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Abstract— To meet the ever-increasing data rate demand
expected in 6G networks, terahertz (THz) ultra-massive (UM)
multiple-input multiple-output (MIMO) systems have gained
much attention recently. One notable aspect of these systems
is that the deployment of an extremely large-scale antenna array
and high transmission frequency result in an expansion of the
near-field region where the electromagnetic (EM) radiation is
modeled as a spherical wave. In the near-field region, the channel
becomes a function of a position of a user equipment (UE) rather
than the direction, giving rise to a beam focusing operation that
focuses the signal power onto the specific position. However, the
traditional approaches relying on the sweeping of discretized
beam codewords cannot support this ultra-sharp beam focusing
operation in THz UM-MIMO systems. This paper proposes a
novel beam focusing technique based on sensing and computer
vision (CV) technologies. The essence of the proposed scheme
is to estimate the UE’s position from the vision information
using the CV technique and then generates the beam heading
towards the estimated position. By replacing the discretized and
time-consuming beam sweeping operation with a highly precise
CV-based positioning, the positioning accuracy as well as the
beam focusing gain can be improved significantly. Numerical
results show that the proposed scheme achieves significant
positioning accuracy and data rate gains over the conventional
codebook-based beam focusing schemes.

Index Terms— 6G, terahertz, near-field, positioning, beam
focusing, computer vision.

I. INTRODUCTION

T
ERAHERTZ (THz) communication has received much

attention as a key enabling technology to support a

wide range of data-demanding applications for 6G [1].

By exploiting the abundant frequency spectrum resource in the

terahertz (THz) bands (0.1−10 THz), THz communications

can support truly immersive services such as digital twin,
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metaverse realized by extended reality (XR) devices, and

high-fidelity holograms. As the operating frequency increases,

the beamforming technique realized by array of multiple

antennas becomes more essential to compensate for the severe

attenuation of signal power caused by propagation, reflection,

diffuse scattering, and atmospheric absorption losses [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. Note that

the goal of the beamforming is to control the phase (and/or

amplitude) of the signal transmitted at each antenna such that

the difference in phase delays of signals are compensated.

Since the beamforming gain is maximized only when the

beamforming vector is properly aligned with the array steering

vector (i.e., a set of phase delays of antenna elements) of

signal propagation paths, the base station (BS) needs to acquire

information on the signal radiation pattern.

In conventional microwave or millimeter wave (mmWave)

systems, the radiation pattern of a signal is a function of

elevation angle θ and azimuth angle ϕ. This is because the

array aperture (usually on the order of centimeters) is much

smaller than the communication distance (e.g., the mmWave

microcell coverage is 500 m) so the electromagnetic (EM)

radiation can be readily approximated as the plane wave [14].

In this so-called far-field region, the array steering vector is

expressed as a function of azimuth and elevation angles so that

one should consider the far-field beam steering, an approach

to focus the signal power onto the specific direction towards

a user equipment (UE). In the THz systems equipped with

hundreds of antennas, however, the plane wave approximation

might not be effective due to the increased array aperture

(e.g., 1.5 m in 1024-antenna systems operating at 0.1 THz

band) and the reduced communication distance (e.g., a few

tens of meters) [15]. This implies that in ultra-massive (UM)-

multiple-input multiple-output (MIMO) THz systems, the EM

radiation is performed through spherical waves. In this so-

called near-field region, the array steering vector depends on

the angles (θ, ϕ) as well as the distance r. Thus, a new type

of beamforming operation called near-field beam focusing that

focuses the signal power towards the specific position of the

UE is needed (see Fig. 1) [16], [17].

For the focused beam generation, a codebook-based

approach has been widely used [18], [19], [20], [21], [22],

[23], [24], [25], [26], [27]. In this approach, the BS trans-

mits the sequence of pre-defined beam codewords carrying

pilot signals, such as the synchronization signal block (SSB)

and the channel state information-reference signal (CSI-RS).

In the UE, an index of the beam codeword correspond-

ing to the largest reference signal received power (RSRP)

is sent to the BS. For example, in 5G New Radio (NR),

a two-dimensional (2D) discrete Fourier transform (DFT)
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Fig. 1. Comparisons of (a) the far-field beam steering and (b) the near-field beam focusing.

matrix-based beam codebook is used [18], [19]. Recently,

advanced codebook-based beam focusing schemes have been

proposed [20], [21], [22], [23], [24], [25], [26], [27]. In [20],

[21], and [22], hierarchical beam codebook designs for the

mmWave MIMO systems have been proposed. In [23] and

[24], beam training schemes exploiting the beam squint effect

of wideband THz near-field systems have been proposed.

In [25] and [26], beam codebook designs for reconfigurable

intelligent surfaces (RIS)-assisted systems have been proposed.

Also, in [27], a deep learning (DL)-based beam training

scheme for UM-MIMO systems has been proposed.

The major shortcoming of the codebook-based beam focus-

ing techniques is the mismatch between the pre-defined beam

codeword and the desired beam focusing vector directed

towards the UE’s position (i.e., beam discretization error)

which causes a significant degradation of the beam focusing

gain [28]. The beam discretization error as well as its impact

on the beam focusing gain will become even more pronounced

in the THz near-field systems since, in this case, the beam

search space extends to three-dimensional (3D) space repre-

sented by the distance as well as the azimuth and elevation

angles [15]. Frequent transmission of beams to mitigate the

beam discretization error will increase the resource overhead,

latency, and power consumption.

Two fundamental questions for the design of the near-field

beam focusing technique are as in the following:

• how to accurately identify the positions of UEs while

minimizing the beam training overhead; and

• how to design the near-field beam focusing vectors max-

imizing the sum-rate using the estimated positions?

The answers to these questions will not only lead to the

improved signal strength and enhanced interference mitigation

but also ensure the precise targeting and spectral efficiency

maximization in THz UM-MIMO systems, thereby realizing

the data-intensive applications envisioned for 6G.

The aim of this paper is to propose a novel near-field

beam focusing framework based on the sensing and computer

vision (CV) technologies for THz UM-MIMO systems. Our

approach is justified by two crucial observations: 1) in line

with the recent trend of communication area being close

to the human visual area (a few tens of meters) due to

the use of high-frequency bands, sensing technologies that

observe the surrounding environments through various sens-

ing modalities (e.g., red-green-blue (RGB) camera, depth

camera, and radar) have gained considerable attention [29],

[30], [31], [32]; and 2) CV technique analyzing the sensing

information has made a significant advancement in performing

the object classification, detection, and tracking from raw

images with aid of DL [33], [34]. Motivated by these, in the

proposed technique called vision-aided beam focusing (VBF),

we estimate the position of a UE from the vision information

using the CV technique and then generate the beam heading

towards the estimated position. Since the beam focusing vector

is generated directly from the position extracted from the

image, VBF is free from the beam discretization error, thereby

achieving the maximization of beam focusing gain. Also,

by minimizing the complicated handshaking operations (i.e.,

pilot transmission and channel feedback) between the BS and

UE, the beam training overhead is reduced substantially. As

a main DL engine, we use Transformer, a DL model spe-

cialized for extracting the temporally and spatially correlated

features [35]. Using the attention mechanism quantifying the

correlations between the input and outputs values, Transformer

assigns relatively large weights to the input values (e.g., pixel

values) which are more relevant to the output values (e.g.,

target objects), thereby facilitating the feature extraction of

the UE.

The key contributions of this paper can be summarized as

in the following:

• we develop a near-field beam focusing framework for

THz UM-MIMO systems that utilizes the CV technique

for UE positioning;

• we present a position-aware hybrid analog-digital beam

focusing technique maximizing the system throughput of

THz UM-MIMO systems; and

• we demonstrate through extensive simulations that VBF

significantly improves positioning accuracy and system

throughput.

The rest of this paper is organized as in the following.

Section II presents the THz near-field systems and then

reviews the conventional codebook-based schemes. Section III

explains the vision-aided UE positioning. Section IV presents a

position-aware near-field beam focusing technique. Section V

discusses the practical implementation issues of VBF.
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Section VI presents the simulation results. Section VII con-

cludes the paper.

Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors

and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a random variable and its

realization are denoted by x and x for scalars, x and x

for vectors, and X and X for matrices. Sets and random

sets are denoted by upright sans serif and calligraphic font,

respectively. For example, a random set and its realization are

denoted by X and X , respectively. The m-by-n matrix of zeros

is denoted by 0m×n; when n = 1, the m-dimensional vector

of zeros is simply denoted by 0m. The m-by-m identity matrix

is denoted by Im. The operators tr(x), ∥x∥2, and ∥X∥F
denote the trace, the Euclidean norm, and the Frobenius norm,

respectively. The operations ¹ and » denote the Kronecker

product and element-wise product, respectively. The ith row

and jth column of X is denoted by [X]i,j . The transpose,

conjugate, and conjugate transpose of X are denoted by

(·)T, (·)∗, and (·)H, respectively. The real part of a complex

number is denoted by ℜ{·}. The notation diag(·) represents

a diagonal matrix with the arguments being its diagonal

elements.

II. THZ NEAR-FIELD UM-MIMO SYSTEMS

In this section, we present the THz UM-MIMO system

model and then discuss the THz near-field line-of-sight (LOS)

channel model. We also provide a brief overview of the

conventional codebook-based beam focusing schemes.

A. THz Near-Field UM-MIMO System Model

We consider a multi-user THz UM-multiple-input single-

output (MISO) system where a BS equipped with a uniform

planar array (UPA) of N = Nh × Nv antennas serves K

single-antenna UEs. The set of UEs is denoted as K =
{1, 2, . . . ,K}. In our work, we consider the 3D coordinate

systems where the (0, 0)th antenna is located at the origin and

the antenna array is located at the XZ-plane. Note that the

(m, n)th antenna denotes the antenna element located at mth

row and nth column of the antenna plane. The RGB-depth

(RGB-d) camera is attached at the BS to identify the wireless

environments. To reduce the hardware complexity, we consider

a hybrid analog-digital architecture with NRF = K radio-

frequency (RF) chains,1 each of which is connected with N

phase shifters. Specifically, the hybrid beam focusing vector

for the kth UE is expressed as fk = FRFfBB,k ∈ C
N

where FRF ∈ C
N×K is the analog RF beam focusing matrix

and fBB,k ∈ C
K is the digital beam focusing vector for

the kth UE. The set of feasible RF beam focusing matrices

is denoted as FRF ≜
{

FRF ∈ C
N×K | [FRF]n,k =

1When the number of RF chains NRF is smaller than the number of UEs
K (i.e., NRF < K), the BS cannot support all UEs simultaneously since the
number of data streams is limited by the number of RF chains. In this case,
to accommodate all UEs, one can use a user grouping strategy that segments

the UEs into several groups and then serves these groups sequentially [36].
When NRF is greater than K (i.e., NRF > K), the BS can allocate multiple
data streams to each UE. Note that, even in this case, the proposed scheme
can be used to identify the optimal hybrid beam focusing matrix with minor
modifications.

ejwn,k , wn,k ∈ Θ
}

where Θ is the set of feasible phase shifts.2

By combining the beam focusing vectors of K UEs, we obtain

the hybrid beam focusing matrix F = [f1,f2, . . . ,fK ] =
FRF[fBB,1,fBB,2, . . . ,fBB,K ] = FRFFBB ∈ C

N×NRF where

FBB = [fBB,1,fBB,2, . . . ,fBB,K ] ∈ C
K×K is the digital

beam focusing matrix. Note that F is bounded by the BS

transmission power Ptx as ∥F ∥2F = ∥FRFFBB∥2F ⩽ Ptx.

The received signal yk ∈ C of the kth UE is given by

yk = hH
kFRFfBB,ksk +

∑

j ̸=k

hH
kFRFfBB,jsj + nk (1)

where hk ∈C
N is the downlink channel vector from the BS

to the kth UE, sk is the data symbol intended for the kth UE

such that E{|sk|} = 1, and nk ∼ CN (0, σ2
n) is the Gaussian

noise. Then, the achievable rate of the kth UE is

Rk = log2

(

1 + γk(FRF,FBB)
)

(2)

where γk(FRF,FBB) is the downlink signal-to-interference-

plus-noise ratio (SINR) of the kth UE defined as

γk(FRF,FBB) ≜

∣

∣hH
kFRFfBB,k

∣

∣

2

∑

j ̸=k

∣

∣hH
kFRFfBB,j

∣

∣

2
+ σ2

n

. (3)

B. THz Near-Field LOS Channel Model

In THz systems, due to the high directivity and path loss

of THz band signal, the scattering and refraction of signal are

negligible so the LOS path becomes the dominant means of

propagation [12]. Indeed, the number of propagation paths in

THz band is less than 4 [12], [37]. Moreover, the power gap

between the LOS and non-line-of-sight (NLOS) path signals

is significant due to the huge reflection and diffuse scattering

losses.3 For example, in the 0.4 THz band, the Rician K-factor,

a ratio of the powers of the LoS component to the diffuse

component, is around 20 dB [12].

Another key aspect of THz UM-MIMO channel is the near-

field characteristics. In general, the EM radiation field can be

divided into two regions: 1) far-field region where the EM

radiation can be approximated as the plane waves and 2) near-

field region where the EM radiation is modeled as the spherical

waves. To distinguish these regions, the Fraunhofer distance

Z ≜ N2c
2f

is widely used where f is the signal frequency

and c is the speed of light [15]. While Z is typically a few

meters in the traditional systems, it can reach up to a hundred

meters in the THz UM-MIMO systems due to the large number

of antennas. In the near-field region, due to the spherical

wavefront, the phase delay between two antenna elements is

affected by the spherical coordinates (r, θ, ϕ), meaning that the

near-field array steering vector is a function of (r, θ, ϕ) [38].

Based on these observations, we use the THz near-field LOS

channel model where the downlink channel vector hk ∈ C
N

2For example, Θ is [0, 2π) in case of analog phase shifter with infinite

phase shift levels and Θ is
{

2πb

2B | b = 0, 1, . . . , 2B − 1
}

in case of B-bit

digital phase shifter with 2B phase shift levels.
3In the THz band, the wavelength (e.g., 100 µm in the 3 THz band) is

smaller than the surface roughness of objects (e.g., the roughness of concrete
wall is 300 − 1000 µm) so the diffuse scattering is the dominant means of
reflection. Since the reflected signal is scattered over an area, the power of
NLOS path signal is much smaller than that of the LOS path signal.
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from the BS to the kth UE is expressed as [13], [39]

hk =
√

α(f, rk) e−j 2πf
c

rka(rk, θk, ϕk) (4)

where rk is the distance between the (0, 0)th BS antenna

and the kth UE, θk and ϕk are the elevation and azimuth

angles of departure (AODs), respectively, and α(f, rk) =
Gfree(f, rk)Gabs(f, rk) is the path gain consisting of the

free-space path loss Gfree(f, rk) = ( c
4πrkf

)2 and the molec-

ular absorption Gabs(f, rk) = e−k(f)rk with k(f) being the

absorption coefficient [40]. Also, a(rk, θk, ϕk) ∈ C
N is the

near-field UPA array steering vector whose (m, n)th element

is

[a(rk, θk, ϕk)]m,n = e−j 2πf
c

(

r
(m,n)
k

−rk

)

(5)

for m = 1, 2, . . . , Nh and n = 1, 2, . . . , Nv where r
(m,n)
k is

the distance from the (m, n)th BS antenna to the kth UE.

Lemma 1: The distance r
(m,n)
k between the (m, n)th BS

antenna and the kth UE can be approximated as a function

of the UE position (rk, θk, ϕk) as

r
(m,n)
k ≈ rk − d

(

(m− 1) sin θk cos ϕk + (n− 1) cos θk

)

+
d2

2rk

(

(m− 1)2 + (n− 1)2

− ((m− 1) sin θk cos ϕk + (n− 1) cos θk)2
)

.

(6)

□
Proof: See Appendix A. ⊠
Note that hk can be readily expressed as a function of

(rk, θk, ϕk). Thus, to generate the optimal beam focusing

matrix F opt maximizing the sum-rate, an accurate UE posi-

tioning is imperative [41], [42]. For the UE positioning,

techniques relying on the time-based measurements (e.g., time-

of-arrival (TOA)) and angle-based measurements (e.g., angle

of arrival (AOA)) have been widely used [43], [44], [45], [46],

[47], [48], [49], [50], [51]. For example, in 5G NR, a new

reference signal known as positioning reference signal (PRS)

is introduced to measure TOA and AOA [52], [53]. However,

due to the limited wireless resources (e.g., bandwidth), these

techniques achieve only meter-level positioning accuracy.

C. Conventional Codebook-Based Beam Focusing

To determine the beam focusing vector, codebook-based

approaches have been proposed [20], [21], [22], [23], [24],

[25], [26], [27]. The codebook-based approach consists of

two major steps: 1) beam sweeping where a BS transmits a

sequence of beam codewords chosen from the B-bit codebook

C = {c1, c2, . . . , c2B} and 2) beam selection where each kth

UE feeds back the index îk of the best beam codeword ĉ
ik

maximizing the RSRP to the BS:

îk = arg max
i=1,2,...,2B

∣

∣hH
kci + nk,i

∣

∣

2
(7)

where nk,i is the additive noise. Since the beam focusing

vector is chosen from the beam codebook, the performance

of the codebook-based schemes depends heavily on the beam

codebook design. In conventional far-field systems, the chan-

nel is a function of the azimuth angle ϕ and elevation angle θ

so the beam codebook is designed to sample the 2D angular

space. In the near-field systems, however, the channel is a

function of the spherical coordinates (r, θ, ϕ), and thus the

beam search space expands to the 3D space. For instance,

the near-field beam codebook scheme in [25] first generates

uniformly sampled Cartesian coordinates Ξcar =
{(

x̄i, ȳi, z̄i

)

|
i = 1, 2, . . . , 2B

}

and then converts them to the spherical

coordinates Ξsph =
{(

r̄i, θ̄i, ϕ̄i

)

| i = 1, 2, . . . , 2B
}

. Then, the

near-field beam codebook Cnear is obtained from the near-field

array steering vectors corresponding to the spherical coordi-

nates in Ξsph as Cnear =
{

a
(

r̄i, θ̄i, ϕ̄i

)

|
(

r̄i, θ̄i, ϕ̄i

)

∈ Ξsph

}

.

One major issue of the codebook-based beam focusing

scheme is the mismatch between the pre-defined beam direc-

tion and the real UE direction. For example, when we use

6-bit DFT-based beam codebook in the near-field 256-antenna

systems, the beam focusing gain degradation in the worst-case

is around 30%. Another serious problem is the latency caused

by the complicated handshaking process between the BS and

the UE. The beam sweeping latency is expected to increase

even further in the 6G near-field THz systems since the search

space is expended to the 3D space.

III. VISION-AIDED UE POSITIONING

The main goal of VBF is to extract the geometric infor-

mation (e.g., position and class) of a UE from the RGB-d

image and then utilize it for the THz focused beam generation.

To do so, we use the object detection, a CV technique

specialized for detecting instances of semantic objects in a

certain class (e.g., humans, cars, or UEs). By replacing the

discretized and time-consuming beam sweeping operation with

the precise CV-based positioning, the positioning accuracy can

be improved significantly, resulting in an enhancement of the

beam focusing gain. Also, since the UE location is acquired

directly using the object detector without pilot transmission

and channel feedback operations, the beam training overhead

such as resource overhead, power consumption, and latency

can be reduced substantially. The proposed vision-aided UE

positioning consists of three major steps (see Fig. 2):

• Vision information acquisition: The BS acquires the

rough estimate of the UE’s location from the SSB beam

index feedback and then the RGB-d camera captures the

image of the area covered by the SSB beam index.

• Transformer-based object detection: From the cap-

tured RGB image, the Transformer-based object detector

extracts the 2D pixel-wise coordinates (x̂px, ŷpx) of the

UE from the captured image.

• Coordinate transformation from image to real world:

the BS converts the 2D pixel-wise coordinates (x̂px, ŷpx)
in the image to the elevation/azimuth angles (θ, ϕ) in

the real world and then acquires the distance r using the

LiDAR sensor of RGB-d camera.

A. Vision Information Acquisition

To extract the UE’s position from the image, the sensing

direction should be determined properly so that the captured

image contains the UE. To do so, the BS can leverage the

SSB beam index obtained at the initial access process. During

the initial access, the BS transmits the set of SSB beam

codewords, each of which covers a relatively wide physical

area [54], [55]. Then the UE measures the RSRP of the SSB
Authorized licensed use limited to: MIT. Downloaded on August 21,2024 at 07:22:39 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Illustration of vision-aided UE positioning.

beams and then feeds back the index of the SSB beam corre-

sponding to the largest RSRP. Therefore, the BS can acquire

a rough estimate of the UE’s position using the SSB beam

index. Based on this observation, in VBF, the RGB-d camera

takes a shot for the area covered by the SSB beam index.4

B. Transformer-Based Object Detection

Once the image is acquired, the BS identifies the position of

the UE from the image using the object detection technique.

In the object detection, the deep neural network (DNN) learns

the end-to-end mapping between the input W ×H-pixel RGB

image DRGB ∈ R
W×H×3 and the geometric information, i.e.,

object class ĉclass and 2D pixel-wise coordinates (x̂px, ŷpx) of

the centroid of the bounding box. The object detection problem

to find out the mapping function g is formulated as
(

x̂px, ŷpx, ĉclass

)

= g
(

DRGB;η
)

(8)

where η denote the DNN parameters.

For the object detection, convolutional neural network

(CNN) architectures have been popularly used due to its

simplicity and ability to extract spatial features from the visual

information [56]. In the CNN architecture, the features are

extracted by performing the convolution operation of a weight

matrix (called kernel) and a part of the input image. While

the CNN architecture is effective in extracting local features

to some extent, it is not that efficient in extracting global

features due to the locality of the filter kernel. Recently, there

has been considerable interest in object detection techniques

utilizing a DL architecture known as the Transformer [35].

The key ingredient of Transformer is the attention block that

quantifies the correlations between the pixel values of the input

image and then assigns varying degrees of importance (i.e.,

attention weight) to each pixel value based on the calculated

4To acquire the sensing information of multiple UEs simultaneously, one
can use a circular array of multiple cameras, each of which covering a specific
angular sector. In this system, when the UE reports its SSB beam index to
the BS, the camera covering the area designated by the reported SSB beam
index captures the sensing information. Using this circular camera array, the
BS can simultaneously acquire sensing information of multiple UEs without
rotating the camera. For example, if the BS is equipped with a circular array
of 8 cameras and the number of SSBs is 64, then each camera would cover an
angular sector of 360

8
= 45◦, encompassing coverage of 64

8
= 8 consecutive

SSB beams.

Fig. 3. Structure of Tranformer-based object detector.

correlation. Using the attention mechanism, Transformer can

extract both the correlations of the adjacent pixels and those of

the spaced-apart pixels, thereby generating the local and global

features in the image. For these reasons, the object detection

techniques using Transformer are achieving the state-of-the-art

(SOTA) performances these days (e.g., DETR [57] and Swin

Transformer [58]).

1) Basics of Transformer: In Transformer, the input is the

RGB image consisting of pixel values and the output is the

spatially-correlated features of the input image (see Fig. 3).

First, the input image passes through multiple attention blocks

connected in parallel (i.e., multi-head attention). After the

multi-head attention layer, the pixel values of the input images

are scaled and shifted to have zero mean and unit variance (this

process is called the layer normalization) [35]. Using the layer

normalization process, one can enforce the input distribution

to have fixed means and variances and therefore, increase the

stability of network training.

As mentioned, the role of the attention block is to quantify

the correlation between the pixel values (i.e., attention score)
Authorized licensed use limited to: MIT. Downloaded on August 21,2024 at 07:22:39 UTC from IEEE Xplore.  Restrictions apply. 
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and then generate the weighted pixel values by multiplying the

original pixel values by the obtained attention score. To do

so, the attention block constructs three different embedding

matrices from the input image matrix X , i.e., the query Q =
XWQ, the key K = XWK, and the value V = XWV

where WQ, WK, WV are the weight matrices (see Fig. 3).

Since the query Q and the key K contain the features of

original input image, by performing the inner product of Q

and K, we can obtain the attention score M :

M = fsoftmax

(

QKT

√
D

)

(9)

where D is the number of hidden layer units and fsoftmax(X)
is the row-wise softmax function defined as [fsoftmax(X)]i,j =

e
[X]i,j

∑
j e

[X]i,j
. Finally, by multiplying the attention score M by

the value V , we obtain the weighted input as

Attention(Q,K,V ) ≜ MV . (10)

The obtained weighted input passes through the fully-

connected layer and the layer normalization layer again,

generating the features of the input image.

2) Transformer-Based Object Detection: The Transformer-

based object detector consists of three main components [58]

(see Fig. 3): 1) backbone extracting the features from the

image, 2) neck aggregating the extracted multi-scale features,

and 3) head performing the object detection and classification.

• Backbone: The backbone consisting of multiple Trans-

former blocks hierarchically extracts the spatially-

correlated features (e.g., color, shape) in different scales

from the input RGB image DRGB. For example, the local

features (e.g., edge and curve) are extracted at the bottom

of backbone and the global features (e.g., face and wall)

are extracted at the top of backbone.

• Neck: Once the features are extracted at the backbone, the

neck aggregates the extracted features in different scales.

This process is necessary since the local features contain

geometric information for the bounding box identification

while the global features contain semantic information for

the classification. Thus, to achieve high performance in

both positioning and classification, a feature pyramid net-

work (FPN) structure where the global features extracted

at the top of backbone are delivered to the bottom is

employed.

• Head: Using the aggregated features as input, the head

performs the bounding box detection and the class

identification. Specifically, the box prediction network

generates the centroid pixel (x̂px, ŷpx), the height ĥbox,

and the width ŵbox of the bounding box. Also, the class

prediction network generates the class score p̂class(c)
(probability of object belonging to the specific class c)

and then choose the class with the highest class score:

ĉclass = arg max
c

p̂class(c) . (11)

It is worth mentioning that the performance of the

Transformer-based object detector depends heavily on the size

of the target object. When the target object (in our case, a cell

phone) is small, only a few pixels would represent the target

object so that it is not easy to find out the pixels representing

the target object in the captured image. To address this issue,

Fig. 4. Illustration of the coordinate transformation.

we use a two-stage object detection process that first detects a

large object (e.g., person holding a UE) from the whole image

and then identifies a small object (e.g., UE) from the detected

bounding box containing a person (see Fig. 2).

3) Loss Function Design and Network Training: To assess

the quality of the object detection model, we use the weighted

sum L ≜ λpLp + λcLc of two training losses for bounding

box prediction and class prediction where λp and λc are the

weights. First, the mean absolute error (MAE) Lp evaluating

the positioning error of the bounding box is given by5

Lp ≜ |xpx − x̂px|+ |ypx − ŷpx|
+ |wbox − ŵbox|+ |hbox − ĥbox|. (12)

Second, the negative log-likelihood loss Lc measuring the

class score of the ground-truth class c is given by

Lc ≜ − log p̂class(c) . (13)

Then the network parameter η is trained in a direction to

minimize L using the gradient descent method.

C. Coordinate Transformation From Image to Real World

Transformer-based object detector provides only 2D pixel-

wise coordinates (x̂px, ŷpx) of the UE on the image plane but

for the beam focusing operation, we need the spherical coor-

dinates (r̂, θ̂, ϕ̂) in the real world space. For the acquisition

of r, we use the RGB-d camera which measures the distance to

the point in each pixel using the LiDAR sensor. Subsequently,

we perform a coordinate transformation to convert (x̂px, ŷpx)
in the image plane to (θ̂, ϕ̂) in the real world space. To do so,

we exploit the fact that the object in an image is a projection

of the real-world object onto the image plane (see Fig. 4).6

Thus, by finding out the position vector of the projected object,

we can extract the elevation and azimuth angles (θ̂, ϕ̂).

5When detecting multiple objects, to match the ground-truth objects with
the detected objects, the Transformer-based object detector uses the bipartite
matching that finds out the optimal permutation σ∗ of object indices minimiz-
ing the matching loss as σ∗ = arg minσ

∑

i
(−pσ(i)(ci) + ∥bi − bσ(i)∥1)

where b = [xpx, ypx, wbox, hbox].
6In practice, due to the lens distortion (e.g., barrel distortion or pincushion

distortion), the position vector of the UE and that of the centroid of the
detected bounding box may differ, particularly at the boundary of image.
However, note that most of modern cameras come equipped with built-in
lens correction features, which automatically compensate for such distortions
during image processing. In case the built-in lens correction is unavailable,
one can manually correct lens distortion by utilizing lens correction software
(e.g., DxO Optics), which is based on the mathematical models (e.g., radial
distortion model and Brown-Conrady model) describing how pixels are shifted
away from the center of the image.
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Let us consider the Cartesian coordinate system where the

RGB-d camera is located at the origin o. Also, let m ∈ R
3

and p ∈ Iimg be the positions of the UE in the real world and

the projected UE in the image plane Iimg ¦ R
3. Then m and

p have the same orientation, i.e., m ∥ p, meaning that we can

obtain (θ̂, ϕ̂) by finding out p. To do so, we use the triangular

law of vector addition with the centroid c of Iimg:

p = c + (p− c) (14)

First, c is obtained from the focal length Df as ∥c∥2 =
Df and elevation/azimuth angles (θc, ϕc) of RGB camera

direction:7

c =
(

Df sin θc cos ϕc, Df sin θc sinϕc, Df cos θc

)

. (15)

Then we can re-express Iimg as Iimg ={i ∈ R
3 | c § (i−c)}.

Second, to calculate p− c, we exploit the fact that Iimg is

a parallel translation of 2D subspace of the Euclidean space.

To be specific, by defining the orthogonal bases û, v̂ ∈ R
3 of

the 2D subspace, Iimg can be re-expressed as

Iimg = c + {j ∈ R
3 | c § j} (16)

= c + {xdxû + ydyv̂ | x, y ∈ Z} (17)

where (x, y) are the 2D pixel-wise coordinates and dx×dy is

the size of each pixel. Since p ∈ Iimg is the projected UE in

the image, p− c can be expressed as a function of (x̂px, ŷpx)
as

p− c = x̂pxdxû + ŷpxdyv̂ . (18)

Now, what remains is to calculate û and v̂. Let ŵ be the

unit normal vector of Iimg given by

ŵ =
c

∥c∥2
=
(

sin θc cos ϕc, sin θc sinϕc, cos θc

)

. (19)

Then {û, v̂, ŵ} forms the left-handed Cartesian coordinate

system. Since the image is not rotated, û is parallel to the

XY-plane, which means that û is perpendicular to both ŵ and

the z-axis unit vector ẑ = (0, 0, 1). Thus, û can be obtained

from the cross product of ŵ and ẑ as

û =
ŵ × ẑ

∥ŵ × ẑ∥2
=
(

sinϕc, − cos ϕc, 0
)

. (20)

Similarly, v̂ is obtained from the cross product of û and ŵ as

v̂=
û×ŵ

∥û×ŵ∥2
=
(

− cos θc cos ϕc, − cos θc sinϕc, sin θc

)

.

(21)

By plugging (20) and (21) into (18), we get

p− c =
(

x̂pxdx sinϕc − ŷpxdy cos θc cos ϕc,

− x̂pxdx cos ϕc − ŷpxdy cos θc sinϕc,

ŷpxdy sin θc

)

. (22)

Finally, by plugging (15) and (22) into (14), we obtain the

desired position vector p of the projected UE as

p =
(

x̂pxdx sinϕc − ŷpxdy cos θc cos ϕc + Df sin θc cos ϕc,

− x̂pxdx cos ϕc − ŷpxdy cos θc sinϕc + Df sin θc sin ϕc,

ŷpxdy sin θc + Df cos θc

)

. (23)

7Recall that in the vision information acquisition stage, the BS takes a
shot for the area covered by the SSB beam index. Thus, the camera direction
(θc, ϕc) can be obtained from the SSB beam index.

Since m ∥ p, the elevation and azimuth angles (θ̂, ϕ̂) of the

position vector m of the UE in the real world can be obtained

by converting p to the spherical coordinates.

Proposition 1: The Cartesian coordinates p = [px, py, pz]
of the projected UE in the image are given by

p=





sinϕc − cos θc cos ϕc sin θc cos ϕc

− cos ϕc − cos θc sinϕc sin θc sinϕc

0 sin θc cos θc









x̂pxdx

ŷpxdy

Df





(24)

where (x̂px, ŷpx) is the 2D pixel-wise coordinates, (θc, ϕc) is

the elevation and azimuth camera directions, Df is the focal

length, and dx × dy is the pixel size. Also, the elevation and

azimuth angles (θ̂, ϕ̂) of the UE in the real world are

θ̂ = arccos

(

pz

(p2
x + p2

y + p2
z)

1
2

)

(25)

ϕ̂ = sgn(py) arccos

(

px

(p2
x + p2

y)
1
2

)

. (26)

where sgn(·) is the sign function. □

Proof: (24) is directly from (23). Also, (25) and (26)

are from the conversion equations between two coordinate

systems. ⊠
Finally, by combining the elevation and azimuth angles

of UEs
{(

θ̂k, ϕ̂k

)}K

k=1
in (25) and (26) with the distance

{r̂k}Kk=1 acquired from the depth camera, we obtain the posi-

tions
{(

r̂k, θ̂k, ϕ̂k

)}K

k=1
of the UEs. Then the BS reconstructs

the near-field LOS channel vectors {ĥk}Kk=1 as

ĥk =
√

α(f, r̂k) e−j 2πf
c

r̂ka(r̂k, θ̂k, ϕ̂k) . (27)

IV. POSITION-AWARE NEAR-FIELD BEAM FOCUSING

In this section, we explain the generation of hybrid beam

focusing matrix F using the reconstructed channel information

{ĥk}Kk=1. Specifically, the optimization problem to determine

F opt = F
opt
RF F

opt
BB maximizing the sum-rate is formulated as

P0 : maximize
FRF,FBB

K
∑

k=1

log2

(

1 + γk(FRF,FBB)
)

(28a)

subject to FRF ∈ FRF (28b)

∥FRFFBB∥2F ⩽ Ptx (28c)

where γk is the SINR of the kth UE in (3). Since γk is a

non-convex quadratic fractional function of FRF and FBB,

it is challenging to determine the optimal solution of P0.

Also, the non-convexity of (28b) makes solving P0 more

challenging.

To obtain a tractable solution to P0, we convert the

intricate sum-rate maximization problem to a series of uncon-

strained subproblems. Since the closed-form solutions of the

subproblems are available, one can derive the suboptimal

solution with significantly reduced computational complexity.

Specifically, the proposed beam focusing algorithm consists

of three major steps: 1) Lagrangian dual transform to convert

the sum-of-logarithms-of-ratios problem to the sum-of-ratios

problem [59], 2) fractional programming (FP) to decompose

the sum-of-ratios problem to a series of constrained quadratic
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programs (QPs) [60], and 3) alternating direction method of

multipliers (ADMM) to convert the constrained QPs to the

unconstrained problems with penalty terms [61].

A. Lagrangian Dual Transform

We first present the Lagrangian dual transform to isolate the

quadratic fractional function from its logarithm form [59].

Proposition 2: P0 can be equivalently converted to P1 by

defining auxiliary variables ω ≜ [ω1, ω2, . . . , ωK ]T∈R
K as

P1 : maximize
FRF,FBB,ω

f1(FRF,FBB,ω) (30a)

subject to FRF ∈ FRF (30b)

∥FRFFBB∥2F ⩽ Ptx (30c)

with

f1(FRF,FBB,ω) ≜

K
∑

k=1

log2(1 + ωk)−
K
∑

k=1

ωk

+
K
∑

k=1

(1 + ωk) γk(FRF,FBB)

1 + γk(FRF,FBB)
. (31)

Also, the optimal solution ωopt ≜ [ωopt
1 , ω

opt
2 , . . . , ω

opt
K ]T ∈

R
K for a given (FRF,FBB) is given by

ω
opt
k =

∣

∣hH
kFRFfBB,k

∣

∣

2

∑

j ̸=k

∣

∣hH
kFRFfBB,j

∣

∣

2
+ σ2

n

∀k ∈ K . (32)

□
Proof: See Appendix B. ⊠
Using Proposition 2, we can obtain the suboptimal solution

of P1 in an alternating fashion: 1) fix (FRF,FBB) and update

ω as (32) and 2) fix ω and solve the reduced problem P1,a:

P1,a : maximize
FRF,FBB

K
∑

k=1

(1 + ωk) γk(FRF,FBB)

1 + γk(FRF,FBB)
(33a)

subject to FRF ∈ FRF (33b)

∥FRFFBB∥2F ⩽ Ptx . (33c)

B. Fractional Programming

Now we convert the quadratic fractional problem P1,a to

a sequence of QPs by leveraging the FP technique [60].

Proposition 3: P1,a can be equivalently converted to P2

by defining the auxiliary variables ν ≜ [ν1, ν2, . . . , νK ]T∈C
K

as

P2 : maximize
FRF,FBB,ν

f2(FRF,FBB,ν) (34a)

subject to FRF ∈ FRF (34b)

∥FRFFBB∥2F ⩽ Ptx (34c)

with

f2(FRF,FBB,ν) ≜ 2ℜ
{

tr
(

WV HHHFRFFBB

)}

−
∥

∥V HHHFRFFBB

∥

∥

2

F
− σ2

n∥ν∥22 (35)

where H ≜ [h1,h2, . . . ,hK ] is the multi-user channel matrix,

V ≜ diag(ν), and W ≜
(

IK +diag(ω)
)

1
2 . Also, the optimal

solution νopt ≜ [νopt
1 , ν

opt
2 , . . . , ν

opt
K ]T ∈ C

K for a given

(FRF,FBB) is

ν
opt
k =

√
1 + ωk hH

kFRFfBB,k
∑K

j=1

∣

∣hH
kFRFfBB,j

∣

∣

2
+ σ2

n

∀k ∈ K . (36)

□
Proof: The proof is similar to that of Proposition 2. ⊠
We can derive the suboptimal solution of P2 through the

following alternating steps: 1) fix (FRF,FBB) and update ν

as (36) and 2) fix ν and solve the reduced problem P2,a:

P2,a : maximize
FRF,FBB

f3(FRF,FBB) (37a)

subject to FRF ∈ FRF (37b)

∥FRFFBB∥2F ⩽ Ptx (37c)

where

f3(FRF,FBB) ≜ 2ℜ
{

tr
(

WV HHHFRFFBB

)}

−
∥

∥V HHHFRFFBB

∥

∥

2

F
. (38)

C. Alternating Direction Method of Multipliers

One can see from (38) that the objective function f3 of P2,a

is a concave quadratic function of FRF and FBB. However,

P2,a is still a nonconvex problem due to (37b). To solve the

problem, we use the ADMM technique that converts a com-

plicated constrained problem to an unconstrained problem by

adding a quadratic penalty term to the objective function [61].

We first reformulate P2,a by introducing the auxiliary

variable Q ∈ C
N×K to replace FRF and the indicator

function 1FRF
(·) (i.e., 1FRF

(FRF) = ∞ if FRF ∈ FRF and

1FRF
(FRF) = 0 otherwise) to enforce FRF ∈ FRF:

P3 : maximize
FRF,FBB,Q

f3(FRF,FBB) + 1FRF
(FRF) (39a)

subject to FRF = Q (39b)

∥QFBB∥2F ⩽ Ptx. (39c)

By adding a quadratic penalty term for (39b) and a linear

penalty term for (39c) to the objective function of P3,

we obtain the augmented Lagrangian L, which is expressed

in (29), as shown at the bottom of the page, where Λ ∈ C
N×K

and µ ⩾ 0 are the Lagrangian multipliers for (39b) and (39c),

respectively, and ρ > 0 is the scaling factor. Using the

augmented Lagrangian, the dual problem P4 is formulated as

P4 : minimize
Λ,µ⩾0

maximize
FRF,FBB,Q

L(FRF,FBB,Q,Λ, µ) . (40)

L(FRF,FBB,Q,Λ, µ) ≜ 2ℜ
{

tr
(

WV HHHQFBB

)}

−
∥

∥V HHHQFBB

∥

∥

2

F
+ 1FRF(FRF)

− ρ∥FRF −Q + Λ∥2F − µ
(

∥QFBB∥2F − Ptx

)

(29)
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Since P4 is an unconstrained problem, it is much easier

to handle than the primal problem P3. Also, based on the

weak duality, the optimal value of P4 corresponds to the

upper bound of the optimal value of P3 [61]. As L is a joint

function of FRF, FBB, Q, Λ, and µ, in solving P4, we use

an alternating approach that optimizes one variable at a time

while fixing the other variables.

1) RF Beam Focusing Matrix Update: When FBB, Q, Λ,

and µ are fixed, the update equation of FRF is given by

F
(t+1)
RF = arg max

FRF

L
(

FRF,F
(t)
BB,Q(t),Λ(t), µ(t)

)

= arg max
FRF

(

1FRF
(FRF) (41)

− ρ
∥

∥FRF −Q(t) + Λ(t)
∥

∥

2

F

)

(42)

= projFRF

(

Q(t) −Λ(t)
)

(43)

where projFRF
(·) denotes the projection onto FRF. Using the

set of feasible phase shifts Θ (see footnote 2), we obtain

[

F
(t+1)
RF

]

n,k
= e

j arg minw∈Θ

∣

∣ejw−
[

Q(t)−Λ(t)
]

n,k

∣

∣

. (44)

2) Baseband Beam Focusing Matrix Update: When FRF,

Q, Λ, and µ are fixed, the update equation of FBB is given

by

F
(t+1)
BB = arg max

FBB

L
(

F
(t+1)
RF ,FBB,Q(t),Λ(t), µ(t)

)

(46)

= arg max
FBB

L1(FBB) (47)

where L1(FBB) is the reduced Lagrangian defined as

L1(FBB) ≜ 2ℜ
{

tr
(

WV HHHQ(t)FBB

)}

−
∥

∥V HHHQ(t)FBB

∥

∥

2

F
−µ(t)

∥

∥Q(t)FBB

∥

∥

2

F
.

(48)

Since L1(FBB) is a concave quadratic function of FBB, one

can easily obtain F
(t+1)
BB by solving ∂L1

∂FBB
= 0K×K as

F
(t+1)
BB =

(

(

Q(t)
)H(

HV V HHH + µ(t)IN

)

Q(t)
)−1

×
(

Q(t)
)H

HV W H. (49)

3) Auxiliary Matrix Update: Similar to the update of FBB,

L becomes a concave quadratic function of Q when FRF,

FBB, Λ, and µ are fixed as

Q(t+1) = arg max
Q

L
(

F
(t+1)
RF ,F

(t+1)
BB ,Q,Λ(t), µ(t)

)

(50)

= arg max
Q

L2(Q) (51)

where L2(Q) is the reduced Lagrangian defined as

L2(Q) ≜ 2ℜ
{

tr
(

WV HHHQF
(t+1)
BB

)}

−
∥

∥V HHHQF
(t+1)
BB

∥

∥

2

F
− ρ
∥

∥F
(t+1)
RF −Q + Λ(t)

∥

∥

2

F

− µ(t)
∥

∥QF
(t+1)
BB

∥

∥

2

F
. (52)

Unfortunately, one cannot directly obtain Q(t+1) from (52)

since H and F
(t+1)
BB are multiplied at both sides

of Q. To address this issue, we first vectorize Q to q ≜

Algorithm 1 Position-Aware Hybrid Beam Focusing

Algorithm

Input: Position estimates {(r̂k, θ̂k, ϕ̂k)}Kk=1, BS transmis-

sion power Ptx, set of feasible RF precoders FRF

Initialize:

FRF ←
[

a(r̂1, θ̂1, ϕ̂1),a(r̂2, θ̂2, ϕ̂2), . . . ,a(r̂K , θ̂K , ϕ̂K)
]

,

FBB ← diag
(
√

α(f, r̂1)e
−j

2πfr̂1
c ,

√

α(f, r̂2)e
−j

2πfr̂2
c , . . . ,

√

α(f, r̂K)e−j
2πfr̂K

c

)

, Q← FRF, Λ← 0N×K , µ← 0

Reconstruct hk using (27) ∀k ∈ K
while FRF or FBB do not converge do

Update ω using (32)

while FRF or FBB do not converge do

Update ν using (36)

while FRF or FBB do not converge do

Update FRF,FBB,Q,Λ, µ using (44), (49),

(45), (54), and (55)

end while

end while

end while

Output: FRF, FBB

vec(Q) ∈ C
NK and then re-express L2 as a function of q

as

L2(q) ≜ 2ℜ
{

vec
(

HV W H
(

F
(t+1)
BB

)H
)H

q

}

−
∥

∥

∥

(

(

F
(t+1)
BB

)T ¹
(

V HHH
)

)

q
∥

∥

∥

2

2

− ρ
∥

∥vec
(

F
(t+1)
RF + Λ(t)

)

− q
∥

∥

2

2

− µ(t)
∥

∥

∥

(

(

F
(t+1)
BB

)T ¹ IN

)

q
∥

∥

∥

2

2
. (53)

We then obtain q(t+1) by solving ∂L2

∂q
= 0NK , which

is expressed in (45), as shown at the bottom of the next

page. Finally, by de-vectorizing q(t+1), we obtain Q(t+1) =
devec(q(t+1)).

4) Lagrangian Multiplier Update: Once the primal vari-

ables FRF, FBB, and Q are updated, the Lagrangian

multipliers are updated using the dual descent method as [61]

Λ(t+1) = Λ(t) +
(

F
(t+1)
RF −Q(t+1)

)

(54)

µ(t+1) = µ(t) + max
(

∥

∥Q(t+1)F
(t+1)
BB

∥

∥

2

F
− Ptx, 0

)

. (55)

The update procedures (44), (49), (54), (55) and (45)

are repeated until FRF and FBB converge. The proposed

position-aware hybrid beam focusing algorithm is summarized

in Algorithm 1.

D. Asymptotically Optimal Beam Focusing Matrix Design

Since FRF and FBB are updated using closed-form expres-

sions, the computational complexity of the proposed near-field

hybrid beam focusing algorithm is notably lower compared

to conventional approaches relying on intricate optimization

techniques (e.g., semidefinite programming (SDP)). In fact,

while the most computationally intensive operation in the

proposed scheme is matrix inversion, which has a complexity
Authorized licensed use limited to: MIT. Downloaded on August 21,2024 at 07:22:39 UTC from IEEE Xplore.  Restrictions apply. 



2512 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 9, SEPTEMBER 2024

of O(N3), the complexity of SDP is O(N6). However, even

the matrix inversion operation might be burdensome when the

number of antennas N grows exceptionally large in THz UM-

MIMO systems. Thankfully, the increase in N leads to the

mutual orthogonality among the near-field channel vectors,

which can greatly simplify the beam focusing matrix design to

achieve the capacity. In the following proposition, we provide

the favorable propagation property in the near-field region.

Proposition 4: [Near-field favorable propagation property]

When the number of antennas N goes to infinity, dis-

tinct near-field array steering vectors are asymptotically

orthogonal:

1

N
lim

N→∞

∣

∣aH(ri, θi, ϕi) a(rj , θj , ϕj)
∣

∣ = δi,j . (56)

□
Proof: See Appendix C. ⊠
By exploiting the favorable propagation property, one can

easily see that the asymptotic optimal beam focusing matrix

takes the form of the weighted channel matrix.

Proposition 5: In the ideal THz near-field UM-MISO sys-

tems employing continuous phase shifters, the asymptotic

optimal solution of P0 is given by

F
opt
RF =

[

a
(

r̂1, θ̂1, ϕ̂1

)

,a
(

r̂2, θ̂2, ϕ̂2

)

, . . . ,a
(

r̂K , θ̂K , ϕ̂K

)

]

(57)

F
opt
BB =

√

Ptx

N
diag

(√
p1,
√

p2, . . . ,
√

pK

)

(58)

where pk ⩾ 0 is the power weight for the kth UE given by

pk = max

{

0,
1

ν
− σ2

n

NPtxα(f, r̂k)

}

(59)

and ν is obtained by solving the following equation.

K
∑

k=1

max

{

0,
1

ν
− σ2

n

NPtxα(f, r̂k)

}

= 1 . (60)

□
Proof: See Appendix D. ⊠

V. PRACTICAL IMPLEMENTATION ISSUES OF VBF

In this section, we briefly discuss practical issues for the

successful realization of VBF. These include seamless cover-

age provision, multi-user identification, and resource usage.

• Seamless coverage provision: One of the major chal-

lenges of VBF is to ensure seamless service quality

even in demanding scenarios with obstacles or low light

conditions (e.g., nighttime and rainy weather).8 To do

8Adverse weather conditions (e.g., rain, snow, and fog) can affect the
localization performance due to factors like reduced visibility, motion blur,
and color distortion. For instance, rain can obscure image clarity and introduce
additional noise through droplets on the camera lens. Similarly, fog can
decrease visibility by dispersing light and diminishing the contrast, which
might blur object outlines and reduce their visual distinctiveness. Also, snow
can both impede camera views and change the visual presentation of objects.

so, one can exploit a multi-modal sensing, which utilizes

multiple sensing modalities simultaneously. For instance,

in the NLOS scenario where the UE is visually blocked

by obstacles, multiple RGB cameras with different orien-

tations or sensors employing relatively long-wavelength

light (e.g., ultrasonic sensor and radar) can be used to

detect the UEs hidden behind the obstacles. Also, in the

low light environment or adverse weather conditions (e.g.,

rain, fog, and snow), integration of the RGB camera and

non-camera sensors (e.g., radar and LiDAR) can substan-

tially enhance the positioning accuracy of VBF. Since

radar and LiDAR generate their own signals (i.e., radio

waves and laser pulses) to interact with the environment,

they are less susceptible to visibility issues.

• Multi-user identification: Since the BS extracts the

positions of the UEs without any feedback opera-

tion, distinguishing the UE requiring the service is

challenging. To identify the target UE, the BS can

perform a small range beam sweeping onto the posi-

tions identified by the object detector. Specifically, using

the extracted positions {(r̂k, θ̂k, ϕ̂k)}Kk=1, the BS first

constructs the beam codebook C = {a(r̂1, θ̂1, ϕ̂1),
(r̂2, θ̂2, ϕ̂2), . . . ,a(r̂K , θ̂K , ϕ̂K)} and then sequentially

transmits the beam codewords. After that, the UE feeds

back the index of best beam codeword through the sched-

uled physical uplink shared channel (PUSCH). Since

the PUSCH scheduling information is distinct for each

UE, the BS can discern the target UE from the PUSCH

and match it with the position acquired from the beam

codeword index feedback.

• Resource usage: One natural concern when implement-

ing the DL technique for wireless systems is the resource

usage, i.e., latency and power consumption. In VBF, the

position information is derived from the image using the

CV technique so the traditional beam sweeping latency

is replaced by the DNN inference latency. For example,

when utilizing the latest artificial intelligence (AI)-

focused system-on-chip (SoC) Qualcomm Snapdragon

888, the inference time is around 10−15 ms whereas the

beam sweeping latency of 5G NR is 20 ms. Also, con-

sidering that the SSB beam transmission power is 20 W

while the power consumption of Qualcomm Snapdragon

888 and IntelRealSense L515 RGB-d camera is 5 W and

4 W, respectively, VBF exhibits promising potential for

energy savings. We anticipate that this inference power

consumption and latency can be further reduced with the

implementation of dedicated vision processors designed

with a few nano-scale CMOS technology.

VI. NUMERICAL RESULTS

A. Simulation Setup

In our simulations, we consider THz UM-MISO systems

where the BS equipped with N = 16 × 16 UPA antennas

q(t+1) =
((

(

F
(t+1)
BB

)∗(
F

(t+1)
BB

)T
)

¹
(

HV V HHH + µ(t)IN

)

+ ρINK

)−1

vec
(

HV W H
(

F
(t+1)
BB

)H
+ ρ
(

F
(t+1)
RF + Λ(t)

)

)

(45)
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TABLE I

UE POSITIONING PERFORMANCE OF VBF

serves K = 10 single-antenna UEs. The UEs are located

randomly around the BS within the cell radius of r = 80 m.

For the analog-digital hybrid architecture, we set the number

of RF chains to NRF = K and employ B = 4-bit discrete

phase shifters to generate the RF beam focusing matrix.

In practice, due to the high cost and power consumption

of analog phase shifters, low-cost discrete phase shifters

are typically adopted. We use the sub-THz near-field LOS

channel model with carrier frequency fc = 0.1 THz [13], [39].

Throughout the simulations, we set the signal-to-noise ratio

(SNR) to 30 dB. As a performance metric, we use the sum-rate

Rtot =
∑K

k=1 Rk. In each point of the plots, we test at least

Niter = 10, 000 randomly generated near-field THz systems.

For the vision-aided UE positioning, we use DETR [57], the

state-of-the-art Transformer-based object detector pre-trained

on the MS-COCO 2017 dataset consisting of 80 classes of

objects and 200, 000 training images [62]. To evaluate the

performance of VBF, we use VOBEM1, a sensing dataset

tailored for wireless communications using Intel RealSense

L515 RGB-d camera consisting of 135 pairs of RGB and depth

images acquired from 21 distinct wireless environments (see

https://github.com/islab-github/VOBEM1).

To compare the UE positioning performance, we employ

two benchmark schemes: 1) EfficientDet-based object detec-

tor [28] and 2) ResNet-based object detector [63]. Note

that these two object detectors are based on the CNN

architecture.

Also, to compare the sum-rate performance, we employ five

benchmark schemes: 1) fully-digital weighted minimum mean

squared error (WMMSE) beam focusing scheme,9 2) hybrid

beam focusing scheme using the manifold optimization (MO)

technique [39], 3) spherical codebook-based scheme [21],

4) Cartesian codebook-based scheme [25], and 5) 2D DFT

codebook-based scheme in 5G NR [19]. Note that in the beam

focusing vector generation, we utilize the THz near-field chan-

nel reconstructed based on the position estimates. To make a

fair comparison, for the non-codebook-based schemes, we use

the same position estimates obtained from the DETR-based

UE positioning.

9WMMSE precoding is a type of linear precoding that aims to minimize
the sum-mean squared error (MSE) between the transmitted signal and the
received signal. Based on the uplink-downlink duality that the solution to
the uplink sum-MSE minimization problem is equivalent to the solution
to the downlink sum-rate maximization problem, WMMSE precoding achieves

the optimal performance among the linear precoding techniques [64].

Fig. 5. Sum-rate as a function of SNR.

B. Simulation Results

Table I presents the UE positioning performances of the

proposed VBF. The precision is the percentage of correctly

detected objects among total detected objects and the recall is

the percentage of detected objects among all target objects.

We observe that the precision and recall performances of

DETR-based object detector (more than 97%) are much higher

than those of EfficientDet-based object detector. We also

observe that while the conventional codebook-based schemes

achieve meter-level positioning accuracy, the proposed VBF

achieves a centimeter-level positioning accuracy by using the

DETR-based object detector. This is because in the codebook-

based schemes, due to a finite number of beam codewords,

a mismatch between the pre-defined beam direction and the

real UE direction is unavoidable but no such behavior occurs

in VBF since the beam is generated from the extracted

positions.

Fig. 5 shows the sum-rate as a function of the transmit SNR.

We observe that the proposed VBF scheme outperforms the

conventional beam focusing schemes by a large margin. For

example, when SNR = 30 dB, VBF achieves more than 61.7%
sum-rate enhancements over the conventional codebook-based

schemes. Even when compared to the MO-based scheme, the

sum-rate gain of VBF is more than 30.5%. This is because

the MO-based scheme might not perform well in the practical

discrete phase shifter scenario since the set of discrete phase
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Fig. 6. Sum-rate as a function of the number of UEs.

Fig. 7. Sum-rate as a function of communication distance.

shifts does not form a smooth Riemannian manifold. Whereas,

VBF can effectively handle the discrete phase shift constraints

by using the ADMM technique. In fact, the performance of

VBF is similar to that of the fully-digital beam focusing

scheme.

Fig. 6 shows the sum-rate of VBF as a function of the

number of UEs K when SNR = 30 dB. From the simulation

results, we see that the data rate gain of VBF increases

with the number of UEs. Furthermore, we observe that as

the number of UEs increases, the sum-rate performances of

the conventional beam focusing schemes gradually converge

whereas that of the proposed VBF scheme increases sharply.

This is because when the number of UEs is large, inter-

user interference (IUI) cannot be properly suppressed in the

conventional beam focusing schemes due to the finite phase

shift levels. In contrast, such is not the case for VBF since we

simultaneously achieve the maximization of sum-rate and the

satisfaction of the feasible RF beam focusing matrix constraint

by maximizing the augmented Lagrangian.

Fig. 7 presents the sum-rate as a function of the communica-

tion distance r. We observe that the performance gain of VBF

over the codebook-based beam focusing schemes increases

Fig. 8. Sum-rate as a function of the number of antennas.

Fig. 9. Sum-rate as a function of SNR.

as the communication distance decreases. For example, when

r = 64 m, the performance gain of VBF over the spherical

codebook-based scheme is around 33.2% but it increases

to 70.1% when r = 8 m. Recall that the quadratic term of the

exponents of near-field array steering vector is proportional

to the inverse of r (see Lemma 1). This means that when

the distance is short, the near-field channel vector will be

highly affected by the value of r. Thus, the codebook-based

schemes suffer a severe performance degradation caused by

the relatively high positioning error.

Fig. 8 shows the sum-rate as a function of the number of

antennas N . We observe that the proposed VBF achieves a

significant data rate gain over the conventional beam focus-

ing schemes. For example, when N = 512, the sum-rate

gains of VBF over the conventional spherical and Cartesian

codebook-based beam focusing schemes are around 35.2% and

57.7%, respectively. Interestingly, we observe that the perfor-

mances of VBF and benchmark schemes gradually converge as

the number of antennas increases. As shown in Proposition 4

and 5, when the number of antennas goes to infinity, the

distinct near-field channel vectors become mutually orthogonal

so the optimal hybrid beam focusing matrix asymptotically
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Fig. 10. Positioning error as a function of communication distance.

Fig. 11. Cumulative distribution of the number of iterations required to
converge.

takes a form of the weighted channel matrix. Since the

channel matrix is used as an initial value in the iterative beam

focusing optimization techniques, the performances of these

techniques ultimately converge with the growing number of

antennas.

To investigate the impact of positioning error on the beam

focusing performance, we compare the sum-rate performance

of the proposed scheme with the ideal beam focusing scheme

using the perfect channel state information (CSI) and the

schemes using the EfficientDet-based object detector and the

ResNet-based object detector in Fig. 9. We observe that the

performance gap between the ideal scheme and the proposed

scheme utilizing the DETR-based object detector is minimal.

In contrast, the performance gap between the ideal scheme and

those employing the EfficientDet-based object detector and

ResNet-based object detector is relatively large. This arises

from the difference of positioning accuracies between the

DETR-based object detector and those based on EfficientDet

or ResNet.

Fig. 10 shows the positioning error as a function of the

communication distance r. We observe that although the

positioning error increases with the communication distance,

VBF still achieves a centimeter-level positioning accuracy

even when the UE is far away (r = 64 m) from the BS.

Considering that the effective communication range of THz

systems is up to several tens of meter due to the severe path

loss of THz band signals, this implies that VBF is a promising

solution for pinpointing the UE’s location and generate a

proper focusing beam in the THz near-field systems.

Fig. 11 shows the cumulative distributions of the number of

iterations needed for the convergence of inner layer iteration

(ADMM), middle layer iteration (fractional programming),

outer layer iteration (Lagrangian dual transform), and the total

position-aware hybrid beam focusing algorithm. We observe

that all three layer iterations converge within 20 iterations.

VII. CONCLUSION

This paper proposed a vision-aided beam focusing tech-

nique, called VBF, for 6G THz near-field communications.

In contrast to conventional approaches relying exclusively

on the sweeping of pre-defined beam codewords, we exploit

the sensing and CV technologies in determining the beam

direction. By extracting the geometric information (distance,

azimuth angle, and elevation angle) of a target device from

the visual sensing data via CV technique, VBF accurately

identifies the UE position, using which the beam focusing

vectors maximizing the sum-rate are generated. Since the

position information is derived from the captured image,

complicated handshaking operations for the pilot transmission

and channel feedback can be minimized, thereby reducing

the beam training overhead considerably. From the numerical

evaluations on realistic 6G environments, we demonstrated

that VBF is effective in improving the positioning accuracy

and the sum-rate. The proposed VBF will ensure accurate UE

targeting and spectral efficiency maximization in THz UM-

MIMO systems, thereby enabling the data-heavy applications

anticipated for 6G.

APPENDIX A

PROOF OF LEMMA 1

Proof: Using the fact that the coordinates of the (m, n)th
BS antenna and the kth UE are ((m − 1)d, 0, (n − 1)d)
and (rk sin θk cos ϕk, rk sin θk sinϕk, rk cos θk), respectively,

r
(m,n)
k can be calculated as

(

r
(m,n)
k

)2
= (rk sin θk cos ϕk − (m− 1)d)2

+ (rk sin θk sin ϕk)2

+ (rk cos θk − (n− 1)d)2 (61)

= r2
k

(

1− 2
Ak(m, n)

rk

+
B(m, n)

r2
k

)

(62)

where Ak(m, n) ≜ d((m − 1) sin θk cos ϕk + (n − 1) cos θk)
and B(m, n) ≜ d2((m − 1)2 + (n − 1)2). Using the

second-order Taylor expansion
√

1 + x ≈ 1 + x
2 − x2

8 ,

we obtain

r
(m,n)
k ≈ rk −Ak(m, n) +

1

2rk

(

B(m, n)−
(

Ak

(

m, n
))2
)

−
(

Ak(m, n)− B(m,n)
2rk

)2 −
(

Ak(m, n)
)2

2rk

.

(63)
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In (63), considering that the antenna spacing d = λ
2 is in the

order of millimeter or even micrometer whereas the horizontal

and vertical antenna indices m and n are less than hundred,

Ak(m, n) is generally much smaller than
B(m,n)

2rk
. Thus, the

cubic and quartic terms of (63) can be readily neglected,

leading to the result in Lemma 1. ⊠

APPENDIX B

PROOF OF PROPOSITION 2

Proof: Since f1 is a concave differentiable function of

ω, ωopt in (32) can be obtained by solving ∂f1

∂ω
= 0K .

Also, one can verify that by plugging ω = ωopt, we get

f1(FRF,FBB,ωopt) =
∑K

k=1 log2

(

1+γk(FRF,FBB)
)

. Thus,

P0 and P1 are equivalent in the sense that (FRF,FBB) is

the optimal solution of P0 if and only if it is the optimal

solution of P1, and the optimal values of P0 and P1 are the

same. ⊠

APPENDIX C

PROOF OF PROPOSITION 4

Two lemmas to be used in the proof are presented first.

Lemma 2: For every H = 1, 2, . . . , Nh and V =
1, 2, . . . , Nv and some C > 0, we have
∣

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ejxm,n

∣

∣

∣

∣

∣

2

⩽
C

NHV

∣

∣

∣

∣

∣

H−1
∑

h=1−H
h̸=0

V −1
∑

v=1−V
v ̸=0

Nh
∑

m=1

Nv
∑

n=1

ej∂h,vxm,n

∣

∣

∣

∣

∣

+O
(HV

N

)

+O
(H2V 2

N2

)

+O
( 1

HV

)

. (64)

□
Proof: For every h=1, 2, . . . ,H and v=1, 2, . . . , V , we get

Nh
∑

m=1

Nv
∑

n=1

ejxm,n =

Nh
∑

m=1

Nv
∑

n=1

ejxm+h,n+v

+

h
∑

i=1

v
∑

j=1

(

ejxi,j − ejxi+Nh,j+Nv
)

(65)

=

Nh
∑

m=1

Nv
∑

n=1

ejxm+h,n+v +O(HV ) . (66)

By adding (66) for all h = 1, 2, . . . ,H and v = 1, 2, . . . , V ,

we get
∣

∣

∣

∣

∣

Nh
∑

m=1

Nv
∑

n=1

ejxm,n

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

1

HV

H
∑

h=1

V
∑

v=1

Nh
∑

m=1

Nv
∑

n=1

ejxm+h,n+v +O(HV )

∣

∣

∣

∣

∣

2

(67)

⩽
2

H2V 2

∣

∣

∣

∣

∣

H
∑

h=1

V
∑

v=1

Nh
∑

m=1

Nv
∑

n=1

ejxm+h,n+v

∣

∣

∣

∣

∣

2

+O
(

H2V 2
)

(68)

(a)

⩽
2N

H2V 2

Nh
∑

m=1

Nv
∑

n=1

∣

∣

∣

∣

∣

H
∑

h=1

V
∑

v=1

ejxm+h,n+v

∣

∣

∣

∣

∣

2

+O
(

H2V 2
)

(69)

where (a) is from the Cauchy-Schwarz inequality. Note that

Nh
∑

m=1

Nv
∑

n=1

∣

∣

∣

∣

∣

H
∑

h=1

V
∑

v=1

ejxm+h,n+v

∣

∣

∣

∣

∣

2

=

Nh
∑

m=1

Nv
∑

n=1

H
∑

h,h′=1

V
∑

v,v′=1

ej
(

xm+h,n+v−xm+h′,n+v′

)

(70)

=

H
∑

h,h′=1

V
∑

v,v′=1

Nh+h′

∑

m=1+h′

Nv+v′

∑

n=1+v′

ej
(

xm+h−h′,n+v−v′−xm,n

)

(71)

= CHV

H−1
∑

h=1−H
h̸=0

V −1
∑

v=1−V
v ̸=0

Nh
∑

m=1

Nv
∑

n=1

ej
(

xm+h,n+v−xm,n

)

+O(NHV ) +O
(

(HV )3
)

(72)

where C > 0 is some scalar. Finally, by plugging (72) into

(69), we obtain the desired result in (64). ⊠
Lemma 3: If ∂h,vx : (m, n) 7→ xm+h,n+v − xm,n satisfies

lim
N→∞

∣

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ej∂h,vxm,n

∣

∣

∣

∣

∣

= 0 (73)

for every h ∈ {1 − Nh, 2 − Nh, . . . , Nh − 1} \ {0} and v ∈
{1−Nv, 2−Nv, . . . , Nv − 1} \{0}, then

lim
N→∞

∣

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ejxm,n

∣

∣

∣

∣

∣

= 0 . (74)

□
Proof: Due to (73), the first, second, and third terms of the

right-hand side of (64) goes to zero as N →∞. Also, since H

and V are arbitrary, the last term of the right-hand side of (64)

goes to zero as H,V → ∞, thereby obtaining the desired

result in (74). ⊠
We then prove the statement in Proposition 4.

Proof: From the definition of a(r, θ, φ) and

Lemma 1, one can see that the correlation fN ≜
∣

∣

1
N

aH(ri, θi, ϕi)a(rj , θj , ϕj)
∣

∣

2
is the exponential sum

of quadratic functions given by

fN ≜

∣

∣

∣

∣

1

N
aH(ri, θi, ϕi)a(rj , θj , ϕj)

∣

∣

∣

∣

2

(75)

=

∣

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ej 2πf
c

(

∆r
(m,n)
i

−∆r
(m,n)
j

)

∣

∣

∣

∣

∣

(76)

=

∣

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ej
(

am2+bmn+cn2+dm+en
)

∣

∣

∣

∣

∣

(77)

=

∣

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ejxm,n

∣

∣

∣

∣

∣

(78)
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where xm,n is the quadratic exponent function of m and n

defined as

xm,n ≜ am2 + bmn + cn2 + dm + en (79)

where a, b, c, d, and e are the coefficients determined by

(ri, θi, ϕi) and (rj , θj , ϕj) (see Lemma 1).

When (a, b, c) = 03, xm,n = dm + en becomes a linear

function of m and n so one can see that limN→∞ fN = 0
as

lim
N→∞

fN = lim
N→∞

∣

∣

∣

∣

1

N

Nh
∑

m=1

Nv
∑

n=1

ej
(

dm+en
)

∣

∣

∣

∣

(80)

= lim
N→∞

∣

∣

∣

∣

1

N

(1− ejNhd)(1− ejNve)
(

1− ejd
)(

1− eje
)

∣

∣

∣

∣

(81)

= 0 . (82)

When (a, b, c) ̸= 03, xm,n = am2 + bmn + cn2 +
dm + en becomes a quadratic function of m and n, mean-

ing that ∂h,vxm,n is a linear function of m and n given

by

∂h,vxm,n = xm+h,n+v − xm,n (83)

= (2ah + bv)m + (2cv + bh)n + (dh + ev). (84)

From (82), one can see that (73) holds true for every h ∈
Z \ {0} and v ∈ Z \ {0}. Thus, by exploiting Lemma 3, (74)

holds true for xm,n = am2 + bmn + cn2 + dm + en, which

leads to limN→∞fN =0. ⊠
It is worth mentioning that even in the cases where

the near-field array steering vector is modeled by a poly-

nomial of dimension higher than 2, one can show that

limN→∞

∑Nh

m=1

∑Nv

n=1 ejxm,n = 0 remains valid by sequen-

tially employing Lemma 3.

APPENDIX D

PROOF OF PROPOSITION 5

Proof: Using the mutual orthogonality between the

near-field array steering vectors, the achievable rate Rk of the

kth UE in (2) can be re-expressed as

Rk = log2

(

1 +

∣

∣hH
k FRFfBB,k

∣

∣

2

σ2
n

)

(85)

= log2

(

1 +
α(f, rk)

∣

∣aH(rk, θk, ϕk)FRFfBB,k

∣

∣

2

σ2
n

)

.

(86)

Thus, one can easily see that the optimal hybrid beam focusing

vector F
opt
RF f

opt
BB,k maximizing Rk is given by

F
opt
RF f

opt
BB,k =

√

pkPtx

N
a(rk, θk, ϕk) (87)

where pk ⩾ 0 is the power weight such that
∑K

k=1 pk ⩽ 1.

From (87), one can also see that F
opt
RF and F

opt
BB are those

in (57) and (58).

By plugging (87) to the sum-rate maximization

problem (28), we obtain the power allocation

problem Ppower:

Ppower : maximize
p

K
∑

k=1

log2

(

1 +
NPtxα(f, rk)

σ2
n

pk

)

(88a)

subject to 1
Tp = 1 (88b)

pk ⩾ 0, ∀k ∈ K . (88c)

where p ≜ [p1, p2, . . . , pK ]T ∈ R
K . Note that in (88b),

we recast the original inequality constraint 1
Tp ⩽ 1 in (28c)

into the equality constraint. This is due to the fact that the

data rate increases with the power weight so the optimal

power weight vector p∗ should satisfy the equality condition.

It is worth mentioning that Ppower is a concave water-filling

optimization problem that satisfies the Slater’s condition [65].

Thus, one can solve Ppower by finding out the primal solu-

tion popt and dual solutions λopt and νopt satisfying the

Karush–Kuhn–Tucker (KKT) conditions:

p
opt
k ⩾ 0 ∀k ∈ K (89a)

1
Tpopt = 1 (89b)

λ
opt
k ⩾ 0 ∀k ∈ K (89c)

λ
opt
k p

opt
k = 0 ∀k ∈ K (89d)

νopt =
NPtxα(f, rk)

NPtxα(f, rk) p
opt
k + σ2

n

+λ
opt
k ∀k ∈ K.

(89e)

The optimal power weight vector popt satisfying (89a)-(89e)

is that with elements given by

p
opt
k = max

{

0,
1

νopt
− σ2

n

NPtxα(f, rk)

}

∀k ∈ K (90)

where νopt is obtained by solving the following equation.

K
∑

k=1

max

{

0,
1

νopt
− σ2

n

NPtxα(f, rk)

}

= 1 . (91)

⊠
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