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Abstract—In the rapidly evolving domain of forthcoming 6th
generation (6G) networks, achieving precise dynamic positioning
down to the centimeter becomes critical, particularly in complex
urban scenarios as those envisioned for cooperative intelligent
transport systems (C-ITSs). To face the challenges introduced
by severe path loss and blockages in new 6G frequency bands,
machine learning (ML) provides innovative strategies to extract
locational intelligence from wide-band space-time radio signals.
This paper proposes the integration of Bayesian neural networks
(BNNs) into cellular multi-base station (BS) tracking systems,
where uncertainties of BNNs account for finite training sets and
measurement errors. Our approach utilizes a deep learning (DL)-
based autoencoder (AE) structure that exploits the full channel
impulse response (CIR) to infer location-centric attributes in both
line-of-sight (LoS) and non-LoS (NLoS) conditions. Validations in
a 3rd Generation Partnership Project (3GPP) compliant urban
micro (UMi) setting, simulated with ray-tracing and traffic sim-
ulations, demonstrate the superior performances of BNN-based
tracking with respect to both traditional geometric-based tracking
methods and state-of-the-art DL models.

Index Terms—Bayesian neural networks, cooperative tracking,
positioning, channel impulse response, 6G.

I. INTRODUCTION

The forthcoming 5th generation (5G) Advanced in 3rd
generation partnership project (3GPP) Release 18 promises a
significant leap in cellular positioning accuracy, aiming for
centimeter-level precision through features such as massive
multiple-input multiple-output (mMIMO), increased band-
widths, and millimeter waves (mmWave) technologies [1]-[3].
Challenges include higher path losses and frequent blockages,
which limit conventional positioning solutions. 5G Advanced
addresses these challenges by integrating machine learning
(ML) into enhanced location services [4], [5]. In particular,
exploiting deep learning (DL) techniques, such as autoencoder
(AE) structures, permits to perform direct position estimation
by matching channel impulse response (CIR) location finger-
prints with pre-stored training data [6], [7]. This is critical
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in non-LoS (NLoS) conditions where reflections cause non-
negligible measurement errors in geometric-based algorithms.

Despite ML’s potential, a main limit is the lack of uncer-
tainty quantification, especially for critical applications such as
connected automated vehicles (CAV) positioning [8]. Bayesian
neural networks (BNNs) offer a solution by not only providing
point estimates but also quantifying the associated uncertainty,
leading to more reliable and robust positioning [9]. The uncer-
tainty derives from the limited spatial density of training data
(epistemic uncertainty) and the measurement noise (aleatoric
uncertainty). BNNs can be particularly resilient in static posi-
tioning, as they incorporate prior knowledge and are able to
quantify the different types of uncertainty.

BNNs have been recently used for uncertainty estimation
in static 5G localization [10], [11]. However, these works
do not exploit the predicted uncertainty for refining the user
equipment (UE) position. Regarding 5G mobile positioning, the
majority of works rely on traditional Bayesian methods, such
as extended Kalman filter (EKF) or message passing algorithm
(MPA) [12], in conjunction with mmWave and MIMO enablers.
In the field of DL, recurrent neural networks (RNNs) have
been gathering much attention thanks to their ability to learn
temporal dependencies [13]. Moreover, a recent study [14]
investigated the usage of attention mechanism in temporal
convolutional networks (TCNs) for NLoS outdoor tracking,
achieving a state-of-the-art mean absolute error (MAE) of 1.8
m. Nevertheless, RNNs and TCNs face limitations in mobile
positioning due to the need for highly accurate training data
(i.e., ground truth for dynamic trajectories) and their inability
to quantify prediction uncertainty, hindering their use in safety-
critical contexts.

In this paper, we propose a novel BNN-based 6th generation
(6G) tracking procedure that relies on an offline training phase
and subsequent integration of BNN uncertainties in a Bayesian
tracking scheme. Inspired by 3GPP’s vision on future mobile
systems and the superior results obtained in NLoS identification
[7] and positioning [6], we integrate the BNN methodology into
an AE structure that exploits the full CIR for positioning, i.e.,
the 2D angle-delay channel power matrix (ADCPM). We test
the proposed methodology in a realistic cooperative intelligent
transport system (C-ITS) scenario within an urban landscape.
Our simulated network adheres to 5G standard-compliant sce-
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narios [15] and provides realistic outdoor conditions through
the use of accurate 3D ray tracing, along with microscopic
vehicular traffic modeling for simulation of UE pathways [16].

The article is structured as follows. Sec. II outlines the
system architecture and the channel fingerprint. Sec. III intro-
duces BNNs terminology and our proposed DL model. Sec. IV
presents the integration of BNNSs into the cellular positioning
system. Sec. V details the simulation setup and findings, while
Sec. VI draws the conclusions.

Notations: A random variable and its realization are denoted
by x and z; a random vector and its realization are denoted by
x and x; a random matrix and its realization are denoted by X
and X, respectively. The function p,(x), and simply p(z) when
there is no ambiguity, denotes the probability density function
(PDF) of x. With the notation x ~ N'(u,c?) we indicate a
Gaussian random variable x with mean p and standard deviation
o, whose PDF is denoted by N (x;u,0?). With the notation
x ~ U(a,b) we indicate a Uniform random variable x with
support [a,b]. We use E{-} and V{-} to denote the expectation
and the variance of random variable, respectively. R and C
stand for the set of real and complex numbers, respectively.

II. 6G POSITIONING SYSTEM
A. Space-Time Channel Model

We consider a mmWave orthogonal frequency division mul-
tiplexing (OFDM) system in which an uplink communication
is established between a UE and a number of base stations
(BSs) at a specific carrier wavelength .. Each BS is equipped
with a uniform planar array (UPA) consisting of N, x Ny,
isotropic antenna elements, whereas the UE is outfitted with an
omni-directional antenna. The channel comprises IV, distinct
propagation paths, each one characterized by its time of flight
(ToF) 1, and angle of arrival (AoA), represented by zenith
angle 6, € [0,7] and azimuth angle ¢, € [0,7] for path
p = 1,...,N,. Defining with T, the sampling interval and
N, the number of sub-carriers, we obtain a symbol duration of
T. = N.T;. The frequency for the k-th sub-carrier is f = Tﬁc,
k = 0,...,N. — 1, and we assume that the cyclic-prefix
duration of T, = NgT; exceeds the channel’s maximum delay
TMAX, Where N indicates the number of sampling intervals
comprising a guard interval.

Assuming a sampling rate of 1/7; and treating each path as
independent and wide-sense stationary, the channel frequency
response (CFR) for the k-th sub-carrier over a UE-BS link is
expressed as follows [17], [18]:

Np
hi, = Z ape 2Tk e(8,, 9,), (D
p=1
where e(6,,9,) € CMM s the array response vector
. d
[19], and a, = ape_]Z”(Ti_"PTP) is the complex gain of p-

th path which includes the Doppler frequency shift v, and
has average power 02 = E{|ap|*} and d, = c7, is the
traveled distance (where c is the speed of light in air). The
overall space-frequency channel response matrix (SFCRM) is
H= [ho h; ... hNC—l] S CNuNvxNe
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Fig. 1. (a) ADCPM fingerprint with N, Ny = 64 angle indexes and Ny = 352
delay indexes. (b) Corresponding deterministic macro paths from the UE to the
BS.

B. Location Fingerprinting

Location estimation benefits significantly from transforming
the channel response into the angle-delay domain, i.e., into the
ADCPM domain. This conversion encapsulates in a convenient
representation all the location-related parameters like ToF,
AoA, and received signal strength (RSS) for each propagation
path, including both line-of-sight (LoS) and NLoS components,
which change depending on the surrounding environment, thus
acting as location-specific signatures or fingerprints. The larger
the number of antenna elements and bandwidth, the more
precise and stable the estimation, owing to improved spatial
and frequency resolution. To extract features from the angle-
delay domain, we adopt the same methodology described in [6]
and obtain the ADCPM P € RM:NvXNe For an example of
ADCPM and related propagation paths, we refer to Fig. 1. In
our experimental setup, we utilize the ADCPM P as the input
x for the DL model, as a measure for performing positioning
and subsequent tracking.
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III. BNN METHODOLOGY

A. Problem Formulation

Consider a ML supervised regression setting where the target
UE position t, here considered as a scalar, is modelled as:

t=f(x)+e(x), )
where f(x) is a non-linear function that relates the ADCPM
~N <O,Us(x)2)
The aim is to train a neural network (NN) y(x,0) with
parameters @ to approximate f(x) using an input training
dataset D = {(tn, @) | tn € Di, Ty € Dp})_, with N train-
ing points. Assuming independence between target variables t,,
and the Gaussian random noise &, we can write the likelihood
function of @ as:

measurement X to the location and &(x)

Pp,|D,,0 Dt|Dwao HN( ny Y .’Bn, ) Us(mn)2> . (3

In traditional ML frameworks, a discriminative probabilistic
approach is utilized [20], where the NN parameters (deter-
ministic variables) are computed through maximum likelihood
estimation (MLE). Conversely, Bayesian frameworks employ a
stochastic network characterized by random parameters with a
prior distribution pg(@), which reflects the model’s uncertainty
due to the limited size of the training dataset. Bayesian NN
models adopt a generative approach by calculating the so-called
posterior predictive distribution [21]:

pt\x,D(t|w7D):/ pt|x,0(t|w70,>pB\D(0,|D)d0,7 (4)
e/

where pgp(€|D) is the computational intractable posterior
distribution. As a solution, most BNN methodologies strive to
approximate pe|p(6|D) through a sampling process and then
compute (4) using Monte Carlo (MC) sampling as follows:

Zp tlz, 0,), )

where L is the number of samples 04 drawn from pg|p(0|D).
From (5), we obtain the mean prediction, i.e., predictive mean,

as:
Zy (,0¢). (6)

E{t|x,D} « — Z/tpﬂw 0,)d

For computing the variance of the predlctlon, i.e., predictive
variance, we also need to estimate the variance of the noise in
(2). This is usually performed through an additional NN output
Ya1(X, @) according to the model [22]:

0e(x)* = yar(x, 0) + Ear, (7)
where &, ~ N(0, Ugal). The predictive variance is finally
computed as:

L
V{tjx, D} = ZZ/

=1

L
=2

pt\x D t|33 D

— E{t|x, D}) p(t'|z, 0p)dt’

1< ’
y(x,0,)% — (L;y(l',ez))
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Fig. 2. Proposed DL model composed of an autoencoder (AE) and a
positioning module, which outputs the target estimate y(a,6) and related
aleatoric uncertainty y,1(x, ).

L
1
+ Z;yal(m,ez), ®)

where the first two terms are the epistemic uncertainty predic-
tion, while the last term is the aleatoric uncertainty prediction.

B. DL Model Based on Autoencoder

For position estimation, we propose the integration of an AE
within each BS to extract essential features from the sparse
ADCPM samples x, as illustrated in Fig. 2. The encoder
function E(x) translates these samples into latent features z,
capturing the channel’s intrinsic location-specific information.
In turn, the decoder function D(z) reconstructs the original
input, yielding &. The AE is designed to minimize the recon-
struction error ||z — &3 [23], facilitating the model’s ability to
replicate the input @ through the compressed representation in
z. Moreover, the DL model integrates a multi-layer perceptron
(MLP) positioning module that leverages the compact latent
features to estimate the 3D position of the target.

For prediction uncertainty, we employ the stochastic gradient
Langevin dynamics (SGLD) BNN algorithm [24], which guar-
antees to directly sample from the real posterior pgp(60|D).
To speed up convergence, the AE is treated as a standard NN,
whereas the positioning module is trained as a full BNN with
SGLD optimizer. The loss function for single input x is:

B (0]z) = Apos A(O|) + Arec||z — &3, ©))
where A, determines the significance of position estimation,

Arec Modulates sample reconstruction and A(8@|x) is the corre-
sponding matrix version of:
2
It —y(=, 0)]];

1
~log (yai(x, 0
2°g(y1(w )>+ 2yu(, 0)

Equation (10) is derived from A(@|x) = —logp(t|x,0) and
permits the training of the BNN with the SGLD optimizer.

A(0]z) = (10)
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IV. TRACKING WITH BNN METHODOLOGY
A. Tracking Problem

We address the problem of Bayesian tracking for a mobile
target, characterized by a non-linear state evolution [25]:

t, = £ (toy) + e (11)

where f,(f) (tn—1) denotes the non-linear state transition func-
tion at time n — 1, and egfll represents a non-independent
and identical distributed (IID) noise component. The tracking
system’s measurements are modeled as:

Xp = fw(wx) (tn) + 555‘)7

where £ (t,) links the state to the measurement via a
non-linear relationship, and c%x ) is another non-IID noise
component. Additionally, we denote the cumulative set of
measurements up to time n as Xy, = {x;,¢ =1,...,n}. The
Bayesian tracking proceeds by alternating two phases at each
time step. In the prediction phase, the state is updated using

the Chapman—Kolmogorov equation [25]:
p(tnlwlznfl) = /p(tn|tn71)p(tn71|$1:n71)dtn71a (13)

where p(t,—1|x1.,—1) and p(¢,|x1.,—1) are the posterior PDF
at time n — 1 and the prior PDF at time n, respectively. The
subsequent update phase then incorporates measurements to
refine the posterior at time n:

To incorporate complex measurements such as the ADCPM,
an efficient representation or computation of the non-linear
function fr(lx) (t,) becomes crucial. NN can be employed to
approximate such function from training data, as proposed in
the next section.

12)

B. Incorporating BNN into Tracking Systems

The integration of BNN into tracking systems involves
a collection of BSs, denoted by Sps. During the offline
training phase, each base station j exploits a local dataset

@) G NV . :

{t , T } nq to train its respective BNN. In the
onhne trackmg phase, a subset of base stations Sgs, C Sps
detects the target at timestep n and performs tracking according
to Algorithm 1. We propose to maintain the prediction phase
unchanged while seamlessly integrate BNN into the update
phase. This strategy eases the incorporation into existing al-
gorithms, allowing for the replacement or augmentation of the
update component with BNN, and permits more precise and
accurate training procedures. Upon concluding the prediction
phase and acquiring the prior PDF p(t,|x1.,—1), each base
station j in Sps, provides the posterior predictive distri-
bution p(tn|sc53),D(j)), denoted as p(tn|:1c£f)). Then, since
at each timestep n, the BNN lacks prior knowledge of the
target’s previous position at n — 1, formally represented as
t, ~ U#Y) 10y, where ¢ and i) are the limits
of the coverage area of the j-th BS, we can write that
p(asgf)|tn) ocp(tn\zcsf),l)). This formulation facilitates the
fusion of multiple base station predictions with the prior PDF
on the target state, resulting in an updated posterior.

Algorithm 1 Tracking procedure

Input: Posterior p(t,_1|®1.,—1) at time n — 1 > Run at BS j
at timestep n

Output: Posterior p(t,|x1.,) at time n

Compute prediction phase in (13)

Measure sample .

Compute p(:c%j)\tn) ( ,L\mn D)

for j/ c SBS n\{j} do

Send p(m(J)\tn) to 4/

A

a

Receive p(mnj/)|tn) from 5’
7: end for 4
8: Update p(tn‘mlzn) X HjESBs,n p(mgzj) ‘tn>p(tn‘m1:n—1)

Practically, the posterior predictive distribution is described
by two parameters, i.e., the predictive mean (6) and the pre-
dictive variance (8). Therefore, we propose to approximate the
likelihood function obtained by each BS with a multivariate

normal distribution as:
p(a:;j)|tn) SN(a:gf),]E{tn\x,(f), D} V{ n|xY ,D})
(15)

This approximation makes it very easy and effective com-
puting (14) by combining the likelihood functions of the

BSs as p(z,|t,) = HjesBs,np(wsmtn) O<N<wn;ﬂn72n)

where [26]:
un:&( > u53>>, (16)
JESBs,n
-1
:( 3 2,@1) . (17)
JESBS,n

V. NUMERICAL RESULTS

A. Simulation Setup

For the simulations, we employ a ray-tracing method [27],
utilizing the Wireless InSite 3D prediction tool [28], in con-
junction with a 5G new radio (NR) MATLAB clustered delay
line (CDL) channel model at carrier frequency f. = 28 GHz
and bandwidth B = 400 MHz. The experiment includes a
3GPP urban micro (UMi) setting [15] within a 1000 x 1000
m area near the MIT campus in Cambridge, MA, USA, shown
in Fig. 3. The setting includes 19 sites, each with an inter-site
distance (ISD) of 200 m, forming a hexagonal layout. Each
site comprises 3 BSs, elevated 25 m and angled 120 degrees
apart. The BSs employ a UPA configuration, derived from [29],
with N, = N, = 8 antenna elements and have a 15-degree
mechanical downtilt. UE trajectories are generated by the
SUMO software [16], which simulates realistic vehicular traffic.
During the 600-second simulation, 100 vehicle trajectories were
created, collecting data points every second. This resulted in
2593 and 702 positions for training and testing, respectively,
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Fig. 3. 3D map representation of the ray-tracing scenario in the area of
Massachusetts Institute of Technology (MIT), Cambridge, USA.

and approximately 9.3 - 10* and 2.5 - 10* training and testing
ADCPM samples, respectively.

The AE segment of the DL positioning model is built
using the Segnet architecture [30], handling the sparsity of
the ADCPM input and facilitating robust feature extraction
crucial for precise positioning. The positioning module is
composed of an MLP with a number of neurons in each layer
of: [16, 32,64, 128,256,512, 256, 128, 64, 32, 16, 9], and GeLu
activation functions. Moreover, softplus activation functions are
placed at the output of the positioning module in the diagonal
entries to ensure non-negative variances. Additionally, regu-
larization terms are added to the diagonals of the covariance
matrix predictions to guarantee non-singularity and symmetry.
The models were trained for 600 epochs with a batch size of
M = 256 and L = 40. The learning rate was set to 1075,
to ensure stable convergence. The hyper-parameters \... and
Apos Were empirically set using a grid method in the range
[0.1,1] with a step size of 0.1, resulting in values of 0.1
and 0.9, respectively. The prior distribution of the parameters
was chosen to be spherical Gaussian, as in standard SGLD
initialization, with regularizer Apsior = 0.1.

B. Mobile positioning in urban environment

This experiment evaluates the performance of the proposed
BNN-based tracking approach with respect to a geometric-
based EKF and a state-of-the-art TCN model [14]. To ensure a
fair assessment, both the BNN method and the EKF utilize iden-
tical motion models, i.e., a random walk with a positional stan-
dard deviation of 2 m. The EKF employs traditional geometric
localization techniques using LoS time difference of flight
(TDoF) measurements, derived from cross-correlation with the
sounding reference signal (SRS) according to 3GPP standards,
and LoS AoA measurements via the multiple signal classifi-
cation (MUSIC) algorithm [31]. Additionally, in light of the
substantial signal obstruction caused by urban structures, UEs
are outfitted with global navigation satellite systems (GNSS)

receivers that provide state measurements with a Gaussian noise
standard deviation of 2 m. Conversely, the BNN-based tracking
relies on both LoS and NLoS ADCPM measurements. For
the TCN model, it adopts a 1D CIR representation of the
closest BS, converting the 2D ADCPM into a singular vector,
as recommended in [14].

The tracking results are presented in Fig. 4 through the
absolute location error per timestep and the number of LoS
BSs. Additionally, Fig. 5 presents the CDF of the positioning
errors across all methodologies. From Fig. 4, we can note that
the EKF struggles to maintain a location accuracy below 2
meters when fewer than three LoS BSs are available. Indeed,
despite the dense UMi setting, we observe 1.6 LoS BSs on
average. In contrast, the TCN model exhibits marginally supe-
rior performance, accurately tracking UE positions even with
a single BS measurement, due to its fingerprinting approach.
Nonetheless, the BNN-based tracking demonstrates consistent
sub-meter precision even in the absence of LoS BSs. The supe-
rior performance with respect to traditional methods is derived
from its ability to coherently merge multiple NLoS position
estimates. On the contrary, the BNN-based model outperforms
the TCN model thanks to the exploitation of the 2D ADCPM
within an AE structure that discerns spatial correlations in
the input data. Moreover, the fusion of BSs measurements is
weighted by the uncertainty of the model, resulting in more
consistent performances. The CDF of the absolute errors further
confirms the BNN-based tracking’s dominance, achieving a
median error of 46 cm and staying under 1 meter in 87% of
the cases.

VI. CONCLUSION

In this work, we tackled the challenge of 6G tracking in
urban areas characterized by significant signal obstructions.
We proposed an integration of BNNs into a Bayesian tracking
system, where full CIRs, i.e., 2D ADCPM, are processed as
measurements through an AE-based DL model. Realistic sim-
ulations, within a C-ITS environment and 3GPP-compliant UMi
ray-tracing scenario, show superior performances compared to
geometric-based tracking filters and advanced TCN models,
achieving a median absolute positioning error of just 46 cm.
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