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Abstract—Location awareness is crucial for emerging services
and enhanced resource orchestration in next generation (xG)
wireless networks. To provide efficient high-accuracy localization,
xG networks require both algorithms for position inference and
strategies for resource optimization. While the exploitation of soft
information (SI) provides significant gains in localization perfor-
mance, node activation strategies benefit resource utilization by
selecting an adequate set of nodes to perform measurements.
This paper develops a data-driven node activation strategy for
efficient SI-based localization in xG networks. First, we formulate
the node activation problem considering an SI-based position es-
timator. Then, we propose a data-driven node activation strategy
for determining an adequate set of active nodes given only a
position estimate. To validate the proposed strategy, we employ
xG-Loc, a dataset for location-aware xG networks fully compliant
with 3rd Generation Partnership Project (3GPP) specifications.
Case studies in 3GPP scenarios show the benefits of the proposed
node activation strategy.

Index Terms—Localization, network operation, node activa-
tion, data-driven, machine learning.

I. INTRODUCTION

Location awareness is crucial for a myriad of emerging
services in next generation (xG) wireless networks [1]-[4],
including autonomy [5], assets tracking [6], and Internet-of-
Things [7]. The 3rd Generation Partnership Project (3GPP)
providing technical specifications for cellular networks has
defined use cases and performance requirements for seven
positioning service levels in terms of accuracy, availability,
and latency [8], [9]. Location-aware xG networks must fulfill
such performance requirements with an efficient resource
utilization. Nonetheless, providing efficient high-accuracy lo-
calization is difficult due to the underlying tradeoffs between
attainable performance and resource utilization.

The performance of location-aware networks depends on the
propagation conditions, wireless resources, and nodes deploy-
ment [10]. On the one hand, location-aware networks require
algorithms for accurate position inference in complex wireless
environments [11]-[13]. In particular, the exploitation of soft
information (SI) has been shown to outperform existing local-
ization algorithms in xG networks due to a thorough statistical
characterization of the relationships between measurements,
positional features, and contextual data [14], [15]. On the other
hand, location-aware networks require strategies for efficient
resource utilization [16], [17]. Such strategies allow attaining
adequate tradeoffs between localization accuracy and resource
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utilization, e.g., via the allocation of wireless resources and
the coordination of nodes transmissions.

Efficient position inference can be obtained by performing
measurements with a suitable subset of nodes [18]-[22].
In location-aware networks, node activation strategies focus
on selecting an adequate set of active nodes for accurate
localization [23]-[25]. However, determining the best set of
active nodes for accurate localization requires channel state
information and incurs significant overhead compromising
latency requirements. While there are extensive studies on
scheduling and handover algorithms for communications, they
are inefficient or even infeasible for localization due to the
different performance metrics in their design. This calls for
node activation strategies that provide near-optimal decisions
in terms of localization performance while employing lim-
ited information. In this regard, data-driven approaches are
encouraging since they enable effective decision making in
complex environments with partial information by learning
from training examples [26]-[28].

The goal of this paper is twofold. First, it aims at developing
a node activation strategy for efficient SI-based localization in
xG networks. Second, it aims at demonstrating the capabilities
of xG-Loc [29], [30], a set of 3GPP-compliant datasets for the
development and evaluation of location-aware xG networks.
The key idea is to learn probabilistic node activation configu-
rations considering an SI-based position estimator.

This paper develops a data-driven node activation strategy
for efficient SI-based xG localization. To validate the proposed
strategy, we present case studies in 3GPP scenarios using the
xG-Loc dataset. The key contributions of this paper are:

e development of a data-driven node activation strategy for
efficient SI-based xG localization;

e quantification of the benefits provided by the proposed
strategy in 3GPP scenarios; and

e demonstration of xG-Loc capabilities to support the de-
velopment of algorithms for location-aware xG networks.

The remaining sections are organized as follows: Section II
provides an overview of 3GPP-compliant localization and xG-
Loc dataset. Section III formulates the node activation problem
for SI-based localization. Section IV describes the proposed
node activation strategy. Section V presents case studies in
3GPP scenarios. Finally, Section VI gives our conclusion.
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Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
are denoted by bold lowercase letters. For example, a random
variable and its realization are denoted by x and z, respec-
tively; a random vector and its realization are denoted by x
and x, respectively. Sets are denoted by calligraphic font. For
example, a set is denoted by X. The m-dimensional vector
of ones is denoted by 1,,: the subscript is removed when the
dimension of the vector is clear from the context. The function
fx(x; 0) indicates the probability distribution functions (PDFs)
of a continuous random vector x parametrized by 6.

II. PRELIMINARIES

This section provides a brief overview of 3GPP radio access
technology (RAT)-dependent localization and xG-Loc dataset.

A. 3GPP RAT-dependent localization

In xG networks, the positions of user equipments (UEs)
can be estimated using measurements obtained by exchanging
signals with base stations (BSs) [31] and possibly neighbor
UEs [32]. The 3GPP has defined two dedicated reference
signals (RSs) for RAT-dependent localization, namely the
positioning reference signal (PRS) in downlink (DL) and
the sounding reference signal (SRS) in uplink (UL) [33].
Both RSs can be transmitted in frequency range 1 (FRI1)
with carrier frequency between 410 MHz and 7.125 GHz or
frequency range 2 (FR2) with carrier frequency between
24.25 GHz and 52.6 GHz. The processing of the received RSs
allows to extract relevant power-, time-, and angle-based mea-
surements for localization, including time-of-arrival (TOA),
time-difference-of-arrival (TDOA), round-trip time (RTT), and
angle-of-departure (AOD) [31]. In addition, the detection and
identification of line-of-sight (LOS)/non-line-of-sight (NLOS)
condition can be exploited for xG localization [32].

B. xG-Loc Dataset

xG-Loc is an open-source collection of 3GPP-compliant
datasets for the development and evaluation of localization
algorithms and location-based services [29], [30]. xG-Loc
includes received RSs, time- and angle-based measurements,
and analytics for different network and signal settings in 3GPP
indoor and outdoor scenarios with carrier frequencies in both
FR1 and FR2. The xG-Loc dataset also provides summary data
in JavaScript object notation (JSON) files that can be used
without requiring further processing of the received RSs [29].
The summary data in xG-Loc JSON files include:

o ground truth UE position;

o ground truth LOS/NLOS indicator;

« UE position estimate obtained via SI-based localization
considering RTT measurements [14];

« range estimates from UL-TOA and DL-TOA measure-
ments obtained by processing the received SRS and PRS,
respectively;

« wireless channel quality indicator obtained via blockage
intelligence (BI) [15]; and

« AOD estimates for the indoor scenarios in FR2.

III. PROBLEM FORMULATION

This section formulates the node activation problem consid-
ering an SI-based position estimator.

A. SI-based localization

Consider a non-cooperative location-aware xG network
composed of a single UE with unknown position and N}, BSs
with known positions.! The index set of BSs is denoted by
M, ={1,2,..., Np}. The positions of the UE and BSs are
denoted by p and p; for j € N, respectively. The goal
is to estimate the UE position by leveraging a collection
of measurements {y; }j en, - Specifically, each measurement
y; obtained between the UE and the BS j is related to
a positional feature 6;(p). Such measurements can include
received waveform samples, power-, time-, or angle-based
metrics, or any combination of them.

SI-based localization algorithms exploit a statistical char-
acterization of the relationships between measurements, posi-
tional features, and contextual data [12], [14]. The SI of a posi-
tional feature 8 encapsulated in a measurement y is denoted by
L4(0). In a non-Bayesian setting, we have £ (6) o< fy(y; 0).
In particular, SI-based localization is divided in two phases,
namely offline training and online operation.

In the training phase, a generative model for L£,(0) is
learned from offline measurements [12], [14], [15]. The gener-
ative model encapsulates the position information contained in
measurements based on their joint distribution function, which
can be approximated via density estimation. An effective
approach to learn SI relies on fitting a Gaussian mixture model
(GMM) using the expectation-maximization algorithm [34].

In the operation phase, the SI is determined online based
on the generative models learned offline and the new mea-
surements collected. Such SI is then employed to estimate the
UE position. Let AV; C N, denote the index set of active BSs
providing measurements. The UE position can be obtained via
maximum likelihood (ML) estimation as

P = arg max H Ly, (0;(p)) - (1)
Pjen

B. Node activation problem

Node activation strategies aim to determine the set of active
BSs N that minimizes the position error. In particular, deter-
mining the best set of active BS requires information about the
quality of the measurements obtained. To formulate the node
activation problem, consider that all the available BSs provide
measurements for localization. Let w = [uy,ug,...,un,]"
denote the node activation vector (NAV) with u; € {0,1}
representing whether the measurement from BS j is selected
(u; = 1) or not (u; = 0). The UE position estimate can be
expressed as a function of the NAV as

p(u) = argmax Y u;ly (6;(p)) )
JEN

In fifth generation (5G) networks, the BSs are referred to as gNodeBs
(gNBs).
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where £, (0;(p)) = In{L,,(6;(p))} denotes the logarithmic
SI. The terms in the summation are the SI contributions
provided by the measurements collected with respect to each
BS, which are selected according to the activation variables
u;. The position error as a function of the NAV is given by

e(u;p) = [[p(u) —p|- 3)

Considering the position error (3) as performance metric,
the node activation problem for a UE at a given position p
can be formulated as

(4a)

(4b)
(4c)

&p : minimize e(u;p)
u
subject to 1Tu = N,
u; € {0,1}, jEMN,

where Ny is a parameter indicating the number of BSs to be
activated, i.e., Ny = |N;|. In &), (4b) describes the constraint
on the total number of active BSs, i.e., Zf\i’l u; = N, and
(4c) represents the Boolean constraints for each u;. The opti-
mal solution to &, is denoted by w* = [u}, u3,...,u}, ] .
Such a solution provides the optimal set of active BSs denoted
by NJ = {j : uj = 1}. Note that problem &), depends on
the generative models used for the SI-based position estimator.
Therefore, the optimal solution to &7, is tailored to the
employed Sl-based localization algorithm.

Remark 1: Solving &, in (4) is challenging since the
cost function is non-convex in general. In particular, solving
this combinatorial problem via exhaustive search requires
evaluating (JJ\\[,b) possible solutions. Note also that the problem
requires prior knowledge about the UE position as well as
measurements from all the BSs in the network. Therefore,
efficient localization calls for developing efficient node acti-
vation strategies that solve &, approximately by employing
limited information during online operation.

I'V. DATA-DRIVEN NODE ACTIVATION STRATEGY

This section describes the proposed node activation strategy.
Specifically, we consider a data-driven approach to learn a
probabilistic node activation decision rule from training data
obtained by solving .

A. Offline training

In the offline phase, we aim at determining a decision rule
to provide near-optimal node activation configurations given a
position estimate p. Consider a classification problem consist-
ing of Ny classes, each of which representing the activation
of a single BS. Solving this problem allows determining a
vector of activation probabilities @ = [y, Ug, . . ., x| for
soft node activation such that @; > 0 and Z;V:bl u; = 1.
Specifically, such probabilities can be computed via a paramet-
ric mapping obtained offline in a supervised learning setting
with training data collected by solving instances of 7.

For a given instance of &7,, we break the optimal NAV
into Ny vectors indicating the activation of a single BS.
Considering the one-hot encoding scheme [34], we have an
Np-dimensional vector whose elements are all zero except the

element j corresponding to the activation of the BS j, which
takes the value 1. Thereby, each instance of the problem &7,
with optimal solution u* provides Ny training examples of
the form (p, u;) for j such that u; = 1 where u; denotes the
one-hot encoded vector for the BS j.

Consider the state and decision spaces denoted by X and
U, respectively, such that p e XY and u € U. Let g : X — U
denote a mapping from the state space to the decision space.
We consider a family of parametric mappings G given by a
predefined neural network architecture with parameter space
¥ [35]. Note that each 9 € ¥ defines a different mapping
g(-;v) € G. Specifically, we consider a fully connected
neural network architecture to perform the classification task.

The goal of the offline phase is to determine the parameters
¥Y* € ¥ that provide the best fit to training data. Let
{(p™), 4™}, eni,.., denote the training data indexed by
Nirain- Since we consider a classification problem, the output
layer of the neural network employs softmax activation func-
tions enabling the probabilistic interpretation of a categorical
distribution of [V}, elements, and the objective function to fit
the model is the cross-entropy loss given the training data
[34], [35]. By minimizing the cross-entropy loss in the training
phase, the neural network is encouraged to match the labels
of the training data and approximate the desired distribution.
Note that the role of the neural network in the node activation
strategy is to approximate a decision rule for a probabilistic
classification task in the form of a parametric function.

To perform offline training more efficiently we consider the
following procedures.

1) Search space reduction: Solving the combinatorial prob-
lem &2, via exhaustive search requires substantial computa-
tion. While the offline phase is performed only once to learn
the decision rule, the reduction of its complexity is crucial for
an amenable training phase. We reduce the search space of
&, by exploiting the channel quality indicators provided by
BI [15]. BI provides a probabilistic indicator of LOS condition
that takes into account statistical features of the received
waveform, hence also encapsulating information about the
channel quality. The use of BI allows us to discard BSs in
a principled manner by considering the probability of being
in NLOS condition with poor channel quality. Specifically, we
consider the BSs with the best N, BI values, discarding the
Ny, — N, BSs with the worst channel conditions. By employing
BI to reduce the search space, solving &), requires evaluating
(%) possible solutions instead of (%b)

2) Data augmentation: The performance of the decision
rule determined offline can be affected by unpredictable po-
sition errors due to either unreliable measurements or sub-
optimal node activation configurations. We consider data aug-
mentation with factor Ny, to increase the amount of training
instances and obtain a decision rule that is more robust to posi-
tion errors. This procedure consists of generating N, —1 new
training instances by considering position estimates obtained
with different node activation configurations. Such estimates
are paired with the optimal node activation decisions for the
ground truth position, e.g., (P, @).
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B. Online operation

In the online phase, the node activation configuration is
obtained by evaluating the parametric mapping determined
offline using a position estimate p. For example, the first
position estimate can be obtained by performing measurements
with all the available BSs.

From the training phase, we determine the optimal parame-
ter 1 to estimate activation probabilities online by evaluating
the parametric function defined by the neural network archi-
tecture. Given a position estimate p, we obtain the activation
probabilities online as

uw=g(p:vY"). (&)

From (5), we can select the Ny BSs with the highest probabilis-
tic scores. Let @ = [41, s, ..., 1x,]T denote the estimated
NAV. In particular, the elements of w are given by

. 1 if @; is one of the Ny largest elements in ©)
U; =
J 0 otherwise

where ties are broken arbitrarily. Note that the online computa-
tion requires to evaluate the parametric function (a feedforward
pass of a neural network) and sorting the activation probabil-
ities to find the best Ng. Therefore, the complexity of online
operation is determined by the neural network architecture,
i.e., by the number and size of its hidden layers.

V. CASE STUDIES

This section evaluates the performance of the proposed data-
driven node activation strategy in 3GPP scenarios using the
xG-Loc dataset [29], [30].

We consider 3GPP indoor open office (I0OO) and indoor
factory (InF)-sparse high (SH) scenarios [36]. The 100 sce-
nario consists of an environment of 120m x 50m where
Ny, = 12 BSs are deployed. The InF-SH scenario consists
of an environment of 300m x 150m where N}, = 18 BSs
are deployed. We consider the xG-Loc configurations em-
ploying RSs transmitted with 100 MHz bandwidth at carrier
frequencies of 4 GHz and 3.5 GHz for the IOO and InF-SH
scenarios, respectively [29], [30]. For each configuration, xG-
Loc includes a total of 100 instances of the simulation scenario
with random parameters. Each instance considers 10 UEs
deployed in the scenario with random position and orientation.
Therefore, the dataset contains a total of Nq = 1000 samples.
In particular, we only leverage the summary data provided in
the xG-Loc JSON files without processing the received RSs.

The training phase of the proposed strategy requires knowl-
edge of the generative models for SI-based localization. There-
fore, we learn the generative models for SI before the training
phase of the proposed strategy. Specifically, we adopt a GMM
with 8 components and employ a 10-fold cross-validation
technique to obtain the generative models [34]. Once the
generative models are obtained, we collect training instances
for the data-driven node activation strategy as in the following.

First, we determine the optimal configuration of Ny active
BSs by solving &7, (4) via exhaustive search. In particular, we

TABLE 1
PARAMETERS OF POSITION ERROR MODELS FOR DATA AUGMENTATION
N, . 100 InF-SH
n o m o
3 e; | —0.1216 | 1.7888 | —0.1324 | 4.1769
ey | —0.3795 | 4.8635 | —0.6136 | 8.6975
4 ez | —0.0821 | 1.1766 | —0.0435 | 0.9453
ey 0.0429 | 3.0816 | —0.1279 | 2.7850
5 e; | —0.8891 | 0.8003 | —0.0061 | 0.3588
ey 0.0383 | 2.1778 | —0.0126 | 0.4768
6 ez 0.0142 | 0.5241 | —0.0080 | 0.3291
ey 0.0461 | 1.8223 0.0012 | 0.4279

consider Ny = 3,4,5, and 6 BSs to evaluate the performance
of the proposed strategy. We perform a search space reduction
exploiting the BI probabilistic indicator considering N, = 8
BSs. For Ny = 6 in 100 scenario, solving &7, with the
proposed search space reduction requires the evaluation of (2.)
candidate solutions corresponding to 3% of the (162) possible
solutions. For Ny = 6 in InF-SH scenario, solving &, with
the proposed search space reduction requires the evaluation
of (§) candidate solutions corresponding to 0.1% of the (%)
possible solutions. Hence, the search space reduction via BI
enables amenable offline training.

Next, we perform data augmentation with N, = 5 to
generate new training instances. To this end, we fit models
of the horizontal localization error on the x and y coordi-
nates. Such models enable generating new training instances
with consistent localization errors considering also the node
activation strategy. Let e, and e, be the localization error
on the = and y coordinates, respectively. We consider that
e, and e, are Gaussian random variables and determine their
parameters (i.e., mean p and standard deviation o) via ML
estimation with training data consisting of position estimates
obtained with different NAVs for each value of N considered.
Such NAVs include the optimal solution to &7, obtained via
exhaustive search with search space reduction as well as sub-
optimal configurations. Table I shows the parameters of the
distributions obtained for the first fold of the cross-validation
procedure for the different values of Vg considered. Note that
the standard deviations for the models in InF-SH scenarios
with Ny = 4,5, and 6 are smaller than those in IOO scenarios,
indicating less variability in the position error. This can be
attributed to the larger number of gNBs available in the InF-
SH scenario, as well as to a lower NLOS probability [36].

To complete the offline phase, we train fully connected
neural network architectures with the augmented training data.
We consider neural networks composed of 7 hidden layers with
32, 64, 128, 256, 512, 64, and 32 neurons, respectively. The
input and output layers have sizes of 2 and Ny, respectively.
The activation functions of the hidden layers are rectified linear
units, while those of the output layer are softmax functions.
The neural network architectures are trained using the Adam
algorithm with 30 epochs and a batch size of 128 [35].
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Fig. 1. Performance of node activation strategies with different numbers of active BSs in the considered 3GPP scenarios.

The performance of the proposed node activation strategy
is evaluated on test data and compared with random node
activation. We also consider the localization accuracy obtained
by employing all the BSs in the scenario as benchmark. Note
that this benchmark corresponds with the methodology in
3GPP technical reports [37]. The localization performance is
evaluated in terms of the empirical cumulative distribution
function (ECDF) of the horizontal localization error e,. We
denote the ECDF of ey, as F(ep).

Fig. 1a shows the performance of the proposed data-driven
node activation strategy in the IOO scenario for different val-
ues of N;. Note that the proposed strategy provides significant
performance improvements compared to random node activa-
tion. While the random activation strategy selects BSs in both
LOS and NLOS conditions randomly, the proposed strategy
selects BSs with favorable channel conditions by relying on
a probabilistic characterization. In particular, increasing N
provides a performance improvement in the proposed strategy.
At the 90th percentile, the position error for the baseline per-
formance and the proposed strategy with Ny =4 and Ny =6
are 1.13m, 3.14m, and 1.60m, respectively. This indicates
that reducing the number of BSs, i.e., the amount of network
resources employed, by 67% and 50% implies performance
losses of 2.01m and 0.47m for Ny = 4 and Ny = 6 active
BSs, respectively. These results show the underlying tradeoff
between attainable performance and resource utilization.

Fig. 1b shows the performance of the proposed data-driven
node activation strategy for in the InF-SH scenario for different
values of Ns. Similarly to the IOO scenario, the proposed strat-
egy provides significant performance improvements compared
to random activation in the InF-SH scenario. Furthermore,
it can be noticed that the proposed strategy provides better
performance in the InF-SH scenario compared to the 100
scenario. At the 90th percentile, the position error for the
baseline performance and the proposed strategy with Ny = 4
and Ny = 6 are 0.67m, 2.73m, and 1.20m, respectively.

100 100
8;70 87.4% 87% 86%
79.5% 78 % 7
75% 74.
i % 14.5% | 75k ]
. 0
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% )
0 - S i |
2 50 g ¥
S =
- X
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(a) IOO scenario. (b) InF-SH scenario.

Fig. 2. Percentage of active BSs in LOS condition when selected according
to the proposed strategy in 3GPP scenarios.

These results indicate that reducing the number of BSs by 78%
and 67% implicate performance losses of 2.06 m and 0.53 m
for Ny = 4 and N5 = 6 active BSs, respectively. In particular,
the reduction of active BSs is more significant in the InF-SH
scenario due to its higher number of BSs available.

The results on the localization error show that the pro-
posed node activation strategy can activate BSs in favorable
conditions and provide adequate performance with only the
position estimate as parameter. To gain more insights into
these results, Fig. 2 shows the percentage of BSs in LOS
condition activated by the proposed node activation strategy
for the settings considered. In the IOO scenario, the percentage
of BSs in LOS condition varies between 74.5% and 79.5%. In
the InF-SH scenario, the percentage of BSs in LOS condition
varies between 86% and 89%. These results show that the
percentage of BSs in LOS condition selected does not vary
significantly with Ng. Note that the InF-SH scenario shows
better performance due to a lower variability in the position
error (cf. Table I). This demonstrates the effectiveness of the
proposed strategy in activating BSs that are in favorable chan-
nel conditions to provide adequate localization performance.

Authorized licensed use limited to: MIT. Downloaded on February 04,2025 at 06:56:50 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE 35th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC): Track 2:
Networking and MAC

VI. CONCLUSION

This paper presents a data-driven node activation strategy
for efficient Sl-based localization in xG networks. The pro-
posed strategy takes into account the characteristics of the SI-
based position estimator and employs only a position estimate
in the decision rule for node activation. In particular, this
approach allows to learn NAVs tailored to the generative mod-
els used for SI-based localization. Results in 3GPP scenarios
using the xG-Loc dataset show that the proposed strategy
outperforms random node activation due to the activation of
BSs with favorable channel conditions. The proposed strategy
provides satisfactory performance with limited information,
hence reducing measurement overhead for decision making.
The presented results reveal the potential benefits of data-
driven node activation for SI-based localization and demon-
strate the capabilities of xG-Loc dataset for expediting the
development of location-aware xG networks.
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