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Abstract—Sensing is essential to enable civil, industrial, and
military applications that require situational awareness. Simul-
taneous tracking and identification of heterogeneous device-
free targets (e.g., humans, robots, and vehicles) can provide
information superiority for different types of operations and
surveillance tasks. This paper presents a framework for tracking
and identification of multiple device-free targets based on re-
flected radiofrequency signals. The proposed framework consists
of (i) clutter mitigation and target detection relying on the
estimated clutter intensity distribution in the environment; (ii)
multitarget tracking relying on probabilistic data association;
and (iii) neural network-based classification for target identifi-
cation relying on time-domain representations of micro–Doppler
signatures generated by target movements. We performed an
experimentation, employing an frequency modulated continuous
wave multiple-input–multiple-output radar at mmWaves, which
validates the proposed framework. The experimental results, in
terms of tracking and identification accuracies, show the benefits
of using the proposed framework.

Index Terms—Tracking, classification, data association, neural
network, MIMO radar.

I. INTRODUCTION

Sensing via reflected radiofrequency (RF) signals is a key

enabler for emerging civil, industrial, and military applica-

tions, including human monitoring, factory of the future,

and smart surveillance [1]–[5]. While several applications

require positional information of connected targets [6]–[9],

the 3rd Generation Partnership Project (3GPP) has recently

proposed use cases regarding localization and identification

of unconnected (i.e., device-free) targets in the Release 19

[10]–[12]. However, to achieve accurate sensing from samples

of reflected RF signals is challenging, especially in complex

wireless environments characterized by multipath propagation

and clutter conditions [13]–[15].

Tracking and classification (e.g., target identification and ac-

tivity recognition) are independent tasks that can benefit each

other. Localization over time of device-free targets is typically

performed in a recursive manner, referred to as multitarget

tracking (MTT) filtering [16]–[20]. At any time instant, MTT

filtering consists of a positional prediction phase, based on

a motion model, and an update positional phase based on

the collected measurements. Therefore, the knowledge of the
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target characteristics and activity is crucial for accomplishing

a reliable prediction using a specific motion model. On the

other hand, the knowledge of the target position reduces the

classification space since some types of targets may not be

allowed and some actions have a lower probability to be

performed in a specific spatial area. In addition, tracking is

essential to collect specific signal features from each target to

use for target identification.

Multiple-input–multiple-output (MIMO) radars operating at

millimeter waves (mmWaves) are effective for sensing based

on reflected RF signals [21]–[23]. In particular, frequency

modulated continuous wave (FMCW) MIMO radars enable

the collection of accurate measurements to provide positional

information and classification analytics. The use of probabilis-

tic frameworks to perform MTT enables operation in complex

wireless environments where measurements may be affected

by clutter and multipath propagation, as well as managing

measurements generated by close targets with overlapping

trajectories. Neural networks (NNs) are promising to perform

target identification based on features of reflected RF signals

[24]–[26]. By iteratively updating the model parameters during

the learning phase, NNs are able to recognize the most signifi-

cant identification features from an input data. Then, NN-based

approaches allow to achieve high accuracy target identification

without requiring a mathematical characterization of the wire-

less propagation, which is challenging, especially in scenarios

characterized by clutter and several scatterers.

The goal of this paper is to develop a tractable framework

for tracking and identification of heterogeneous targets via a

single FMCW MIMO radar operating at mmWaves. The key

idea is to exploit positional information for extracting the time-

domain representation of a Doppler signature from reflected

chirp signals to exploit for recognizing target characteristics

and activities. This paper presents an amenable processing

framework for simultaneous tracking and identification involv-

ing (i) clutter mitigation and target detection relying on the

offline learning of the environmental clutter intensity distri-

bution; (ii) MTT via probabilistic processing; and (iii) NN-

based classification of the time-domain representation for

Doppler signatures. The key contributions of the paper can

be summarized as follows:

• design of a clutter mitigation and target detection ap-

proach based on offline learning of the clutter distribution;

• development of a computationally efficient framework to

track and identify heterogeneous device-free targets; and
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• quantification of the proposed framework performance

based on experimentation in an industrial environment.

We validate the proposed framework using measurements

gathered in an industrial environment affected by heavy clutter

and severe multipath, employing a single FMCW MIMO

radar operating at mmWaves. The MTT accuracy is quantified

using the generalized optimal subpattern assignment (GOSPA)

metric, while classification in terms of target identification

accuracy.

Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors

and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a random variable and its

realization are denoted by x and x; a random vector and

its realization are denoted by x and x; a random matrix

and its realization are denoted by X and X , respectively.

Sets and random sets are denoted by upright sans serif and

calligraphic font, respectively. For example, a random set and

its realization are denoted by X and X , respectively. The m-

by-m identity matrix is denoted by Im. The function fx|y(x|y)
and, for brevity when possible, f(x|y) denote the probability

distribution function (PDF) of x conditioned on y = y. The

function φ
(

x;µ,Σ
)

denotes the PDF of a Gaussian random

vector x with mean µ and covariance matrix Σ. Integrals are

over the entire space of the integration variable.

II. SYSTEM MODEL

At each discrete time instant k, consider a random number

Nk of targets, which can appear, disappear, and move freely.

The k-th target is described by its positional state x
(i)
k ∈ R

nx ,

with i ∈ {1, 2, . . . , Nk} for a realization Nk of Nk. The target

positional state x
(i)
k consists of parameters such as position,

velocity, and acceleration. The target class is denoted by c
(i)
k ∈

Ct, where Ct is the set of all possible identity classes. Positional

states and classes of tracked targets are denoted by the mul-

titarget positional state xk =
[

x
(1)T
k , x

(2)T
k , . . . , x

(Nk)T
k

]T
and

multitarget class ck =
[

c
(1)
k , c

(2)
k , . . . , c

(Nk)
k

]T
, respectively.

Consider Mk measurements obtained from sensors at the

current time k. Each measurement z
(j)
k ∈ R

mz , with j ∈
{1, 2, . . . ,Mk} for a realization Mk of Mk, contains positional

information to be employed as input for the MTT filtering.

The measurement vector zk =
[

z
(1)T
k , z

(2)T
k , . . . , z

(Mk)T
k

]T

contains all the detected measurements, including false alarms.

In this work, we consider that: (i) all the measurements are

independent of each other; (ii) a measurement is generated by

at most one target; and (iii) a target can generate at most one

measurement. In the remaining of this section, we describe the

signal processing techniques, including clutter mitigation and

target detection methods, for collecting a set of measurements

when employing a FMCW MIMO radar.

A. FMCW Radar Signal Processing

A single measurement collected via an FMCW radar con-

sists of multiple frequency modulated signals, referred to

as chirp signals. The reflected chirp signals contain con-

text information, including the time-domain representation of

micro-Doppler shifts generated by the target movements. A

time-domain sequence encapsulating the micro-Doppler signal

features generated by the target activity is promising to per-

form classification. In fact, movements and activities generate

specific sets of micro-Doppler shifts, which are referred to as

Doppler signatures [27], [28]. The time-domain representation

of a Doppler signature contains information regarding the

target dynamics preserving time correlation. Compared to

conventional classification features, such as radar cross section

(RCS) and target velocity, the time-domain analysis of Doppler

signatures allows to characterize even the micro-movements

performed by a specific target and their correlations over time.

Consider an FMCW MIMO radar transmitting linear chirps,

i.e., sinusoidal signals with frequencies increasing linearly

from fm to fM = fm + B over time, where B is the signal

bandwidth. The frequency of linear chirp signals increases in

a time Tc, referred to as chirp duration, thus with a slope

S = B/Tc. A measurement via FMCW MIMO radar consists

of Nc > 1 chirp signals, each transmitted every Tc seconds.

The chirp signal echoes after multipath propagation and target

reflections can be collected at the receiver and then processed

to obtain dynamics of the reflecting targets. The n-th received

chirp at each antenna can be written as

s
(n)
R (t) = A

(n)
R cos

(

2Ãfm(tn − td) + ÃS(tn − td)
2
)

(1)

where A
(n)
R is the n-th signal amplitude, tn = t − nTc,

and td is a time delay representing the time-of-flight (TOF).

Specifically, the time delay is td = 2(r + vt)/c, where r and

v are the range and velocity of the scatterer that reflected the

signal and c is the propagation speed of electromagnetic waves.

At the receiver of the FMCW radar, the transmitted and

received waveforms are multiplied using a mixer and their

product is then filtered using a low-pass filter (LPF). The

resulting signal is referred to as intermediate frequency (IF)

signal and represents the difference of instantaneous frequency

between the transmitted and received waveforms. The IF signal

obtained by the transmission of the n-th chirp is given by

s
(n)
IF (t) =

A
(n)
R

2
cos

(

2Ã(fptn + fDTc)
)

(2)

where fp = 2B r/cTc and fD = 2fm v/c. Each IF signal can

be sampled with period Ts in Ns samples, while the entire IF

signal sequence with period Tc in Nc samples, i.e., one for

each transmitted chirp. The sampling processes with periods

Ts and Tc are referred to as fast sampling (FS) and slow

sampling (SS), respectively.

In MIMO radars, multiple antennas receive the same re-

flected signal with a time delay that depends on the angle-of-

arrival (AOA) of the waveform. Therefore, samples of the IF

signal sequence obtained via FS and SS can be arranged in a

3-D tensor, referred to as radar data cube, in which FS and

SS represent the FS and SS dimensions, respectively, while

the third dimension is due to multiple antennas.

By processing the radar data cube via discrete Fourier

transform (DFT) we obtain the range-Doppler-angle (RDA)
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map, which consists of energy bins for each frequency shift

considered over FS, SS, and angular dimension. Let f̃f , f̃s,
and f̃a denote the frequency shifts over FS, SS, and angular

dimension, respectively. The range is determined as r̂ =
c Tc f̃f/(2B), velocity as v̂=c f̃s/(2fm), and AOA ¹̂ such that

sin(¹̂)=c f̃a/(2Ãd fm), where d is the shift between antennas.

The marginalization of the RDA map with respect to the

angular dimension provides a range-velocity representation of

the environment, referred to as range-Doppler (RD) map. The

RD map is promising to distinguish between energy bins (i.e.,

frequency shifts) generated by the target presence from those

produced by clutter and multipath propagation.

B. Clutter Mitigation and Target Detection

In cluttered environments, target detection is challenging

due to RD maps corrupted by signal distortion and noise. The

proposed technique for clutter mitigation consists of an offline

and an online phase. In the offline phase, the environmental

clutter intensity distribution is estimated by the collection of

measurements with no target in the area of interest. For each

point with coordinate p in the RD or RDA map, a specific

threshold is determined based on the clutter distribution pre-

viously estimated.1 In the online phase, RD map elements are

compared with the designed thresholds. If the magnitude of

the RD map element under test is below the corresponding

threshold, its value is forced to zero, otherwise is kept.

The threshold for a point at the coordinate p is defined

by considering as Gaussian distributed its noise power np,

i.e., np ∼ φ
(

np; n̄p, Ã
2
p

)

. The distribution parameters can

be estimated during the offline learning by the collection

of multiple noisy measurements without any target in the

monitored area. The threshold Àp for a point at the coordinate

p is given by

Àp = n̄p + ³p Ãp (3)

where ³p ∈ R
+ tunes the false alarm and misdetection

probabilities. A higher ³p reduces the false alarm probability,

while increases the number of misdetections, and vice-versa.

The high range and velocity resolutions of mmWave FMCW

radars and the noise introduced by multipath propagation

generate a representation of each detected target as an extended

object, i.e., characterized by a set of range-velocity coordinates

corresponding to an over threshold magnitudes. The DBSCAN

algorithm allows to group such coordinates in clusters by

leveraging their density in the RD map [29]. A weighted

mean of the cluster elements provides a single-value estimate,

referred to as centroid, which consists of a range-velocity

coordinate. In particular, by denoting as Ωj the j-th cluster

of coordinates, with j ∈ {1, 2, . . . ,M} and M representing

the number of clusters obtained by computing the DBSCAN

algorithm, the centroid µj is given by

µj =

∑

p∈Ωj
Pp p

∑

p∈Ωj
Pp

(4)

1For notational convenience, we denote p ∈ R
2 a RD map coordinate and

a p ∈ R
3 RDA map coordinate.

where p denotes a range-velocity coordinate and Pp is the

magnitude of the corresponding energy bin in the RD map.

The centroid µj is the estimated range-velocity coordinate for

representing the cluster j. At a range-velocity coordinate µj ,

the reflection AOA is obtained by considering the angle with

highest magnitude in the RDA map.

The knowledge of the target positional states at the previous

time instant is exploited to further reduce the number of

misdetections and false alarms. From the RDA map, a sub-

tensor for each previously estimated positional state can be

extracted and, then, processed via the DBSCAN algorithm

to enlarge the set of detections. The Mk measurements are

composed by the union of centroids collected evaluating both

the RD map and the RDA map sub-tensors. Therefore, the set

of measurements consist of range-velocity-AOA coordinates,

which can be used as input of the MTT filtering.

III. TRACKING AND CLASSIFICATION FRAMEWORK

This section presents the proposed framework to perform

tracking and classification of device-free targets.

A. Tracking of Multiple Targets

Tracking of multiple device-free targets requires data asso-

ciation, which is the combinatorial problem of determining

(i) which target generates a given measurement, (ii) if the

measurement is due to false alarm, and (iii) if a target is mis-

detected. Let θ
(i)
k be the data association variable denoting the

assignment of the measurement j, with j ∈ {1, 2, . . . ,Mk},

to the target i, with i ∈ {1, 2, . . . , Nk}, at the time instant k,

as follows

¹
(i)
k =

{

j if target i is associated to a measurement j

0 if target i is associated to no measurement.
(5)

In the presence of multiple targets, we define the multitarget

data association vector θk =
[

θ
(1)
k , θ

(2)
k , . . . , θ

(Nk)
k

]T

provid-

ing the measurement-to-target associations for all the tracked

targets. In particular, the multitarget data association vector is

such that θk ∈ Θk, where Θk is the set containing all possible

vectors of valid multitarget data associations. A valid multi-

target data association requires that (i) each target is either

associated to a measurement or misdetected and (ii) any pair

of detected targets is not associated to the same measurement.

To compute data association and MTT filtering analytically,

we exploit the Kalman filter (KF) solution considering linear

and Gaussian system models.2

Data association can be seen as an optimization problem,

where a data association probability Pa

(

¹
(i)
k

)

, for linear and

Gaussian modeling, is given by

Pa

(

¹
(i)
k

)

=











Pd

(

x
(i)
k

)

φ
(

z
(θ

(i)
k

)

k ;Hkx̃
(i)
k ,Σk

)

¹
(i)
k ̸= 0

1− Pd

(

x
(i)
k

)

¹
(i)
k = 0

(6)

2For nonlinear non-Gaussian system models, computationally feasible ap-
proximate algorithms include variants of the KF such as the extended KF and
the unscented KF [30]. Both the extended KF and the unscented KF are based
on the Kalman equations but perform different approximations of the system
models.
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Fig. 1. Block diagram of the presented framework for tracking and classification via single FMCW MIMO radar operating at mmWaves. In particular, lilac
blocks represent the signal processing phase, orange blocks the clutter mitigation and detection phase, and blue blocks the tracking and classification phase.

where Pd(·) is the detection probability and Hk is the linear

measurement model, while x̃
(i)
k and Σk are the positional pre-

diction and the innovation covariance of the KF, respectively.

The data association costs

li,j = −Pa

(

¹
(i)
k = j

)

(7)

can be arranged in a matrix L, where rows represent targets

and columns represent both measurements and misdetections.

By processing L using the Murty’s algorithm [31], we define

Θ̂k ¦ Θk representing the set of the Q-best data association

hypotheses obtained evaluating the data association costs.

The joint probabilistic data association (JPDA) algorithm

leverages a soft-decision approach for data association by

accounting for the uncertainty in matching measurements with

tracked targets [32]. In particular, JPDA assigns an association

score ´
(i,j)
k to each possible measurement-to-target associa-

tion, based on how the measurement aligns with the predicted

positional state of the target. The association score can be

calculated as

´
(i,j)
k =

∑

θk∈
{

θk∈Θ̂k, θ
(i)
k

=j

}

Pa

(

¹
(i)
k

)

(8)

where j ∈ {0, 1, . . . ,Mk}. Based on the association score, the

distribution of the multitarget positional state for independent

targets is given by

f(xk|z1:k) =

Nk
∏

i=1

Mk
∑

j=0

´
(i,j)
k f

(

x
(i)
k |z

(j)
k

)

. (9)

where f
(

x
(i)
k |z

(j)
k

)

can be calculated employing the KF for

linear and Gaussian models.

Appearing and disappearing targets require the initialization

and the deletion of new and existing tracks, respectively. Track

initialization is performed from a sequence of measurements

collected over time as follows. At the first time instant, all

the measurements are considered as potential tracks, i.e., each

generates a track hypothesis. At the next time instants consider

the greediest data association hypothesis. The measurements

that are not assigned to any existing track are either associated

to a track hypothesis or considered as new potential tracks.

Finally, if a track hypothesis achieves a length of K measure-

ments is validated as real track and processed via the JPDA

algorithm. Given that the positional states are represented

using a Gaussian density, the covariance matrix serves as a

crucial indicator of the plausibility of the track hypothesis. In

particular, until the trace of the covariance matrix is below

a deleter threshold, the hypothesis is valid. By adjusting the

deleter threshold, the same approach can be employed to delete

existing tracks processed via the JPDA algorithm.

B. Identification of Multiple Targets

Identification requires the extraction of specific signal fea-

tures for each target tracked. In particular, MTT filtering

provides range-angle coordinates, which can be exploited to

determine specific classification analytics for each target from

reflected chirp signals. Consider a collected radar data cube,

by applying the DFT to the FS and angular dimensions, we

obtain range-angle coordinates, each characterized by the Nc

samples of the SS dimension. Such samples provide a time–

domain representation of the micro-Doppler shifts generated

by movements at a specific range-angle coordinate.

We consider a classification problem for target identification

taking as input a sequence of WNc time-domain samples

collected by exploiting target positions estimated via MTT.

In particular, the parameter W ∈ N defines the duration of the

observation window in which the classification analytics are

collected. The entire sequence of WNc samples is organized as

a linear array to preserve the correlations over time. Increasing

W enables performing a more accurate characterization of the

target motion.

IV. EXPERIMENTATION IN INDUSTRIAL ENVIRONMENT

The proposed framework to perform tracking and identifica-

tion of multiple targets is validated via experimentation using

a mmWave MIMO radar in the pilot line of the BI-REX, an

Italian competence center for Industry 4.0.

A. System setting

The considered experimentation area is 8.3 × 6.5 [m2] and

presents many scatterers, such as industrial machines, tables,
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Radar

Industrial
vehicle

Human
walking

Real-time tracking
and identification

Fig. 2. Experimentation area in the pilot line of the BI-REX with a human
walking and an industrial vehicle moving in the monitored area.

and other assets. Fig. 2 shows the scenario during the ex-

perimentation. The sensor employed to perform both tracking

and identification is an off-the-shelf FMCW MIMO radar with

2 transmitting and 16 receiving antennas forming a linear

array. The transmitted signals are linear chirps operating in the

frequency range 76 − 77GHz with a duration Tc = 120µs.
Each radar measurement consists in transmitting 128 chirp

signals and collecting echoes generated by reflections at all

the receiving antennas. Each reflected signal is composed by

512 samples. The entire chirp sequence is collected every 0.1 s
by multiple antennas and compose the radar data cube.

The collected radar data cubes are processed via DFT to

obtain RD and RDA maps. All the elements in the RD and

RDA maps are compared with a specific threshold to detect the

target presence. The thresholds are defined during the offline

phase, in which 1000 measurements are collected with no tar-

get in the environment. The processing of such measurements

produces RD and RDA maps, that are exploited to estimate

the Gaussian distribution parameters that best approximate the

noise distribution at each range-Doppler and range-Doppler-

angle coordinate. Then, for a point at the coordinate p in the

RD and RDA maps, the threshold Àp is designed according to

equation (3) by using the estimated mean n̄p and standard

deviation Ãp, together with a scaling parameter ³p = 10.

The over threshold elements of the RD map are clustered

by employing the DBSCAN algorithm, with a neighborhood

searching radius ϵ = 0.05 and considering clusters with a min-

imum of 2 elements. Centroids are obtained by equation (4)

and compose the set of positional measurements.

B. Multitarget tracking

Target positional states and positional measurements are 4-

dimensional vectors (i.e., nx = mz = 4), each one character-

ized by a 2D position and a 2D velocity. Track initialization

requires that a track hypothesis achieves a length of K = 3
measurements, while both track hypotheses and confirmed

tracks are deleted for values of the corresponding covariance

matrix trace above Àd = 2.5 . Data association is performed

considering a gating region Àg = 0.5m around the predicted

positional state of each target. In particular, the target posi-

tional state prediction is performed considering the constant

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

95%

75%

eth [m]

P̃
(e

t
h
)

Fig. 3. ECDF of the tracking error evaluated using the GOSPA metric.

velocity model, which assumes no velocity variations in the

interval between two measurements. The linear measurement

model employed is the identity matrix, i.e., Hk = I4.

The tracking accuracy is quantified using the GOSPA metric

of order p = 1, cut off c = Àg, and normalization term

³ = 2 [33]. In particular, localization error is evaluated

computing the Euclidean distance and each misdetection in-

troduces a penalty of 0.25m in the GOSPA metric. When

a misdetection occurs the range-angle coordinate employed

for collecting classification analytics is given by the predicted

positional state. The target position is estimated every 0.1 s,
while the target class every 2 s aiming to determine if the target

is a human or an industrial vehicle.

Fig 3 shows the empirical cumulative distribution function

(ECDF) of the tracking error based on the GOSPA metric,

which accounts both localization accuracy and misdetections.

The proposed framework has been validated monitoring an

area with moving humans and industrial vehicles by collecting

1200 measurements to cover a time frame of 120 s. The 99% of

the measurements considers the presence of at least of 1 target,

while the 85% of exactly 3 targets. At the 95th percentile,

the presented approach for detection and tracking provides

a localization error of 0.83m, while, at the 75th percentile,

the error is reduced to 0.68m. The average number of false-

alarms per measurement is 1.23 . In particular, for 98% of the

measurements at most 3 false-alarms are collected.

C. Multitarget identification

Classification is performed employing a convolutional neu-

ral network (CNN), which inputs W = 20 sequences of

Nc = 128 samples collected relying on the estimated target po-

sitions and organized as a linear array for preserving the time

correlations. The CNN architecture employed for processing

the 1D time series consist of 6 layers: (i) 1D convolutional

input layer with 128 filters and kernel size of 2; (ii) max

pooling layer with pool size of 2; (iii) 1D convolutional layer

with 32 filters and kernel size of 2; (iv) max pooling layer with

pool size of 2; (v) a fully connected layer with 16 units; and

(vi) the output layer. The activation function in the CNN inner

layers is the rectified linear unit function, while the output

layer employs the sigmoid function. Training is performed

employing the categorical cross–entropy as empirical loss

function and the Adam optimizer with a learning rate of 10−3.
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The training set consists of 1800 time series collected in

the same experimentation environment, but with a different

deployment of the industrial machines. The 1800 instances

equally represent humans and industrial vehicles and are

divided in 70% of training and 30% of validation. We apply

data augmentation on the training set by performing a cyclic

permutation of each training instance.

Identification has been performed for 137 time-domain

sequences. The achieved identification accuracy during the

testing phase is 92%. Wrong classification occurs according to

misdetections and significative localization errors. In fact, the

averaged localization error of sequences leading to a wrong

classification is 30% greater than that of sequences producing

a correct classification.

V. CONCLUSION

This paper presents a framework for simultaneous tracking

and identification of device-free targets based on samples of re-

flected signals at mmWaves. The proposed framework employs

tracking information to gather time-domain representation of

micro-Doppler signatures specific for each target that are used

as input of a CNN to perform target identification. The experi-

mental results employing an FMCW MIMO radar validate the

developed framework in an industrial environment showing a

localization error below 0.83m for 95% of the occasions and

a target identification accuracy of 92%. The effectiveness of

the proposed approach relies on the statistical characterization

of the environmental clutter distribution to obtain reliable

measurements for both tracking and identification even in

cluttered environments. The proposed framework paves the

way for the amenable implementation and deployment of

sensing-based services in next-generation wireless networks.
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