
Beyond 5G Localization via Sidelinks

in Industrial IoT scenarios

Gianluca Torsoli,∗ Moe Z. Win,† and Andrea Conti∗

∗Department of Engineering and CNIT, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy

(e-mail: gianluca.torsoli@unife.it, a.conti@ieee.org)
†Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

(e-mail: moewin@mit.edu)

Abstract—Location awareness is a fundamental enabler for
several emerging fifth generation (5G) and beyond wireless
applications. In particular, since Release 18 the 3rd Generation
Partnership Project (3GPP) is putting an effort on the stan-
dardization of sidelink (SL) localization. This can be particularly
important both to enhance the localization capabilities of the 5G
network and to provide location awareness in partial-coverage
conditions. However, SL localization poses additional challenges
with respect to conventional downlink and uplink localization,
such as the uncertainty in the position of the SL nodes. This
paper proposes two algorithms based on soft information (SI)
for SL localization in 5G and beyond wireless networks. Results
for 3GPP settings in an indoor factory scenario demonstrate
the effectiveness of the proposed approaches to improve the
localization accuracy in full-coverage conditions, as well as to
provide location awareness in partial-coverage conditions.

Index Terms—5G, sidelink, localization, device-to-device,
3GPP, wireless networks

I. INTRODUCTION

Localization via device-to-device links, [1], [2], also re-

ferred to as sidelinks (SLs) in the 3rd Generation Partnership

Project (3GPP) technical specifications, is expected to be a key

enabler for several applications in fifth generation (5G) and

beyond wireless networks [3], including autonomous vehicles

[4], Internet-of-Things (IoT) [5], Industrial Internet-of-Things

(IIoT) [6], vehicle-to-everything (V2X) [7], and public safety

[8]. With Release 18, the 3GPP is putting increasing effort

into the standardization of SLs both for communication and

localization. In this context, the 3GPP defines three possible

conditions for localization employing SLs (herafeter referred

to as SL localization), namely full-coverage (FC), partial-

coverage (PC), the out-of-coverage (OC) conditions [9]. An

example of 5G network where all the aforementioned con-

ditions are present is depicted in Fig. 1. In particular, SL

localization, enables improving the localization accuracy in

the FC conditions, extending the localization coverage in

the PC conditions, and providing relative localization in the

OC conditions. However, achieving the performance required

by 3GPP for SL localization is particularly challenging [9]–

[11]. Wireless environments often are characterized by harsh

multipath propagation and frequent non-line-of-sight (NLOS)

conditions, which typically degrade the localization accuracy

Fig. 1. Example of SL localization: the gNBs g1 communicates with the UEs
u1, u2, and u3 which are in FC and can cooperate to enhance their location
awareness. The UEs u4 and u5 are in PC and require exchanging information
with the other UEs to be localized. Finally, the UE u6 is in an OC condition
since it cannot communicate with any gNB or UE.

[12]. Moreover, SL localization poses additional challenges

with respect to localization via downlink (DL) and uplink

(UL) with gNBs. These include the uncertainty in the position

of the SL network nodes, the difficulty in obtaining precise

synchronization among the UEs [13], and the coexistence

between SL communication and localization [14], [15].

3GPP documents [16] show extensive performance for SL

localization that are typically obtained using conventional lo-

calization algorithms, also referred to as single-value estimate

(SVE)-based algorithms [17]. However, these approaches are

not able to satisfy the localization service level requirements

in complex wireless environments [1].

The goal of this paper is to demonstrate the capabilities

of SL localization to provide accurate localization in 5G

and beyond wireless networks. The key idea is to leverage

the recently proposed soft information (SI)-based localization.

Such approach exploits machine learning techniques to provide

a probabilistic description of the relationship between UE

position, measurements, contextual information [18], [19].

This paper presents a SI-based approach for SL localization

in beyond 5G wireless networks. The key contributions of this

paper can be summarized as follows:
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• development of SI-based iterative algorithms to improve

the localization accuracy in the FC conditions and to

extend the localization coverage in the PC conditions via

SLs measurements; and

• quantification of the performance provided by the pro-

posed algorithms in a 3GPP-standardized factory sce-

nario.

The remainder of the paper is organized as follows. Sec-

tion II briefly describes SL localization in 5G and beyond

networks; Section III presents two case studies in the 3GPP-

standardized indoor factory (InF)-SH scenario; finally, Sec-

tion IV provides our conclusions.

Notations: A random variable and its realization are denoted

by x and x; a random vector and its realization are denoted

by x and x; a set is denoted by calligraphic fonts as X . For a

vector x, its transpose is denoted by xT. The function fx(x;θ)
indicates the probability density function (PDF) of a continous

random vector x parametrized by θ.

II. LOCALIZATION IN 5G NETWORKS

Consider a network composed of Nb gNBs indexed by

j ∈ Nb =
{

1, 2, . . . , Nb

}

with known positions and Nu UEs

indexed by i ∈ Nu = {1, 2, . . . , Nu} with unknown positions.

Denoting by
◦

Nu and N̆u the index set of UEs in FC and PC,

respectively, then Nu =
◦

Nu ∪ N̆u.

A localization algorithm aims to estimate the positions

of the i-th UE leveraging a collection of measurements

{yi,j′}j′∈N (i) obtained exchanging information with the gNBs

via DL and/or UL and with the other UEs via SL. The index

set N (i) = N (i)
b ∪ N (i)

u denotes the complete index set of

the nodes to which the i-th UE can exchange information,

where N (i)
b ⊆ Nb, and N (i)

u ⊆ Nu \ {i} (considering only

inter-node measurements and no intra-node measurements).

Measurements may include time-, angle-, or power-based

metrics, waveform samples, and any combination of them.

Each measurement yi,j′ is related to a positional feature vector

θ(pi,pj′) which is a function of the position of both the i-th

UE and the j′-th element of N (i). Assuming only time-based

measurements, a UE can be defined in FC for localization if

it can communicate with at least 3 gNBs, and in PC if it can

communicate only with other UEs, and at least 3 of them are

in FC.

In 3GPP specifications for 5G localization, measurements

are obtained transmitting and processing tailored reference

signals (RSs) for localization. In particular, localization in DL

is performed via the DL-positioning reference signal (PRS)

while localization in UL is performed via the UL-sounding

reference signal (SRS) [20]. The standardization of the signal

structure for SL localization is still under discussion by the

3GPP [16].

A. SL-PRS physical structure

Currently, the 3GPP technical specifications consider for the

design of the SL-PRS the reuse of the orthogonal frequency

division multiplexing (OFDM)-based DL-PRS signal structure.

The OFDM structure of the DL-PRS is described in detail

in [21] and is divided into frames, subframes, and slots in

the time domain and into resource blocks in the frequency

domain. According to the 3GPP nomenclature, a resource

element (RE), indexed by (k, l), denotes the k-th subcarrier

of the l-th symbol in the OFDM time-frequency grid. The

PRS is obtained by allocating to the REs symbols obtained by

modulating via quadrature phase-shift keying (QPSK) a 31-

bit long Gold sequence, initialized based on the physical cell

identity (PCI) [21]. In the frequency domain, the PRS structure

is arranged in a comb structure, where symbols are allocated

only in one out of K subcarriers. For SL-PRS, potential can-

didate values for the comb size are K ∈ {1, 2, 4, 6, 8, 12}. In

the time domain, L consecutive symbols within a slot are used

[16]. According to 3GPP specifications for SL localization, a

fully-staggered configuration (i.e., L = K), and a partially

staggered configuration (i.e., L < K) are considered. Then,

the discrete OFDM signal for the l-th symbol is given by

sl[n] =
1√
NF

NF
∑

k=0

ak,l exp

{

2πnk

NF

}

(1)

where ak,l is the symbol to be allocated in the (k, l) RE, and

NF = NSC NRB, in which NSC = 12 and NRB is the number

of resource blocks allocated [21].

B. 5G measurements for localization

The RSs can be transmitted both in frequency range 1 (FR1)

(i.e., carrier frequency below 7.125 GHz), and in frequency

range 2 (FR2) at millimeter waves (i.e., carrier frequency

between 24.25 GHz and 52.6 GHz). By processing the re-

ceived SL-PRS, several measurements can be extracted to

infer the UEs position. According to 3GPP standardization, the

time measurements considered for SL localization are the SL-

round-trip time (RTT) (obtained via the two-way transmission

of the SL-PRS), and the SL-time difference-of-arrival (TDOA)

(obtained by subtracting the SL-time-of-arrival (TOA) of a

reference UE to the SL-TOA estimated with respect to the

other UEs) [16], [19].

Note that SL-RTT is a preferred choice over SL-TDOA for

SL localization for two main reasons. First, it does not require

accurate synchronization between the SL nodes (i.e., the UEs

serving as anchors for localization). Second, it removes the

problem of selecting the reference base station [22].

Similarly, the DL-PRS and the UL-SRS can be processed to

obtain measurements for localization, such as the DL-TDOA,

the UL-TDOA, and the RTT [23], [24]

C. SI for SL localization

SI-based localization has been recently proposed to enhance

the localization capabilities of wireless networks and has

already been proven to be effective in the 5G and beyond

ecosystems [19]. In particular, SI-based localization is based

on a machine learning-based probabilistic framework which
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Algorithm 1 Localization in FC with SL measurements

1. Estimate the position of all the UEs in FC using

measurements obtained exchanging RSs with the gNBs

1: for i ∈
◦

Nu do

p̆i = argmax
p̃

∏

j∈N
(i)
b

Lyi,j
(θ(p̃,pj))

2: end for

2. Refine the position estimation of the UEs in FC lever-

aging the information obtained from SL measurements

1: for i ∈
◦

Nu do

p̂i = argmax
p̃

∏

j∈N
(i)
b

Lyi,j
(θ(p̃,pj))×

∏

i′∈
◦

N
(i)
u

Lyi,i′
(θ(p̃, p̆i′))

2: end for

enables to overcome the limitations of conventional local-

ization algorithms [12], [18]. Specifically, the probabilistic

information related to the measurements, also referred to as

soft feature information (SFI), is given by

Lyi,j
(θi,j) ∝ fy(yi,j ;θ(pi,pj)) (2a)

Lyi,i′
(θi,i′) ∝ fy|p(yi,i′ |θ(pi,pi′)) (2b)

where (2a) and (2b) refer to the SFI related to measurements

obtained by the i-th UE exchanging information with the

j-th gNB and with the i′-th UE, respectively. In complex

wireless environments, the SFI is obtained as proportional to

a generative model, (i.e., an approximation of the joint prob-

ability distribution of measurements and positional features)

which can be obtained via a density estimation process. Let

x = [y,θ]
T

and let z = S(x) where S(·) denotes a sphering

transformation [25]. Then, an effective approach for fitting the

generative model is via a Gaussian mixture model (GMM)

with NM components, which is given by

f(z; {αk,µk,Σk}NM

k=1) =

NM
∑

k=1

αkϕ(z;µk,Σk) (3)

where αk, µk, and Σk denote the weight, the mean, and

the covariance of the k-th component of the GMM. The

parameters of the GMM can be fit via a data-driven approach

using the expectation-maximization algorithm [26].

Given a set of measurements {yi,j′}j′∈N (i) , the position of

the i-th UE can be inferred via maximum likelihood estimation

after the evaluation of (3) [18]. While SI-based localization

using only UL or DL measurements has been already studied

extensively [12], [19], we propose two algorithms to leverage

also the information provided by SL measurements.

Algorithm 1 describes an approach based on SI for improv-

ing localization accuracy leveraging the SL measurements in

Algorithm 2 Localization in PC with SL measurements

1. Estimate the position {p̂i}
i∈

◦

Nu
of all the UEs in FC

via Algorithm 1.

2. Estimate the position of UEs in PC leveraging only the

information from SL measurements

1: for i ∈ N̆u do

p̂i = argmax
p̃

∏

i′∈
◦

N
(i)
u

Lyi,i′
(θ(p̃, p̂i′))

2: end for
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Fig. 2. Layout of the 3GPP standardized InF-SH scenario, the annuluses
indicate the gNB positions. In the results, Case I considers all the 18 gNBs
in the scenario, while Case II considers only 8 gNBs (i.e., the violet gNBs in
the figure).

the FC condition. Specifically, in the first step the UEs are

localized via DL or UL measurements. Then, the information

exchanged between the UEs via SL, together with the positions

estimated in the previous step, is used to improve the position

estimation of all the UEs in FC.

Algorithm 2 describes an approach based on SI for provid-

ing location awareness to UEs in PC via SL measurements.

Specifically, in the first step Algorithm 1 is used to localize the

UEs in FC in the network. Then, the information exchanged

between the UEs via SL, together with the positions estimated

in the previous step, is used to infer the position of all the UEs

in PC. Hence, such approach enables the localization of UEs

in PC using as prior knowledge only the gNBs positions.

III. CASE STUDIES

In this section, results are reported for localization with SL

measurements in 3GPP scenarios. In particular, the effective-

ness of the algorithms proposed in the previous section is

shown. Results are validated in the 3GPP-compliant InF-SH

scenario, whose layout is reported in Fig. 2. Such scenario

describes a wide industrial factory area with a low obstacle

density [27]. Two case studies are evaluated in this scenario,

namely Case I, that considers 18 gNBs, and Case II, that

considers only 8 gNBs of the original layout. The DL-PRS and

the UL-SRS are transmitted with a bandwidth of 100 MHz and

a central frequency of 3.5 GHz in FR1. The SL-PRS is created
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Fig. 3. Localization performance for the Case I of the InF-SH scenario. The performance are reported in terms of ECDF of the horizontal localization error
varying the number of SL nodes for the (a) Algorithm 1 in the FC scenario; and (b) Algorithm 2 in the PC condition.

TABLE I
RELEVANT LOCALIZATION ERROR PERCENTILES FOR CASE I [m]

NSL Configuration 50th 67th 80th 90th

Benchmark 0.33 0.43 0.53 0.65

5 Algorithm 1 0.30 0.38 0.46 0.57

10 Algorithm 1 0.28 0.35 0.43 0.53

20 Algorithm 1 0.24 0.30 0.38 0.46

30 Algorithm 1 0.22 0.28 0.34 0.42

40 Algorithm 1 0.20 0.25 0.31 0.38

Benchmark 0.80 1.10 1.37 2.28

Algorithm 2 0.80 1.14 1.65 3.16

Benchmark 0.49 0.64 0.79 0.99

Algorithm 2 0.51 0.65 0.80 1.04

Benchmark 0.33 0.43 0.53 0.65

Algorithm 2 0.34 0.46 0.55 0.68

Benchmark 0.26 0.35 0.43 0.53

Algorithm 2 0.28 0.36 0.44 0.55

Benchmark 0.23 0.30 0.37 0.46

Algorithm 2 0.25 0.32 0.39 0.48

FC

–

PC

5

10

20

30

40

according to Sec. II-A, and it is transmitted using K = L = 4
with a bandwidth of 100 MHz and a central frequency of

6 GHz. The DL-PRS and the UL-SRS are processed to esti-

mate the RTT of the UEs in FC. Similarly, via the transmission

of the SL-PRS between the UEs, it is possible to estimate the

SL-RTT. The RTT and SL-RTT are the only measurements

used by Algorithm 1 and Algorithm 2 to localize the UEs. The

results are obtained in full compliance with 3GPP technical

reports. Specifically, the RS are generated according to the

specifications in [21]. All the parameters of the UEs and of the

gNBs, including antenna patterns, transmitted power, and noise

figure are set for the InF-SH scenario according to [27], [28].

The wireless channels are generated with spatial consistency

according to [27] using the QuaDRiGa channel simulator [29].

To evaluate the performance, 100 random instantiations of

the InF-SH scenario are generated, and for each of them,

NSL + 1 UEs, with NSL = 5, 10, 20, 30 and 40, are deployed

with random positions and orientations. We assume that each

UE can communicate with NSL UEs via SL and with all or

none the gNBs if in FC or in PC, respectively. A 10-fold

cross-validation technique [26] is used to compute the ECDF

F̆ (eh) of the horizontal localization error eh for the different

configurations.

To showcase the effectiveness of the proposed algorithms,

different benchmarks are considered. Specifically, to evaluate

the performance of Algorithm 1, we consider as benchmark

SI-based localization using only RTT measurements, demon-

strating the effectiveness of the proposed approach in fusing

the information obtained via SL measurements to improve

the localization accuracy. Differently, for Algorithm 2, we

consider as benchmark SI-based localization using only SL-

RTT measurements, assuming that the positions of the SL

nodes are known a priori. This enables demonstrating the

effectiveness of the proposed approach to localize UEs in PC,

as well as to showcase the resilience of Algorithm 2 to the

uncertainty on the position of the SL nodes.

A. Results for Case I

Fig. 3a shows the performance in Case I of Algorithm 1

in terms of the ECDFs of the horizontal localization error.

It can be observed that for all the configurations considered

the use of SL measurements is able to improve the local-

ization performance. In particular, Algorithm 1 provides a

performance gain at the 90th percentile, with respect to the
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Fig. 4. Localization performance for the Case II of the InF-SH scenario. The performance are reported in terms of ECDF of the horizontal localization error
varying the number of SL nodes for the (a) Algorithm 1 in the FC condition; and (b) Algorithm 2 in the PC condition.

benchmark, equal to 12%, 18%, 29%, 35%, and 41% for the

cases with NSL = 5, 10, 20, 30, and 40, respectively. Note

that while the benchmark (i.e., SI-based localization using only

RTT measurements) already provides sub-meter localization

accuracy at the 90th percentile, the use of the SI obtained via

SL allows to obtain a localization error below 0.5 m at the

90th percentile if NSL ⩾ 20.

Fig. 3b shows the performance in Case I of Algorithm 2 in

terms of the ECDFs of the horizontal localization error. It can

be observed that for every number of SL nodes considered,

Algorithm 2 approaches the benchmark, with a distance of a

few centimeters at every percentile. In particular, it can be ob-

served that for all the configurations considered, Algorithm 2

enables localizing the UEs in PC with a sub-meter localization

accuracy at the 90th percentile. For example, considering

NSL = 20, it can be observed that the localization accuracy is

around 45 cm at the 67th percentile, around 55 cm at the 80th

percentile, around 70 cm at the 90th percentile, and around

1 m at the 99th percentile. Further details on the localization

performance provided by Algorithm 1 and Algorithm 2 in Case

I are reported in Table I.

B. Results for Case II

Fig. 4a shows the performance in Case II of Algorithm 1

in terms of the ECDFs of the horizontal localization error.

It can be observed that for all the configurations considered

the use of SL measurements is able to improve the local-

ization performance. In particular, Algorithm 1 provides a

performance gain at the 90th percentile with respect to the

benchmark equal to 14%, 25%, 40%, 46%, and 52% for the

cases with NSL = 5, 10, 20, 30, and 40, respectively. Note

that while the benchmark (i.e., SI-based localization using only

RTT measurements) provides approximately 1ṁ localization

accuracy at the 90th percentile, the use of the SI obtained via

TABLE II
RELEVANT LOCALIZATION ERROR PERCENTILES FOR CASE II [m]

NSL Configuration 50th 67th 80th 90th

Benchmark 0.53 0.69 0.84 1.03

5 Algorithm 1 0.42 0.56 0.69 0.88

10 Algorithm 1 0.38 0.50 0.61 0.77

20 Algorithm 1 0.31 0.40 0.48 0.60

30 Algorithm 1 0.27 0.35 0.43 0.55

40 Algorithm 1 0.25 0.32 0.39 0.49

Benchmark 0.83 1.10 1.37 2.28

Algorithm 2 0.90 1.28 1.78 3.67

Benchmark 0.49 0.64 0.79 0.99

Algorithm 2 0.56 0.73 0.90 1.16

Benchmark 0.33 0.43 0.53 0.65

Algorithm 2 0.38 0.49 0.61 0.78

Benchmark 0.26 0.35 0.43 0.53

Algorithm 2 0.31 0.42 0.51 0.64

Benchmark 0.23 0.30 0.37 0.46

Algorithm 2 0.28 0.36 0.45 0.56

FC

–

PC

5

10

20

30

40

SL allows to obtain a localization error below 0.9 m at the

90th percentile if NSL ⩾ 5.

Fig. 4b shows the performance in Case II of Algorithm 2 in

terms of the ECDFs of the horizontal localization error. It can

be observed that for every number of SL nodes considered,

Algorithm 2 approaches the benchmark, with a distance of

some centimeters at every percentile. In particular, it can be

observed that Algorithm 2 enables localizing the UEs in PC

with a sub-meter localization accuracy at the 90th percentile

if NSL ⩾ 20. For example, considering NSL = 20, it can

be observed that the localization accuracy is around 50 cm
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at the 67th percentile, around 60 cm at the 80th percentile,

and around 80 cm at the 90th percentile. Further details on

the localization performance provided by Algorithm 1 and

Algorithm 2 in Case II are reported in Table II.

IV. FINAL REMARK

This paper presented two soft information (SI)-based algo-

rithms for sidelink (SL) localization in fifth generation (5G)

and beyond wireless networks. We demonstrated that SL mea-

surements can improve the estimation of the user equipments

(UEs) positions in the full-coverage (FC) conditions, as well

as extend the localization coverage to the UEs in the partial-

coverage (PC) conditions. Results in a 3rd Generation Partner-

ship Project (3GPP) industrial factory scenario demonstrate

the effectiveness of the proposed algorithms, and showcase

how leveraging SL measurements is fundamental to enhance

the localization capabilities of 5G networks. The proposed

algorithms represent a step towards achieving fully cooperative

localization via SLs in 5G and beyond wireless networks.
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