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Synopsis A major goal of research in evolution and genetics is linking genotype to phenotype. This work could be direct, such
as determining the genetic basis of a phenotype by leveraging genetic variation or divergence in a developmental, physiological,
or behavioral trait. The work could also involve studying the evolutionary phenomena (e.g., reproductive isolation, adaptation,
sexual dimorphism, behavior) that reveal an indirect link between genotype and a trait of interest. When the phenotype diverges
across evolutionarily distinct lineages, this genotype-to-phenotype problem can be addressed using phylogenetic genotype-to-
phenotype (PhyloG2P) mapping, which uses genetic signatures and convergent phenotypes on a phylogeny to infer the genetic
bases of traits. The PhyloG2P approach has proven powerful in revealing key genetic changes associated with diverse traits, in-
cluding the mammalian transition to marine environments and transitions between major mechanisms of photosynthesis. How-
ever, there are several intermediate traits layered in between genotype and the phenotype of interest, including but not limited to
transcriptional profiles, chromatin states, protein abundances, structures, modifications, metabolites, and physiological param-
eters. Each intermediate trait is interesting and informative in its own right, but synthesis across data types has great promise for
providing a deep, integrated, and predictive understanding of how genotypes drive phenotypic differences and convergence. We
argue that an expanded PhyloG2P framework (the PhyloG2P matrix) that explicitly considers intermediate traits, and imputes
those that are prohibitive to obtain, will allow a better mechanistic understanding of any trait of interest. This approach provides
a proxy for functional validation and mechanistic understanding in organisms where laboratory manipulation is impractical.

Introduction to the genotype-phenotype
map

A central goal of evolutionary genetics is to under-
stand the genetic differences that underlie phenotypic
variation across individuals and species. Understand-
ing this genotype-to-phenotype (G2P) map can help
answer questions about the genetic architecture of
traits and adaptation, the role of particular genetic loci
in adaptation, and facilitate the prediction of pheno-
typic trait values. Indeed, many significant advances
have come from quantitative genetics and association
mapping (Tibbs Cortes et al. 2021; Uffelmann et al.
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2021; Tan et al. 2023), methods that rely on statistical
associations between genetic and phenotypic variation
across individuals of a population. These approaches
have been deeply informative for uncovering G2P
maps, especially with very large sample sizes (Bycroft
et al. 2018). Genomic selection in many agricultural
systems (Crossa et al. 2017; Hayes et al. 2024), as well
as the potential to predict genetic changes leading to
drug resistance in pathogens and tumors (Luth et al.
2024), already demonstrate the potential power of a
deep understanding of G2P links in model systems.
Uncovering the G2P map for diverse traits would
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Fig. | The PhyloG2P framework: traversing the genotype to phenotype map through convergence. (A) Convergent evolution is very
common in the tree of life (Conway Morris 2007). Many traits, including but not limited to coloration, eyes, the ability to grow in specific
substrates, and oxygen-transport systems, have evolved convergently. The PhyloG2P approach takes advantage of the repeated evolution of
a given trait to identify molecular markers that are associated with the trait. The approach has been used to associate trait variation with a
wide variety of molecular markers (e.g., variation in the presence or absence of genes, variation in substitution patterns in protein-coding
or non-coding genomic regions, and variation in transcriptional profiles). However, the association is typically between one type of
molecular marker and the trait of interest, and variation for other intermediate traits is typically not examined. Intermediate traits are
marked with ellipses, and examples are given in Fig. 2. (B) Convergently evolved phenotypic traits can originate via the repeated and
independent occurrence of the same genetic changes (left) or via the independent occurrence of distinct genetic changes that may affect
the same or similar intermediate traits (right). Fig. modified with permission from (Gongalves et al. 2024).

provide enormous benefits to our understanding of the
biological world, allowing predictions of genetic and
phenotypic change in response to climate change, and
informing challenges in medicine and agriculture.

However, while DNA sequence changes are ulti-
mately the causal factor behind most phenotypic dif-
ferences, the translation from genotype to phenotype
proceeds via a large number of molecular intermediates,
including changes in gene expression, protein function,
biochemical activity, and pathway activation. Thus, the
standard G2P map can function like a black box, where
even highly accurate predictions can occur in the ab-
sence of causal understanding. In this perspective, we
highlight the power of phylogenetic methods in disen-
tangling the G2P map. We then discuss how joint anal-
ysis of DNA sequences, phenotypes, and the molecular
intermediates, especially when combined with new ma-
chine learning methods, can facilitate extending G2P
inference across the tree of life.

Phylogenetically bridging from genotype to
phenotype: The PhyloG2P Concept

Some of life’s most spectacular phenotypic changes are
evolutionary adaptations that involve drastic pheno-

typic change over millions of years. To understand the
genotypic changes underlying these diverse phenotypes
requires extending the idea of statistical associations be-
tween genotype and phenotype from a population to a
phylogeny, known as PhyloG2P (Smith et al. 2020, Fig.
1). From a researcher’s point of view, perhaps the most
useful adaptations to apply the PhyloG2P approach are
those in which unrelated species evolved a convergent
phenotypic change after independent exposure to sim-
ilar selective pressures. Convergent evolution provides
a unique opportunity to study G2P relationships, be-
cause the existence of evolutionary replicates raises the
possibility that genetic changes important to trait evo-
lution can be identified because they are shared among
the convergent lineages, winnowing the seemingly lim-
itless potential pool of mutations to those selected to
produce the shared phenotype. The PhyloG2P approach
has proven a powerful framework for understanding
species diversity, adaptation, convergent evolution, and
G2P maps (Box 1). Many studies of both candidate
genes, such as cardenolide resistance in insects (Zhen
et al. 2012), and genome-wide analysis, such as ma-
rine adaptation in mammals (Chikina et al. 2016) or
high altitude adaptation in alpine plants (Zhang et al.
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2023), have revealed convergent genetic changes poten-
tially associated with phenotypic evolution. Convergent
evolution is also evident at very deep timescales, such as
the independent primary acquisitions of photosynthesis
in red/green algae and Rhizaria (Howe and Nisbet 2023;
Johnson et al. 2023).

Despite these successes, the nature of the problem
poses certain challenges. First, not all convergent phe-
notypic change proceeds via similar genetic mecha-
nisms (Fig. 1B; e.g., the independent evolution of an-
tifreeze proteins (Rives et al. 2024)); furthermore, even
in the face of largely convergent genetic mechanisms,
certain aspects of the phenotypic responses of individ-
ual lineages will be idiosyncratic and/or plastic. Adap-
tation can proceed via different genetic mechanisms
to produce a similar phenotypic change, meaning that
PhyloG2P approaches will not be able to detect conver-
gent genetic signatures.

Second, the number of genetic changes that separate
species is vast, and with a huge fraction resulting from
fixation of neutral mutations, making it difficult to pin-
point functionally relevant signals against the phylo-
genetic background (Rockman 2012). Finally, in some
cases, clear signals of repeated evolutionary change can
help pinpoint a particular genomic locus, but do not
provide direct answers regarding the molecular mecha-
nisms at work.

Here, we propose an expanded framework of the
standard PhyloG2P approach that seeks to incorpo-
rate information about intermediate molecular traits
that propagate a genetic change to a phenotypic change
(Fig. 2). We argue that incorporating additional lev-
els of mechanistic information between DNA sequence
(the genotype, “G”) and an organismal trait of interest
(the phenotype, “P”), such as transcriptional variation,
protein activities and modifications, metabolomics, or
physiological responses, can help resolve some of the
challenges discussed above. Consideration of inter-
mediate molecular phenotypes can allow the deter-
mination of the levels at which convergence actually
occurred, as well as help isolate sequence changes
with plausible molecular routes to affect phenotype,
and provide clues to the mechanism of action of se-
quence change. Advances over the past decade in high-
throughput studies, and the revolution in genomics,
have provided a vision of what such complete datasets
could look like in a single species or in distantly re-
lated model species and make now an ideal time to re-
visit and extend the PhyloG2P framework. The ultimate
goal is to find associations across the matrix from geno-
type through intermediate traits to phenotype. This al-
lows mechanistic convergence to be detected either at
the genotype level or any of the intermediate traits al-
lowing for a functional understanding of the trait.

Below, we first describe the data that can be har-
nessed from these intermediate layers (Part 1) and why
they will be highly informative (Part 2). We next discuss
strategies that will enable us to work toward assembling
and interrogating the PhyloG2P of life, including con-
siderations of new methods in machine learning that al-
low for the prediction of missing intermediate pheno-
types where such data cannot be reasonably collected
experimentally (Part 3).

Our focus in this perspective is on eukaryotic or-
ganisms. While several studies use similar approaches
for prokaryotic taxa (Sauer and Wang 2019; Konno and
Iwasaki 2023; Ramoneda et al. 2023; Ramoneda et al.
2024), the pervasive horizontal gene transfer, reduced
recombination and other characteristics of prokaryotes
make careful consideration of prokaryotic PhyloG2P
beyond the scope of this effort.

Box 1: Current approaches to linking genotype to
phenotype across the phylogeny

Several studies have attempted to perform genotype
to phenotype mapping across phylogenies. These can
be grouped into three general groups of approaches:

Studies that focus on candidate genes: These stud-
ies often take a phylogenetic approach to study-
ing variation in proteins known to be associated
with a specific trait in model systems. Examples in-
clude using variation in hemoglobin or hypoxia in-
ducible factors (HIFs) for high altitude adaptation
(Projecto-Garcia et al. 2013), lysozymes in host de-
fense and folivore digestion (Messier and Stewart
1997), flowering traits related to pollinator shifts
(Wessinger et al. 2023), and RNAses (Zhang et al.
2002).

Studies that rely on association: Several studies have
successfully used genomic variation to find the ge-
netic basis of phenotypic traits. These include Phy-
loGWAS for finding the genetic basis of adaptive
traits including red fruit color in tomatoes (Pease
et al. 2016), PhyloACC for studying the evolution
of flightlessness (Sackton et al. 2019), and gene
evolution rate correlation metrics for studying the
mammalian transition to a marine environment
(Chikina et al. 2016).

Broader PhyloG2P: Several methods incorporate the
phylogenetic data with other evolutionary data to
link genotype to phenotype. These include methods
that utilize convergent amino acid changes, correla-
tion in branch lengths, and repeated loss or gain of
gene copy number (Fukushima and Pollock 2023;
Macdonald et al. 2025).
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Fig. 2 Integrating Intermediate Traits into PhyloG2P. (A) Conceptual framework illustrating how genomic sequences are linked to
reproductive traits (viviparous vs. oviparous) through various intermediate traits, including chromatin states, protein structures, hormone
levels, and other molecular or physiological data, which are the components of the expanded PhyloG2P matrix. Classic PhyloG2P only
considers the first and last columns, but by expanding the matrix to include intermediate traits, we can predict gaps and identify causal
links via imputation. ####, measured values; ?, unknown or missing data. (B) Examples of diverse intermediate data types spanning the
genotype to phenotype across different organisms, highlighting the complexity of trait evolution and the role of multi-layered biological

interactions in shaping phenotypic outcomes.

Part 1: What are the intermediate data types?

We argue that incorporating additional molecular in-
formation across species (intermediate data) can extend
traditional PhyloG2P analyses in important ways. Inter-
mediate data types (Fig. 2) generally refer to the molecu-
lar and biological data that fall between raw genome se-
quencing data and organismal phenotypes (Hawkins et
al. 2010). At the DNA level, information on the organi-
zation of 3-dimensional genomes from HiC, chromatin
immunoprecipitation sequencing (CHIP-seq) data on
DNA and protein interactions, and epigenetic modifi-
cation of DNA can all provide a better understanding
of genomic architecture and regulation (Rakyan et al.
2011; Li-Byarlay et al. 2013; Valencia and Kadoch 2019;
Tu et al. 2020).

The transcription process is complex with multiple
regulatory levels involving messenger RNAs, transcrip-
tion factors, RNA modifications, splicing, non-coding
RNAs, and other related factors (Li-Byarlay et al. 2020;
Poliseno et al. 2024). At the RNA level, more data from

transcriptomics (including single-cell sequencing and
various forms of RNA sequencing), Assay for Trans-
posase Accessible Chromatin Sequencing (ATAC-seq),
and other new sequencing tools reveal the dynamics of
the molecular process of transcription and link geno-
type to phenotype.

Proteomic data provide information on translational
regulation, protein structure (empirical or predicted
by AlphaFold), biochemical activity, protein docking
AAG, protein-protein interaction networks, surface
charge, and other related factors (Zhao et al. 2024). In
addition to proteins, data from cellular and physiolog-
ical levels, such as metabolomics, lipidomics, and hor-
monal levels can also be important to understanding the
metabolism of molecules (Li et al. 2010).

While this is not intended as an exhaustive list, we
highlight these examples to illustrate the complexity of
molecular traits that are both influenced by genotype
and, in turn, serve as the molecular building blocks of
organismal phenotypes. We emphasize here that these
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traits have a long history of being studied in a phylo-
genetic context (Brawand et al. 2011; Rohlfs et al. 2014;
Villar et al. 2015; Hoencamp et al. 2021), and indeed as
we discuss in the next section, a number of powerful
examples illustrate the deep understanding that arises
from combining the expertise of organismal and evo-
lutionary biologists, molecular biologists, and physiol-
ogists to study trait evolution from a variety of perspec-
tives. What we argue here is that as both experimental
approaches and machine learning techniques advance,
we have the opportunity to systematically leverage these
intermediate data for complex phylogenetic modeling
of genotype and phenotype that includes intermediate
traits as covariates, such as through hierarchical models
(Hopkins and St. John 2021; Powell et al. 2022).

Part 2: Examples that show the power of
integrating across data types

In many studies of evolutionary adaptations, elucidating
intermediate functional changes arising from putatively
adaptive genetic changes is a critical step in demonstrat-
ing the functional importance of an identified change.
For example, the integration of evolutionary biology
and biochemistry has elucidated the role of hemoglobin
and high altitude adaptation (Storz and Moriyama 2008;
Simonson et al. 2010; Projecto-Garcia et al. 2013; Tufts
et al. 2015; Storz 2021). Signore et al. (2019) used com-
parative genomics and physiological and biochemical
measurements to study how Tibetan mastiffs evolved
adaptations to high altitudes. Phylogenetic analysis and
ancestral state reconstruction revealed that adaptation
was the result of an initial ectopic gene conversion event
in Tibetan wolves, followed by adaptive introgression
into mastiffs. The key is that these evolutionary signa-
tures were followed up by tests of intermediate pheno-
types: oxygen saturation and the Bohr effect using puri-
fied hemoglobin protein. Opsins are another molecule
for which our understanding has benefited mightily
from the combined study of phylogenetic analysis with
intermediate biochemical phenotypes. In this system,
actual measurements of light absorption by opsins, or
predictions made by trained models, elevated the find-
ings of these studies beyond associating sequence evo-
lution with phenotypic evolution (Hagen et al. 2023).
Intermediate phenotypes can be a powerful filter to
highlight genetic changes most likely to be associated
with an organismal trait. In an elegant recent study,
Moreno et al. (2024)examined the convergent evolu-
tion of gliding membranes in marsupials. Screening
for accelerated evolution of putative regulatory regions
revealed more than a thousand candidate genes po-
tentially enriched for glider-accelerated regulatory se-

quence. However, intersecting with functional data—
in this case, RNA-seq expression data from the criti-
cal tissue—narrowed the list and allowed the authors
to identify regulatory evolution around Emx2 as a key
functional modulator of gliding membrane develop-
ment. Another illustrative example is the case of the
cortex protein-coding gene in butterflies, long thought
to be the mechanism of adaptive evolution of butterfly
melanism. However, two recent studies that examined
long noncoding RNA elements (an often neglected in-
termediate trait), have shown that melanism is not due
to protein-coding variation, but is rather due to a long
noncoding RNA inside the cortex locus (Fandino et al.
2024; Livraghi et al. 2024). Other classic examples in-
clude the evolution of pelvic reduction in sticklebacks
(Shapiro et al. 2004), wing spots in Drosophila (Werner
et al. 2010), photosynthesis in ciliates (Johnson et al.
2023) and digit loss in ungulates (Cooper et al. 2014).

While deciphering the genotype to phenotype map
for behavior is likely to be particularly complex, in large
part due to the complexity of the phenotype itself, we
argue this may make the intermediate data types we
advocate for particularly powerful. An example that
demonstrates the utility and complexity of the prob-
lem is Wirthlin et al. (2024) study on the ability to
produce learning vocal output in mammals, i.e., vocal
learning. Previous studies presented evidence of con-
vergence between vocal learning species at anatomi-
cal and gene expression levels, two intermediate traits
(Jarvis 2004; Pfenning et al. 2014). With those insights,
Wirthlin identified a new neuroanatomic region associ-
ated with vocal learning in bats, and experimentally de-
termined its regions of open chromatin. Within those
regions they inferred a set of regulatory regions asso-
ciated with vocal learning by examining which showed
sequence-level change associated with the vocal learn-
ing trait over four separate lineages. Thus, combining
data across intermediate levels was crucial to identify
a tractable set of regions to characterize, because the
pool of potential regulatory regions would have other-
wise been prohibitively large.

Traditional lab models (Drosophila, Caenorhabditis,
yeasts, Arabidopsis) may be the place to start with these
more integrated approaches since they are easily reared,
inexpensive, and already have genetic tools and data for
a wide range of species. Harrison et al. (2024) demon-
strated the power of the approach in yeasts, which led
to the identification of an alternative galactose utiliza-
tion pathway. They employed genomic, metabolomic,
and environmental data from more than 1000 yeast
species grown in more than 100 conditions to train
a machine learning algorithm to predict growth on
different carbon sources. Importantly, while genomic
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and metabolomic data both were able to train effective
models on their own, the combination of genomic and
metabolomic data provided the highest level of accu-
racy.

While this progress in traditional models is promis-
ing, the real goal is to develop these approaches for
any species so that the above factors are less limiting.
For example, the Zoonomia project aims to study the
molecular basis of traits in mammals (Christmas et al.
2023; Kaplow et al. 2023), and incorporating intermedi-
ate traits into PhyloG2P analyses would accelerate dis-
covery in this ambitious project. In the next section, we
explore some possibilities for how the community could
link genotype to phenotype in species that do not lend
themselves to lab manipulation.

Part 3: How do we complete the PhyloG2P
matrix across the tree of life?

A complete matrix, in which intermediate phenotypes
are annotated across diverse species (Fig. 2A), has
the potential to greatly facilitate the linkage of se-
quence changes across a phylogeny to a phenotype
of interest. In particular, isolating intermediate phe-
notypes that show patterns of molecular convergence
congruent with the phenotype of interest can iso-
late biologically meaningful changes from evolution-
ary noise. A complete matrix can also potentially en-
able the identification of causal changes at intermedi-
ate levels, such as protein structure, transcript levels,
or pathway flux, and highlight which levels of orga-
nization show signatures of convergence for a given
trait.

However, in practice, a complete matrix of rele-
vant intermediate molecular phenotypes across a di-
verse range of species with relevant convergent pheno-
types is rarely, if ever, possible. If we consider the pro-
posed matrix described by rows representing species
and columns representing intermediate traits (Fig. 2),
it may be possible to fill in nearly every column for
some selected rows (e.g., for model groups that are
amenable to laboratory studies, such as Drosophila, Sac-
charomyces, Caenorhabditis, Arabidopsis, or Mus), but
many columns (traits) are inaccessible to wide swaths
of the tree of life. For example, molecular intermediates
that require laboratory manipulations (e.g., knockout
experiments, time course transcriptional data, develop-
mental traits) or require targeted reagents (ChIP-seq
where antibodies to transcription factors are required)
may never be feasible to generate (at least in a cost-
effective manner) for the vast majority of species. While
improvements in laboratory techniques can increase the
accessibility of certain intermediate phenotypes (e.g.,
Box 2 on ATAC-seq), it is unlikely that experimen-
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tal improvements alone will allow the rapid quantifica-
tion of diverse intermediate phenotypes across the en-
tire tree of life. Indeed, many species are endangered
or otherwise nearly impossible to study across their
life cycle.

An alternative approach that is increasingly power-
ful is to rely on imputation methods to infer gaps in
the proposed PhyloG2P matrix. Traditionally, imputa-
tion refers to predicting missing data from correlations
across available data; for example, a common technique
in population genetics is to impute missing genotype
calls from patterns of linkage across individuals (Li et
al. 2009; Das et al. 2016). However, this style of impu-
tation is fundamentally limited as it can only infer link-
ages that already exist in the data structure (e.g., by us-
ing linkage disequilibrium to impute missing SNPs in a
genotype matrix).

More recently, advances in machine learning have
led to a flurry of prediction efforts (Song et al. 2020),
where the goal is to predict a missing data type from
an observed data type, often relying on training data
from model organisms. These approaches have the po-
tential to allow for prediction in a way that goes far
beyond statistical imputation by learning an underly-
ing generative function (Benegas et al. 2025). Several
recent methods have been developed to predict inter-
mediate phenotypes, including gene expression (Avsec
et al. 2021; Lal et al. 2024), 3D genome organization
(Brand et al. 2024; Gilbertson et al. 2024), and regions
of open chromatin/putative enhancers (Kaplow et al.
2022; Kaplow et al. 2023), typically using input data
that consists solely of DNA sequence. However, these
approaches typically [although not always, e.g., TACIT
(Huynh et al. 2024)] rely on single-species data. Ap-
proaches that predict missing data from existing data
types but also leverage phylogenetic and cross-species
information are likely to be much more accurate and
powerful than single-species approaches alone. This
kind of imputation-adjacent approach has the poten-
tial, therefore, to be a powerful way to fill gaps in the
PhyloG2P matrix that are not accessible experimentally.
By relying on intermediate phenotypes from accessible
model organism data, we envision leveraging any data
available (usually sequence) across the tree of life.

A particularly powerful demonstration of the impact
of these imputation methods comes from AlphaFold
and related methods (Jumper et al. 2021; Abramson
et al. 2024) that provide an accurate way to predict
protein structure, and, potentially other features such
as post-transcriptional modifications (Shrestha et al.
2024), from primary sequence alone. The potential im-
plications of this advance for understanding adaptation
and the G2P map are just coming into focus. However,
the development of protein language models (e.g., Pro-
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Box 2: ATAC-seq as an example of a lab technique revolution

Detecting regions of the genome that function as regulatory elements is a longstanding, and difficult, problem in
biology (Macdonald and Long 2005; The ENCODE Project Consortium 2007; Kellis et al. 2014). One successful
molecular approach is to identify where specific transcription factors actually bind to DNA using variations of Chro-
matin Immunoprecipitation Sequencing (ChIP-seq) (Park 2009). In a typical ChIP-seq experiment, fragmented and
fixed DNA is incubated with an antibody specific to a target transcription factor, and then the DNA fragments re-
covered are sequenced. While powerful, this approach is quite limited, in particular in that it requires an antibody
targeted to the specific transcription factor of interest or introduction of a transgene that tags the transcription factor
with a common epitope. While antibodies are commercially available for some species and some are cross-reactive,
in many other cases, this limitation may be a costly and significant challenge to overcome (e.g., creating new anti-
bodies by synthesizing peptides that represent epitopes of the protein of interest, immunizing animals, etc.). This
becomes more cost-prohibitive as the number of proteins of interest increases. Transgenic techniques to add an
epitope are similarly unavailable in most species. An alternative approach, called Assay for Transposase-Accessible
Chromatin sequencing (ATAC-seq), relies on the fact that regions of the genome where transcription factors bind
must be accessible to protein (Grandi et al. 2022). In other words, they must be in regions of open chromatin, which
means that they are also accessible to cutting by transposases. By measuring this cut rate approximated by sequence
coverage, it is possible to detect regions of open chromatin in any system for which it is possible to harvest cells
from target tissues. Recent advances, such as Omni-ATAC, provide flexibility in working with flash-frozen or pre-
served cells, raising the possibility of conducting ATAC-seq experiments even on field-collected samples (Corces et
al. 2017). However, even with more flexible lab protocols, some fundamental requirements are hard to avoid (e.g.,
the ability to collect cells—live or flash frozen—from target tissues, development stages, etc.).

CHiP-seq workflow

antibody to specific transcription
factor binds and is isolated

.d Ld

library preparation

DNA sequencing

ATAC-seq workflow
4 g b

! 4 'Q x}f r y
A S

chromatin and ligates adapters
(blue and pinli)/

library preparation

DNA sequencing

Gen, ESM3 (Madani et al. 2023; Hayes et al. 2025))
demonstrates the potential for functional convergence
across a wide range of sequence space, by generat-
ing artificial proteins that share functions with known

proteins despite very low sequence identity (Barrio-
Hernandez et al. 2023). These protein language models
also raise the possibility of being able to predict func-
tional properties of proteins, not just structure, from se-
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quence alone (e.g., inputting a primary sequence and
outputting Vmax), perhaps with relatively low amounts
of functional training data (Bhatnagar et al. 2025).

Nonetheless, it is important to raise a cautionary
point that some forms of missing data prediction have
the potential to be circular or not perform well out-
side the training context (Sasse et al. 2023). That is,
the expectation of convergence (e.g., a similar G2P
map in different species) allows imputation of missing
data (e.g., expression levels under conditions that can-
not be measured in the target species), but this nec-
essary shortcut may lead to false imputation of sim-
ilarities where none exist. This is analogous to a fa-
miliar problem for biologists—overfitting. A potential
way to move forward under these conditions is to im-
plement cycles of prediction, testing, and assessment
(predict-test-learn cycles), instead of linear prediction
and testing paths. Borrowing from the design-test-learn
framework deployed by engineers, the crucial assess-
ment step depends on acquiring novel experimental
data to test the predictions made, such as for one or
more new species or where the initial predictions were
incorrect (Harrison et al. 2024). Relatedly, these predict-
test-learn cycles can inform which data are most infor-
mative for inferring specific intermediate phenotypes
across a clade, allowing researchers to prioritize the data
for future collection. Thus, we envision each predict-
test-learn cycle as filling in and correcting the PhyloG2P
matrix, as well as driving G2P research and discovery
forward.

Conclusions

We have proposed a matrix approach to PhyloG2P stud-
ies that incorporates several intermediate data types
and imputes relevant missing data: the PhyloG2P ma-
trix. The approach starts with a standard PhyloG2P
question, determining the genotypic basis of a phe-
notype, but then adds the likely relevant intermediate
data types (e.g., gene expression, chromatin accessibil-
ity, proteomics, metabolomics) to better link genotype
to phenotype. Machine learning approaches are cru-
cial to both imputing missing data and predicting phe-
notypes from the data matrix. Machine learning ap-
proaches may also inform what data types might be
most informative. It is also important to note that the
basis of these analyses is still rooted in phylogenetic
comparative methods (such as Phylogenetic General-
ized Least Squares [PGLS]) (Revell 2010; Symonds and
Blomberg 2014). The overall goal is to identify genetic
changes underlying phenotypes that have such a pre-
ponderance of evidence in the form of intermediate data
that functional validation may not be necessary. How-
ever, we acknowledge that prediction will be poor at
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first and therefore advocate for predict-test-learn cycles
to refine the approach; many predictive models in ma-
chine learning can improve rapidly with relatively few
training cases [e.g., (Bhatnagar et al. 2025)]. Addition-
ally, it is important to note that advancements in in-
termediate data types (like those discussed for ATAC-
seq) will continue to come for the foreseeable future.
These data types will make the PhyloG2P matrix ap-
proach even more powerful and accessible for a wide
range of species.

We note several caveats to the approach. First, while
data collection costs continue to decline, we are advo-
cating for massive amounts of data which will still be
cost prohibitive in many cases. Second, we acknowl-
edge that for some traits (particularly commercially im-
portant traits associated with crops and livestock), the
ability to perform genetic selection might be sufficient
and a detailed understanding of those traits superflu-
ous. However, we argue that an understanding of the
genetic basis of any trait does no harm to the commer-
cial concerns and does move science forward. Third,
many traits will covary meaning that the causal pheno-
type may be difficult to pin down. In this case, covary-
ing traits could also be included in the matrix, but this
may not help determine causality. Fourth, investigation
of episodes of convergent evolution across vast temporal
and physical scales means that study designs will greatly
differ and will need to be fitted to the traits of interest.
Finally, we have purposefully neglected methodologi-
cal details. This is partly because it would be well be-
yond the scope of this perspective and partly because
they are yet to exist. Working through the problem with
model systems like yeast may be the best way to move
forward and develop the requisite methods through rel-
atively rapid learning cycles.
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