agent can be quantified
by the mean-square error (MSE) of its position estimator. Let
p̂0 denote an unbiased estimator of p0 based on the noisy
measurements that the target agent obtains from anchors and

1The POC depends on the inter-arrival delays of the multipath components in
the first contiguous cluster of the received signal [76].

2The transmitting power of cooperative nodes (e.g., target agent and assisting
nodes) is smaller than that of anchors.

3Even though the problem formulation includes this special case, the assump-
tion of assisting nodes without position uncertainty may not be valid in most
practical systems.
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Fig. 3. Geometric interpretation of the EFIM for the position of a target
agent. Arrows denote the direction of inter-node measurements, and the length
of an arrow represents the amount of wireless resources employed. The red
ellipse represents the position information obtained from anchors; the green
ellipse represents the position information obtained from spatial cooperation
with assisting nodes; and the purple ellipse represents the position information
obtained from anchors and spatial cooperation with assisting nodes. The light
purple area represents the space where the information ellipse can exist given
the possible assisting node positions.

assisting nodes. From the information inequality, the MSE of the
position estimator p̂0 is lower bounded by the squared position
error bound (SPEB) [76], which is given as

P(pc;p0) = tr
{

[

Je(pc;p0)
]−1

}

. (8)

This lower bound is asymptotically achievable by maximum
likelihood estimators in high SNR regimes and can be adopted
as the localization performance metric for the design of node
deployment strategies [41]. Furthermore, a measure of the con-
fidence of p̂0 based on the geometric interpretation of the EFIM
as an information ellipse can also be employed as localization
performance metric [76].

Consider the eigenvalue decomposition of the 2× 2EFIM for
the position of the target agent given by

Je(pc;p0) = Uϑ

[

μ 0

0 η

]

UT
ϑ (9)

where μ and η are the eigenvalues of Je(pc;p0) and Uϑ is a
rotation matrix [76]. From (9), the SPEB of the target agent can
be expressed as

P(pc;p0) = tr

{[

μ 0

0 η

]−1}

= μ−1 + η−1 . (10)

The information ellipse of a 2× 2 EFIM Je(pc;p0) is defined
as the set of points [76]

{

w ∈ R
2 : wT[Je(pc;p0)]

−1w = 1
}

. (11)

Fig. 3 illustrates the geometric interpretation of the EFIM for the
position of a target agent as an information ellipse with major
and minor axes equal to

√
μ and

√
η, respectively. This ellipse

represents the position information obtained by the target agent
from anchors and spatial cooperation with assisting nodes.

The area of the information ellipse can be used as a measure
of the confidence of p̂0. In particular, a large information ellipse
is desirable for accurate localization. Nevertheless, the largest
information ellipse does not necessarily provide the lowest
SPEB [76]. Since the area of the information ellipse is related
to the determinant of the EFIM, we consider the performance
metric given by

Q(pc;p0) = det
{

Je(pc;p0)
}

. (12)

C. Node Deployment Problem of Assisting Nodes

The goal of the node deployment strategy is to determine the
positions where assisting nodes should be placed to maximally
improve the localization accuracy of a target agent. Since the
possible assisting node positions are described by the set S , the
node deployment problem can be formulated as

P : minimize
pc

P(pc;p0)

subject to pi ∈ S, i ∈ Nc.

Alternatively, the problem ca be formulated by considering
Q(pc;p0) with the goal of maximizing the confidence of the
position estimator p̂0 rather than minimizing the SPEB directly.
In this case, the problem can be formulated by replacing the
objective function in P with −Q(pc;p0).

Solving P is difficult because its objective function is not
convex with pc in general due to symmetrical patterns caused
by permutations of the positions and because S can describe
complicated problem instantiations.4 Moreover, the solutions to
P can describe clusters of assisting nodes, i.e., assisting nodes
deployed in close proximity to each other. To provide a more
tractable solution to this problem, we consider a finite set of
candidate positions from which the node deployment strategy
selects near-optimal locations for the assisting nodes. The fol-
lowing section will introduce a methodology to determine a finite
set of candidate positions for the assisting nodes.

III. DISCRETIZATION OF DEPLOYMENT REGIONS

Consider the polar coordinates of the assisting node posi-
tions relative to the position of the target agent p0 as ref-
erence point. Let d = [ d0,Nb+1, d0,Nb+2, . . . , d0,Nb+Nc

]T and
φ = [φ0,Nb+1, φ0,Nb+2, . . . , φ0,Nb+Nc

]T denote the vectors of
distance and angle components of the polar coordinates of the
assisting nodes with respect to p0, respectively. Moreover, con-
sider the function g(d, φ) = p0 + d [cos(φ), sin(φ)]T to obtain
the Cartesian coordinates of the position represented by the polar
coordinates (d, φ) with respect to p0. The EFIM for the position
of the target agent can be rewritten in terms of d and φ as

Je(d,φ;p0) = JA
e (p0) +

∑

j∈Nc

ς(d0,j , φ0,j)Jr(φ0,j) (13)

in which pj = g(d0,j , φ0,j) for j ∈ Nc.
The optimization of a performance metric equivalent to (8)

based on Je(d,φ;p0) can be performed by first establishing the

4The optimization of non-convex functions is challenging due to the existence
of locally optimal solutions that are not globally optimal [80].
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distance components for a given set of angles and then deter-
mining the appropriate angles [41]. The distance component for
a fixed angle φ0,j is given by

d∗0,j = arg max
{d0,j :g(d0,j ,φ0,j)∈S}

ς(d0,j , φ0,j) . (14)

This problem can be solved by one-dimensional optimization
methods since the objective function only depends on a single
optimization variable. Note that ς(d0,j , φ0,j) also depends on the
propagation conditions that an assisting node will experience if
it is deployed at the position described by g(d0,j , φ0,j) ∈ S . We
consider that the POCs describing the propagation conditions
for such positions are known.5

The next step consists of optimizing the angle components
given the corresponding distances. This step is difficult because
the objective function is not convex with φ and the possible
angles are described by disjoint intervals. Hence, we consider
that the anglesφ0,j belong to a finite set ofM possible directions
Θ = { θ0, θ1, . . . , θM−1}. The discretization of the angles de-
scribes a reduced version of the setS . The reduced set of possible
assisting node positions is denoted by Š = ∪M−1

m=0(Dm ∩ S),
where Dm = {z ∈ R

2 : ∠(z − p0) = θm} is the set of posi-
tions described by the angle θm with respect to p0 (see Fig. 2).

A discretization method to determine the angles θm is de-
scribed next. Let θLk and θUk denote the lower and upper angle
constraints of the deployment region k with respect to p0 as
reference point. Moreover, let ak = θUk − θLk denote the length
of the interval of angles over which assisting nodes can be
placed in the deployment region k, which is referred to as
the aperture of the deployment region k. The apertures of the
deployment regions are concatenated and considered as a single
interval with total aperture A =

∑K
k=1 ak. Then, the set of

angles { θ̌0, θ̌1, . . . , θ̌M−1} is obtained with θ̌m given by

θ̌m = (m+ 1)
A

M + 1
. (15)

To determine the possible angles θm, the values θ̌m are mapped
to the intervals described by the deployment regions. This map-
ping is given by

h(θ̌m) =

⎧

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

¬

θ̌m + θL1 if 0 < θ̌m � a1
θ̌m + θL2 − a1 if a1 < θ̌m � a1 + a2

...

θ̌m+θLK−
K−1
∑

k=1

ak if
K−1
∑

k=1

ak < θ̌m �
K
∑

k=1

ak .

(16)
The angle discretization enables establishing a finite set of

possible assisting node positions. The positions in this set are
referred to as candidate positions since the node deployment
strategy will select the locations of assisting nodes among them.
Specifically, each possible angle θm is paired with a distance
dm, which, from (14), is given by

dm = arg max
{d:g(d,θm)∈Š}

ς(d, θm) . (17)

5Realizations of the POCs can be obtained by generating the received wave-
form or by means of a statistical model (e.g., see [85]).

Algorithm 1: Discretization of Deployment Regions.
Input: Target agent position p0, deployment regions
R1,R2, . . . ,RK , and number of candidate positions M .

Output: Candidate positions p̌c and ERCs ξ̌c .
1: for k = 1 to K do

2: Determine the angle constraints θLk and θUk .
3: ak ← θUk − θLk .
4: end for

5: A ← ∑K
k=1 ak .

6: for m = 0 to M − 1 do

7: θ̌m ← (m+ 1)[A/(M + 1)] .
8: θm ← h(θ̌m) .
9: dm ← arg max

{d:g(d,θm)∈Š}
ς(d, θm) .

10: p̌m ← g(dm, θm) .
11: ξ̌m ← ς(dm, θm) .
12: end for

13: p̌c ← [ p̌T
0 , p̌

T
1 , . . . , p̌

T
M−1]

T .
14: ξ̌c ← [ ξ̌0, ξ̌1, . . . , ξ̌M−1]

T .

The polar coordinates (dm, θm) determine the candidate po-
sition p̌m = g(dm, θm). An assisting node deployed at p̌m

will provide position information to the target agent with
ERC ξ̌m = ς(dm, θm). The vectors of candidate positions
and ERCs are denoted by p̌c = [ p̌T

0 , p̌
T
1 , . . . , p̌

T
M−1]

T and
ξ̌c = [ ξ̌0, ξ̌1, . . . , ξ̌M−1]

T, respectively. Algorithm 1 describes
the steps to discretize the deployment regions and establish a
finite set of candidate positions.

By considering the finite set of candidate positions
{ p̌0, p̌1, . . . , p̌M−1}, the EFIM for the position of the target
agent can be rewritten as

J̌e(u;p0) = JA
e (p0) +

M−1
∑

m=0

umξ̌mJr(θm) (18)

where u = [u0, u1, . . . , uM−1]
T with um ∈ {0, 1} encoding

whether an assisting node is deployed (um = 1) at the position
p̌m or not (um = 0). Then, the performance metrics introduced
in Section II-B can be rewritten as

P̌(u;p0) = tr
{

[

J̌e(u;p0)
]−1

}

(19a)

Q̌(u;p0) = det
{

J̌e(u;p0)
}

(19b)

which are the counterparts of (8) and (12), respectively, consid-
ering the EFIM for the position of the target agent as a function
of u. The node deployment strategy based on (19a) aims to
select the Nc positions where assisting nodes should be placed
to maximally improve the localization accuracy of the target
agent. This is expressed by the problem

Ps : minimize
u

P̌(u;p0) (20a)

subject to 1
Tu = Nc (20b)

um ∈ {0, 1}, m = 0, 1, . . . ,M − 1 (20c)

where Ps denotes the formulation of the node deployment
task as a selection problem [77]. In Ps, (20b) represents the
constraint on the total number of available assisting nodes for



GÓMEZ-VEGA et al.: EFFICIENT DEPLOYMENT STRATEGIES FOR NETWORK LOCALIZATION WITH ASSISTING NODES 6277

deployment, i.e.,
∑M−1

m=0 um = Nc, and (20c) represents the
Boolean constraints for the selection variables. Hence, the op-
timization problem requires M � Nc candidate positions. Note
that the assisting node positions pc correspond to the candidate
positions p̌m with um = 1.

The selection problem Ps may be viewed as a relaxation
of P since it considers a finite subset of possible assisting
node positions. Nonetheless, approximate solutions to the node
deployment problem of assisting nodes (which is generally
difficult to solve in its conventional form P) can be obtained
by considering the form of Ps. Note that the choice of the
parameter M involves a tradeoff between the accuracy of the
approximation and the complexity of solving Ps. Furthermore,
the problem can also be formulated by employing −Q̌(u;p0) as
objective function with the goal of maximizing the confidence
of the position estimator.

IV. CONVEX RELAXATION

The objective function P̌(u;p0) in (20a) is convex for u � 0

[41]. This allows to formulate a convex relaxation of the com-
binatorial problem Ps by replacing the Boolean constraints in
(20c) with the box constraints 0 � um � 1. Let Psc denote the
convex relaxation of Ps expressed as

Psc : minimize
u

P̌(u;p0)

subject to 1
Tu = Nc

0 � um � 1, m = 0, 1, . . . ,M − 1 .

This problem is a convex program since the objective is convex
and the constraints are linear.6 Hence, Psc can be solved using
conventional convex optimization methods. In particular, the
problem Psc can be transformed into a semidefinite program
(SDP) or a second order cone program (SOCP) [41], which are
more favorable formulations due to their efficient solvers [80].
The transformation of Psc into an SOCP will be described later
on in this section.

Let u∗ = [u∗
0, u

∗
1, . . . , u

∗
M−1]

T denote the optimal solution
of Psc. This solution can contain fractional elements due to the
relaxation of the Boolean constraints and may not be feasible for
Ps. Nonetheless, the optimal solution u∗ can be employed to
obtain a near-optimal selection of the assisting node positions.
Consider the feasible solution ů = [ ů0, ů1, . . . , ůM−1]

T whose
elements are given by

ům =

{

1 ifu∗
m is one of theNc largest elements ofu∗

0 otherwise
(21)

in which ties are broken arbitrarily.7 In addition to determining a
near-optimal solution to the node deployment problem by means
of the rounding function in (21), solving the convex relaxation
also provides a theoretical limit on the localization accuracy
provided by assisting nodes given a finite set of candidate

6In convex optimization problems, any locally optimal solution is also glob-
ally optimal [80].

7More sophisticated methods can be used to determine a feasible solution for
Ps based on the solution of its convex relaxation (e.g., see [77]).

positions. In particular, the optimal objective of Psc cannot be
greater than that of Ps since the set of feasible solutions of
Ps is a subset of that of Psc. Hence, we have the theoretical
limit

P̌(ů;p0) � P̌(u∗;p0) . (22)

This lower bound is useful to evaluate the near-optimal selection
of assisting node positions determined by ů. For a given instance
of Ps, the gap between the position errors described by ů and
u∗ is given by

∆c =

√

P̌(ů;p0)−
√

P̌(u∗;p0) . (23)

Note that ů is the optimal solution of Ps if ∆c = 0.
Next, we describe the transformation of Psc into an SOCP.

First, the SPEB is rewritten in a matrix form as shown in the
following proposition.

Proposition 1: The SPEB P̌(u;p0) can be written as

P̌(u;p0) =
4 (1TRv)

vTRT(11T − ccT − ssT)Rv
(24)

where

R = diag{ ξ̌0, ξ̌1, . . . , ξ̌M−1, λ0,1, λ0,2, . . . , λ0,Nb
}

v = [uT,1T
Nb

]T

c = [ cTc , c
T
b ]

T

s = [ sTc , s
T
b ]

T

cc = [ cos(2θ0), cos(2θ1), . . . , cos(2θM−1)]
T

cb = [ cos(2φ0,1), cos(2φ0,2), . . . , cos(2φ0,Nb
)]T

sc = [ sin(2θ0), sin(2θ1), . . . , sin(2θM−1)]
T

sb = [ sin(2φ0,1), sin(2φ0,2), . . . , sin(2φ0,Nb
)]T .

Proof: The 2× 2 EFIM J̌e(u;p0) can be expressed as

J̌e(u;p0) =

[

ae be

be de

]

where

ae =
M−1
∑

m=0

umξ̌m cos2(θm) +

Nb
∑

i=1

λ0,i cos
2(φ0,i)

be=

M−1
∑

m=0

umξ̌m cos(θm) sin(θm)+

Nb
∑

i=1

λ0,i cos(φ0,i) sin(φ0,i)

de =

M−1
∑

m=0

umξ̌m sin2(θm) +

Nb
∑

i=1

λ0,i sin
2(φ0,i) .

Considering the formula for the inverse of a 2× 2 matrix, the
SPEB is given by

P̌(u;p0) =
ae + de
aede − b2e

. (25)

We obtain (24) after some algebra considering trigonometric
identities and rewriting in terms of R, v, c, and s. �
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The following proposition provides the transformation of Psc

into an SOCP.
Proposition 2 (SOCP): The problem Psc is equivalent to the

SOCP

P
SOCP
sc : minimize

u, �, σ
�

subject to ‖ARv + b‖ � 1
TRv − 2σ

∥

∥

∥

[

σ, �,
√
2
]T

∥

∥

∥
� σ + �

1
Tu = Nc

−u � 0

u � 1

where A = [c, s,0]T and b = [0, 0, 2σ]T.
Proof: The problem Psc can be rewritten as

minimize
u,�

�

subject to P̌(u;p0) � �

1
Tu = Nc

−u � 0

u � 1 .

From (24), the constraint on P̌(u;p0) can be rewritten as

4

�
(1TRv) � (1TRv)2 − (cTRv)2 − (sTRv)2 .

Then, we have

(cTRv)2 + (sTRv)2 � (1TRv)2 − 4

�
(1TRv)

and, by completing the square in the right side

(cTRv)2 + (sTRv)2 +
4

�2
� (1TRv)2 − 4

�
(1TRv) +

4

�2
.

Since 1
TRv − 2/� � 0, the inequality can be rewritten as

∥

∥[ cTRv, sTRv, 2σ ]T
∥

∥ � 1
TRv − 2σ (26)

where σ = 1/�. The constraint σ = 1/� can be transformed,
without changing the optimal solution, into

∥

∥

∥
[σ, �,

√
2 ]T

∥

∥

∥
� σ + � .

The proof is completed by rewriting the inequality (26) in terms
of A and b. �

Algorithm 2 presents the SOCP-based node deployment strat-
egy. Specifically, solving the SOCP requires the implementation
of an iterative optimization algorithm (e.g., an interior-point
method) or the use of a convex optimization engine (e.g.,
CVX [86]).

Remark 1 (Complexity): Standard form SOCPs can be solved
efficiently via interior-point methods [80]. In particular, solving
PSOCP

sc with an interior-point method has a worst-case complex-
ity ofO((M +Nb)

3) since the dimension of v isM +Nb [87].

Algorithm 2: SOCP-based Node Deployment Strategy.
Input: Target agent position p0, deployment regions
R1,R2, . . . ,RK , number of candidate positions M , and
number of assisting nodes Nc .

Output: Assisting node positions pc .
1: Determine candidate positions p̌c and ERCs ξ̌c based on

Algorithm 1.
2: Solve PSOCP

sc to determine the solution u∗ .
3: Generate the near-optimal feasible solution ů based on

u∗ by evaluating (21).
4: Determine pc based on p̌c and ů .

V. ADP ALGORITHM

The SOCP-based node deployment strategy described in
Section IV requires a convex optimization engine and a rounding
function to determine near-optimal assisting node positions.
While such a strategy can provide near-optimal solutions for
the deployment of assisting nodes, other approaches can be em-
ployed to design approximate algorithms with more amenable
complexity and without relying on sophisticated optimization
tools. Next, we develop an ADP algorithm for the deployment
assisting nodes.8

Consider the formulation of the node deployment problem
after determining a finite set of candidate positions and with the
determinant of the EFIM for the position of the target agent as
localization performance metric. This optimization problem is
expressed as

minimize
u

−Q̌(u;p0)

subject to 1
Tu = Nc

um ∈ {0, 1}, m = 0, 1, . . . ,M − 1 .

With this problem formulation, the node deployment strategy
aims to select the Nc positions where assisting nodes should be
deployed to maximize the confidence of the position estimator
p̂0. We propose to solve this problem approximately via dynamic
programming.

In dynamic programming algorithms, decisions are made in
stages [88], [89], [90]. In our formulation, stages are related to
the indices of the candidate positions. Consider a finite horizon
problem with M + 1 stages in which the last stage incorporates
the position information obtained from anchors. Let xm for
m = 0, 1, . . . ,M and um∈ Um(xm) for m = 0, 1, . . . ,M − 1
denote the state and control variables, where Um(xm) is the
control space at stage m. Specifically, xm is a non-negative
integer that encodes the number of available assisting nodes at
stage m; and um encodes whether an assisting node is deployed
at the candidate position p̌m or not. The initial condition is
x0 = Nc assisting nodes. In addition, the control space at stage

8While the focus remains on the node deployment problem of assisting nodes,
the ADP algorithm developed in this section can be applied to other selection
problems.
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Fig. 4. Transition graph for the node deployment problem with x0 = 2 assisting nodes and M candidate positions. Notation x
(k)
i

denotes the state xi = k.
Black solid lines represent a solution to the problem, and the functions on its arcs denote the costs of the corresponding transitions.

m is given by

Um(xm) =

{

{0, 1} if xm > 0
{0} otherwise

(27)

and the state transitions are given by xm+1 = xm − um.
A key aspect of dynamic programming is that it requires an

additive cost function of the form [88], [89], [90]

G(x0;u0, u1, . . . , uM−1) = gM (xM ) +

M−1
∑

m=0

gm(xm, um)

(28)
where gM (xM ) is the terminal cost incurred at the last stage, and
gm(xm, um) is the cost at stagem. Fig. 4 illustrates the transition
graph of the node deployment problem for two assisting nodes
(i.e., x0 = 2). In this figure, nodes and arcs represent states and
possible state transitions, respectively. A cost gm(xm, um) is
associated with the transitions from stage m to stage m+ 1 for
m = 0, 1, . . . ,M − 1, and the terminal cost gM (xM ) is associ-
ated with the transition from stage M to an artificial terminal
state T . Possible solutions correspond to trajectories from the
initial stage to the last stage. For example, the possible decisions
at the first stage are: (a) to not deploy an assisting node at p̌0 with
cost g0(2, 0), or (b) to deploy an assisting node at p̌0 with cost
g0(2, 1); which will result in having either two or one assisting
nodes available at the next stage, respectively. After choosing
a decision, the sequence proceeds similarly until the last stage.
The matrix determinant lemma [91] provides a useful expression
to develop the ADP algorithm. For an invertible n× n matrix
Λ and n-dimensional vectors x and y, the logarithmic form of
the matrix determinant lemma provides an additive expression
given by

log
[

det{Λ+ xyT}
]

= log
[

1 + yT
Λ

−1x
]

+ log
[

det{Λ}
]

.
(29)

Expressions of this form can be used recursively to compute
the log-determinant of J̌e(u;p0), i.e., log[Q̌(u;p0)]. Note that
Jr(φ) can be rewritten as [76]

Jr(φ) = q(φ)q(φ)T (30)

whereq(φ) = [cos(φ), sin(φ)]T. An assisting node placed at the
candidate position p̌m will provide the target agent with position
information equal to ξ̌mq(θm)q(θm)T.

Since the goal is to maximize the area of the information
ellipse, consider the minimization of − log

[

Q̌(u;p0)
]

over
M + 1 stages as described by (28). Considering that JA

e (p0)
is non-singular, the terminal cost is given by

gM (xM ) = − log
[

det
{

JA
e (p0)

}

]

. (31)

Then, the cost at stage m can be formulated considering the
EFIM that accumulates from stage m+ 1 to stage M as

gm(xm, um) =

− log
[

1 + umξ̌mq(θm)T{J̌m+1(xm − um)}−1
q(θm)

]

(32)

for m = 0, 1, . . . ,M − 1, where J̌m+1(xm − um) is the EFIM
that accumulates from stage m+ 1 to stage M when xm − um

assisting nodes are available at stage m+ 1. In particular,

J̌m+1(xm − um) = JA
e (p0) +

M−1
∑

i=m+1

uiξ̌iJr(θi) (33)

where ui is the decision made at stage i.
The starting point of the ADP algorithm is given by

DM (xM ) = gM (xM ) (34)

for xM = 0, 1, . . . , Nc. Moreover, the tail subproblems for the
rest of the stages take the form

Dm(xm) = min
um∈Um(xm)

{

gm(xm, um) +Dm+1(xm − um)
}

.

(35)
For the intermediate stages, m = 1, 2, . . . ,M − 1, the state
xm can take the values in the set { 0, 1, . . . , Nc}. Since the
optimal cost of the problem is equal to D0(x0), the tail sub-
problem at the first stage is solved only for x0 = Nc assist-
ing nodes. The solution of the ADP algorithm, denoted by
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Algorithm 3: ADP-based Node Deployment Strategy.
Input: Target agent position p0, deployment regions
R1,R2, . . . ,RK , number of candidate positions M , and
number of assisting nodes Nc .

Output: Assisting node positions pc .
1: Determine candidate positions p̌c and ERCs ξ̌c based on

Algorithm 1.
2: Compute DM (xM ) for the last stage given by (34).
3: Perform the ADP recursion (35) backward for the

intermediate stages starting from DM (xM ) .
4: Determine D0(Nc) and obtain ǔ by proceeding forward.
5: Determine pc based on p̌c and ǔ .

ǔ = [ ǔ0, ǔ1, . . . , ǔM−1]
T, is determined starting from the first

stage and proceeding forward [88], [89], [90].
We can compare the position error determined by the solution

of the ADP-based node deployment strategy with the theoretical
limit provided by solving the convex relaxation presented in
Section IV. The gap between the position errors determined by
ǔ and u∗ is given by

∆ADP =

√

P̌(ǔ;p0)−
√

P̌(u∗;p0) . (36)

Note that ǔ is the optimal solution to the node deployment
problem of assisting nodes in terms of the position error if
∆ADP = 0.

Algorithm 3 presents the ADP-based node deployment strat-
egy. Specifically, solving the proposed ADP recursion requires
the evaluation of arithmetic operations and the storage of inter-
mediate results. Note that the ADP algorithm does not require
evaluating all the possible solutions of the combinatorial prob-
lem as in an exhaustive search approach.

Remark 2 (Complexity): The complexity of the ADP algo-
rithm can be analyzed by considering the number of tail sub-
problems that need to be solved. In the last stage, DM (xM )
is computed only once with a constant running time since
gM (xM ) is invariant with xM . For the intermediate stages,
M − 1 tail subproblems of the form of (35) need to be solved
for Nc + 1 possible states, i.e., a total of (M − 1)(Nc + 1) tail
subproblems. Finally, a single tail subproblem is solved at the
first stage. Considering that all the tail subproblems are solved
with worst-case complexity, the ADP algorithm has worst-case
complexity of O(MNc). Thus, for a given Nc, the complexity
of the ADP algorithm is linear on M . Note that the worst-case
complexity of the ADP algorithm is upper bounded by O(M2)
since Nc � M from the problem formulation. Therefore, the
ADP-based node deployment strategy has a more amenable
complexity compared to the SOCP-based strategy with worst-
case complexity of O((M +Nb)

3).

VI. INVERSE NODE DEPLOYMENT PROBLEM

The methodology developed in this paper is also applicable to
other formulations of the node deployment problem. Consider
the inverse node deployment problem in which the goal is to

determine the minimum number of assisting nodes that are
needed to meet a localization performance requirement. The
solution to this problem not only establishes how many assisting
nodes are needed, but also dictates where to deploy them. Let

←−
P

denote the inverse node deployment problem of assisting nodes
expressed as

←−
P : minimize

Nc,pc

Nc (37a)

subject to P(pc;p0) � �r (37b)

pi ∈ S, i ∈ Nc (37c)

where the constraint (37b) establishes the localization perfor-
mance requirement in terms of the SPEB. In this constraint, �r
is a predefined performance threshold describing the required
SPEB. Furthermore, the localization performance requirement
can also be expressed in terms of Q(pc;p0). In the latter case,
the constraint (37b) is replaced by Q(pc;p0) � ζr, where ζr
is a predefined performance threshold describing the required
determinant of the EFIM for the position of the target agent.
Next, we describe two approaches for solving the inverse node
deployment problem based on convex optimization and ADP,
respectively.

A. Convex Relaxation

Consider the formulation of the inverse node deployment
problem after determining a finite set of candidate assisting node
positions. This problem is expressed as

←−
Ps : minimize

u

1
Tu (38a)

subject to P̌(u;p0) � �r (38b)

um ∈ {0, 1}, m = 0, 1, . . . ,M − 1 (38c)

where
←−
Ps denotes the formulation of the problem

←−
P as a

selection problem. This problem may be viewed as a relaxation
of

←−
P since it considers a finite subset of possible assisting node

positions. Note that the objective of
←−
Ps is upper bounded by

M , which is the dimension of u.
Since P̌(u;p0) is convex for u � 0, the convex relaxation

of the inverse node deployment problem can be obtained by re-
placing the Boolean constraints in (38c) with the box constraints
0 � um � 1. Let ←−u ∗ denote the optimal solution to the convex
relaxation of

←−
Ps. This solution may not be feasible to the integer

problem since it can contain fractional elements. We consider the
near-optimal feasible solution whose elements correspond to the
entries of ←−u ∗ after applying an element-wise ceiling function.
The optimal objective of

←−
Ps is lower bounded by 1

T←−u ∗ since
the set of feasible solutions of the integer problem is a subset of
that of its convex relaxation.
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The convex relaxation of the problem
←−
Ps can be transformed

into an SOCP as shown in the next proposition.
Proposition 3 (SOCP for the inverse problem): The convex

relaxation of
←−
Ps is equivalent to the SOCP

←−
P

SOCP
sc : minimize

u

1
Tu

subject to ‖ARv + b‖ � 1
TRv − 2/�r

−u � 0

u � 1

where A = [c, s,0]T and b = [0, 0, 2/�r]
T.

Proof: The proof follows the same approach of that for
Proposition 2. �

B. ADP Algorithm

The inverse node deployment problem can also be formu-
lated with Q(pc;p0) as localization performance metric. After
determining a finite set of candidate assisting node positions, the
inverse node deployment problem can be formulated similarly to←−
Ps by replacing (38b) with Q(pc;p0) � ζr. This optimization
problem can be solved using the ADP recursion described by
(34) and (35) considering a range of initial conditions. Let Ň be
an upper bound for the state x0. The starting point of the ADP
algorithm for the inverse deployment problem is given by (34)
for xM = 0, 1, . . . , Ň , and the tail subproblems take the form
of (35) for the rest of the stages. In the inverse node deployment
problem, the statexm can take the values in the set {0, 1, . . . , Ň}
for m = 0, 1, . . . ,M . After computing the tail subproblems at
the first stage, the next step consists of searching for the smallest
value of x0 that satisfiesD0(x0) � − log(ζr), i.e., the minimum
number of assisting nodes that meet the required performance.
Finally, the solution is determined starting from that initial
condition and proceeding forward.

VII. CASE STUDY

This section evaluates the performance of the developed node
deployment strategies in a case study.

Consider a location-aware network composed of ultra-
wideband (UWB) nodes. The UWB technology [92], [93], [94],
[95], [96] is readily available in consumer devices, and the
deployment of UWB assisting nodes can enable high-accuracy
localization in 5G and beyond ecosystems [12], [13], [97].
Specifically, we consider a 3GPP indoor open office scenario
in which anchors are placed according to the layout in [98], and
assisting nodes are additionally deployed therein to improve the
localization accuracy of a target agent. Consider the cases: (C1)
full anchor deployment, in which all anchors in the standard
indoor open office layout are placed; and (C2) partial anchor
deployment, in which half of those anchors are considered
(see Fig. 5). Unless otherwise indicated, the results correspond
to case C1. The nodes emit UWB root raised cosine pulses
compliant with the IEEE 802.15.4a standard [99]. The multipath
channels are modeled according to the IEEE 802.15.4a channel

model for the indoor office scenario [100]. The noise figure,
center frequency, and maximum power spectral density are
10 dB, 6.489 GHz, and−41.3 dBm/MHz, respectively [99]. The
transmitting power of the target agent and assisting nodes is set
to fractions of that of anchors, which is denoted as Pb.

Furthermore, we consider spatially-consistent wireless chan-
nels [101], [102].9 Specifically, we consider spatially-consistent
LOS/NLOS states and POCs.10 The RII between nodes in NLOS
conditions is set to zero. The deployment regions are determined
as follows. First, maps of LOS/NLOS states from anchors and
target agent are generated for the indoor open office scenario
according to [101]. Then, the deployment regions are determined
by the intersection between predefined deployment areas and the
locations where assisting nodes will be in LOS conditions with
the target agent and at least two anchors. In addition, POCs
are generated for the IEEE 802.15.4a indoor office scenario
following [85] and [102].

Fig. 5 shows realizations of the simulation scenarios for
the two considered cases. In both cases, anchors are deployed
according to the indoor open office scenario, and ten predefined
deployment areas are considered as map constraints for the
positions of assisting nodes (see Fig. 5(a) and Fig. 5(b)). To
determine the deployment regions, we consider realizations of
LOS maps describing the number of anchors in LOS condition
observed from each position (see Fig. 5(c) and Fig. 5(d)).
These LOS maps show the areas where deploying assisting
nodes can benefit accurate localization. For example, agents
may have inadequate localization performance in areas where
less than three anchors are in LOS conditions. The deployment
regions are determined by considering the intersection between
the predefined deployment areas and the positions from which
the target agent and at least two anchors will be observed in
LOS conditions (see Fig. 5(e) and Fig. 5(f)). Note that these
3GPP scenarios highlight the importance of a general problem
formulation with multiple deployment regions.

The case study focuses on revealing the benefits of assisting
nodes for accurate localization in complex and infrastructure-
limited wireless environments, especially if deployed according
to near-optimal strategies. Furthermore, we evaluate the impact
of different parameters on the localization performance provided
by assisting nodes. The localization performance is evaluated in
terms of the empirical cumulative distribution function (ECDF)
of the position error metric (the square root of the SPEB)
over many instantiations of target agent positions and channel
conditions. For the SOCP-based node deployment strategy, the
optimization problems are solved using CVX [86]. We compare
the performance of the developed strategies against both the
baseline performance without deploying assisting nodes and the
performance of the random deployment strategy in which assist-
ing nodes are at uniformly distributed random positions within
the deployment regions. The baseline performance reveals the

9Spatial consistency is not considered in the IEEE 802.15.4a channel model.
We consider the parameters in [98].

10Spatially-consistent POCs can be obtained by following the same approach
of small-scale parameters [102].



6282 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 5. Simulation scenarios for cases C1 (left column) and C2 (right column). The predefined deployment areas (top) and realizations of the LOS map describing
the number of anchors in LOS conditions observed from each position (center) determine the deployment regions (bottom). The four shades of lilac in the LOS
maps depict the positions with zero (lightest), one, two, and at least three (darkest) anchors observed in LOS conditions.

possible benefits of deploying assisting nodes since it is based
only on the existing infrastructure. The random deployment
strategy provides a benchmark to compare the performance
with assisting nodes placed using near-optimal strategies. For
these benchmarks, we consider that the target agent performs
measurements with three active anchors and assisting nodes, if
any. In contrast, the target agent performs measurements with
at most two active anchors, which represents a worse case, and
assisting nodes for the near-optimal node deployment strategies.

Fig. 6 shows the performance of the random, SOCP-based,
and ADP-based strategies for deploying assisting nodes with
the baseline performance and the theoretical limits provided by
the solutions to the SOCP. The performance is evaluated for
Nc = 2 and 8 assisting nodes with M = 16 candidate positions
and Pc = 0.5Pb. Note that the proposed strategies provide a
significant performance improvement over the baseline and the
random deployment strategy. For example, the position errors
for the baseline performance, and the random and ADP-based
deployment strategies with Nc = 2 assisting nodes are below
1.17 m, below 0.90 m, and below 0.46 m, respectively, for 90%
of the cases. At this mark, the random and ADP-based strategies
reduce the position error by 23% and 61% over the baseline

performance, respectively. In addition, note that the ADP-based
strategy provides adequate performance since the gaps with
respect to the SOCP-based strategy and the theoretical limit
are small. In particular, the sample mean values of ∆ADP with
M = 16 are 0.02 m and 0.01 m for Nc = 2 and 8 assisting
nodes, respectively. Note that, regardless the specific choice
of technology, the performance improvements provided by the
proposed strategies are due to the near-optimal selection of the
assisting nodes positions. In the following, the results focus on
the ADP-based strategy.

Fig. 7 shows the performance of the ADP-based strategy
for deploying assisting nodes with M = 8 and 32 candidate
positions. The performance is evaluated for Nc = 2 and 4 as-
sisting nodes with Pc = 0.5Pb. The baseline performance and
the random deployment strategy with Nc = 2 assisting nodes
are shown as benchmarks. Note that increasing the number of
assisting nodes reduces the position error. However, a significant
performance improvement can also be obtained with a small
number of assisting nodes (e.g., Nc = 2). Observe also that
increasing M can improve the performance further due to a
better approximation of the deployment problem. Nonetheless,
adequate performance can be obtained with small values of M
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Fig. 6. ECDF of the position error metric for different node deployment
strategies with Nc = 2 (solid line) and 8 (dashed line) assisting nodes. The
performance is evaluated withM = 16 candidate positions. For the lower bound
of the convex relaxation, M = 128 is considered.

Fig. 7. ECDF of the position error metric for the ADP-based node deployment
strategy with M = 8 and 32 candidate positions, and Nc = 2 (solid line) and
4 (dashed line) assisting nodes. For the random deployment strategy, Nc = 2

assisting nodes are considered.

(e.g., M = 8). For example, the position errors using Nc = 4
assisting nodes with M = 8 and 32 are below 0.38 m and below
0.36 m, respectively, for 90% of the cases. This represents posi-
tion error reductions of 67% and 69% for M = 8 and M = 32,
respectively, over the baseline performance. While increasing
M provides a slight performance improvement, smaller values
of M favor amenable complexity. Hence, deployment strate-
gies with lower computational complexity can be implemented
incurring in a small performance loss.

The impact of the transmitting power of assisting nodes on
the localization performance is evaluated next. Fig. 8 shows
the performance of the ADP-based strategy for deploying as-
sisting nodes with Pc = 0.2Pb and 0.8Pb. The performance
is evaluated for Nc = 2 and 4 assisting nodes with M = 16.

Fig. 8. ECDF of the position error metric for the ADP-based node deployment
strategy with Pc = 0.2Pb and 0.8Pb, and Nc = 2 (solid line) and 4 (dashed
line) assisting nodes. For the random deployment strategy, Nc = 2 assisting
nodes are considered.

Fig. 9. ECDF of the position error metric for the ADP-based node deployment
strategy with Pc = 0.2Pb and 0.8Pb, and Nc = 2 (solid line) and 4 (dashed
line) assisting nodes in case C2. For the random deployment strategy, Nc = 2

assisting nodes are considered.

The baseline performance and the random deployment strat-
egy for Nc = 2 assisting nodes with Pc = 0.2Pb and 0.8Pb

are shown as benchmarks. Note that increasing the trans-
mitting power of assisting nodes reduces the position error.
Nonetheless, near-optimal node deployment strategies can pro-
vide adequate performance even with low transmitting resources
(e.g., Pc = 0.2Pb). For example, the position errors using
Nc = 4 assisting nodes with Pc = 0.2Pb and 0.8Pb are be-
low 0.45 m and below 0.34 m, respectively, for 90% of the
cases. This corresponds to position error reductions of 62%
and 70%, for Pc = 0.2Pb and Pc = 0.8Pb, respectively, over
the baseline performance. These results show that a near-
optimal deployment of assisting nodes is beneficial for efficient
localization.
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Fig. 10. Number of assisting nodes needed to meet given localization perfor-
mance requirements using different node deployment strategies.

Fig. 9 shows the performance of the ADP-based strategy
for deploying assisting nodes with Pc = 0.2Pb and 0.8Pb, in
case study C2. The performance is evaluated for Nc = 2 and
4 assisting nodes with M = 16. The baseline performance and
the random deployment strategy forNc = 2 assisting nodes with
Pc = 0.2Pb and 0.8Pb are shown as benchmarks. Note that the
performance worsens compared to the scenario with the full
anchor deployment due to the limited network infrastructure
available (cf. Fig. 8). However, the proposed strategies also
provide a significant performance improvement in this scenario.
For example, the position errors for the baseline performance,
and the random and ADP-based deployment strategies using
Nc = 2 assisting nodes with Pc = 0.2Pb are below 1.55 m,
below 1.17 m, and below 0.71 m, respectively, for 80% of the
cases. Here, the random and ADP-based deployment strategies
reduce the position error by 24% and 54%, respectively, over the
baseline performance. Hence, the developed strategies are also
suitable for infrastructure-limited wireless environments.

Next, consider the inverse node deployment problem of assist-
ing nodes. Fig. 10 shows the number of assisting nodes needed
to meet position error metrics,

√
�, below 0.20, below 0.50,

and below 0.80 m for 50% and 90% of the cases employing the
SOCP-based, ADP-based, and random deployment strategies.11

The strategies are evaluated with M = 64 and Pc = 0.5Pb for
both case studies C1 and C2. For the ADP-based strategy, the
performance thresholds are set empirically to meet the require-
ments in terms of the position error metric with Ň = 30 assisting
nodes. Such a value of Ň is also considered to limit the number
of assisting nodes in the random deployment strategy. In this
figure, we consider only the number of assisting nodes for
the SOCP-based strategy when it coincides with that for the
ADP-based strategy. Similarly, the number of assisting nodes
for the random deployment strategy is considered only when
achieving the required performance is possible. For example,

11In particular, we evaluate the performance considering the percentiles of
the feasible instances of the problem.

the random deployment strategy does not meet the requirement
of position error below 0.20 m. Note that the developed near-
optimal strategies reduce significantly the number of assisting
nodes compared to the random deployment strategy. The number
of assisting nodes increases as the performance requirements
are more stringent either in terms of localization accuracy or
percentage of cases. In case C2, the number of assisting nodes
increases compared to case C1 due to the limited network in-
frastructure. The gaps between the SOCP- and ADP-based node
deployment strategies are due to the use of different performance
metrics. In particular, setting a threshold for the determinant of
the EFIM for the position of the target agent is difficult because it
cannot be related to a single localization error. Hence, employing
the SPEB as performance metric for the inverse node deployment
problem is more reasonable.

VIII. CONCLUSION

This paper presented near-optimal strategies to deploy as-
sisting nodes for efficient network localization. Specifically, it
introduced a methodology to determine a finite set of candidate
positions and developed near-optimal strategies for deploy-
ing assisting nodes based on convex optimization and ADP
for different problem formulations. A case study was pre-
sented to validate the proposed node deployment strategies
and show the benefits of deploying assisting nodes in 3GPP
scenarios. The results show that the developed near-optimal
strategies provide a significant performance improvement and
outperform the random deployment strategy. The amenable
complexity of the ADP-based strategy makes it suitable for
location-based services with stringent positioning latency re-
quirements. Indeed, the design of such a strategy aims to de-
ploy assisting nodes with amenable complexity. The proposed
strategies unleash the benefits of assisting nodes for accu-
rate localization in complex and infrastructure-limited wireless
environments.

ACKNOWLEDGMENTS

The authors wish to thank R. Cohen and A. Vaccari for careful
reading and helpful suggestions.

REFERENCES

[1] M. Z. Win et al., “Network localization and navigation via cooperation,”
IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[2] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: Challenges faced in developing techniques for accurate wire-
less location information,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 24–40, Jul. 2005.

[3] Y. Shen and M. Z. Win, ”Fundamental limits of wideband localization–
Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 4956–4980, Oct. 2010.

[4] M. Chiani, A. Giorgetti, and E. Paolini, “Sensor radar for object tracking,”
Proc. IEEE, vol. 106, no. 6, pp. 1022–1041, Jun. 2018.

[5] X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor
localization with a deep learning approach,” IEEE Internet Things J.,
vol. 3, no. 6, pp. 1113–1123, Dec. 2016.

[6] X. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks
for indoor localization with CSI images,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 1, pp. 316–327, First Quarter 2020.



GÓMEZ-VEGA et al.: EFFICIENT DEPLOYMENT STRATEGIES FOR NETWORK LOCALIZATION WITH ASSISTING NODES 6285

[7] X. Wang, L. Gao, and S. Mao, “BiLoc: Bi-modal deep learning for
indoor localization with commodity 5 GHz WiFi,” IEEE Access, vol. 5,
pp. 4209–4220, 2017.
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