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Abstract

Using a Lubachevsky-Stillinger-like growth algorithm combined with biased SWAP Monte Carlo

and transient degrees of freedom, we generate ultradense disordered jammed ellipse packings. For all

aspect ratios α, these packings exhibit significantly smaller intermediate-wavelength density fluctua-

tions and greater local nematic order than their less-dense counterparts. The densest packings are disor-

dered despite having packing fractions ϕJ(α) that are within less than 0.5% of that of the monodisperse-

ellipse crystal [ϕxtal = π/(2
√
3) ≃ .9069] over the range 1.2 ≲ α ≲ 1.45 and coordination numbers

ZJ(α) that are within less than 0.5% of isostaticity [Ziso = 6] over the range 1.2 ≲ α ≲ 2.6. Lower-α

packings are strongly fractionated and consist of polycrystals of intermediate-size particles, with the

largest and smallest particles isolated at the grain boundaries. Higher-α packings are also fraction-

ated, but in a qualitatively-different fashion; they are composed of increasingly-large locally-nematic

domains reminiscent of liquid glasses.

1 Introduction

Much attention has been paid over the past 20 years to jammed packings of anistropic particles and how they

differ from those formed by disks and spheres.1–18 In parallel, over the past decade, the SWAP Monte Carlo

algorithm19,20 has enabled preparation of lower-T equilibrated supercooled liquids, more-stable glasses, and

denser disordered jammed packings than was previously feasible.21–27 Recent work has shown that allowing

particles’ diameters to vary independently during sample preparation provides additional transient degrees

of freedom (TDOF) which can be exploited to obtain even-stabler glasses and even-denser packings.28–30

Surprisingly, however, the latter two developments have not yet been exploited to shed light on the first

topic. More generally, very few simulation studies have attempted to determine how jammed anistropic-

particle packings’ structure depends on their preparation protocol, despite the great insights obtained from

comparable studies of disk and sphere packings23,31–33 and the many open science questions raised by recent

experimental studies of anistropic-particle (colloidal and small-molecule) glasses with strongly-preparation-

protocol-dependent multiscale structure34–42.

This combination of factors presents an opportunity to make progress on multiple fronts by applying

SWAP and TDOF moves during the preparation of jammed anistropic-particle packings. Two-dimensional

ellipses are perhaps the best shapes with which to begin such an effort, since they are a straightforward

generalization of disks and their jamming phenomemology for preparation protocols which mimic fast
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compression has already been extensively studied.2–8 In this paper, we show that adding a suitably bi-

ased SWAP algorithm and a minimalistic implementation of TDOF to a Lubachevsky-Stillinger (LS)-like

particle-growth algorithm43 yields jammed ellipse packings which are significantly denser than any previ-

ously reported for all 1 < α ≤ 5. These packings’ multiscale structure differs qualitatively from that of

their less-dense counterparts, in a nontrivial and strongly-α-dependent fashion.

2 Methods

We recently performed a detailed characterization of jammed ellipse packings’ structure5 over a much wider

range of aspect ratios (1 ≤ α ≤ 10) than had been considered in previous studies.2–4,6–8 To understand the

effects of particle dispersity, we employed three different probability distributions for the ellipses’ inital

minor-axis lengths σ:

Pmono(σ) = δ(σ − .07),

Pbi(σ) =
δ(σ − .05a)

2
+

δ(σ − .07)

2
,

and Pcontin(σ) =

{ 7

4σ2
, .05 ≤ σ ≤ .07

0 , σ < .05 or σ > .07

,

(1)

where δ is the Dirac delta function and σ is expressed in arbitrary units of length. For all but the smallest

aspect ratios (where systems with P = Pmono formed jammed states with a high degree of crystallinity, as

expected43), all three of these P (σ) produced the same qualitative structural trends. For example, the dens-

est jammed packings always had the best-ordered first coordination shells, exhibiting positional-orientation

correlations which were substantially greater than those of their less-dense counterparts, even though the

details of these correlations were strongly P (σ)-dependent.

Choosing P = Pcontin produces systems in which equal areas are occupied by particles of different

sizes, and apparently optimizes glass-formability for a wide variety of interparticle force laws.20 Moreover,

in contrast to Pbi, which has been employed as the standard model for granular materials over the past 20

years44 and was the only P (σ) employed in all other previous studies of ellipse jamming,2–4,6–8 it allows
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for efficient particle-diameter swapping.20

We made no attempt in Ref.,5 however, to employ SWAP or indeed to investigate preparation-protocol

dependence in any way. Instead, all packings were generated using the same protocol: a LS-like particle-

growth algorithm43 that mimicked rapid compression. Each growth cycle consisted of two steps:

1. Attempting to translate each particle i by a random displacement along each Cartesian direction and

rotate it by a random angle; and

2. Increasing all particles’ minor-axis lengths σ by the same factor G̃, where G̃ is the value that brings

one pair of ellipses into tangential contact.

Here we obtain substantially higher jamming densities by adding two more steps to this cycle:

3. SWAP moves which exchange the diameters of larger particles with smaller “gaps” (defined below)

with those of smaller particles with larger gaps; and

4. TDOF moves which grow particles by different factors Gi and thus allow the shape of P (σ) to vary.

As in Ref.,5 we begin by placing N = 1000 nonoverlapping ellipses of aspect ratio α, with random

positions and orientations, and minor-axis-length distributions given by P = Pcontin, in square L × L

domains with L ≃
√
Nα. Periodic boundary conditions are applied along both directions, so these initial

states have packing fractions ϕ < 0.01. Then we begin the particle-growth procedure, which executes steps

1-3 for each growth cycle throughout the run, and step 4 in the latter stages of the run. Overlaps between

ellipse pairs (i, j) are prevented throughout the entire process using Zheng and Palffy-Muhoray’s exact

expression45 for their orientation-dependent distance of closest approach dcap(i, j).

In step (1), the attempted translations and rotations have maximum magnitudes 0.05f and (16f/α)◦,

respectively. The move-size factor f is set to 1 at the beginning of all runs, and multiplied by 3/4 whenever

100 consecutive growth cycles have passed with G̃ < 10−10. Runs are terminated and the configurations are

considered jammed when f drops below 2× 10−8. These cutoff values for f and G̃ are the smallest values

allowed by our double-precision numerical implementation.

In step (2), the fractional particle-growth rate per cycle is set to the maximum value which does not

introduce any interparticle overlaps, i.e. by G̃ = min(Gi), where

Gi = min

[
σi

2α(σi + σj)
gij

]
. (2)
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The gap distances gij are defined using the relation gij = rij − dcap(i, j), so the quantity within the square

brackets is a lower bound for the amount by which particles i and j can grow without overlapping: specfi-

cally, it is the factor by which particles i and j can grow without overlapping if they are aligned end-to-end.

The minimum in Eq. 2 is taken over all nearest neighbors (j) of particle i, while the subsequent minimum

defining G̃ is taken over all i. These choices make the algorithm more efficient by allowing particles to grow

slower when gaps are small and faster when they are large. We emphasize that imposing a uniform growth

rate G̃ preserves the shape of the particle-size distribution P (σ) defined in Eq. 1. In other words, the ratio

σmax/σmin = 1.4 of the largest and smallest ellipses’ minor-axis lengths, and indeed the ratios of all other

moments of P (σ), remain constant as ⟨σ⟩ =
∫ σmax

σmin
σP (σ)dσ increases.

Figure 1: Schematic illustration of growth cycle steps (3-4). The various r⃗ij and approximate gij are re-
spectively indicated with arrows and line segments, with the segment indicating g̃i = min(gij) bolded.
Swapping the diameter of particle i with that of any particle k with g̃k > g̃i and σk < σi always increases
the free area around particle i while leaving ϕ unchanged. Growing particle i by a factor Gi rather than by
factor G̃ increases the local densification rate. Note that the actual gij are slightly smaller than indicated
here because the points of inter-ellipse contact defining dcap(i, j)

45 do not lie on the vectors r⃗ij .

Step (3) begins by recalculating all the gij and then re-indexing particles in order of increasing g̃i =

min(gij), where the minimum is again taken over particle i’s nearest neighbors. Then, for each i < N ,

a particle index k > i is randomly selected. The corresponding particles necessarily have g̃k > g̃i, and

if they also have σk < σi and σi − σk < g̃k − g̃i, the algorithm attempts to swap the minor-axis lengths

of particles i and k. This move is accepted if it does not produce any interparticle overlaps. If, on the

other hand, σk > σi, another k-value (i.e., a different potential SWAP partner) is selected. When either a

swap has been completed or N/10 k-values have been sampled without finding a particle with σk > σi, the

algorithm proceeds to the next particle (the next i value). This procedure yields high SWAP-move success

rates, particularly when ϕ is still low. Success rates only become small when either the ordering of the g̃i
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amongst the N particles parallels the ordering of their σi, or when most of the g̃i drop to zero.

Step (4) also begins by recalculating all the g̃i and then re-indexing particles in order of increasing g̃i.

Then it proceeds by growing each particle by a factor min(Gi, 10
−3); this cap on the growth rate prevents

particles with unusually large g̃i from growing too quickly. In contrast to step (2), step (4) allows P (σ)

to vary, and effectively adds one transient DOF per particle.28–30 Note that this step is executed only if

f < 10−2. We found that this choice both maximizes the final ϕJ(α) and keeps increases in systems’

polydispersity over the course of the packing-generation runs very modest.

Steps (3-4) are schematically illustrated in Figure 1. Critically, in contrast to standard hard-particle

SWAP19 which accepts any move that does not introduce interparticle overlap, our procedure is biased

towards increasing the minimum value of g̃i. By effectively introducing an “energy” cost for nonuniform

{g̃i}, both the SWAP moves and the TDOF moves act in a similar spirit to the TDOF moves employed in

Refs.28–30 Specifically, they both decrease the width of the probability distributions P (g̃) by systematically

transferring mass from regions with smaller gaps to regions with larger gaps. The SWAP moves accomplish

this while leaving the packing fraction unchanged, while the TDOF moves produce a spatially-nonuniform

densification rate.

The C++ source code used to generate all results discussed below is publicly available and can be down-

loaded from our group website.1

3 Results

In this section, we will both qualitatively and quantitatively compare the structure of jammed ellipse pack-

ings generated using different sample-preparation protocols. Novel results obtained using all four steps of

the growth algorithm described above were averaged over 25 independently prepared samples. Results ob-

tained using only steps (1-2) of this algorithm are taken from Ref.5 Ref.2’s were generated using a LS-like

algorithm similar in spirit to (if different in its details from) that detailed in steps (1-2). Ref.3’s were ob-

tained using the standard LS algorithm.43,46 Ref.4’s and Refs.6–8’s were obtained by successive cycles of

compression followed by conjugate gradient (CG) energy minimization; their ϕJ(α) were identified as the

packing fractions above which potential energy no longer dropped to zero. In some figures, we will show

data from refs.2–4 to illustrate the variety of results obtained in previous studies of ellipse jamming. Results
1http://labs.cas.usf.edu/softmattertheory/LSplusSWAPandTDOF.html
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from Refs.6–8 followed the same general trends, and will be omitted for clarity.

With SWAP and TDOF No SWAP or TDOF (Ref. [5])

Ref. [2] Ref. [3] Ref. [4]
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Figure 2: Jamming densities of systems prepared with and without SWAP and TDOF moves. The dashed
line indicates ϕxtal ≃ .9069, and the inset shows the percentage increases over the ϕJ(α) obtained in Ref.5

obtained by adding steps (3-4) to the particle-growth procedure.

Figure 2 shows the preparation-protocol dependence of ϕJ(α). Adding SWAP and TDOF moves always

generates substantially denser packings, but the degree to which this is so, and the structural differences

associated with the density improvement, are strongly α-dependent. The packing fraction obtained for disks,

ϕJ(1) ≃ .888, is consistent with previous studies of collectively jammed monodisperse disk packings,32

which are typically highly crystalline. Polydisperse disk packings with such high densities were not reported

until very recently. Refs.30,47 used sophisticated SWAP and/or TDOF-based algorithms to obtain even

denser packings, which had .89 ≲ ϕJ ≲ .91 despite remaining amorphous, but the methods employed in

these studies are not readily generalizable to anistropic particles.

The packing-efficiency gain from adding SWAP and TDOF moves decreases monotonically from ∼5%

to ∼1% as α increases from 1 to 1.6. This rapid decrease makes the shape of the ϕJ(α) curve obtained

using SWAP and TDOF moves differ in two key ways from those obtained without these moves, includ-

ing results from previous studies.2–5 First, the initial slope (∂ϕJ/∂α)α=1, whose positive value demon-

strates that anisotropic particles’ ability to rotate away from one another allows them to pack more densely

than disks,1–3 is much smaller when SWAP and TDOF moves are employed, suggesting that the density-

enhancing effect of allowing particle rotations weakens as systems get denser.

Second, the aspect ratio αmax at which ϕJ(α) is maximized gets shifted to lower values. Specifically,

while Refs.2–5 respectively found αmax = 1.43, 1.40, 1.30 and 1.45, here we find αmax = 1.25. The fact that

Ref.4’s result was closer to ours than to those of Refs.2,3,5 probably owes to its choice of sample-preparation

protocol. CG minimization of dense systems generates forces which can transmit stress over substantial
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distances, and hence (much like biased-SWAP and TDOF moves) tend to suppress long-wavelength density

fluctuations.

Refs.2–5 respectively found ϕJ(αmax) = .895, .8974, .891 and .8917. Here we find ϕJ(αmax) = .9044,

which is less than 0.3% below ϕxtal. Although this packing fraction is only ∼1% larger than the largest value

reported in previous studies of ellipse jamming, it reduces the minimum values of the void area fractions

ϕv(α) = ϕxtal − ϕJ(α) by 79%, 73%, 84%, and 82% from those reported in Refs.,2–5 respectively. In other

words, the densest packings we obtain using SWAP and TDOF moves have far less “free volume” than those

obtained in previous studies. Comparably large reductions in free volume persist over a wide range of α.

For example, we find that ϕJ(α) > .995ϕxtal [and hence ϕv(α) < .005ϕxtal] for all 1.2 ≲ α ≲ 1.45. Here

we have implicitly assumed that ϕxtal is the maximum possible packing fraction. This hypothesis has been

proven correct for monodisperse ellipses,48 and no denser polydisperse ellipse packings have been reported

to the best of our knowledge. On the other hand, Ref.30 found ϕJ(1) > ϕxtal in systems with a substantially

larger polydispersity index than those considered here, and a more advanced algorithm might be able to

achieve the same result for α > 1.

For α > 1.6, the packing-efficiency gain increases monotonically, reaching ∼7% by α = 5. This rapid

increase causes the shape of the ϕJ(α) curve to differ in a third key way from those reported in previous

studies. Specifically, the rapid decrease of ϕJ(α) for α > 2,2,4,5 which is widely believed to be a general

feature of anisotropic-particle jamming9,11 provided systems remain isotropic as they are compressed, is

sufficiently strongly suppressed that ∂2[ln(ϕJ)]/∂[ln(α)]
2 is positive rather than negative. In other words,

the slow crossover to ϕJ ∼ 1/α scaling expected from Onsager-like arguments49 and evident in the ϕJ(α)

curves presented in Refs.2,5 is absent when SWAP and TDOF moves are employed, at least for the range

of α considered here. Below, we will argue that this qualitative difference is made possible by the moves’

tendency to increase packings’ orientational order.

Previous work on ellipse jamming has devoted much attention to ZJ(α) because it illlustrates several

key features of how anisotropic particles pack. Since smooth 2D convex anisotropic particles have three

degrees of freedom (two translational, one rotational), one would naively expect them to jam at isostaticity

(ZJ = Ziso = 6). This behavior, however, has not been observed in previous studies of ellipses,2–8 sphero-

cylinders,4,12 or superdisks.13 Instead, all previous studies of ellipses have found a square-root singularity

at small aspect ratios [ZJ − 4 ∝
√
α− 1 for α − 1 ≪ 1] and a substantially-hypostatic plateau at inter-

mediate aspect ratios [5.5 ≲ ZJ ≲ 5.8 for 1.5 ≲ α ≲ 3]. These trends have been interpreted in terms of
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particles being mechanically stabilized by their curvature at the point of contact3 and/or by quartic vibra-

tional modes,6–8 but in light of the protocol-dependence of ϕJ(α) discussed above, it is worth revisiting the

protocol-dependence of ZJ(α) here.

With SWAP and TDOF No SWAP or TDOF (Ref. [5])

Ref. [2]

Ref. [3]

Ref. [4]

1 2 3 4 5
4.0

4.5

5.0

5.5

6.0

α

Z
J

Figure 3: Coordination numbers of systems prepared with and without SWAP and TDOF moves. The dotted
line indicates Ziso = 6. These Z values were calculated without attempting to remove “rattlers.”

Figure 3 shows that adding SWAP and TDOF moves increases ZJ by ∼ 1.4 for small aspect ratios,

e.g. from 4.02 to 5.41 for α = 1. After going through a minimum in ∂ZJ/∂α at α = 1.1 which will be

discussed further below, the coordination numbers again increase rapidly until reaching a plateau. Systems

have ZJ > .995Ziso over a very wide range of aspect ratios (1.2 ≲ α ≲ 2.6). Over an only-slightly-narrower

range (1.25 ≲ α ≲ 2.4), they have ZJ > .998Ziso. Intriguingly, the upper end of this low-H plateau

(α = 2.4) coincides with both the emergence of a thermodynamically stable nematic-liquid-crystalline

phase in50 and a transition from tip/side to side/side-dominated contact in random-sequential-adsorption

(RSA) packings of51 monodisperse ellipses.

Much as the results shown in Fig. 2 indicated a dramatic decrease in the free volume ϕv(α) despite the

relatively modest absolute increases in ϕJ(α), those reported in Fig. 3 (at least for α ≲ 3) indicate an even

more dramatic decrease in the degree of hypostaticity H(α) = Ziso − ZJ(α). The very small H(α) over

the range 1.2 ≲ α ≲ 2.4 suggest that these systems have very few ways available to pack more densely, and

therefore, in contrast to those discussed in Refs.,1–8 are nearly maximally stable; note that the maximally-

dense monodisperse-ellipse crystal also has Z = Ziso. As α increases past ∼3, however, the ZJ(α) rapidly

drop below those reported in Refs.,2,5 apparently because employing SWAP and TDOF moves increases the

tendency of ellipses to pack into stable Z = 4 configurations with high local nematic order: an example

is shown in the Appendix. This result is rather surprising because it indicates that maximizing ϕJ and

maximizing ZJ need not always coincide.
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Figure 4: Snapshots of typical jammed states with α = 1.05, 1.25, 2, and 4 from left to right. The top
(bottom) rows show states prepared without (with) SWAP and TDOF moves. Particle colors vary from
purple to red, in order of increasing σi.

To begin connecting the above results to differences in the packings’ multiscale structure, we visually

inspected them. Typical results for four aspect ratios that illustrate the key trends we observed are shown in

Figure 4. Results in the top row are similar to those found in previous studies.2–8 Those in the bottom row,

however, are dramatically different. For small aspect ratios, adding SWAP and TDOF moves yields strongly

fractionated packings consisting of polycrystals of intermediate-size particles, with the largest and smallest

particles isolated at the grain boundaries. The crystalline domains exhibit particle-size gradients whose

formation is presumably a collective effect of particle-diameter swapping.23 The grain boundaries contain

“dislocation cores” which have long been recognized as a distinctive feature of dense polycrystalline disk

packings,32 but have not (to the best of our knowledge) been previously observed in anisotropic-particle

packings.

Short-ranged orientational order weakens sufficiently rapidly with increasing α that the densest pack-

ings we obtained (α = αmax = 1.25) are apparently amorphous despite having a density less than 0.3%

below that of the crystal. For α = 2, while the packing generated using SWAP and TDOF appears to

have greater short-ranged orientational order (to be quantified below), it clearly does not include any large

locally-nematic domains. Visual inspection suggests that for these aspect ratios, the packing-efficiency gains

achieved by adding steps (3-4) to the particle-growth procedure appear to be associated primarily with their
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ability to eliminate most of the sizable voids present in the top-row packings. We believe that the biased-

SWAP moves favor formation of unjammed packings with high ϕ and few such voids, and the TDOF moves

performed at the end of the packing-generation runs allow formation of extra contacts that bring ZJ very

close to (i.e. within less than 0.5% of) Ziso.

For larger aspect ratios, we find that the increasing packing-efficiency gains highlighted in Fig. 2 are

directly associated with increasingly-long-ranged orientational order. Locally-nematic domains are present

in the jammed states for α ≳ 2.5; their appearance coincides with the beginning of the drops in ZJ(α)

illustrated in Fig. 3. In packings generated using SWAP or TDOF moves, these domains look very similar

to those found in experimental “liquid glasses” formed by ellipsoidal colloids with comparable aspect ra-

tios.34–37 In packings generated without these moves, the growth of such domains with increasing α is far

more gradual. Moreover, an additional distinguishing structural feature is already evident by α = 4. In the

top-row (but not the bottom-row) packing, numerous large gaps between differently-ordered domains are

visible. Thus the locally-nematic domains in packings generated using SWAP or TDOF moves, in addition

to being larger, fit together better, as is evident from the huge reduction in space-wasting tip-to-side contacts

visible in this snapshot.
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Figure 5: Hexatic order Ψ6,52 local nematic order S, and local density fluctuations δϕ of systems prepared
with and without SWAP and TDOF moves. All quantities were calculated as described in Ref.5 Colors are
the same as in Figs. 2-3.

Figure 5 quantitatively compares the packings’ multiscale structure using three additional metrics: the

hexatic order parameter Ψ6,52 the nematic order parameter S = ⟨[3 cos2(∆θij)− 1]/2⟩ (where ∆θij is the

orientation-angle difference between ellipses i and j), and the density fluctuations δϕ =
√
⟨ϕ2⟩ − ⟨ϕ⟩2.

Here Ψ6 captures orientational ordering on the nearest-neighbor scale, while S snd δϕ respectively cap-

ture intermediate-range orientational and positional order over regions of a size corresponding to a typi-

cal particle’s first three coordination shells; details are given in the Appendix. Since the optimally-dense

monodisperse-ellipse crystal with ϕ = ϕxtal is simply the triangular lattice affinely stretched by a factor α
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along one direction,48 it has Ψ6(α) = 1−O(α2) for α−1 ≪ 1, S = 1 for all α > 1, and α-independent δϕ.

As might have been expected from the apparent lack of long-range positional or orientational order illus-

trated in Fig. 4, none of the packings discussed above are close to any of these three limiting behaviors. On

the other hand, Figure 5 also shows that SWAP and TDOF moves strongly affect all three of these structural

metrics, and that – as was the case for ϕJ(α) and ZJ(α) – they do so in a strongly-α-dependent fashion.

Panel (a) shows that these moves can increase Ψ6 by up to ∼100%. This increase is consistent with

the formation of fractionated polycrystals discussed above, but it weakens rapidly with increasing α, and

vanishes for α ≳ 1.6. We believe that the sharp drop in Ψ6 over the upper third of this range is responsible

for the abovemenentioned minimum in ∂ZJ/∂α (Fig. 3).

Panel (b) shows that SWAP and TDOF moves increase S over the same range of α for which they

increase Ψ6, but only slightly. S remains below .03 for all α ≲ 1.35, supporting our above claim that

the densest packings with ϕJ(α) > .995ϕxtal remain amorphous. On the other hand, adding these moves

makes ∂S/∂α substantially larger for all α ≳ 1.3. As long as packings remain effectively isostatic, i.e.

for 1.2 ≲ α ≲ 2.6, the resulting differences in S are not associated with the formation of sizable locally-

nematic domains. Instead they appear to be associated with the moves’ promotion of side-to-side contacts,

which are more space-efficient than tip-to side contacts. Only for α ≳ 2.6, when S exceeds ∼ 0.3, do such

liquid-glass-like domains become apparent (Fig. 4). Their appearance coincides with the beginning of the

rapid increase in packing-efficiency gain and decrease in ZJ(α) shown in Figs. 2-3.

Panel (c) shows that (i) adding SWAP and TDOF moves substantially reduces δϕ for all α, and (ii)

the fractional reductions in δϕ closely track the packing-efficiency gains shown in Fig. 2. δϕ(α) ini-

tially decreases with increasing α, as the fractionated-polycrystal-plus-dislocation-core structure evident

for α ≲ 1.15 gradually gives way to the homogeneous disordered structure evident for α ≃ αmax. Its broad

minimum, i.e. δϕ(α) < .022 over the range 1.2 ≲ α ≲ 2.2, closely corresponds to the range of aspect

ratios over which packings are effectively isostatic (Fig. 3). For larger aspect ratios, δϕ(α) increases with

increasing α, but at a slower rate than in packings generated without these moves, consistent with the moves’

tendency to make the nematic domains fit together better (Fig. 4).

Finally we briefly discuss the relative contributions of SWAP and TDOF moves to producing the above-

mentioned differences. We performed separate runs that omitted growth cycle step (4), and found that the

resulting ϕJ(α) were only ∼ 0.1% lower, the ZJ(α) were substantially lower, the Ψ6(α) and S(α) did not

change significantly, and the δϕ(α) were slightly larger. All trends suggest that the main effect of TDOF
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moves as employed in this study is adding up to 1 contact per particle at the end of the packing-generation

runs.

4 Discussion and Conclusions

All of the abovementioned structural differences between the ultradense ellipse packings discussed above

and those reported in previous studies2–8 may have a single, common explanation. We hypothesize that

they all arise because including biased-SWAP and TDOF moves in the packing-generation procedure allows

systems to escape kinetic traps.18 In other words, including these moves allows systems to bypass the

slow dynamics which otherwise lead to jamming at much lower densities. For low α, escaping the traps

allow systems to form fractionated polycrystals. For intermediate α, it allows systems to access the slow

processes by which small voids are eliminated, and form very-stable isostatic packings, For large α, it allows

systems to form much greater local nematic order and shrink the large voids which are otherwise present

at the boundaries between differently-oriented domains.5 Because the nature of these traps is strongly α-

dependent, so is the packing-efficiency gain.

Analogous effects have been extensively studied for disk and sphere packings21–33, but had not previ-

ously been explored for anistropic particles. Ref.18 showed that decreasing the particle growth rate G̃ in an

adaptive-shrinking-cell (ASC)-based algorithm53 produces denser, better-ordered packings for a wide vari-

ety of particle shapes: rhombi, obtuse scalene and curved triangles, lenses, “ice cream cones” and “bowties.”

It also explained these effects in terms of kinetics, but since it considered only monodisperse systems, did

not explore their connection to SWAP or TDOF. Since employing standard SWAP moves speeds up dynam-

ics by many orders of magnitude in disordered hard-sphere systems above their glass transition densities,22

we expect that employing the biased SWAP moves discussed above can be a far more effective method for

bypassing anisotropic-particle glasses’ kinetic traps than simply decreasing G̃.

Our results show that all previous studies of polydisperse ellipse jamming2–8 have failed to access these

systems’ most-stable disordered jammed states. The ultradense packings obtained here presumably have

vibrational properties which are substantially different from their less-dense counterparts; for example, their

much-lower hypostaticity H(α) suggests that they will have far fewer quartic modes.6–8 Moreover, the

effectively-isostatic packings for α ≃ αmax may have ideal-glass-like vibrational and thermal properties

which are the elliptical analogues of those explored in Refs.29,30 Followup studies that employ soft rather
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than hard ellipses could explore these issues.

Here we have employed a “maximalist” biased-SWAP + TDOF approach aimed at generating packings

which are as dense as possible while remaining amorphous on large length scales. However, we emphasize

that our method can be generalized to produce packings with any density between those reported in Ref.5 and

those reported here, simply by varying the frequency with which the SWAP and TDOF moves are applied.

For example, varying the fraction of particles for which SWAP moves are attempted during step (3), or only

performing step (3) periodically, should allow one to systematically study how jammed ellipse packings

are affected by sample preparation protocol. Such studies could improve our understanding of multiple

real-world systems composed of anistropic particles whose shapes are sufficiently ellipse-like, including

liquid glasses formed by ellipsoidal colloids,34–37 active cell populations,54 and potentially even various

small molecules which have attracted great interest in recent years because they can form anisotropic quasi-

ordered glasses when vapor-deposited.38–42

A Appendix: further details on packings’ multi-scale structure

Figure 6 illustrates high-aspect-ratio ellipses’ propensity to pack into locally-stable Z = 4 configurations. In

some of these, ellipses are trapped at their “corners” by four other nearly-parallel-aligned ellipses. In others,

they are trapped by one parallel-aligned neighbor on either side and one unaligned neighbor on either end.

Figure 6: A snapshot of a 20 × 20 section of a jammed packing for α = 5 shows that many particles have
Z = 4. Only particles whose centers lie within the box are shown.

Next we discuss the length-scale dependence of the packing-fraction fluctuations δϕ(α). In Fig. 5,

as in Ref.,5 S was calculated using each particles’ 18 nearest neighbors, while δϕ =
√

⟨ϕ2⟩ − ⟨ϕ⟩2 was

calculated using randomly positioned circular windows of a radius R chosen to make the average window
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contain n = 19 particles, i.e. using the relation πR2/4L2 = n/N . Figure 7 shows how the α-dependence

varies with n. Random particle packing would produce δϕ ∼ n−1/2, while “hyperuniform” packing55

would produce faster-decreasing δϕ. As discussed below, our systems are too small to accurately capture

the large-n scaling behavior. We emphasize, however, that δϕ is always minimized at α ≃ αmax, indicating

that maximization of ϕJ coincides with minimization of density fluctuations on multiple length scales. It

would be very interesting to perform more detailed analyses of these R-dependent fluctuations and other

long-range structural correlations within the packings, along the lines of those performed in Refs.56,57

n = 20

n = 30

n = 40

n = 60

n = 80

n = 100

1 2 3 4 5
0.06

0.09

0.13

α

n
1
2

δ
ϕ

Figure 7: Packing fraction fluctuations for randomly positioned circles of radius R =
√
nL2/250π, which

contain n particles on average. Both axes are plotted log-scale, and the dotted vertical line indicates α =
1.25.

Finally we discuss how our results could have been influenced by finite-size effects. One expects these

effects to become small only when the simulation cell side length L is large compared to the characteristic

size D of crystalline domains. For both small and large α, these domains can extend over many particle

lengths, as illustrated in the TOC graphic and in Fig. 4; thus the L ≫ D limit corresponds to N ≫ 103.

Unfortunately, the poor N -scaling of our algorithm prevents us from accessing this limit. More specifically,

because gap magnitudes are near-random as long as ϕ is well below ϕJ, the characteristic growth rate G̃ (Eq.

2) scales as 1/N , and hence the number of growth cycles per particle required to obtain a jammed state scales

roughly linearly with N . The computational effort per growth cycle is O(N) if SWAP is not employed, and

O[N ln(N)] if it is, where the extra factor of ln(N) comes from the g̃i-sorting performed during step (3). As

a consquence, the overall computational effort for our novel SWAP/TDOF-based particle-growth algorithm

is O[N2 ln(N)], and the current serial implementation of the code is limited to N ≲ 103.

Thus we are unable to present a rigorous analysis of finite-size effects here. Nevertheless, we show data

in Table 1 which illustrate the key trends in and can provide a rough sense of the magnitudes of these effects

for small, intermediate, and large aspect ratios.
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Table 1: Jamming densities vs. N for selected α. All results are averaged over 25 independently
prepared samples.

α N = 102 N = 102.5 N = 103 N = 103.5

1 .873 .883 .888 .892
3 .877 .886 .890 –
5 .866 .880 .887 –
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