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Effect of chemical short-range order and percolation on passivation in binary alloys

Abhinav Roy ,1 Karl Sieradzki ,2 James M. Rondinelli ,1,* and Ian D. McCue1,†

1Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
2Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona 85287, USA

(Received 28 January 2024; revised 13 April 2024; accepted 7 August 2024; published 20 August 2024)

We develop a percolation model for face centered cubic binary alloys with chemical short-range order (SRO)
to account for chemical ordering/clustering that occurs in nominally random solid solutions. We employ a
lattice generation scheme that directly utilizes the first nearest neighbor Warren-Cowley SRO parameter to
generate the lattice. We quantify the effects of SRO on the first nearest neighbor three-dimensional (3D) site
percolation threshold using the large cell Monte Carlo renormalization group method and find that the 3D site
percolation threshold is a function of the SRO parameter. We analyze the effects of SRO on the distribution of
the total number of distinct clusters in the percolated structures and find that short-ranged clustering promotes
the formation of a dominant spanning cluster. Furthermore, we find that the scaling exponents of percolation
are independent of SRO. We also examine the effects of SRO on the 2D–3D percolation crossover and find that
the thickness of the thin film for percolation crossover is a function of the SRO parameter. We combine these
results to develop a percolation crossover model to understand the electrochemical passivation behavior in binary
alloys. The percolation crossover model provides a theoretical framework to understand the critical composition
of passivating elements for protective oxide formation. With this model, we show that SRO can be used as a
processing parameter to improve corrosion resistance.
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I. INTRODUCTION

Percolation theory has been widely applied to problems
spanning biology, epidemics, and complex network theory
(see Refs. [1–3] and references therein), making it one of
the leading statistical physical models for understanding crit-
ical phenomena, e.g., the presence of sharp phase transition
points. It has recently become instrumental in addressing one
of the longstanding problems in corrosion science: how does
chemical composition and atomic structure dictate primary
passivation of an alloy [4]? In the prototypical binary BCC
Fe-Cr system, although Cr is electrochemically more active
than Fe, it is kinetically stabilized in the alloy and acts as the
passivating element [5]. Owing to the selective dissolution of
Fe, it has been proposed that the geometric connectivity of Cr
clusters is crucial for explaining primary passivation in Fe-Cr
alloys through the formation of incipient {-Cr-O-Cr-} oxide
nuclei [6–8]. These nuclei can be undercut and removed from
the surface by the selective Fe dissolution—a process that
decreases the Fe surface concentration [9]. In the absence of
undercutting, we would expect that even for alloys relatively
dilute in Cr, selective Fe dissolution would result in the rapid
development of a stable passive film. For example, consider
the behavior of a Fe1−pCrp alloy in which p is the initial
atomic fraction of Cr in the alloy. If h monolayers of Fe are
selectively dissolved, the atom fraction of Cr in the alloy, p(h),
is given by 1 − (1 − p)h [10] so for p = 0.05 only about 4.3
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layers would be required for the Cr surface concentration to
attain a value of about 0.20. This value is equivalent to that
of a 300 series stainless steel. The concept of continuous geo-
metric connectivity of the passivating component leads to the
percolation theory of passivation [1,8]. It was proposed that
the three-dimensional (3D) site percolation threshold (up to
the third nearest neighbor) of Cr atoms is central to predicting
the critical composition of Cr needed for passive film forma-
tion on the alloy [5]. The dependence of this connectivity on
chemical short-range order (SRO) is of keen interest because
elemental selection and processing enables SRO control that
could be leveraged to improve primary passivation.

Chemical SRO in alloys is a crucial factor influencing var-
ious properties of metallic alloys. It is known to improve the
mechanical properties of complex concentrated alloys through
local fluctuations in stacking fault energies [11], which impact
dislocation motion [12]. It has been proposed that SRO can
affect the corrosion resistance of binary alloys [8]. Previously,
the effects of chemical SRO on the variation of percolation
threshold in FCC binary alloys have been investigated quan-
titatively [13] using Warren-Cowley SRO parameters [14],
albeit for a limited range of SRO and finite-sized systems. In
the context of correlated percolation, the threshold variation
due to short-range correlations in binary composites has also
been investigated [15].

Here, we examine percolation in binary FCC solid solu-
tions using the large-cell Monte Carlo renormalization group
method (MC-RNG) [16] to obtain accurate estimates of the
percolation threshold for FCC alloys containing SRO. We
obtain a relationship between the first nearest neighbor (NN)
3D site percolation threshold and the first NN pair-interaction
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parameter (�E ) in a binary alloy, which we identify as the
microscopic degree of freedom to tune corrosion resistance
and enable novel alloy design through chemical selection and
processing parameters for desired SRO. We also investigate
the effects of SRO on the scaling exponents of percolation
to find that they are dimensional invariants. We combine this
result with the 2D–3D percolation crossover theory [17,18]
and find that the thin film thickness is a function of the SRO
parameter. The percolation crossover model allows us to un-
derstand the percolation behavior of thin films, thereby giving
insights into the primary electrochemical passivation behavior
and providing a theoretical framework to justify using SRO
for tuning corrosion resistance.

II. METHODS

A. Lattice generation scheme

We consider an FCC A-B alloy to study the effect of
SRO on the first NN 3D site percolation threshold of the
passivating element (in this case, we consider A atoms to be
the passivating component of the alloy). In previous studies,
various lattice generation methodologies have been proposed
and rigorously examined [19]. Most of these lattice generation
schemes use a Monte Carlo method to induce SRO into the
lattice by randomly choosing a pair of atoms in a particular
nearest neighbor shell and swapping the atoms with a given
acceptance probability. The acceptance probability, using the
pair-interaction energy and temperature, maintains the desired
short- and long-range order [20]. Here, we employ a lattice
generation scheme that directly utilizes the Warren-Cowley
SRO parameter to calculate the site occupation probability
(see Appendix A for details of the scheme).

The first NN Warren-Cowley SRO parameter as a function
of composition (χ ) and temperature (T ) is defined as [21]:

α(1)(χ,T ) = α = 1 − pAB

χA
, (1)

where, pAB is the conditional probability that a B atom will
have an A atom as its first NN and χA is the composition of
A. Using this information, the site occupation probability of
component A (p = pA) is calculated directly from α using
the scheme provided in Appendix A. The lattice generation
scheme in previous studies is convenient when interaction
energies, such as those generated via first principles, can be
used as input. However, the scheme in Appendix A is useful
when working directly with extended x-ray absorption fine
structure (EXAFS) [22] and extended electron energy-loss
fine structure (EXELFS) [12] experimental data, where neigh-
bor occupancies are extracted to quantify SRO. We note that
the local fluctuations of the SRO parameters do not affect
the percolation threshold values as the percolation threshold
is a fundamental geometric property of the lattice. Lattices
with a given value of SRO parameter have a fixed percolation
threshold, as SRO is also an average quantity.

To verify the lattice generation scheme, we plot in Fig. 1
the radial distribution function (RDF) gα (r) of the passivating
element (A) for different values of α using the RDFPY PYTHON

module [23]. The calculated RDF does not include any x-ray
or neutron scattering cross sections. The first peak occurs at
a distance ∼1/

√
2 [the nondimensionalized lattice constant

FIG. 1. Radial distribution function of component A (b = 32).

(a) in the model is set to a = 1]. The RDF is calculated
using an FCC lattice cell of size b = 32 (i.e., 32 unit cells
per dimension). The first peak for the chemical short-range
ordered (α < 0) cell is lower than that for the random solid
solution (α = 0) as shown in the inset of Fig. 1. For α > 0
(denotes short-range clustering), the peak increases, which
we understand as follows: like atoms will prefer to be closer,
giving rise to fewer unlike atom neighbors in the first coordi-
nation shell (and vice versa).

B. Renormalization group method

We obtain the value of the first NN 3D site percolation
threshold, p3D

c {1}, using a large-cell Monte Carlo renormal-
ization group (MC-RNG) method [16]. In percolation theory,
the value of p3D

c {1} is defined for a spanning cluster consisting
of A atoms in the infinite lattice. In the MC-RNG scheme, we
choose finite cells of various sizes and increase the composi-
tion successively until the critical composition (p) is obtained,
i.e., a spanning cluster occurs. We define the rule (R3) for
percolation in those cells to occur if a spanning cluster spans
the entire lattice in all three spatial dimensions. R3 is used
as it rigorously describes percolation criteria in a finite cell
(see the Supplemental Material (SM) [24] and Refs. [25–27]
therein). We note that R3 employs open-boundary conditions
because treating the cell as a representative element of the
infinite lattice is not required in the MC-RNG method [16].
To precisely determine the spanning probability (i.e., the crit-
ical composition p) in such finite-sized cells, we developed
a cluster labeling algorithm for the FCC lattice based on the
Hoshen-Kopelman algorithm [28,29]. A brief description of
spanning probability in the current context and how it can be
equated to the critical composition p is provided in Sec. II of
SM [24].

We obtain p from our cluster labeling algorithm for a
particular realization and cell size. We perform this calcula-
tion for four different cell sizes b = 8, 12, 16, 24 and 1000
different realizations each to obtain the percolation threshold
distribution (see Sec. S3 of Ref. [24]). We fit the β distribution
to the histogram, obtaining the probability density L(b, p)
as shown in Fig. 2(a). The choice of the β distribution to
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(a)

(c) (d)

(b)

FIG. 2. Percolation threshold calculated from the MC-RNG analysis for a random binary solid solution on an FCC lattice (α = 0). (a) β

distribution fitted to the histograms of the spanning probabilities for specified cell sizes. (b) Cumulative distribution, R(b, p), is calculated from
the β distribution, and the cell percolation threshold, p∗, is calculated from the point of intersection with line p = p′. (c) The natural logarithm
of λp versus that of cell size b gives a scaling exponent νp = 0.98. (d) The cell percolation threshold p∗ plotted against b−1/νp in the limit of
b → ∞.

fit the histograms is motivated by characteristics of the β

function [30] given by:

β(u, v) =
∫ 1

0
pu−1(1 − p)v−1 d p ∀ u, v > 0, (2)

where we can set the real parameters u and v using the
mean μ and the variance σ 2 of the percolation threshold
distribution. The parameters of the β distribution are defined
as follows: u = μ[μ(1 − μ)/σ 2 − 1] and v = (1 − μ)[μ(1 −
μ)/σ 2 − 1], whereby μ and σ 2 of the percolation threshold
distribution are obtained from the respective histograms in
Fig. S4 of the SM [24].

The renormalized probability of spanning a cell (p′) is
defined as the total probability at which a spanning cluster
occurs, which is the same as the cumulative distribution func-
tion p′ = R(b, p) = ∫ p

0 L(b, p̂) d p̂. The probability R(b, p) is
also the renormalization rule in MC-RNG. The fixed point of
transformation, i.e., the cell percolation threshold [p∗(b)], is
obtained from the point of intersection of R(b, p), and the
line p = p′ [Fig. 2(b)]. In percolation theory, the cell per-
colation threshold scales with the system size according to
the expression |p∗(b) − p3D

c {1}| ∝ b−1/νp, where the scaling
exponent νp is obtained from the renormalized probabilities
by the expression νp = ln(b)/ ln(λp), as shown in Fig. 2(c).

Here,

λp = dR(b, p)

d p

∣∣∣∣
p=p′

. (3)

Plotting b−1/νp against the cell percolation threshold gives
p3D
c {1} = 0.1999 for the random FCC lattice as b → ∞

[Fig. 2(d)], which is within 0.35% of the accepted value of
0.1992 [31].

III. RESULTS AND DISCUSSION

A. Percolation threshold variation with SRO

The first NN pair-interaction parameter �E = EAB −
(EAA + EBB)/2 (units of meV per atom), whereby EAA, EAB,
and EAB represent the bond energy (assigned a negative value)
of A-A, B-B, and A-B atoms, respectively, is related to α

as [32]:

(1 − α)2(
χA

χB
+ α

)(
χB

χA
+ α

) = exp

(
− z�E

kBT

)
, (4)

where z denotes the coordination number of the lattice (in the
case of FCC, z = 12), χA and χB represent the mole fractions
of components A and B, kB denotes the Boltzmann constant,
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FIG. 3. The variation of first NN 3D site percolation threshold
with the first NN pair-interaction parameter �E . The inset shows the
same variation with SRO parameter α. The percolation thresholds are
obtained from the MC-RNG analysis, and the dashed line is a guide
to the eye.

and T represents the temperature (in Kelvin) of the system,
which is set to 300 K.

Figure 3 shows the dependence of p3D
c {1} versus both the

first NN pair-interaction parameter (−5 � �E � 5 meV) and
Warren-Cowley SRO parameter (−0.2 � α � 0.4). When re-
lating the �E and α parameters to plot Fig. 3, we used the
percolation threshold calculated from the MC-RNG method
for the composition variable. The percolation threshold de-
creases with increasing values of �E , which indicates that
short-ranged clustering promotes the lowering of p3D

c {1}. This
observation is consistent with the behavior of p3D

c {1} in BCC
alloys with SRO [8]. A comparison of p3D

c {1} variation with
�E for the FCC lattice (this study) and for the BCC lattice
(Ref. [8]) is presented in Fig. S5 of the SM [24].

We fit a third degree polynomial to the data in Fig. 3
given by p3D

c {1} = p3D
c,0 + θ1�E + θ2�E2 + θ3�E3, where

p3D
c,0 represents the percolation threshold for a random al-

loy (α = 0). The confidence of fit is R2 = 0.997 for the
polynomial with θ1 = −4.437, θ2 = −3.808×102, and θ3 =
2.872×104. We find that the relative standard deviation of per-
colation threshold values for the given range of �E parameter
is about 6.39%. The polynomial fit enables the interpolation
of values for the percolation threshold over the range of
�E ∈ [−5, 5] meV for an FCC lattice without performing
the MC-RNG calculations. This analysis may be extended
up to the third nearest neighbor to calculate the variation of
the corresponding site percolation threshold p3D

c {1, 2, 3} with
SRO.

B. Cluster-quantity fluctuation

The total number of distinct clusters of the passivating
component in the alloy at the percolation threshold is crucial
to understanding the effects of SRO on percolation. The vari-
ation in the number of clusters, referred to as cluster quantity
fluctuation, can be quantified by examining the distribution of
the number of clusters. We specifically focus on the variation

of the number of distinct clusters found at the percolation
threshold, including the spanning cluster, for a range of cell
sizes.

Therefore, we calculate the total number of clusters in
a particular cell of size b = 8, 12, 16, 32 (1000 realizations
each) at the cell percolation threshold p∗(b). We then calculate
the probability density function for different cell sizes (Fig. 4),
to which we fit a Gaussian distribution. We find that for higher
values of α the distribution of cluster number shifts toward
the left, signifying a lower number of distinct clusters at the
percolation threshold. Clustering promotes the formation of a
dominant spanning cluster thereby reducing the total number
of distinct clusters found at the percolation threshold. This
also explains the lowering of p3D

c {1} with increasing value of
�E , as positive values of �E means short-range clustering in
the system.

C. Scaling exponents

It is known that the scaling exponents of percolation are
universal, i.e., they are independent of the lattice type for a
given dimension [1]. The scaling exponent νp corresponds
to the exponent related to the correlation length (ξ ) [3] of
percolation. For long-range correlated percolation, where the
spatial correlations follow a power law behavior given by
C(r) ∼ r−m [33], the scaling exponent is modified according
to the degree of correlation (m) [34]. For short-ranged corre-
lations the scaling exponent is invariant; it is the same as that
of an uncorrelated (random) system.

We confirm that the true value of scaling exponent νp is
independent of SRO in the FCC structure (Fig. 5). From the
renormalization group method, the true value of the scaling
exponent νp is obtained from the inverse of the slope of ln(λp)
plotted against ln(b) as λp = b1/νp [16]. In Fig. 5, the straight
dashed lines represent lines with slope ν−1

p , which matches
with the data asymptotically. From the straight line fit, we
validate the true value of νp = ν3D ≈ 0.875 [35] for different
values of α. The value of νp calculated from MC-RNG is
crucial in the model for 2D–3D percolation crossover in FCC
alloys with SRO.

We also report the calculated values of the scaling exponent
τ related to the normalized cluster size distribution denoted
by n(s), which represents the number of clusters of size s per
lattice site. For large clusters s at the percolation threshold,
n(s) ∼ s−τ [36]. We calculate this distribution for different
values of α (see the SM [24]) and show that τ is also invariant
for a given dimension.

D. Percolation crossover model

Owing to the selective dissolution of the nonpassivating
element that precedes the primary passivation process, per-
colation across a 2D roughened surface occurs below the
corresponding 2D percolation threshold [8]. The critical com-
position for passivation has a lower bound set by the 3D
site percolation threshold, and it is related to the number of
monolayers of selective dissolution. Therefore, the phenom-
ena of a 2D–3D percolation crossover effect [18] is crucial
for explaining the value of this critical passivating element
composition. Such a crossover effect describes the percolation
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(a) (b)

(d)(c)

FIG. 4. Cluster-quantity fluctuation is described as the Gaussian distribution of the number of distinct clusters at the percolation threshold
of a particular cell size for 1000 realizations. The fluctuation is shown for (a) b = 8, (b) b = 12, (c) b = 16, and (d) b = 32.

phenomena in thin films where the percolation behavior is
intermediate between a 2D and a 3D system. In this transition
regime between pure 2D percolation behavior and pure 3D
percolation behavior, we find the percolation threshold of the
thin film is only dependent on the thickness of the film. To
that end, understanding passivation in metallic alloys where
the passive film is essentially thin is necessary. A percolation

FIG. 5. The slope of ln(λp) vs ln(b) gives 1/νp asymptotically.

model for such crossover effects was proposed by Sotta and
Long [17] for a random structure.

Here, we show that such a model is sensitive to SRO in
the lattice. The 2D–3D percolation crossover model, which
relates the film thickness h as a function of α to the thickness-
dependent percolation threshold, pc(h, α) (also a function
of α), is given as

h(α) = δ
[
pc(h, α) − p3D

c (α)
]−νp

, (5)

where δ is a fitting parameter and p3D
c (α) is the bulk 3D site

percolation threshold of an FCC lattice (for a given α). In the
percolation crossover model, the value of �E sets the value
of α at a specific composition and temperature, hence for that
composition and temperature [by setting pc(h, α) and T ], h
becomes a function of α. The true value of νp = ν3D is used
in the model described in Ref. [17] for a random structure.
In our analysis, we use the value of νp calculated from the
renormalization group method to account for the finite-size
effects.

Figure 6 plots pc(h, α) for various thin film layer thick-
nesses (h). In our calculations, h is the thickness of the thin
film where the composition is such that it matches the perco-
lation threshold of the thin film. Each data point for different
α corresponds to the percolation threshold calculated using
MC-RNG (Sec. II B). Owing to significant finite-size effects
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FIG. 6. Calculated MC-RNG values (data) and fit to 2D–3D per-
colation crossover model [Eq. (5)] for different SRO parameters α.

in the 2D–3D percolation transition regime, we account for
finite-size correction to the scaling exponent in our MC-
RNG analysis [37]. The modified scaling relation for the cell
percolation threshold becomes p∗(b) ∝ b−1/νp−ω, where the
correction to the scaling exponent is ω ≈ 0.9 [38]. In the MC-
RNG analysis, we consider cells of dimension b×b×h and for
a fixed h we obtain values of p∗(b) for b = 16, 24, 32, 48, and
64 from 500 distinct realizations each. We have maintained
uniformity in our MC-RNG analysis by using R3 for the
calculation of p∗(b) in this case. Using the modified scaling
relation, we calculate pc(h, α) for a given h and perform this
analysis for different values of h = 3, 4, 6, 8, 10, and 12, as
shown in Fig. 6. We fit the data to the percolation crossover
model in Eq. (5) and report the values of fitting parameters δ

and p3D
c (α) = p3D

c {1} in Table I. We also report the calculated
values of p3D

c {1} from Fig. 3 to compare with fitted p3D
c {1}

values. The agreement between the fitted and calculated val-
ues of p3D

c {1} indicates that the percolation crossover model
captures the effects of SRO on percolation threshold variation
and can be used as a tool to analyze alloys with SRO.

A recent study of the FCC Cu-Rh alloy [39] showed that
the passivation behavior was in quantitative agreement with
the percolation crossover model. From the fitting parameter
obtained (third NN percolation threshold p3D

c {1, 2, 3}), the
authors qualitatively predicted that the alloy shows a tendency
towards short-ranged ordering; however, the experimental ver-
ification of this claim is pending. We show in Fig. 5 that our
model given by Eq. (5) captures the variation in percolation
threshold p3D

c {1} (extracted from the fitting parameters). If
the same analysis is carried out for p3D

c {1, 2, 3}, a quantita-
tive prediction about SRO in the alloy can be obtained. This

TABLE I. Values of the fitting parameters δ and p3D
c {1} from

the percolation crossover model along with the calculated values of
p3D
c {1} extracted from Fig. 3.

α δ p3D
c {1} (fitted) p3D

c {1} (calculated)

−0.2 0.2017 0.2082 0.2088
0.0 0.2262 0.1994 0.1999
0.2 0.2468 0.1882 0.1873

would be done by fitting their experimental data to our model.
Such experimental verification will also validate the model
proposed in this study, which can be matched quantitatively
with the data obtained from the MC-RNG calculations.

We note another observation from Fig. 6. For a given value
of thin film composition pc(h, α), the value of h for an alloy
exhibiting short-ranged clustering (α > 0) is lower than the
random solid solution (α = 0), which in turn is lower than that
value of an alloy with short-ranged order (α < 0). Because the
value of h corresponds to the number of monolayers dissolved
due to the selective dissolution process, the criterion for better
corrosion resistance is to have a thinner film thickness (h)
value. Therefore, short-ranged clustering leads to better cor-
rosion resistance than short-range ordering.

IV. CONCLUSION

In this work, we developed a percolation model of the
2D–3D percolation crossover phenomenon for alloys with
SRO to study the electrochemical passivation behavior. This
model can be used to understand how to tune SRO to modify
the corrosion resistance of alloys through novel processing
parameter spaces—to lock in preferential order—or through
chemical selection that controls �E . Our main results and
conclusions include:

(1) Use of a lattice generation scheme that can induce
desired SRO, which we validated by calculating the RDF of
the passivating component. We show the effects of SRO on the
first NN peak value and report that the peak value increases
with short-range clustering.

(2) Demonstration of the MC-RNG method to calculate
the first NN 3D site percolation thresholds. We find that the
percolation threshold is a function of SRO and propose an
analytical expression relating the threshold with �E .

(3) Formulation of a percolation crossover model that ac-
counts for SRO. This model also suggests that short-ranged
clustering promotes corrosion resistance in binary alloys.

The current study for incorporating SRO effects utilizes
ideal conditions (for example, the absence of defects or voids),
which can then be subsequently expanded to include further
dependencies found in real alloys. To that end, our motivation
for this study was to establish a theoretical framework for
understanding the electrochemical passivation behavior using
model binary alloys. Chemical SRO in alloys is character-
ized using various experimental techniques such as diffuse
x-ray scattering, transmission electron microscopy (TEM),
EXAFS, and EXELFS [12,22,40]. Recently, SRO in complex
concentrated alloys was re-evaluated and it was suggested
that existing experimental techniques might be inadequate
for the quantitative characterization of SRO due to intricate
interactions among different constituents [40]. We propose
that the percolation crossover model serves as a tool that can
be used to validate the presence of SRO in alloys using elec-
trochemical experiments. When this model is coupled with the
proposed polynomial fit for p3D

c {1}, it can give a quantitative
estimate of �E for the alloy system. This analysis can then
be used to calibrate and validate first-principles simulations
of binary alloys, which typically model chemical SRO using
cluster expansions [41].
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The effects of SRO on percolation threshold in FCC alloys
also serve as a foundation for further research where effects
of SRO can be investigated in other domains, for example, in
complex networks [42] or networks of neurons [43]. Recently,
the phenomenon of 1D wormhole corrosion in Ni-Cr alloys
was discovered [44], where accelerated localized corrosion
occurs due to seepage of corrosive salt solution through 1D
percolating voids in the grain boundaries. It would be inter-
esting to study the effects of SRO in such a system and how it
influences the percolation of voids in 1D wormhole corrosion.
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APPENDIX A: SITE OCCUPATION PROBABILITY

We describe the procedure for calculating the site occupa-
tion probability (pA) central to the lattice generation scheme.
We adopt the scheme from Ref. [39] and modify it for an FCC
lattice. In Sec. II A, we defined the probability pAB. We define
the probabilities pBA, pAA and pBB in terms of α as follows:

pAB = χA(1 − α) (A1)

pBA = χB(1 − α) (A2)

pAA = χA + αχB (A3)

pBB = χB + αχA, (A4)

where χA and χB denote the global atom fraction of compo-
nents A and B, respectively. We start with an empty FCC cell
of a particular size b. Thereafter, we populate the cell with a
total of 4b3 sites by randomly picking an empty lattice site in
the cell and populating it with A atoms based on pA. The site
occupation probability is calculated as follows:

p′′
A = NApAA + NBpAB (A5)

p′′
B = NBpBB + NApBA (A6)

pA = p′′
A

p′′
A + p′′

B

(A7)

pB = p′′
B

p′′
A + p′′

B

, (A8)

(a) (b)

FIG. 7. (a) A random empty site (yellow atom) in an FCC lattice
with 12 B atoms (blue atoms) in the first NN shell. (b) Random empty
site with 3 A (red) atoms and 9 B atoms in the first NN shell.

where NA and NB correspond to the number of A and B
atoms in the first NN shell of the randomly picked site,
respectively. For given values of NA, NB, and α, we can cal-
culate pA. Throughout the process of populating empty sites,
0 � NA + NB � 12.

The lattice generation scheme produces single snapshot
atomic configurations. We check the final global composition
of the generated lattice with the initial global composition
(χA, χB) to ensure that the number of A-A, B-B, and A-B
bonds does not deviate from the desired value for a given α. At
the initialization of the procedure, NA = NB = 0. In this case,
the site occupation probability is simply the global composi-
tion of the passivating component, i.e., pA = χA. Only when
either of NA or NB or both becomes nonzero, the procedure is
employed. We would like to note that the empty sites present
during the lattice generation scheme are distinct from the
empty sites that may occur due to the selective dissolution
process. The final lattice generated by our scheme is fully
occupied without any empty sites.

We illustrate this scheme with two cases in Fig. 7. In
Fig. 7(a), we find that the random empty site is denoted by a
yellow-colored central atom. All the sites of its first NN shell
are occupied by the B atoms (represented by blue-colored
atoms). In this case NA = 0, NB = 12, and p′′

A = 12pAB =
12χA(1 − α). Also, p′′

B = 12pBB = 12χB + 12αχA. There-
fore,

pA = χA(1 − α). (A9)

In Fig. 7(b), we find that the first NN shell of the central
random site is filled with three A atoms (represented by red-
colored atoms) and nine B atoms. In this case, NA = 3, NB =
9, and p′′

A = 3pAA + 9pAB = 12χA + 3α(χB − 3χA). Also,
p′′

B = 9pBB + 3pBA = 12χB + 3α(3χA − χB). Therefore,

pA = χA + α

4
(χB − 3χA). (A10)

The site occupation probability (pA), calculated with the de-
scribed procedure, is used to populate the empty site, which
is randomly selected. This is done by generating a random
number (u ∈ [0, 1]) from a uniform distribution. The random
number (u) is compared with the calculated site occupation
probability pA. If u < pA, the randomly selected empty site is
populated with atom A, otherwise it is populated with atom
B. We iterate this scheme over all the lattice sites to generate
a cell with the desired SRO.
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