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Abstract—Location awareness is crucial for emerging services
and enhanced resource orchestration in next generation (xG)
wireless networks. To provide efficient high-accuracy localization,
xG networks require both algorithms for position inference and
strategies for resource optimization. While the exploitation of soft
information (SI) provides significant gains in localization perfor-
mance, node activation strategies benefit resource utilization by
selecting an adequate set of nodes to perform measurements.
This paper develops a data-driven node activation strategy for
efficient SI-based localization in xG networks. First, we formulate
the node activation problem considering an SI-based position es-
timator. Then, we propose a data-driven node activation strategy
for determining an adequate set of active nodes given only a
position estimate. To validate the proposed strategy, we employ
xG-Loc, a dataset for location-aware xG networks fully compliant
with 3rd Generation Partnership Project (3GPP) specifications.
Case studies in 3GPP scenarios show the benefits of the proposed
node activation strategy.

Index Terms—Localization, network operation, node activa-
tion, data-driven, machine learning.

I. INTRODUCTION

Location awareness is crucial for a myriad of emerging

services in next generation (xG) wireless networks [1]–[4],

including autonomy [5], assets tracking [6], and Internet-of-

Things [7]. The 3rd Generation Partnership Project (3GPP)

providing technical specifications for cellular networks has

defined use cases and performance requirements for seven

positioning service levels in terms of accuracy, availability,

and latency [8], [9]. Location-aware xG networks must fulfill

such performance requirements with an efficient resource

utilization. Nonetheless, providing efficient high-accuracy lo-

calization is difficult due to the underlying tradeoffs between

attainable performance and resource utilization.

The performance of location-aware networks depends on the

propagation conditions, wireless resources, and nodes deploy-

ment [10]. On the one hand, location-aware networks require

algorithms for accurate position inference in complex wireless

environments [11]–[13]. In particular, the exploitation of soft

information (SI) has been shown to outperform existing local-

ization algorithms in xG networks due to a thorough statistical

characterization of the relationships between measurements,

positional features, and contextual data [14], [15]. On the other

hand, location-aware networks require strategies for efficient

resource utilization [16], [17]. Such strategies allow attaining

adequate tradeoffs between localization accuracy and resource

utilization, e.g., via the allocation of wireless resources and

the coordination of nodes transmissions.

Efficient position inference can be obtained by performing

measurements with a suitable subset of nodes [18]–[22].

In location-aware networks, node activation strategies focus

on selecting an adequate set of active nodes for accurate

localization [23]–[25]. However, determining the best set of

active nodes for accurate localization requires channel state

information and incurs significant overhead compromising

latency requirements. While there are extensive studies on

scheduling and handover algorithms for communications, they

are inefficient or even infeasible for localization due to the

different performance metrics in their design. This calls for

node activation strategies that provide near-optimal decisions

in terms of localization performance while employing lim-

ited information. In this regard, data-driven approaches are

encouraging since they enable effective decision making in

complex environments with partial information by learning

from training examples [26]–[28].

The goal of this paper is twofold. First, it aims at developing

a node activation strategy for efficient SI-based localization in

xG networks. Second, it aims at demonstrating the capabilities

of xG-Loc [29], [30], a set of 3GPP-compliant datasets for the

development and evaluation of location-aware xG networks.

The key idea is to learn probabilistic node activation configu-

rations considering an SI-based position estimator.

This paper develops a data-driven node activation strategy

for efficient SI-based xG localization. To validate the proposed

strategy, we present case studies in 3GPP scenarios using the

xG-Loc dataset. The key contributions of this paper are:

• development of a data-driven node activation strategy for

efficient SI-based xG localization;

• quantification of the benefits provided by the proposed

strategy in 3GPP scenarios; and

• demonstration of xG-Loc capabilities to support the de-

velopment of algorithms for location-aware xG networks.

The remaining sections are organized as follows: Section II

provides an overview of 3GPP-compliant localization and xG-

Loc dataset. Section III formulates the node activation problem

for SI-based localization. Section IV describes the proposed

node activation strategy. Section V presents case studies in

3GPP scenarios. Finally, Section VI gives our conclusion.
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Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors

are denoted by bold lowercase letters. For example, a random

variable and its realization are denoted by x and x, respec-

tively; a random vector and its realization are denoted by x

and x, respectively. Sets are denoted by calligraphic font. For

example, a set is denoted by X . The m-dimensional vector

of ones is denoted by 1m: the subscript is removed when the

dimension of the vector is clear from the context. The function

fx(x;θ) indicates the probability distribution functions (PDFs)

of a continuous random vector x parametrized by θ.

II. PRELIMINARIES

This section provides a brief overview of 3GPP radio access

technology (RAT)-dependent localization and xG-Loc dataset.

A. 3GPP RAT-dependent localization

In xG networks, the positions of user equipments (UEs)

can be estimated using measurements obtained by exchanging

signals with base stations (BSs) [31] and possibly neighbor

UEs [32]. The 3GPP has defined two dedicated reference

signals (RSs) for RAT-dependent localization, namely the

positioning reference signal (PRS) in downlink (DL) and

the sounding reference signal (SRS) in uplink (UL) [33].

Both RSs can be transmitted in frequency range 1 (FR1)

with carrier frequency between 410 MHz and 7.125 GHz or

frequency range 2 (FR2) with carrier frequency between

24.25 GHz and 52.6 GHz. The processing of the received RSs

allows to extract relevant power-, time-, and angle-based mea-

surements for localization, including time-of-arrival (TOA),

time-difference-of-arrival (TDOA), round-trip time (RTT), and

angle-of-departure (AOD) [31]. In addition, the detection and

identification of line-of-sight (LOS)/non-line-of-sight (NLOS)

condition can be exploited for xG localization [32].

B. xG-Loc Dataset

xG-Loc is an open-source collection of 3GPP-compliant

datasets for the development and evaluation of localization

algorithms and location-based services [29], [30]. xG-Loc

includes received RSs, time- and angle-based measurements,

and analytics for different network and signal settings in 3GPP

indoor and outdoor scenarios with carrier frequencies in both

FR1 and FR2. The xG-Loc dataset also provides summary data

in JavaScript object notation (JSON) files that can be used

without requiring further processing of the received RSs [29].

The summary data in xG-Loc JSON files include:

• ground truth UE position;

• ground truth LOS/NLOS indicator;

• UE position estimate obtained via SI-based localization

considering RTT measurements [14];

• range estimates from UL-TOA and DL-TOA measure-

ments obtained by processing the received SRS and PRS,

respectively;

• wireless channel quality indicator obtained via blockage

intelligence (BI) [15]; and

• AOD estimates for the indoor scenarios in FR2.

III. PROBLEM FORMULATION

This section formulates the node activation problem consid-

ering an SI-based position estimator.

A. SI-based localization

Consider a non-cooperative location-aware xG network

composed of a single UE with unknown position and Nb BSs

with known positions.1 The index set of BSs is denoted by

Nb = { 1, 2, . . . , Nb}. The positions of the UE and BSs are

denoted by p and pj for j ∈ Nb, respectively. The goal

is to estimate the UE position by leveraging a collection

of measurements {yj}j∈Nb

. Specifically, each measurement

yj obtained between the UE and the BS j is related to

a positional feature θj(p). Such measurements can include

received waveform samples, power-, time-, or angle-based

metrics, or any combination of them.

SI-based localization algorithms exploit a statistical char-

acterization of the relationships between measurements, posi-

tional features, and contextual data [12], [14]. The SI of a posi-

tional feature θ encapsulated in a measurement y is denoted by

Ly(θ). In a non-Bayesian setting, we have Ly(θ) ∝ fy(y;θ).
In particular, SI-based localization is divided in two phases,

namely offline training and online operation.

In the training phase, a generative model for Ly(θ) is

learned from offline measurements [12], [14], [15]. The gener-

ative model encapsulates the position information contained in

measurements based on their joint distribution function, which

can be approximated via density estimation. An effective

approach to learn SI relies on fitting a Gaussian mixture model

(GMM) using the expectation-maximization algorithm [34].

In the operation phase, the SI is determined online based

on the generative models learned offline and the new mea-

surements collected. Such SI is then employed to estimate the

UE position. Let Ns ¦ Nb denote the index set of active BSs

providing measurements. The UE position can be obtained via

maximum likelihood (ML) estimation as

p̂ = argmax
p̃

∏

j∈Ns

Lyj
(θj(p̃)) . (1)

B. Node activation problem

Node activation strategies aim to determine the set of active

BSs Ns that minimizes the position error. In particular, deter-

mining the best set of active BS requires information about the

quality of the measurements obtained. To formulate the node

activation problem, consider that all the available BSs provide

measurements for localization. Let u = [u1, u2, . . . , uNb
]T

denote the node activation vector (NAV) with uj ∈ {0, 1}
representing whether the measurement from BS j is selected

(uj = 1) or not (uj = 0). The UE position estimate can be

expressed as a function of the NAV as

p̂(u) = argmax
p̃

∑

j∈Nb

uj ℓyj
(θj(p̃)) (2)

1In fifth generation (5G) networks, the BSs are referred to as gNodeBs
(gNBs).

2024 IEEE 35th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC): Track 2: 
Networking and MAC

Authorized licensed use limited to: MIT. Downloaded on February 04,2025 at 06:56:50 UTC from IEEE Xplore.  Restrictions apply. 



where ℓyj
(θj(p̃)) = ln{Lyj

(θj(p̃))} denotes the logarithmic

SI. The terms in the summation are the SI contributions

provided by the measurements collected with respect to each

BS, which are selected according to the activation variables

uj . The position error as a function of the NAV is given by

e(u;p) = ∥p̂(u)− p∥ . (3)

Considering the position error (3) as performance metric,

the node activation problem for a UE at a given position p

can be formulated as

Pp : minimize
u

e(u;p) (4a)

subject to 1
Tu = Ns (4b)

uj ∈ {0, 1}, j ∈ Nb (4c)

where Ns is a parameter indicating the number of BSs to be

activated, i.e., Ns = |Ns|. In Pp, (4b) describes the constraint

on the total number of active BSs, i.e.,
∑Nb

i=1 uj = Ns, and

(4c) represents the Boolean constraints for each uj . The opti-

mal solution to Pp is denoted by u∗ = [u∗
1, u

∗
2, . . . , u

∗
Nb

]T.

Such a solution provides the optimal set of active BSs denoted

by N ∗
s = {j : u∗

j = 1}. Note that problem Pp depends on

the generative models used for the SI-based position estimator.

Therefore, the optimal solution to Pp is tailored to the

employed SI-based localization algorithm.

Remark 1: Solving Pp in (4) is challenging since the

cost function is non-convex in general. In particular, solving

this combinatorial problem via exhaustive search requires

evaluating
(

Nb

Ns

)

possible solutions. Note also that the problem

requires prior knowledge about the UE position as well as

measurements from all the BSs in the network. Therefore,

efficient localization calls for developing efficient node acti-

vation strategies that solve Pp approximately by employing

limited information during online operation.

IV. DATA-DRIVEN NODE ACTIVATION STRATEGY

This section describes the proposed node activation strategy.

Specifically, we consider a data-driven approach to learn a

probabilistic node activation decision rule from training data

obtained by solving Pp.

A. Offline training

In the offline phase, we aim at determining a decision rule

to provide near-optimal node activation configurations given a

position estimate p̂. Consider a classification problem consist-

ing of Nb classes, each of which representing the activation

of a single BS. Solving this problem allows determining a

vector of activation probabilities ũ = [ ũ1, ũ2, . . . , ũNb
]T for

soft node activation such that ũj ⩾ 0 and
∑Nb

j=1 ũj = 1.

Specifically, such probabilities can be computed via a paramet-

ric mapping obtained offline in a supervised learning setting

with training data collected by solving instances of Pp.

For a given instance of Pp, we break the optimal NAV

into Ns vectors indicating the activation of a single BS.

Considering the one-hot encoding scheme [34], we have an

Nb-dimensional vector whose elements are all zero except the

element j corresponding to the activation of the BS j, which

takes the value 1. Thereby, each instance of the problem Pp

with optimal solution u∗ provides Ns training examples of

the form (p̂,uj) for j such that u∗
j = 1 where uj denotes the

one-hot encoded vector for the BS j.

Consider the state and decision spaces denoted by X and

U , respectively, such that p̂ ∈ X and ũ ∈ U . Let g : X 7→ U
denote a mapping from the state space to the decision space.

We consider a family of parametric mappings G given by a

predefined neural network architecture with parameter space

Ψ [35]. Note that each ψ ∈ Ψ defines a different mapping

g( · ;ψ) ∈ G. Specifically, we consider a fully connected

neural network architecture to perform the classification task.

The goal of the offline phase is to determine the parameters

ψ∗ ∈ Ψ that provide the best fit to training data. Let

{(p̂(m), ŭ(m))}m∈Ntrain
denote the training data indexed by

Ntrain. Since we consider a classification problem, the output

layer of the neural network employs softmax activation func-

tions enabling the probabilistic interpretation of a categorical

distribution of Nb elements, and the objective function to fit

the model is the cross-entropy loss given the training data

[34], [35]. By minimizing the cross-entropy loss in the training

phase, the neural network is encouraged to match the labels

of the training data and approximate the desired distribution.

Note that the role of the neural network in the node activation

strategy is to approximate a decision rule for a probabilistic

classification task in the form of a parametric function.

To perform offline training more efficiently we consider the

following procedures.

1) Search space reduction: Solving the combinatorial prob-

lem Pp via exhaustive search requires substantial computa-

tion. While the offline phase is performed only once to learn

the decision rule, the reduction of its complexity is crucial for

an amenable training phase. We reduce the search space of

Pp by exploiting the channel quality indicators provided by

BI [15]. BI provides a probabilistic indicator of LOS condition

that takes into account statistical features of the received

waveform, hence also encapsulating information about the

channel quality. The use of BI allows us to discard BSs in

a principled manner by considering the probability of being

in NLOS condition with poor channel quality. Specifically, we

consider the BSs with the best Nr BI values, discarding the

Nb−Nr BSs with the worst channel conditions. By employing

BI to reduce the search space, solving Pp requires evaluating
(

Nr

Ns

)

possible solutions instead of
(

Nb

Ns

)

.

2) Data augmentation: The performance of the decision

rule determined offline can be affected by unpredictable po-

sition errors due to either unreliable measurements or sub-

optimal node activation configurations. We consider data aug-

mentation with factor Naug to increase the amount of training

instances and obtain a decision rule that is more robust to posi-

tion errors. This procedure consists of generating Naug−1 new

training instances by considering position estimates obtained

with different node activation configurations. Such estimates

are paired with the optimal node activation decisions for the

ground truth position, e.g., (p̂, ũ).
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B. Online operation

In the online phase, the node activation configuration is

obtained by evaluating the parametric mapping determined

offline using a position estimate p̂. For example, the first

position estimate can be obtained by performing measurements

with all the available BSs.

From the training phase, we determine the optimal parame-

ter ψ∗ to estimate activation probabilities online by evaluating

the parametric function defined by the neural network archi-

tecture. Given a position estimate p̂, we obtain the activation

probabilities online as

ũ = g(p̂;ψ∗) . (5)

From (5), we can select the Ns BSs with the highest probabilis-

tic scores. Let û = [ û1, û2, . . . , ûNb
]T denote the estimated

NAV. In particular, the elements of û are given by

ûj =

{

1 if ũj is one of the Ns largest elements in ũ

0 otherwise
(6)

where ties are broken arbitrarily. Note that the online computa-

tion requires to evaluate the parametric function (a feedforward

pass of a neural network) and sorting the activation probabil-

ities to find the best Ns. Therefore, the complexity of online

operation is determined by the neural network architecture,

i.e., by the number and size of its hidden layers.

V. CASE STUDIES

This section evaluates the performance of the proposed data-

driven node activation strategy in 3GPP scenarios using the

xG-Loc dataset [29], [30].

We consider 3GPP indoor open office (IOO) and indoor

factory (InF)-sparse high (SH) scenarios [36]. The IOO sce-

nario consists of an environment of 120 m × 50 m where

Nb = 12 BSs are deployed. The InF-SH scenario consists

of an environment of 300m × 150m where Nb = 18 BSs

are deployed. We consider the xG-Loc configurations em-

ploying RSs transmitted with 100MHz bandwidth at carrier

frequencies of 4GHz and 3.5GHz for the IOO and InF-SH

scenarios, respectively [29], [30]. For each configuration, xG-

Loc includes a total of 100 instances of the simulation scenario

with random parameters. Each instance considers 10 UEs

deployed in the scenario with random position and orientation.

Therefore, the dataset contains a total of Nd = 1000 samples.

In particular, we only leverage the summary data provided in

the xG-Loc JSON files without processing the received RSs.

The training phase of the proposed strategy requires knowl-

edge of the generative models for SI-based localization. There-

fore, we learn the generative models for SI before the training

phase of the proposed strategy. Specifically, we adopt a GMM

with 8 components and employ a 10-fold cross-validation

technique to obtain the generative models [34]. Once the

generative models are obtained, we collect training instances

for the data-driven node activation strategy as in the following.

First, we determine the optimal configuration of Ns active

BSs by solving Pp (4) via exhaustive search. In particular, we

TABLE I
PARAMETERS OF POSITION ERROR MODELS FOR DATA AUGMENTATION

µ σ µ σ

ex −0.1216 1.7888 −0.1324 4.1769

ey −0.3795 4.8635 −0.6136 8.6975

ex −0.0821 1.1766 −0.0435 0.9453

ey 0.0429 3.0816 −0.1279 2.7850

ex −0.8891 0.8003 −0.0061 0.3588

ey 0.0383 2.1778 −0.0126 0.4768

ex 0.0142 0.5241 −0.0080 0.3291

ey 0.0461 1.8223 0.0012 0.4279

Ns e

IOO InF-SH

3

4

5

6

consider Ns = 3, 4, 5, and 6 BSs to evaluate the performance

of the proposed strategy. We perform a search space reduction

exploiting the BI probabilistic indicator considering Nr = 8
BSs. For Ns = 6 in IOO scenario, solving Pp with the

proposed search space reduction requires the evaluation of
(

8
6

)

candidate solutions corresponding to 3% of the
(

12
6

)

possible

solutions. For Ns = 6 in InF-SH scenario, solving Pp with

the proposed search space reduction requires the evaluation

of
(

8
6

)

candidate solutions corresponding to 0.1% of the
(

18
6

)

possible solutions. Hence, the search space reduction via BI

enables amenable offline training.

Next, we perform data augmentation with Naug = 5 to

generate new training instances. To this end, we fit models

of the horizontal localization error on the x and y coordi-

nates. Such models enable generating new training instances

with consistent localization errors considering also the node

activation strategy. Let ex and ey be the localization error

on the x and y coordinates, respectively. We consider that

ex and ey are Gaussian random variables and determine their

parameters (i.e., mean µ and standard deviation Ã) via ML

estimation with training data consisting of position estimates

obtained with different NAVs for each value of Ns considered.

Such NAVs include the optimal solution to Pp obtained via

exhaustive search with search space reduction as well as sub-

optimal configurations. Table I shows the parameters of the

distributions obtained for the first fold of the cross-validation

procedure for the different values of Ns considered. Note that

the standard deviations for the models in InF-SH scenarios

with Ns = 4, 5, and 6 are smaller than those in IOO scenarios,

indicating less variability in the position error. This can be

attributed to the larger number of gNBs available in the InF-

SH scenario, as well as to a lower NLOS probability [36].

To complete the offline phase, we train fully connected

neural network architectures with the augmented training data.

We consider neural networks composed of 7 hidden layers with

32, 64, 128, 256, 512, 64, and 32 neurons, respectively. The

input and output layers have sizes of 2 and Nb, respectively.

The activation functions of the hidden layers are rectified linear

units, while those of the output layer are softmax functions.

The neural network architectures are trained using the Adam

algorithm with 30 epochs and a batch size of 128 [35].
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Fig. 1. Performance of node activation strategies with different numbers of active BSs in the considered 3GPP scenarios.

The performance of the proposed node activation strategy

is evaluated on test data and compared with random node

activation. We also consider the localization accuracy obtained

by employing all the BSs in the scenario as benchmark. Note

that this benchmark corresponds with the methodology in

3GPP technical reports [37]. The localization performance is

evaluated in terms of the empirical cumulative distribution

function (ECDF) of the horizontal localization error eh. We

denote the ECDF of eh as F̆ (eh).

Fig. 1a shows the performance of the proposed data-driven

node activation strategy in the IOO scenario for different val-

ues of Ns. Note that the proposed strategy provides significant

performance improvements compared to random node activa-

tion. While the random activation strategy selects BSs in both

LOS and NLOS conditions randomly, the proposed strategy

selects BSs with favorable channel conditions by relying on

a probabilistic characterization. In particular, increasing Ns

provides a performance improvement in the proposed strategy.

At the 90th percentile, the position error for the baseline per-

formance and the proposed strategy with Ns = 4 and Ns = 6
are 1.13m, 3.14m, and 1.60m, respectively. This indicates

that reducing the number of BSs, i.e., the amount of network

resources employed, by 67% and 50% implies performance

losses of 2.01m and 0.47m for Ns = 4 and Ns = 6 active

BSs, respectively. These results show the underlying tradeoff

between attainable performance and resource utilization.

Fig. 1b shows the performance of the proposed data-driven

node activation strategy for in the InF-SH scenario for different

values of Ns. Similarly to the IOO scenario, the proposed strat-

egy provides significant performance improvements compared

to random activation in the InF-SH scenario. Furthermore,

it can be noticed that the proposed strategy provides better

performance in the InF-SH scenario compared to the IOO

scenario. At the 90th percentile, the position error for the

baseline performance and the proposed strategy with Ns = 4
and Ns = 6 are 0.67m, 2.73m, and 1.20m, respectively.

3 4 5 6

0

25

50

75

100

79.5% 78%
75% 74.5%

Ns

%
L
O
S
B
S
s

(a) IOO scenario.

3 4 5 6
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50

75

100
89% 87.4% 87% 86%

Ns

%
L
O
S
B
S
s

(b) InF-SH scenario.

Fig. 2. Percentage of active BSs in LOS condition when selected according
to the proposed strategy in 3GPP scenarios.

These results indicate that reducing the number of BSs by 78%

and 67% implicate performance losses of 2.06m and 0.53m

for Ns = 4 and Ns = 6 active BSs, respectively. In particular,

the reduction of active BSs is more significant in the InF-SH

scenario due to its higher number of BSs available.

The results on the localization error show that the pro-

posed node activation strategy can activate BSs in favorable

conditions and provide adequate performance with only the

position estimate as parameter. To gain more insights into

these results, Fig. 2 shows the percentage of BSs in LOS

condition activated by the proposed node activation strategy

for the settings considered. In the IOO scenario, the percentage

of BSs in LOS condition varies between 74.5% and 79.5%. In

the InF-SH scenario, the percentage of BSs in LOS condition

varies between 86% and 89%. These results show that the

percentage of BSs in LOS condition selected does not vary

significantly with Ns. Note that the InF-SH scenario shows

better performance due to a lower variability in the position

error (cf. Table I). This demonstrates the effectiveness of the

proposed strategy in activating BSs that are in favorable chan-

nel conditions to provide adequate localization performance.
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VI. CONCLUSION

This paper presents a data-driven node activation strategy

for efficient SI-based localization in xG networks. The pro-

posed strategy takes into account the characteristics of the SI-

based position estimator and employs only a position estimate

in the decision rule for node activation. In particular, this

approach allows to learn NAVs tailored to the generative mod-

els used for SI-based localization. Results in 3GPP scenarios

using the xG-Loc dataset show that the proposed strategy

outperforms random node activation due to the activation of

BSs with favorable channel conditions. The proposed strategy

provides satisfactory performance with limited information,

hence reducing measurement overhead for decision making.

The presented results reveal the potential benefits of data-

driven node activation for SI-based localization and demon-

strate the capabilities of xG-Loc dataset for expediting the

development of location-aware xG networks.
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