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Abstract—In recent years, cooperative positioning technologies
have emerged as promising augmentation systems for provid-
ing high-accuracy positioning (HAP) in cooperative intelligent
transportation systems (C-ITS). Among the approaches, implicit
cooperative positioning (ICP) takes advantage of shared target
detections between vehicles to create common reference points for
localization refinement. Their performance, however, is limited
by reliance on predefined parametric models, low scalability and
communication overhead. To address these problems, this paper
introduces a deep multi-agent reinforcement learning (MARL)
framework modelled as a decentralized-partially observable
Markov decision process (Dec-POMDP). We propose an ICP-
multi-agent proximal policy optimization (MAPPO) algorithm,
where distributed agents (i.e., the connected vehicles) learn their
dynamics and those of the surrounding targets by performing
belief estimation over dynamic cooperation graphs that are
continuously adjusted by de/activating communication links with
neighbors agents. A C-ITS scenario is simulated in a CARLA
environment accounting for realistic vehicle dynamics and inter-
vehicle communications. The findings reveal that our ICP-
MAPPO algorithm, leveraging dynamic decentralized execution
and centralized training, outperforms ICP in terms of positioning
accuracy and communication efficiency.

Index Terms—Autonomous agents, cooperative positioning,
multi-agent reinforcement learning, CARLA simulator.

I. INTRODUCTION

In an era where automated mobility services are increasingly
prevalent, the accuracy of localization technologies has be-
come of paramount importance [1]. New-generation connected
vehicles integrate advanced sensor suites and Sth generation
(5G) vehicle-to-everything (V2X) communications to enhance
connectivity and positioning services, setting a new standard
for mobile localization in cooperative intelligent transport sys-
temss (C-ITSs) [2]-[4]. Cooperative positioning (CP) emerges
as a promising approach to enhance localization accuracy
through inter-vehicle sidelink communications, sharing infor-
mation about passive objects to mitigate global navigation
satellite systems (GNSS) degradation [5]-[7].
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Italian Ministry of University and Research under the PNRR funding program,
in part by the National Science Foundation under Grant CNS-2148251, and
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Traditional CP methods leverage passive objects coopera-
tively detected in the surroundings as anchor points to be
used for refining vehicle positioning by Bayesian-filtering.
Framework of this type are the cooperative simultaneous
localization and mapping (SLAM) [8], [9] and the implicit
cooperative positioning (ICP) [10]-[12]. ICP methodologies
have shown to outperform cooperative SLAM in terms of
efficiency and accuracy in vehicle positioning [13]. However,
these methods strive with high computational complexity
and scalability issues when aggregating data across multiple
vehicles. Despite attempts to address these limitations through
distributed message passing algorithm (MPA) [14] or dynamic
model adjustments [15], challenges in communication over-
head and computational burden persist, hindering scalability.

The integration of machine learning (ML) and, more specif-
ically, multi-agent reinforcement learning (MARL) into CP
represents a paradigm shift in addressing the limitations of
traditional Bayesian methods. ML provides innovative solu-
tions for handling scalability in complex graphs and non-
linearity/Gaussianity in models [16]-[18], with MARL and
related deep learning (DL) variants being particularly effective
in complex decision-making environments where independent
agents share a common objective (i.e., reward) and decisions
(i.e., actions) are based on incomplete or uncertain data
about the system state [19]. In the literature of CP, such
framework, namely decentralized-partially observable Markov
decision process (Dec-POMDP) [20], has been applied either
to intelligent swarm-based systems [21], such as unmanned
aerial vehicles (UAVs), for tracking purposes, or for enhanc-
ing conventional Bayesian filtering through agent scheduling
strategies [22], but not concurrently. On the contrary, MARL
algorithms specialized on communications completely discard
the state estimation part [23] and do not focus on commu-
nication efficiency but rather on how to optimally weigh the
received information from the neighbors [24].

This paper aims at combining the two aspects, i.e., the
estimation of the agents’ state and the optimization of the
agent-to-agent cooperation graph in a unique dynamic MARL
framework In particular, we present a novel MARL algorithm,
referred to as ICP-multi-agent proximal policy optimization
(MAPPO), designed specifically for efficient distributed and
cooperative position estimation. We formulate agent-specific
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Fig. 1. 3D representation of the scenario with three vehicles and three
objects (snapshot extracted from CARLA). A2A communication links and
A2T detections are indicated with black and red arrows, respectively.

policies for optimizing communication scheduling among
neighboring agents while concurrently acquiring an under-
standing of the environmental dynamics through the inte-
gration of neighbors’ observations. We adopt a centralized-
training to learn beliefs based on minimum mean square error
(MMSE) criterion and policies from MAPPO objective func-
tions. Then, during dynamic-decentralized-execution, the net-
work graph is modified according to the agents actions and the
state is estimated from the beliefs. Through rigorous validation
in realistic C-ITS scenarios simulated with Carla [25] (see
Fig. 1), our approach demonstrates superior performance in
positioning accuracy and communication efficiency compared
to existing ICP state-of-the-art solutions.

The structure of the article is as follows: Sec. II outlines the
system model involving cooperative agents. Sec. III presents
the the MARL framework and the proposed ICP-MAPPO
algorithm for CP. Sec. IV delineates the simulation setup and
discusses the outcomes of the experiments. Lastly, Sec. V
draws the conclusions.

Notations: A random variable and its realization are denoted
by x and x; a random vector and its realization are denoted
by x and x; a random matrix and its realization are denoted
by X and X, respectively. The function p,(z), and simply
p(z) when there is no ambiguity, denotes the probability
density function (PDF) of x. With the notation x ~ N (u1, 02)
we indicate a Gaussian random variable x with mean p and
standard deviation o, whose PDF is denoted by N (z; i, 02).
We use E{-} and V{-} to denote the expectation and the
variance of random variable, respectively. R stands for the
set of real numbers.

II. SYSTEM MODEL

We indicate the vehicular network graph at time ¢ as G; =
(V, &), where V = {1,..., N} denotes the set of vehicles or
agents (i.e., the nodes), and &; represents the communication
links among them (i.e., the edges). Each agent ¢ € V has a
set \V; ; of neighboring agents at time ¢ and it is described by
a state sl(.ﬁ) € R**!, comprising the 2D position and velocity
vectors, respectively, within a global coordinate framework.
The collective state of all vehicles at time ¢ is denoted as
s = [sgﬁ)]il. The kinematic state transition for vehicle i
at time ¢ follows the model:

7, zt 1 ztfl

with wgﬁll encapsulating the driving noise, which accounts

for motion uncertainty. The state transition PDF following
from the above model is T'(s;’ t)|sZ 1) ép( |s§}:) 1)
The environment also includes K static and passwe objects
(targets), gathered in the set 7 = {1,..., K}, which vehicles
can detect. In this work, we select roadside poles as detectable
objects as they are widely spread and easily recognizable,
especially in urban mobility contexts. Generalization to other
kind of objects is possible for different scenarios. Each pole

k has a constant 2D position state sgc t) € R?*!, and s(T)

[s§c t)} e Aggregates all passive object states at time ¢. Lastly,
s = [(WTgMNT
the aggregated state of the system is s; = [st S; ] .
Vehicles are equipped with a GNSS receiver, a proximity
positioning system, and a passive sensing technology such
as radio detection and ranging (RADAR), light detection and
ranging (LIDAR) or camera. The GNSS receiver provides a

vehicle’s state estimate sgﬁ), modeled as:

g(t}NSS) H S(A) E(t}NSS) ?)

with n(GNSS) ~ N(02X2,R§§NSS)) representing zero-mean
Gau551an noise and and H = [I20242] € R2*4, The
proximity positioning system permits agent-to-agent (A2A)
relative position measurement between vehicles (i,7) € &;:

A2A A A A2A
(,],2t ) H(sz(‘,t) ( )) +n£],2 ) (3)
being nl(.jftA) ~ N (02)(2,R7(;272tA)) an additive zero-mean

Gaussian noise term. The passive sensor enables agent-to-
target (A2T) measurements for detecting passive objects k €
Fi+ within vehicle proximity, formulated as:

A A A
o - HY DT @
where n([zth )~ N (OQXQ,RZ(.ftT )) represents zero-mean

Gaussian noise. From (2), (3) and $4), we defined their corre-
sponding likelihoods p(o (GNSS)|S$)), p(ogﬁiA”s(A) (A))

it S5t
and p(o([,tQtT )|sz(‘i‘),s,(€ t)), respectively The vector of all

available measurements of velpcl -Pt time ¢t is de-
(GNSS) T (A2A o(A2T) . (A2A)
noted as 0;; = [0, 0, 17, with 0{4?*) =
(A2A) (A2T) (A2T) '
ey ]je/\fi, and o, = [0is ]ke]-'i,t‘
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Given the likelihood of all measurements O(o;|s;) £

p(o¢]s;) and the state transition PDF p(s¢|s;—_1), the objective
of CP is to estimate S; according to the MMSE criterion as:

5; = E{sto1+} = /Stp(st\ol:t) dsi (5)

t
where 01.; = [ot/] p—p are the aggregated measurements up
to time ¢ and p(st\olzb is the posterior PDF defined as:

p(s¢]o1:t) o p(oysy) /p(5t|5t71)p(stfl‘ol:tfl) ds;_1.
(6)

We denote the marginal posterior PDF of agent i (or belief)
with b(si7t\01;t) £ p(si7t\01:t). Note that this model assumes
vehicles can accurately associate A2T measurements to known
targets, focusing on CP challenges without the complexities
of data association. Conventional ICP solutions solve this
problem by performing either a centralized extended Kalman
filter (EKF) [12] or a distributed MPA up to convergence [10].
In both cases, the solution is optimal only in the presence of
linear and Gaussian models. This paper focuses on developing
a MARL algorithm that enables agents to automatically learn
the underlying models in non-linear and non-Gaussian settings
and to improve communication efficiency through selective
interaction with neighbors.

III. MARL FOR METHODOLOGY
A. MARL Framework

The framework for cooperative multi-agent systems (MAS)
is conceptualized as a finite-horizon Dec-POMDP, represented
by the tuple (V, S, A, Ty, T, 0,0, R,~, H). Here, V encapsu-
lates the cooperative agents (i.e., vehicles), while S and A
indicate the state and action spaces, respectively. Ty specifies
the initial state distribution at ¢ = 0, and T(st|st_1,at) =
p(st|st,1, at) describes the state transition PDF, integrating
the actions a; = [a;;],i € V, into the state dynamics s;.
Each timestep ¢ brings a joint observation o; € O, derived
from O(o¢la;—1,s:) = p(oia;—1,s;), and a reward ry
from a reward function R(st,at) = 7. Lastly, v and H
are the discount factor and time horizon of the episode,
respectively. Here, with episode, we indicate the duration of
the simulation or real-world application within which agents
operate, reflecting the predetermined number of timesteps over
which strategic decisions and actions are executed.

Given the partial observability of states and rewards, agents
maintain histories hi1.. = hiy = [(a;jp—1, Oi,t’)}z/:p
encapsulating past actions and observations. State esti-
mates §,, are inferred using MMSE from the belief
by (84,¢10i ¢, @;4—1, h; 4—1) parameterized by 1, with actions
sampled from the policy mg(a; |h; ) parameterized by 6. The
objective of the MARL method is to maximize the expected
cumulative discounted reward as max, J(m) = E{Rq}, where
R; = Zf,[:_tl Vt,_t ry , called reward-to-go, is the cumulative
discounted reward from time ¢ to the end of the episode.

B. ICP-MAPPO

For solving the CP problem, while optimizing the com-
munication/cooperation graph among agents, we propose the
following Dec-POMDP:

1) Agents: Each agent in this model corresponds to a
vehicle, indexed by ¢ € V), participating in the network.

2) Actions: The action taken by agent ¢ at time ¢, namely
aj; = [ai,j’t];v:l, involves a binary decision a; ;; € {0,1} on
whether to establish communication with agent j. This permits
to actively modify the connectivity graph and thus enabling a
better communication efficiency.

3) States: The states are SEA), while the states of targets
sET) are implicitly learned by the latent features of the neural
networks (NNs).

4) Observations: Observations available to each vehicle,
denoted as o; ¢, encompass GNSS, A2A, and A2T measure-
ments.

The general scheme for the Dec-POMDP is shown in Fig. 2.
Note that neither the state transition of the environment, nor
the rewards are observed by the agents. On the contrary, only
observations are gathered and stored by the agents within
histories, which are then used for action and state estimation.
Therefore, as in the state-of-the-art literature of MARL, for
ICP-MAPPO, we adopt a centralized-training procedure, en-
abling the agents to perform policy optimization and belief
optimization, while having access to the full observable state
s; and measurements o;. Afterwords, the learned policies are
deployed independently among agents, exploiting the mod-
ification of the coordination graph’s structure based on the
agents’ actions, ranging from a fully-connected to a fully-
decentralized configuration. Therefore, we call this approach
centralized-training and dynamic-decentralized-execution.

The ICP-MAPPO for execution is composed of a long
short-term memory (LSTM) and multi-layer perceptron (MLP)
models for belief and action predictions, respectively, as:

~ b — b
Sit hi,t = bw(si,tloi,ta Q;t—1, hi)t71> (7)

a;y ~ mo(ailhy,). (8)

_ _ N . . .
@y = [ai | ,_, denotes the adjusted action set for agent i
at time ¢ and it is derived by sampling actions from the policy
distribution while also considering the network’s connectivity

constraints:
= i gt
Aige = { -1

Furthermore, h;, encapsulates the belief LSTM’s hidden
features, offering a condensed representation of the interaction
histories between agent ¢ and its chosen neighbors up to the
previous timestep:
b b 1(7
ﬁbt _ hi,t + Ejev h’j,t 1(ai7j,t ==1) (10)
" 142 eyp Wai e ==1)

where 1(-) acts as the indicator function, yielding 1 if the
specified condition is met and O otherwise. We note that the

if .7 S -A/'L',t )
otherwise .

©))
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Fig. 2. Dec-POMDP scheme adopted in the ;CP—MAPPO algorithm for agent
and environment evolutions. Superscript (-) stands for ¢t 4+ 1 for graphical
purposes.

action decisions at time ¢ in (8) rely predominantly on informa-
tion from the previous timestep, ﬁfytfl. This is because agent
1 cannot preemptively access its neighbors’ measurements,
h?)t, Vj € V, to decide on communication actions. The actions
a;. play two essential roles within the belief LSTM frame-
work. First, they enable to incorporate which agents have been
chosen for measurement fusion, crucial for making accurate
state predictions. Second, by assigning negative values to
actions when connectivity is not possible, each agent can
implicitly discern its identification or index, enabling scalable
and efficient training with parameter sharing [26].

In selecting the MARL algorithm, we favored policy op-
timization (PO) methods over Q-learning due to the latter’s
inherent bias issues when integrated with DL, leading to
inaccuracies in estimating state-action values or Q-values.
In contrast, PO algorithms exhibit significantly lower bias
by directly optimizing the objective function J(7) and have
demonstrated superior performance in MARL contexts [27].
Although PO algorithms are characterized by high variance,
necessitating extensive samples for convergence, this challenge
is addressable through the learning of value functions, such
as V™ (s;) or Q7(s¢,a:), which predict the expected long-
term rewards for given states or state-action pairs. Specifically,
we employ MAPPO [27] value estimation modelled with a
recurrent neural network (RNN) with parameters ¢ as:

‘A/¢(3i,tvhz\‘,/t—1)vhz\‘,/t = V¢’(Si,t’tht—1) (11)

where hxt are the hidden features of Vg, also called critic.
On the contrary, 7y is referred to as actor.

The actor and the critic are optimized according to the loss
functions in MAPPO, with the difference that here the actor is
a MLP since the hidden histories in the execution are contained
in the belief LSTM. We define the reward function to incentive
actions that lead to a specified improvement [ in positioning
accuracy at future timesteps. Essentially, each agent ¢ evaluates
whether choosing a different agent j' over agent j would have
resulted in better performance. This concept is encapsulated
in the following reward structure:

1t s =Sl [lser — Senlls < -

ry =49 +1 if HSt—gtHz_ ||5t+1_§t+1|‘§ >
+2 i =B <||s =8l — |81 — Senr|f; < 8-
1

Initially, a reward of —1 is assigned if the action deteriorates
positioning accuracy by more than (5. A reward of +1 is
granted for an improvement exceeding (3, and as the learning
progresses towards convergence with smaller improvements, a
long-term reward of +2 is introduced to encourage sustained
accuracy gains. The belief function by, utilizes a mean square
error (MSE) loss function as:

1 L
L) = 25 [ - sl

13)
T eV =1
where L. is the length of a trajectory.
The pseudo-code for the ICP-MAPPO is reported
in Algorithm 1, where 7, is a transitions defined

as T = (StvOta/\h’?vE‘?ahyvatadtartast+laot+1,§t+1) and
Aig = Ry — Vg, (8i0,hY, 1) is the advantage function
estimate. ICP-MAPPO algorithm is an on-policy, low-bias
algorithm, leveraging latest policy-generated data for agent
training. A centralized value function, incorporating the state
s;+ in (11) beyond local observations, aids in precise value
estimation. The belief computation aligns with model-based
value estimation (MBVE) in reinforcement learning (RL) [28],
utilizing learned dynamics for state prediction to reduce vari-
ance without introducing bias. Finally, rewards in (12) are
linked to belief improvements in future timesteps rather than
direct action outcomes, permitting to optimize actions for the

CP objective function miny J(b) = min, E{Zt Hst — §tH§}

IV. SIMULATION EXPERIMENTS
A. Simulation Setup

For the experiments, we created a C-ITS environment using
CARLA software [25] on an urban layout named TownO02,
covering an area of of 200 x 200 m?. A view of this map is
illustrated in Fig. 1. In this scenario, 20 connected automated
vehicles (CAVs) are uniformly generated within the map’s
limits and navigate for H = 1500 time steps, with each step
occurring every 0.2 seconds. In the scene, there are also 72
poles, which are detected by the CAVs if they fall within a
direct line of sight and a sensing distance of 70 meters. This
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Algorithm 1 Implicit Cooperative Positioning Multi-Agent
Proximal Policy Optimization (ICP-MAPPO)
1: Input: actor, critic and belief parameters 6 = 0,4,
¢ = Gola, and .
2: for each training step n =1, ..., Ngep do
3 Initialize empty batch B = {} and trajectory 7 = []
4 Initialize histories hXO and hP | for critic and beliefs
5: Initialize state estimate 89
6: for t =1to H do
7
8
9

for all agents 7 € V in parallel do
Sample action a;; ~ e, (@i :lhP,)
Send h}, and receive h?, Vj € N,

10: Get value estimate Vg, ,, (si,¢, b}, ;) with (11)
11 Compute @;; and h}, with (9) and (10)

12: Observe Sit+1,O0it+1

13: Get state estimate §; ;11 with (7)

14: end for

15: Observe r; and store 7; in T

16: end for R

17: Compute advantage estimate A; ; V¢ and agent ¢ on T
18: Compute reward-to-go R; for each V¢ on 7

19: Split trajectory 7 into chunks of length L.,
20: for each ¢ =0,...,|H/L,| do

21: B=BU {Tt,;{th foT

22: Adam update of ¥ on L(v)) with data {Tt}fsz
23: end for

24: for each mini-bathh do

25: Sample {Tg}[;l ~ B

26: Adam update of @ on L(6) with data {T(}ZL:TI
27: Adam update of ¢ on L(¢) with data {Tg}Zl
28: end for

29: BOoia =0, Poia = @

30: end for

sensing range is also consistent for A2A interactions. More-
over, we introduce Gaussian noise with a standard deviation
of 2 meters to the GNSS, A2A, and A2T measurements.

We produced two different ground truth simulations for
training and testing the ICP-MAPPO algorithm, while we gen-
erated unique noisy measurement realizations at each training
and testing steps. Unless stated otherwise, we conduct 40
Monte Carlo (MC) evaluations during testing. The training
process utilizes half the total time steps as the trajectory length,
ie, L, = H/2, to facilitate the use of up to two mini-
batches, following guidelines in [27], [29]. We selected the
entropy and clipping coefficients of MAPPO as 0.01 and 0.2,
respectively, while the reward coefficient was set to 0.05. We
set the discount factor v = 0.99 and the learning rate for
the Adam optimization algorithm [30] to 10~5, adhering to
conventional settings.

Regarding the NN architecture, the critic network comprises
three layers: a fully-connected (FC) linear layer with 256
neurons, a gated recurrent unit (GRU) layer with a 256 neuron
capacity, and a concluding FC linear layer. The actor network

is an MLP with two hidden linear layers containing 128 and 64
neurons, respectively, employing rectified linear unit (ReLU)
activation, and a sigmoid-activated output layer. The belief
network incorporates two bidirectional LSTM layers, each
with 256 hidden neurons and ReLLU activations, a Maxout unit
producing 128 output features, and two linear layers of 64 and
32 neurons.

In our study, we compared the proposed ICP-MAPPO algo-
rithm with two key baseline algorithms. We implemented an
EKF-GNSS, meaning a non-cooperative, single-agent GNSS-
based EKF that relies solely on GNSS observations. The filter
uses in the tracking model the same measurement uncertainties
as in generation. Specifically, the Gaussian-distributed mea-
surement noise terms of the measurements have the following
covariance matrices RES’NSS) = Rg?iA) REftT ) = 4L, m?,
For the vehicle motion model, a constant veylo’city model is
assumed, Gaussian-distributed driving process wgﬁ), calibrated
with a standard deviation of 0.5 m/s2. We also implemented
a centralized ICP method [10], which uses the true standard
deviations for both A2A and A2F measurements. This ap-
proach shares the same motion model as the EKF-GNSS.
Notably, the ICP method assumes a fully-connected network
of agents, meaning all agents have access to and share the
same measurement data. This serves as a lower-bound on the
performances of distributed ICP solutions. Moreover, the pre-
cise usage of measurement statistics in both the generation of
scenarios and tracking processes enables an optimal evaluation
of performance by minimizing errors that could arise from
incorrect modeling.

B. Simulation Results

1) Training convergence: In the first experiment, we ver-
ify the convergence of the proposed ICP-MAPPO algorithm
along training episodes and the effect of the chosen reward
coefficient 5. To this aim, in Fig. 3a, we show the mean
and 5-95 percentiles of the reward and root mean square
error (RMSE) on the vehicle position, varying the number
of training episodes. The mean and the error bounds are
computed among the trajectory and agents. From the figure,
we can notice that the mean reward passes from an initial
phase of big (> () negative and positive improvements, i.e.,
—1 and +1, to a convergence phase after about 250 episodes.
To better explain this behaviour, we also report in Fig. 3b the
derivative among timesteps of the MSE on the position (i.e.,
squared RMSE of the orange line in Fig. 3a). Note that the
convergence happens when the derivative MSE falls below
the 8 = 0.05 value, highlighted with a red line. Indeed, 3
physically translates to a reward function enhancement of S m
in a scenario with non-standardized state space. Therefore 3
can regulate the trade-off between speed of policy convergence
and accuracy of position estimates.

2) Impact of the number of detected targets: This assess-
ment has the objective of quantifying the impact of the num-
ber of the detected targets on the positioning performances.
Intuitively, the higher the number of targets simultaneously
detected by two or more agents, the higher the number of

Authorized licensed use limited to: MIT. Downloaded on February 04,2025 at 06:57:16 UTC from IEEE Xplore. Restrictions apply.



2.5

102
2.0

1.5

Reward

10°

0 250 500 750 1000 1250

Episode
(a)

1500 1750 2000

=
o
~

=
o
4

=
o
E)

,_.
[SY
i3

Derivative position MSE [m/s]

,_.
15}
&

0 250 500 750

1000
Episode

(b)

Fig. 3. (a) Mean reached reward (blue line) and RMSE on the position
(orange line) varying the number of training episodes. The uncertainty areas
are the 5-95 percentiles. (b) Derivative of the MSE on the position varying
the number of training episodes (black line) and 3 threshold (red line).

1250 1500 1750 2000

anchors and the resulting positioning accuracy will be. Given
that the maximum number of poles detected by two vehicles
is 14, in Fig. 4, we show the RMSE on the position for
the different methods by manually setting a maximum limit
of detectable targets by each agent. From the figure, we
first notice that the EKF-GNSS represents a lower bound
on the performances when it comes to single agent stand-
alone positioning with no measurements shared among agents.
When cooperation is possible, we observe that ICP-MAPPO
outperforms the Bayesian-filtering ICP solution, reducing the
RMSE from 50 cm to about 41 cm. This improvement makes
ICP-MAPPO suitable for positioning requirements on vehicles
platooning in steady state and cooperative adaptive cruise
control where the accuracy need to be lower than 50 cm [31],
[32].

3) Impact of the number of cooperative agents: In this
last experiment, the aim is to measure the communication
efficiency obtained by ICP-MAPPO with respect to the ICP
algorithm, where all agents are selected by the centralized
implementation. Therefore, in Fig. 5, we report the cumu-
lative number of A2A connections in the network varying
the timestep of the trajectory and for different maximum

Position RMSE [m]

—— EKF-GNSS
— ICP
ICP-MAPPO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of detected targets in the network

Fig. 4. RMSE on the position varying the maximum number of detected
targets by each agent in the network.
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Fig. 5. Number of A2A connections in the network graph at each timestep, for
the ICP and the proposed ICP-MAPPO algorithms, and different maximum
connectivity in the graph.

allowed connectivity of each agent (i.e., 2, 10 and 20). We
can notice that when the number of cooperative agents is low
(e.g., 2) the ICP-MAPPO tends to select all available agents
since neighbors’ measurements can quickly reduce the GNSS
uncertainty. On the contrary, when many agents are available,
especially above 10, the cooperation becomes redundant, as
only the nearest neighbors with a high number shared targets
will have a major contribution in the positioning accuracy.
We can see that, with 10 and 20 agents, ICP-MAPPO, in
comparison to ICP, reduces the number of links of 30% and
60%, respectively.

V. CONCLUSION

In this study, we proposed a solution for CP in a distributed
network of agents that utilize detected passive targets to
enhance positioning accuracy following the ICP framework.
We introduce a generalized ICP solution modelled as a
Dec-POMDP, where the unknown agent state is estimated
through histories comprising both measurements, i.e., GNSS,
A2A and A2T observations, and A2A link activation, i.e.,
actions. The proposed ICP-MAPPO algorithm predicts the
state with belief learning and dynamically optimizes the A2A
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cooperation graph, or equivalently the communication links,
with a refined version of the MAPPO algorithm.

Through realistic simulations in a C-ITS scenario using
the CARLA environment, we demonstrate the superior per-
formance of ICP-MAPPO over conventional ICP methods
in terms of both positioning accuracy and communication
efficiency. In particular, ICP-MAPPO better exploits the coop-
erative detection of targets and actively selects the best set of
neighbors that give a relevant contribution to the positioning
accuracy. Future works could extend the action decisions
to not only A2A link selection, but also active A2A link
communication improvement such as beamforming or packet
scheduling.
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