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Abstract—Reliable location awareness is essential for the de-
velopment of new services and applications in non-terrestrial
networks (NTNs). The ability of malicious users to report false
location information poses a significant threat to the performance
of NTNs. This threat introduces the need for a flexible and
robust location verification system (LVS) that can reliably detect
malicious users. This paper proposes a single-satellite LVS
based on round-trip time and angle-of-arrival measurements. We
characterize several sources of uncertainty unique to NTNs and
examine their combined effect on positioning error. Using this
model, we approximate a likelihood function for the unknown
user position and propose a likelihood ratio decision rule for loca-
tion verification. Results display receiver operating characteristic
(ROC) curves to evaluate the LVS performance when a malicious
user is located at various distances from its reported location.
When compared with two other baseline LVSs, the proposed
system is shown to significantly improve area under the ROC
curve performance.

Index Terms—Non-terrestrial networks, network verified lo-
cation, round-trip time, angle-of-arrival, location verification
system.

I. INTRODUCTION

Location awareness in next generation (xG) networks is

critical for optimized network performance, resource man-

agement, and many other applications [1]–[4]. In non-

terrestrial networks (NTNs), accurate position data can en-

hance command-and-control capability in remote areas, en-

able efficient management of satellite handover, and ensure

seamless integration with terrestrial infrastructure [5]–[7]. As

cellular systems push towards ubiquitous global connectivity

enabled by NTNs, the need for awareness of user equipment

(UE) location information continues to grow [8]–[11].

The coverage areas of low earth orbit (LEO) satellites in

NTNs can extend for thousands of kilometers, thus limiting the

value of cell-ID location information immediately available to

the network [8], [12]. Malicious users can potentially tamper

with NTNs by spoofing their reported location information [9].

This can hinder law enforcement or network governance activ-

ities, introduce ambiguity regarding appropriate core network
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selection, and degrade network performance by interfering

with resource allocation within the LEO network itself [8],

[13], [14]. In the event that the coverage area of a single

satellite reaches across national boundaries, an attacker can

exploit this ambiguity by connecting to an inappropriate public

land mobile network in order to circumvent regulation or evade

law enforcement [8], [15]. These possibilities introduce the

need for a reliable NTN location verification system (LVS)

that can detect UEs reporting spoofed location information

to the network. According to the 3rd Generation Partnership

Project (3GPP), a satellite network must independently verify

UE location to within 5-10 km [9].

Various methods have been proposed which depend on radio

access technology to verify UE location in NTNs. In [16],

the authors propose a time difference-of-arrival positioning

method involving multiple satellites. This method exploits

spatial diversity in satellite mega-constellations to estimate UE

location, but requires all nodes to communicate with a central

processing center, thus potentially suffering from geometric

dilution of precision (GDOP) [16], [17]. Methods based solely

on round-trip time (RTT) also require multiple measurements

with spatial diversity for a position estimate and thus can also

be affected by GDOP. In [18], the authors present a method

for localization of remote nodes based on a fusion of RTT and

Doppler measurements. However, Doppler-based techniques

are limited in their spoofing resilience because a malicious

UE has direct control over its transmitting frequency [19].

We propose a novel UE LVS based on angle-of-arrival

(AOA) and RTT measurements from a single satellite. This

method avoids the detrimental effects of GDOP by reducing

the total number of measurements required. Additionally, the

AOA measurement limits the ability of a malicious UE to

tamper with location estimation inputs. First, we enumerate

and investigate the effects of realistic sources of uncertainty on

the model, then we approximate the noise probability distribu-

tion function (PDF) using a Gaussian mixture model (GMM)

to formulate a likelihood ratio test. Finally, we compare the

proposed LVS against two baseline decision rules and evaluate

its performance.

Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors
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and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a random variable and its

realization are denoted by x and x; a random vector and its

realization are denoted by x and x; a matrix is denoted by

X , respectively. Sets are denoted by calligraphic font, and a

set complements are denoted by a bar. For example, a set and

its complement are denoted by X and X . The determinant,

Euclidean norm, and transpose operations are denoted by | · |,
∥ · ∥, and [ · ]T, respectively.

II. SYSTEM MODEL

In this section we define a noiseless system model relating

geometry, verified acceptance regions, and noiseless measure-

ments. Noise and uncertainty will be applied to the model in

Section III.

A. Geometric Model for LEO Network

Consider a UE on the surface of the earth located at the

position u = [ux uy uz ]
T in the Earth-Centered-Earth-Fixed

(ECEF) coordinate reference frame. This UE is in the field

of view (FoV) of a single LEO satellite orbiting above and

connected to it. The LEO satellite is able to obtain RTT

and two-dimensional AOA measurements from the UE. In

addition, consider three ECEF points on the LEO orbit: the

point pt = [ pt,x pt,y pt,z ]
T where the satellite transmits

its downlink (DL) packet for RTT measurement, the point

pr = [ pr,x pr,y pr,z ]
T where the satellite receives the

uplink (UL) packet responding to the DL packet, and the

point pa = [ pa,x pa,y pa,z ]
T where the satellite performs

AOA estimation on an UL signal from the UE. The instan-

taneous satellite velocities at these three points are denoted

by vt = [ vt,x vt,y vt,z ]
T, vr = [ vr,x vr,y vr,z ]

T, and

va = [ va,x va,y va,z ]
T, respectively. Fig. 1 illustrates this

geometric reference system.

B. UE Acceptance Region

Upon request from the satellite, the UE reports its own

position estimate uc = [uc,x uc,y uc,z ]
T to the satellite [8],

[20]. A compliant user reports its true position estimate, while

a malicious user reports a spoofed position. This reported

position uc defines the acceptance region A, i.e., the region

of points on Earth’s surface near uc that are considered

acceptable locations for the true position u of a compliant

user by 3GPP or other authorities. The objective of the LVS

is to verify the null hypothesis H0: the event that a UE’s true

position u lies within the acceptance region corresponding to

its reported position uc. The alternative hypothesis H1 is the

event that the UE’s true position lies outside the acceptance

region due to a malicious UE report. These hypotheses are

summarized as

H0 : u ∈ A (1)

H1 : u ∈ A . (2)

According to 3GPP [9], A is described as a region contain-

ing all points within 5-10 km from uc. In practice, however,

both A and A have arbitrary geometry based on national

y
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Fig. 1: Geometric reference system. The yellow polygons represent the nadir-
pointing satellite antenna array at different positions in orbit. In the local
coordinate reference frame of the satellite, θ and ψ represent the azimuth
and off-nadir angles, respectively. Note that this figure represents a compliant
user, reporting its true position estimate.

boundaries or immediate needs of the system. For the purposes

of this work, letA be the set of points on Earth’s surface within

5 km from uc.

C. Noiseless Measurement Model

In the absence of noise or uncertainty, the true UE position

u can be uniquely determined from the intersection of the

RTT oblate ellipsoid and AOA line, as shown in Figure 1.

The surface of the RTT ellipsoid represents all points whose

pseudoranges from the foci pt and pr sum to a constant Ä , as

detailed below in (3a). The AOA line in 3D space represents

all points colinear with u and pa. We consider the North-

East-Down (NED) coordinate reference frame with respect to

the satellite, with the origin defined as the AOA measurement

point pa. The positive “North” axis points towards geodetic

north along the meridian of the satellite’s longitude ¼, the

positive “East” axis points towards geodetic east along the the

parallel of the satellite’s latitude ϕ, and the positive “Down”

axis points downward along the ellipsoid normal [21]. In the

NED coordinate reference frame of the satellite, the incident

angles of the AOA line with the antenna array plane are

denoted as the azimuth angle ¹ and off-nadir angle È, as

shown in Fig. 1. Geometrically, the ellipsoid and line can be

defined by Ä(u,pt,pr), ¹(u,pa), and È(u,pa), which satisfy

the following relations:

Ä(u,pt,pr) =
∥pt − u∥+ ∥pr − u∥

c
(3a)

¹(u,pa) = arctan

(

uNED[2]

uNED[1]

)

(3b)

È(u,pa) = arccos

(

uNED[3]

∥u− pa∥

)

(3c)
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where c represents the speed of light, and uNED =
[uN uE uD ]T is a transformation of u into the satellite’s

NED coordinate reference frame according to the following:

uNED = R(u− pa) (4)

where R is the ECEF-to-NED coordinate transformation ma-

trix given by:

R =











− sinϕ cos¼ − sinϕ sin¼ cosϕ

− sin¼ cos¼ 0

− cosϕ cos¼ − cosϕ sin¼ − sinϕ











. (5)

In (5), ϕ and ¼ representing the geodetic latitude and longitude,

respectively, of the satellite at point pa using the World

Geodetic System 1984 (WGS84) global datum. These can be

approximated to an arbitrary degree of precision using efficient

and well-documented numerical methods [22].

III. RTT/AOA-BASED LOCATION VERIFICATION SYSTEM

In reality, there are several independent sources of uncer-

tainty that corrupt the measurement model, which can be

described as measurement noise. This section models this

noise and applies it to the noiseless model defined above.

A. Noise Modeling

Let m be a zero-mean, uncorrelated, multivariate Gaussian

random vector in which each component represents an in-

dependent source of additive error within the measurement

model. Satellite position uncertainty is one source of error

which affects all satellite measurements. Let the uncertain

satellite position estimates be represented by

p̂t = pt +mt (6a)

p̂r = pr +mr (6b)

p̂a = pa +ma (6c)

where mt, mr, and ma are computed as:

mx = mrad

−px

∥px∥
+malong

(

−px

∥px∥
×

(

−px

∥px∥
×

vx

∥vx∥

))

+mcross

(

−px

∥px∥
×

vx

∥vx∥

)

(7)

with the placeholder subscript x ∈ {t, r, a} as appropriate,

and × denoting the vector cross product. The random variables

mrad, malong, and mcross represent the satellite position error

in the radial, along-track, and cross-track directions, respec-

tively. Equation (7) ensures that mrad, malong, and mcross are

applied independently by using the satellite’s local and strictly

orthogonal Radial-Transverse-Normal (RTN) reference frame

[23].

The uncertain satellite position estimates can be added to

the measurement model along with the remaining additive

error sources considered in this paper. The resulting noisy

measurement vector η̂ = [ τ̂ θ̂ ψ̂ ]T can be described as

τ̂ = Ä(u, p̂t, p̂r) +mRTT (8a)

θ̂ = ¹(u, p̂a) +maz +mAOA,az (8b)

ψ̂ = È(u, p̂a) +mon +mAOA,on (8c)

Algorithm 1 Additive noise isolation

1: Generate valid pt, pr, pa, and u, (considering realistic

orbits, timing, and FoV)

2: Calculate η = [ Ä(u,pt,pr) ¹(u,pa) È(u,pa) ]
T

3: for i = 1 to 106 do

4: Generate m, a realization of the random vector m

5: Using m, calculate η̂ = [ Ä̂ ¹̂ È̂ ]T

6: ni ← η̂ − η

7: end for

8: Repeat for various choices of pt, pr, pa, and u in order to

verify assumption of noise independence from parameter

values

where mRTT represents the round-trip time error, maz and

mon represent the satellite attitude error in the azimuth and

off-nadir orientations, respectively, mAOA,az and mAOA,on

represent the azimuth and off-nadir AOA estimation errors,

respectively.

B. Gaussian Mixture Model Approximation

As shown in (6a)–(6c) and (8a)–(8c), some of the random

components of m are applied to parameters through the

functions Ä(·), ¹(·), and È(·). In order to determine the

likelihood of a given measurement based on UE position, we

start by approximating the measurement noise distribution as

purely additive. This allows us to isolate the desirable effect

of the UE position from the undesirable measurement noise

n = [ nτ nθ nψ ]T:

τ̂ ≈ Ä(u,pt,pr) + nτ (9a)

θ̂ ≈ ¹(u,pa) + nθ (9b)

ψ̂ ≈ È(u,pa) + nψ (9c)

or equivalently:

η̂ ≈ η(u,pt,pr,pa) + n (10)

where η(·) = [ Ä(·) ¹(·) È(·) ]T is a deterministic vector of

the geometric functions of interest as described in Section II.

In order to determine the PDF of n, we perform a Monte

Carlo simulation following Algorithm 1 by approximating the

noise as purely additive. Then, we fit a multivariate GMM to

the collected data as an approximation of n. Since each of our

input noise components are Gaussian, and a learned mixture

of Gaussians can reliably approximate many arbitrary PDFs

[24], we can be reasonably confident that a GMM will be an

appropriate model for approximating n.

We use the expectation maximization (EM) algorithm to

learn the probability distribution of n as a multivariate GMM,

where K represents the number of Gaussian components [25].

We choose K such that the resulting model satisfies the

minimum Akaike information criterion (AIC). The GMM can

be represented as:

fn(n) =

K
∑

k=1

Ãkφ(n;µk,Σk) (11)
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Algorithm 2 Proposed LVS performance evaluation

1: Generate valid pt, pr, pa, and u, (considering realistic

orbits, timing, and FoV)

2: Obtain a noisy measurement vector η̂ using Equations

(8a)–(8c)

3: Choose Ç based on desired ROC operating point

4: uc ← u ▷ Compliant UE

5: Partition FoV into A and A

6: Compute R(η̂;A)

7: if R(η̂;A) < Ç then ▷ Decide H1

8: Type I error: false alarm

9: else

10: Verification of compliant UE

11: end if

12: uc ← random point ∈ A ▷ Malicious UE

13: Re-partition FoV into A and A

14: Compute R(η̂;A)

15: if R(η̂;A) > Ç then ▷ Decide H0

16: Type II error: missed detection

17: else

18: Detection of malicious UE

19: end if

where
∑

k Ãk = 1 and φ(n;µk,Σk) represents the k-th

multivariate Gaussian PDF as described below:

φ(n;µk,Σk) =

1

(2Ã)3/2|Σk|
exp

(

−
1

2
(n− µk)

TΣ−1
k (n− µk)

)

(12)

where µk and Σk represent the mean vector and covariance

matrix, respectively, for the k-th Gaussian component.

C. Likelihood Ratio Testing

This formulation allows us to define the measurement likeli-

hood function, or the probability of observing a measurement

vector η given the true 3D user position vector u using

(10). Assuming a non-Bayesian environment without a priori

information about the probability of encountering a malicious

UE, an approximation of the likelihood function of a candidate

UE position u′ can be computed as

L (u′; η̂) = fη̂(η̂;u
′) ≈ fn(η̂ − η(u′))

=

K
∑

k=1

Ãkφ(η̂ − η(u′);µk,Σk) . (13)

According to the Neyman-Pearson lemma, the optimal way

to infer the correct set of hypothesized parameters is by

comparing their resulting ratios of the likelihood functions of

the observed measurements against a scalar threshold value Ç

[26]. This threshold value Ç can be chosen for a desired false

alarm rate, which represents a point on the receiver operating

characteristic (ROC) curve. To verify the position of the user

TABLE I
INPUT NOISE VECTOR COMPONENTS

Name Std. Dev. Description

mrad 1 [m] Satellite radial position error [29]

malong 3 [m] Satellite along-track position error [29]

mcross 2 [m] Satellite cross-track position error [29]

maz 0.2 [deg] Satellite azimuth attitude error [30]

mon 0.2 [deg] Satellite off-nadir attitude error [30]

mRTT 1 [ms] Round-trip time error [31], [32]

mAOA,az 0.5 [deg] Azimuth AOA measurement error [33]

mAOA,on 0.5 [deg] Off-nadir AOA measurement error [33]

within a given acceptance region A, we compare the ratio of

the likelihood function integrated over the surface areas of

interest. The threshold serves as a discriminator between the

null hypothesis of a typical honest UE (H0) and the alternate

hypothesis of a malicious UE which is spoofing its location

(H1).

R(η̂;A) =

∫∫

A
L (u′; η̂)du′

∫∫

A
L (u′; η̂)du′

H0

≷
H1

Ç . (14)

We compare this decision rule against two baseline decision

rules: the reported likelihood threshold and the generalized

likelihood ratio test (GLRT). The reported likelihood threshold

method, as described by (15), directly compares the likelihood

of the reported position uc with a threshold value. The GLRT,

as described by (16), is an extension of the simple point

likelihood ratio to the maximum likelihood within a given

region [27].

B1(η̂;uc) = L (uc; η̂)
H0

≷
H1

Ç (15)

B2(η̂;A) =
maxu′∈A L (u′; η̂)

max
u

′∈A
L (u′; η̂)

H0

≷
H1

Ç . (16)

The decision rules described by (14)-(16) are compared

based on ROC curves for different values of Ç. The steps

for evaluating the performance of these decision systems are

summarized in Algorithm 2.

IV. NUMERICAL RESULTS

For the analysis and simulation in this paper, we consider

the BLUEWALKER 3 satellite with an approximate orbital

height of 500 km and a FoV of (7 × 106) km2 [28]. We use

the WGS84 ellipsoidal model of earth. Orbits are referenced

from publicly-available Two-Line-Element (TLE) files and

simulated in MATLAB® using the SGP4 orbit propagator.

A. Noise Modeling

The random scalar components of the input noise vector

m and their standard deviations are summarized in Table I.

Performing the Monte Carlo simulation as detailed in Algo-

rithm 1 and passing the resulting data points of n to the EM

algorithm consistently resulted in a minimum AIC of K = 1.
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Fig. 2: Overall receiver operating characteristic curve with varying χ using
5-25 km spoofing distances.

This implies that n can be most accurately approximated as

a Gaussian in three dimensions as shown below

fn(n) = φ(n;µ,Σ) . (17)

This is due to the fact that ∥mt∥ j ∥pt∥, ∥mr∥ j ∥pr∥,
and ∥ma∥ j ∥pa∥, therefore it is appropriate to model their

effects on Ä(·), ¹(·), and È(·) as a perturbation using the first-

order Taylor approximation resulting in

n1 ≈ m
T
t

(

∂Ä(u,pt,pr)

∂pt

)

+m
T
r

(

∂Ä(u,pt,pr)

∂pr

)

+mRTT

n2 ≈ m
T
a

(

∂¹(u,pa)

∂pa

)

+maz +mAOA,az

n3 ≈ m
T
a

(

∂È(u,pa)

∂pa

)

+mon +mAOA,on .

Ultimately, this Taylor approximation simplifies to a

weighted sum of independent scalar Gaussian noise distribu-

tions. Although there is a slight dependence on u and the other

parameters in the model, this was verified to be negligible

via simulation. We placed UEs at various locations distributed

throughout the satellite FoV and verified a negligible change

in the approximated noise model. The resulting random noise

vector can clearly be approximated using a single multivariate

Gaussian PDF.

B. LVS Performance Evaluation

We evaluated the performance of the presented noise model

approximation by generating a true user position and noisy

measurement vector η̃ as detailed in (8a)-(8c). For each

measurement, we simulated a compliant UE which reported

its true location, and a malicious UE which reported a random

position outside the acceptance region. Repeating the process

outlined in Algorithm 2 many times, we estimated the Type I

(false alarm) and Type II (missed detection) error probabilities

for various threshold values using each decision rule. The

overall ROC curves for the three decision rules are shown
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Fig. 3: Comparison of ROC curves at different spoofing distances. Dashed
lines represent close spoofing distances (5-15 km) and solid lines represent
far spoofing distances (15-25 km).

in Fig. 2, varying Ç ∈ [0, ∞). We compare the performance

of the proposed method R(η;A), as described in (14), with

both baseline strategies B1(η;uc) and B2(η;A), as described

in (15)-(16).

As the likelihood function and acceptance region change

based on the malicious UE’s reported location, we evaluated

the performance of the LVS at different “spoofing distances”

∥uc−u∥. Fig. 3 shows the LVS performance at close spoofing

distances (between 5 km and 15 km) and far spoofing distances

(between 15 km and 25 km). Finally, Fig. 4 compares the area

under the ROC curve (AUC) for each decision rule when the

spoofing distance is 5-15 km, 15-25 km, or randomly chosen.

The AUC provides a generalized performance metric ranging

between 0 and 1 for a decision system over all thresholds, and

it is calculated by integrating the ROC curve. Note that the

LVS consistently detected any malicious users beyond 25 km

from their reported positions, so the ROC curve for distances

greater than 25 km is trivial. The most significant improvement

in AUC is observed at close spoofing distances between 5-

15 km. As shown in Fig. 4, the proposed LVS outperforms

the GLRT decision rule by 19.3% and the reported likelihood

decision rule by 35.4%. On average, the proposed integrated

likelihood ratio decision rule outperforms the GLRT AUC by

9.6% and the reported likelihood AUC by 12.0%.

V. CONCLUSION

This paper proposes a reliable likelihood-based LVS for

NTNs in xG networks. The system fuses RTT and AOA

measurements from a single satellite into an integrated like-

lihood ratio decision rule. We consider several uncertainty

sources in the NTN scenario and approximate their effects

with a GMM. We implemented a hypothesis test for detecting

spoofed location information by exploiting AOA and RTT in-

formation. Through simulation, we analyzed the performance

of the LVS using the derived noise model when the true error

followed the more general noise model. For the input error

distribution assumed in this paper, choosing the GMM with the
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Fig. 4: AUC performance of the proposed LVS at different spoofing distances.
The proposed integrated likelihood ratio strategy is compared against two
baseline decision rules, as displayed in Figs. 2 and 3.

minimum AIC consistently resulted in a single Gaussian noise

distribution. This noise model was able to consistently dis-

criminate between legitimate and malicious UEs. However, the

framework can be easily extended to an arbitrary uncertainty

distribution and acceptance region geometry using empirical

data. For many input distributions, a GMM can accurately

describe the scenario of a given satellite constellation without

significantly increasing the complexity of the overall model.

By enabling NTN network verified location, this LVS can

help ensure the security of global cellular coverage using LEO

constellations.
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