

2024

A case study of endocrine and immune responses to traditional hand-tap tattooing

Lauren A. Landgraf

University of Alabama, lalandgraf@crimson.ua.edu

Tomasz Nowak

Baylor University, Tomasz_Nowak2@baylor.edu

Jeffrey Gassen

University of California, Los Angeles, JGassen@mednet.ucla.edu

Michael Muehlenbein

Baylor University, michael_muehlenbein@baylor.edu

Christopher D. Lynn

University of Alabama, cdlynn@ua.edu

Follow this and additional works at: <https://scholarlycommons.pacific.edu/pjh>

 Part of the Biological and Physical Anthropology Commons

Recommended Citation

Landgraf, Lauren A.; Nowak, Tomasz; Gassen, Jeffrey; Muehlenbein, Michael; and Lynn, Christopher D. (2024) "A case study of endocrine and immune responses to traditional hand-tap tattooing," *Pacific Journal of Health*: Vol. 7: Iss. 1, Article 12.

DOI: <https://doi.org/10.56031/2576-215X.1060>

Available at: <https://scholarlycommons.pacific.edu/pjh/vol7/iss1/12>

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Pacific Journal of Health by an authorized editor of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

A case study of endocrine and immune responses to traditional hand-tap tattooing

Abstract

Tattooing is a stressor that could have adaptive benefits. Previous research indicates that endocrine and immune systems adjust to the stress of modern electric tattooing over lifetime experience, but it is unclear how these systems react to traditional hand-tap tattooing. The objective of this study was to explore how the body responds to this intense cultural stressor through examining traditional tattooing in Samoa, where saliva samples were collected throughout the first day from a Samoan man receiving the tattoo. Morning elevations and diurnal profiles of cortisol, C-reactive protein (CRP), secretory immunoglobulin A (sIgA), and bacteria killing activity (BKA) are described, and comparison is made between these data and a previous study including hand-tap and electric tattooing. Peaks in the diurnal cortisol slope correspond with anticipation of beginning an important tattoo, tattooing activity, and evening pain as stress-related analgesia diminishes and inflammation rises. Peaks in CRP levels may reflect normal moment-to-moment changes in salivary excretion. sIgA and BKA fluctuate similarly to one another throughout the day of tattooing. There were no significant differences in average pain ratings or biomarker levels between the two tattooing styles. Exploring tattooing and endocrine function is important to understanding how culture interacts with endocrine and immune function.

Keywords

tattooing, endocrine function, immune function

1 **A case study of endocrine and immune responses to traditional hand-**
2 **tap tattooing**

3 **Introduction**

4 The process of getting a tattoo puts stress on the body that may have adaptive benefits,
5 much like exercise [1-3]. Physical activity reduces allostatic load, or the collective
6 negative consequences of lifelong wear and tear that influence health over time [4].
7 Even though physical activity itself is a stressor, the body adjusts to the stress of
8 repeated bouts spaced in quick succession (daily or weekly exercise). Such habituation
9 enables one to run longer or lift heavier weights with diminishing soreness and smaller
10 refractory periods of recovery, all other things (effort, resistance, time) being equal [5].
11 Exercise also has benefits for immune function and inflammation; repeated, moderately
12 intense exercise is associated with increased immunosurveillance and lower systemic
13 inflammation [6]. Lynn and colleagues [3] suggest that lifetime experience with modern
14 electric tattooing creates a similar allostatic adjustment as exercise. However, research
15 into how the endocrine and immune systems respond to cultural stressors like the
16 tattooing process is still in its infancy.

17 During the typical physiological stress response, whether activated because of
18 distress (e.g., fear) or eustress (i.e., excitement), existing energy stores are broken into
19 usable forms and released. Noncritical systems such as digestion, reproductive
20 physiology, inflammation, and pain perception are curtailed. The release of
21 glucocorticoids, after a short latency period, inhibits glucose storage and certain effector
22 mechanisms of the immune response (e.g., cytokine and antibody production,
23 lymphocyte activity). This temporary suppression of adaptive immunity likely functions
24 to prevent over reactivity and autoimmunity. Aspects of innate immunity, however, do
25 become activated during acute responses [7-9].

26 Research on physiological responses to tattooing has focused primarily on tissue
27 trauma associated with modern techniques using electric devices. These studies have
28 exclusively compared biomarker responses to receiving a new tattoo to previous tattoo
29 experience. In four successive studies [1-3, 10], researchers explored whether people's
30 previous tattoo experience impacted their cortisol and immune responses before and
31 while they were getting tattooed. Previous tattoo experience was measured as the
32 percent of body tattooed, hours spent being tattooed, number of tattoos, number of
33 tattoo sessions, years since first tattoo, or variables made by combining these factors.
34 The biomarkers of endocrine and immune response that were measured include immune
35 levels (secretory immunoglobulin A), inflammation (C-reactive protein), and functional
36 immunity (bacteria killing activity). In those studies, the hypothesis that the immune
37 system adapts to cultural stressors over time was supported. The authors predicted that
38 people with more previous tattoo experience would have a more consistent immune
39 response without immunosuppression. The logic of this prediction is based in exercise
40 science. Exercise is also a cultural stressor that people engage in to benefit their lives
41 but comes with undesirable temporary muscle soreness, tiredness, and
42 immunosuppression. Yet ongoing exercise is healthy, and the body adapts to the
43 repeated stress [11-14].

44 Tattooing seems to follow a similar pattern as exercise. People will often note
45 that they feared the pain when getting their first tattoo, but it was not as bad as they
46 anticipated. In two of the previous studies of tattooing and immune and endocrine
47 function, cortisol increased significantly from before the tattoo to after, suggesting that
48 the fear or the pain of the tattoo may have triggered stress responses [1, 10]. In a third
49 study, conducted at a tattoo festival, there was a slight mean change in cortisol from
50 pre- to post-test, but the difference was not statistically significant. The authors suggest

51 this lack of change may be because people who attend tattoo festivals generally know
52 what they are going to experience. There may have been less anticipation or fear, or
53 those feelings may have been blunted by other substances (that study was conducted in
54 a state where marijuana use is legal, and several participants reported being under the
55 influence during their tattooing sessions) [3]. Secondary analysis with combined
56 samples from two of the previous studies also found no significant changes in cortisol
57 [2].

58 These studies found that sIgA levels were higher after the tattoo (or at post-test,
59 when repeat samples were taken one hour into the tattoo) for participants with more
60 tattoo experience. People with less tattoo experience exhibited immunosuppression.
61 This has been interpreted as an allostatic change in the mechanisms mediating immune
62 function—adjustments by the immune and endocrine systems in response to the tattoo
63 experience [1-3, 10]. Studies of immunological responses to moderate repeated bouts of
64 exercise show similar improvements in immunosurveillance [6]. Another possibility is
65 that the appraisal of the experience may be more influential in how the body responds
66 than the physiological experience of being tattooed.

67 C-reactive protein (CRP) was used as a control for pre-existing inflammation or
68 a health proxy in three of the previous studies, though salivary CRP is not consistently
69 correlated with serum CRP and therefore is questionable as a marker of systemic
70 inflammation. The biggest problem with the collection of salivary CRP is the oral
71 environment [15], which, as described in these studies, was not controlled for. Another
72 use of salivary CRP is in comparison to other biomarkers of immunity, as a function of
73 serum CRP is to trigger further immune responses [16]. Serial sampling of salivary CRP
74 and other immune biomarkers could test for this role of salivary CRP.

75 While the aforementioned studies provide some sense of how the cultural stress
76 of tattooing (using modern electrical devices) impacts endocrine and immune function,
77 it is less clear how the body reacts to intensive traditional tattooing methods, like hand-
78 tapping, hand-poking, incision, and stitching. Of all these methods, hand-tapped and
79 incised tattoos are reportedly the most painful, according to ethnographic interviews
80 with tattooists and tattoo collectors around the world. The larger project investigating
81 tattooing in the Samoan Islands (including the independent country Samoa and the U.S.
82 territory American Samoa) of which the current case study is a part was initiated in
83 2016, but previous analyses included mostly modern electric with some limited hand-
84 tap tattooing [1-3].

85 Depending on the length of the tattoo session, hand-tapped and incised tattoos
86 potentially exert the most physical and mental stress. Hand-tapped tattoos seem to be
87 particularly intense stressors because the process entails a constant tapping, especially
88 compared to the modern wireless tattoo pens designed to minimize vibration.
89 Furthermore, the Samoan *pe'a* specifically takes longer to administer than many
90 modern tattoos. The *pe'a* is a tattoo traditionally given to titled Samoan men as their rite
91 of passage into adulthood [17, 18], according to interviews with contemporary *tufuga tā*
92 *tatau* (Samoan master hand-tap tattooists, who are also chiefs in charge of the craft) and
93 other Samoans. Today, the *pe'a* is not always given to titled males (title connotes high
94 status in local village) but can be given to others at the discretion of the *tufuga*.
95 However, both the *pe'a* and *malu*, the female equivalent to the *pe'a*, have traditional
96 symbolic meanings in Samoa associated with status that persist to varying degrees [17-
97 20].

98 The *pe'a* covers a sizeable portion of the lower body, including much of the
99 torso and thighs, and takes *tufuga* approximately 30–32 combined hours to complete.

100 This estimate is complicated because usually at least two *pe'a* and other *tatau*
101 (Polynesian word adopted as “tattoo” in English) are being given at a time in
102 overlapping sessions and because *tufuga* work at different rates, depending on client
103 constraints. Clients from the Samoan diaspora often bring their families and are
104 financially pressed by the extended hotel visits and other social expectations around the
105 *tatau* process. Some want the entire *pe'a* done in as little as five days to save money,
106 which contributes to greater daily physical stress from longer tattooing sessions. By
107 contrast, native Samoans can afford to draw the process out and will take around two
108 weeks of shorter sessions with days off to heal and recover.

109 The person receiving *tatau* lays on a leaf mat they have brought specifically for
110 the purpose (they are instructed on certain rules beforehand). Fig. 1 shows a person on
111 the first day of receiving a *tatau*, which begins with a representation of the Samoan
112 flying fox (*Pteropus samoensis*), a type of bat called *pe'a* or *pe'a vao* in Samoan. In
113 Samoa, *tatau* are generally administered outside in a *fale* (open-air bungalow). Most
114 people are accompanied by family members and friends, who sit with the person being
115 tattooed and fan them, keeping them calm as much as fending the flies and mosquitos
116 away. Pillows wrapped in fresh plastic are used to prop the person’s head up, as well as
117 position them for the *tufuga*. Another plastic-coated pillow is used by the *tufuga* as a
118 handrest and pivot as he works. The *tosos* (assistants) stretch the skin at the instruction
119 of the *tufuga* and wipe the excess ink away with towels that are changed out between
120 every client. A steady playlist of Samoan and pop music and the *tufuga*, *tosos*, and
121 Samoan families chit-chatting throughout provide a continual soundtrack.

122 The *tatau* process involves dipping an ‘au, a serrated comb hafted
123 perpendicularly to a wooden handle, into the tattooing ink. Then, the skin is stretched by
124 the *tosos*, and the ‘au is repeatedly tapped into the skin using a *sausau* or wooden mallet

125 [18]. Such conditions are much less hygienic seeming than most contemporary
126 Euromerican tattoo studios, though modern *tufuga* sterilize their equipment, use gloves,
127 and cover everything touching the clients in disposal plastic (changed between each
128 client) in accordance with health standards (e.g., [22]). Before they established modern
129 hygiene measures, according to one older, high-status *tufuga*, infection was a common
130 side effect, and a healed *pe'a* was a sign of vigour.

131 Each day after tattooing, a person abstains from drinking alcohol or having sex,
132 sleeps on their mat, and receives massages to prevent the tattoo from scabbing and
133 clotting while still being administered. The massaging may facilitate healing and
134 prevent scabbing but is reportedly extremely painful on the fresh tattoo.

135 The purpose of this study was to explore how the body adapts to the stress of
136 this experience by examining the endocrine and immune responses to hand-tapping of
137 *pe'a* over multiple days. Saliva samples were collected from Samoans receiving the
138 *pe'a* over multiple days, but from one individual, it was possible to collect the diurnal
139 profile of biomarker activity for the first day of tattooing. These data make it possible to
140 describe how salivary cortisol, sIgA, CRP, and bacteria killing activity (BKA) change
141 throughout the *pe'a* process. Furthermore, these data are compared to findings from a
142 previous study that included participants receiving hand-tap and electric tattooing
143 (separately) [3] available via The University of Alabama Institutional Repository [23].

144 Materials and Methods

145 Case Study

146 In 2019, biomarker data were collected from a then 41-year-old Samoan male on the
147 first day of the *tatau* process. The participant was a local schoolteacher living in Apia,
148 the capital city of Samoa and largest city on 'Upolu, the main island of Samoa. He had

149 been interested in getting his *pe'a* so he could sit among his elders during rites in his
150 home village on Savai'i, the other main island of Samoa. He was recruited via a mutual
151 colleague to be part of this study.

152 Demographic information was collected to compare his data to those from
153 previous studies, including hours worked, self-rated social status [24], and current
154 perception of life stress [25]. He reported working an average of 40 hours per week
155 (though had taken the week off to get tattooed), considered himself upper middleclass,
156 and reported low perceived stress.

157 Ten saliva samples were collected throughout the day of sampling. The time
158 taken to collect each saliva sample was recorded to account for the effects of flow rate
159 on large analytes like sIgA [26].

160 ***Biomarkers***

161 Saliva was assayed for cortisol, sIgA, CRP, and BKA as indicators of physiological
162 stress, inflammation, and immune function. Cortisol is a steroid hormone produced in
163 the adrenal glands that influences stress, digestion, mood, sexual desire, energy
164 expenditure, and importantly for this study, the immune system [27]. Cortisol levels
165 typically rise and fall in association with circadian rhythms, peaking in the morning
166 right after rising from bed then falling over the course of the day (diurnal slope) [28].
167 Cortisol awakening response (CAR) has also emerged as an important aspect of the
168 hypothalamic-pituitary-adrenal (HPA) axis and is regulated different than the rest of the
169 diurnal cycle [29]. CAR is the sharp increase in cortisol caused by the cortisol awaking
170 response, which has different sensitivities than diurnal cortisol. However, valid CAR
171 assessment relies on participants closely following a timed schedule of self-sampling of
172 saliva, starting the moment they awaken, followed by samples at strict time increments
173 (e.g., 10 or 15 minutes) over the following 30-60 minutes [30]. This strict protocol for

174 CAR was not possible in the current study, so this measure is referred to as morning
175 cortisol rather than CAR.

176 sIgA is an antibody found in mucosal tissue, and it is an important part of the
177 immune system's reaction to invasive pathogens [31]. Generally, under acute stress,
178 levels of cortisol and sIgA are negatively correlated with one another [32]. As cortisol
179 increases during chronic stress, sIgA decreases. sIgA, like cortisol, follows a diurnal
180 pattern in which levels peak in the morning upon awakening and fall over the course of
181 the day [33].

182 CRP is an important acute-phase protein produced in the liver that correlates
183 positively with systemic inflammation [34]. CRP takes 4-6 hours to rise in response to
184 stress [35], so it is unclear if CRP is associated with cortisol levels or responding to
185 other mechanisms. However, under chronic stress, CRP levels rise significantly as
186 cortisol levels rise and remain high [36]. There is conflicting information about whether
187 CRP follows a diurnal pattern like cortisol and sIgA [37]. Wetterö and colleagues [37]
188 found that average levels of CRP are much higher in the morning, around 56,000
189 pg/mL, than they are in the evening, around 6,000 pg/mL.

190 The BKA assay measures how much bacteria are killed by the various
191 immunological components of saliva. The major antibodies present in saliva include
192 sIgA and sIgG, but saliva also contains peptides with direct antimicrobial effects like
193 defensins, cathelicidins, and histatins, among others [38, 39]. Complementary activity
194 and white blood cells likely also play roles in inhibiting pathogen growth in saliva.
195 BKA is measured by incubating diluted saliva with an enumerated number of bacteria,
196 with colony inhibition determined relative to positive and negative controls. Lynn and
197 colleagues [2] found that participants getting tattooed had an average BKA of 11%
198 beforehand and 19% after one hour of tattooing.

199 **Salivary collection and analysis**

200 The biomarker data measured in this study were collected at awakening (5:45 AM), 15-
201 minutes later (6:00 AM), one hour later (7:00 AM), 15 minutes before beginning the
202 tattoo (1:30 PM), two during the tattoo process (2:50 PM, 3:42 PM,), then four more
203 times over the course of the day (4:40 PM, 6:00 PM, 8:00 PM, 11:30 PM). The
204 tattooing lasted from 1:44-3:37 PM.

205 Saliva was donated via the passive drool method using 1mL cryovials
206 (Salimetrics LLC, State College, PA). Time to fill the cryovial was recorded to control
207 for flow rate. Samples were kept in a standard small refrigerator during data collection
208 and kept in a cold storage bag with ice packs to return to the U.S. The samples were
209 packed in dry ice and shipped to the Laboratory for Evolutionary Medicine Lab at
210 Baylor University, where they were stored at -80°C until assayed.

211 Samples were thawed, centrifuged for 15 min at 1500rcf at room temperature,
212 aliquoted to prevent repeatable freeze/thaw cycles, and assayed. Salivary cortisol, sIgA,
213 and CRP were analysed with commercially available ELISA kits (#3002, #1602, #2102)
214 from Salimetrics, LLC (State College, PA). Sensitivities for these assays were < 0.007
215 µg /dL, 2.5 µg /mL, and 9.72 pg/mL, respectively. Correlation coefficients for each
216 standard curve were better than 0.999. Intra-assay CVs (based on sample duplicates
217 within plates) were 5.46%, 4.54%, and 1.67%, respectively. Inter-assay CVs (based on
218 high and low control duplicates between plates) were 8.23%, 10.04%, and 3.96%,
219 respectively.

220 In vitro bacteria killing assays were used with saliva to measure innate
221 immunity. Saliva was diluted 1:2 in CO2 Independent Media (Gibco #18045). A single
222 lyophilized *E. coli* pellet (MicroBiologics Epower Microorganisms #0483E7) was
223 reconstituted in sterile phosphate buffered saline and then diluted into a working

224 solution, which produced approximately 200–300 colonies per 20 μ L of aliquot.

225 Aliquots of bacteria working solution were added to diluted saliva in a microcentrifuge

226 tube, vortexed, and incubated for 30 minutes. After incubation, the samples were spread

227 on trypticase soy agar plates (BD BBL #211043) in triplicate and incubated overnight at

228 37°C. The number of colonies on each plate the next day were counted, and the percent

229 bacteria killed for each sample relative to a positive control (media and bacteria only)

230 was calculated.

231 Biomarker levels were standardized using Z-scores for ease in interpretation

232 during statistical analyses.

233 ***Comparative studies***

234 Since control data were not collected in Samoa, the case study was compared to data

235 collected in 2018 at the Northwest Tatau Festival in Puyallup, WA. There were four

236 hand-tap artists working at that festival, including two Samoan *tufuga*, one Hawaiian

237 *kakau* artist (*tatau* and *kakau* are allophones), and one Filipino *batok* (name of

238 traditional Filipino style) artist. However, all hand-tap artists currently working in these

239 Pacific traditions use the Samoan tools and hand-tap methods [18]. Data from that

240 festival include 6 hand-tapped and 42 electric tattoos and were analysed for the same

241 biomarkers as the current case study.

242 ***Statistical analysis***

243 This study largely uses descriptive statistics to explore the influence of traditional hand-

244 tap tattooing on endocrine and immune function. However, mean biomarker levels for

245 electric and hand-tap tattooing were compared using independent samples *t*-test. SPSS

246 Version 28 (IBM Corp. Armonk, New York) was used for all statistical analysis, and

247 differences were considered significant if $p < .05$.

248 **Results**

249 As outlined in Table 1 and depicted in Fig. 2 cortisol levels first peaked at 6:00AM,
250 reflecting the typical elevation that takes place upon awakening. Cortisol was also
251 elevated at the 1:30 PM sample, just before starting the tattooing process, and again in
252 the evening at 6:00 PM and 8:00 PM. It appears to have decreased throughout the
253 afternoon despite the ongoing tattoo process. On average, cortisol levels decreased
254 slightly over the course of the day.

Table 1. Biomarker levels across the first day of tattooing, adjusted for flow rate.

Sample Time	Cortisol ($\mu\text{g/dL}$)	CRP (pg/mL)	sIgA ($\mu\text{g/dL}$)	BKA (%)
05:45 AM	0.0089	7.009	9.894	89.53
06:00 AM	0.0178	9.041	11.178	61.12
07:00 AM	0.0054	58.988	4.089	-76.07
1:30 PM	0.0099	4.412	2.947	32.28
2:50 PM	0.0057	10.714	0.848	-15.93
3:42 PM	0.0058	9.819	2.912	28.57
4:40 PM	0.0026	2.467	0.595	-6.66
6:00 PM	0.0110	8.294	4.324	60.40
8:00 PM	0.0119	11.726	1.868	-17.97
11:30 PM	0.0085	26.548	3.888	46.31

255 sIgA levels peaked upon awakening and at 6:00 AM. It was elevated as tattooing
256 began and ended, and it continued to rise and fall until the day was over. On average, it
257 followed its expected diurnal pattern by declining over the course of the day.

258 CRP levels rose at 7:00 AM and again after the tattooing process was finished
259 for the day, though, on average, CRP levels decrease slightly over the course of the day.

260 The results from the BKA assays fluctuated between positive and negative
261 percentages of BKA throughout the course of the day. They peaked at the beginning and
262 end of the tattooing process, but they were negative as tattooing occurred. The highest
263 positive percentage was at 89.53% activity, which occurred at 5:45 AM, upon
264 awakening. The lowest negative percentage was -76.07% at 7:00 AM, an hour after the
265 cortisol levels were at their peak. On average, BKA declined over the course of the day.

266 Negative BKA values are the result of bacteria growing better when media contained
 267 participant saliva than when it was the media alone (positive control).

268 ***Comparison of hand-tap and electric tattooing***

269 During the tattooing process, the participant rated his pain level as 8/10. Mean pain
 270 ratings were compared in the previous study as well, and there was a slightly higher
 271 rating for those receiving hand-tapped tattoos (mean \pm SD = 5.08 ± 2.65) relative to
 272 electric ($4.65 \pm .32$), but the difference was not statistically significant ($p = .32$).
 273 Biomarker levels of electric and hand-tap tattooing in a previous study were also
 274 compared, and no significant differences (equal variances not assumed) were found
 275 (Table 2).

Table 2. Independent sample t-test comparison of hand-tap and electric tattooing on cortisol, C-reactive protein (CRP), and secretory immunoglobulin A (sIgA) (Data from <https://ir.ua.edu/handle/123456789/8256>).

	Style	N	Mean	SD	P
Cortisol _{pretattoo}	Handtap	6	.4417	1.3872	.14
	Electric	40	-.0373	.9537	
Cortisol _{1-hour}	Handtap	6	-.0559	.6522	.43
	Electric	40	.0281	1.0683	
CRP _{pretattoo}	Handtap	5	.6048	1.9323	.24
	Electric	39	-.0632	.8572	
CRP _{1-hour}	Handtap	6	-.0002	.7592	.48
	Electric	40	.0211	1.0589	
sIgA _{pretest}	Handtap	6	-.6004	.2266	.07
	Electric	40	.0546	1.0477	
sIgA _{1-hour}	Handtap	6	1.0868	1.9327	.08
	Electric	40	-.2080	.6594	

276 **Discussion**

277 The purpose of this study was to provide a basic description of changes in salivary
 278 biomarkers of endocrine and immune responses throughout a day of *pe'a* tattooing.
 279 Despite common refrains from people who have received both hand-tap and electric
 280 tattooing, there are no statistically significant differences in average pain ratings or

281 biomarker levels distinguishing the two styles based on these limited data.

282 Morning cortisol levels shortly after waking are significantly elevated relative to
283 the rest of the day, as is expected of a waking response [40]. In the current study, the
284 next peak may indicate high levels of stress and excitement in anticipation of tattoo
285 pain. In previous studies [2, 3], there was no significant change in cortisol between pre-
286 and post-tattoo measures, suggesting that either tattooing did not hurt or stress the
287 participants or that their cortisol levels were already high due to anticipation of the
288 event.

289 The fluctuations in CRP are more difficult to account for since it typically takes
290 four to six hours for levels to rise in response to tissue damage. While the peak at 11:30
291 PM could be associated with dermatological trauma caused by the *pe'a*, since it would
292 have occurred over four hours prior, it would not explain the peaks in the morning or
293 afternoon. It is possible that alcohol consumption within the past 24 hours of testing
294 impacted CRP levels, as there is some evidence that acute alcohol exposure can increase
295 systemic inflammation [41]. An alternative and more likely explanation is that there are
296 normal moment-to-moment changes in salivary excretion of CRP, and similar though
297 less pronounced patterns may be observed for sIgA and BKA.

298 The results from the BKA assay follow a pattern similar to the fluctuations in
299 sIgA levels [38]. Since sIgA has previously been used as a representative of immune
300 activity, and BKA directly measures functional immune response, this result was
301 expected. However, Muehlenbein and colleagues [42] suggest that BKA may constitute
302 a better model of innate immune response than sIgA in isolation, as other components
303 of the immune system may play a more important role in reacting to the bacteria used.
304 The negative percentages of BKA indicate that the bacteria continued to grow even in
305 the presence of the subject's saliva.

306 **Limitations**

307 Case studies are important in biological and social sciences because they flesh out the
308 phenomenological and embodied aspects of cultural behaviour that can be hard to
309 discern through analyses of sample statistics [43]. Furthermore, case studies of
310 biological systems in response to specific stimuli can provide insights into the dynamics
311 of immune function not readily visible when simply measuring biomarkers across time
312 points [44]. Yet a first case study like this one is limited in that it lacks comparative
313 data. Future studies of daily biomarker patterns for endocrine and immune function
314 regarding electric tattooing will enable researchers to compare these results to other
315 forms of tattooing. Repeated sampling in the morning would enable one to determine
316 CAR, a robust marker of HPA axis activity [29]. Furthermore, it will be important to
317 determine if individual styles of tattooing (faster or slower, heavy colour tattooing or
318 black line work) make significant biological impacts.

319 Controlling the conditions around biomarker sampling in field settings is
320 difficult, and participants cannot reasonably be asked to curtail normal activities. The
321 participant did not smoke or take any medication during the week prior to beginning his
322 *pe'a*, but food or beverage intake may have impacted his biomarker levels. Neither food
323 nor caffeine intake was recorded but were consumed in the eight hours from awakening
324 to beginning the tattoo and could have resulted in some contamination [45, 46].

325 Furthermore, it is common to have meals between tattooing sessions. Future research
326 should at minimum conduct oral health examinations, which can be accomplished with
327 a brief questionnaire [15]. Another option could be to use dried blood spot samples
328 rather than saliva to minimize contamination concerns [47].

329 There are many potential avenues for expanding upon this case study. It would
330 likely provide useful context if one were to collect samples throughout the entire
331 tattooing process, rather than just one day, to observe how biomarker levels change

332 when additional stress is added in the following days. Collecting saliva samples at
333 regular intervals throughout the day, rather than only at crucial points in the process,
334 may provide insight into any additional missed fluctuations [48]. It would also be
335 worthwhile to gather in-depth data from more participants. Doing so would provide
336 insight into whether biomarker levels are impacted by lifetime tattoo experience.
337 Additionally, there are many gender issues around cultural tattooing practices that have
338 yet to be explored; for instance, the Samoan *malu* is applied only to women and is
339 generally completed in 1–2 sittings. While traditionally important, some Samoans see
340 the meaning of the *malu* becoming dissolute compared to the *pe'a*, perhaps because the
341 *malu* is smaller [20]. Future studies can investigate the *pe'a* and the *malu* as aspects of
342 Samoan identity, including biological and cultural analyses.

343 Conclusion

344 The activities of the endocrine and immune systems were characterized based on a
345 limited set of biomarkers with respect to beginning a traditional Samoan *pe'a* tattoo. It
346 was anticipated that the biological responses to the *pe'a* would be more intense than
347 those of modern electric tattoos based on anecdotal descriptions by people who have
348 experienced both types of tattooing. The case study supports those descriptions in part;
349 rates of pain were slightly higher than average for hand-tap tattooing, and hand-tap
350 tattooing exerts a clear influence on biomarkers during tattooing. However, these
351 influences do not appear exaggerated relative to responses observed in previous studies.
352 The more striking influences of hand-tap tattooing appear to be due to the anticipation
353 before beginning the tattoo and the pain of massaging the fresh tattoo in the evening.
354 Since this is the first study to examine biomarkers of endocrine and immune function
355 over a full day including diurnal profiles of multiple biomarkers, how these anticipatory
356 and latent responses to the tattooing compare to other tattooing paradigms remains to be

357 seen.

358 **Acknowledgments**

359 Thanks to Sulu'ape Tatau for their collaboration and to Su'a Sulu'ape Alaiva'a for
360 supporting this research. Thanks to Whitey Chen for recruiting a participant for this
361 study and an accompanying film project. Kat Beidler assisted with research support in
362 the field, as did filmmaker Adam Booher. The Olaga Project were gracious in loaning
363 equipment and providing emergency logistic support. Muiz Awan, Liana Donsbach,
364 Rebecca Modisette, Vy Nguyen, and Alexandria Henderson assisted with laboratory
365 assays. Finally, the Samoa Ministry of Health and Centre for Samoan Studies provided
366 research approval and general support of this project.

367 **Author Contributions**

368 Alex Landgraf composed the first draft, analysed data, prepared figures and tables,
369 edited and revised all drafts, and approved the final version of the manuscript.
370 Tomasz Nowak and Jeffrey Gassen performed biomarker assays, edited and revised
371 manuscript, and approved the final version of the manuscript.
372 Michael Muehlenbein co-designed the research, performed biomarker assays, edited and
373 revised manuscript, and approved the final version of the manuscript.
374 Christopher Lynn conceived and designed the research; collected and analysed data and
375 interpreted results; drafted manuscript, edited and revised manuscript, and approved the
376 final version of the manuscript.

377 **Financial Support**

378 This project was supported by funding from the Wenner-Gren Foundation (Grant No.
379 7985665216).

380

381 **Competing Interests**

382 The authors have no competing interests.

383

384 **Ethical Approval**

385 The authors assert that all procedures contributing to this work comply with the ethical
386 standards of the relevant national and institution committees on human experimentation
387 and with the Helsinki Declaration of 1975, as revised in 2008. Free and informed
388 consent of participants was obtained, and all research protocols were approved by The
389 University of Alabama Institutional Review Board (#19-OR-167) and the Samoa
390 Ministry of Health.

391

392 **Data availability**

393 Source data for this study are available upon request from the corresponding author.

394

395 **References**

396 [1] Lynn CD, Howells M, Herdrich D, Ioane J, Hudson D, Fitiao STU. The
397 evolutionary adaptation of body art: Tattooing as costly honest signaling of enhanced
398 immune response in American Samoa. *Am.J.Hum.Biol.* 2020;32:e23347.

399 [2] Lynn CD, Howells ME, Muehlenbein MP, Nowak T, Gassen J, Henderson A.
400 Tattooing as a phenotypic gambit. *American Journal of Biological Anthropology*
401 2023;182:7-11.

402 [3] Lynn CD, Howells ME, Muehlenbein MP, Wood H, Caballero GW, Nowak TJ, et
403 al. Psychoneuroimmunology and tattooing. *Adaptive Human Behavior and Physiology*
404 2022;8:355-69.

405 [4] Guidi J, Lucente M, Sonino N, Fava GA. Allostatic load and its impact on health: a
406 systematic review. *Psychother.Psychosom.* 2020;90:11-27.

407 [5] Bonilla DA, Pérez-Idárraga A, Odriozola-Martínez A, Kreider RB. The 4R's
408 framework of nutritional strategies for post-exercise recovery: a review with emphasis
409 on new generation of carbohydrates. *International Journal of Environmental Research
410 and Public Health* 2021;18:103.

411 [6] Nieman DC, Wentz LM. The compelling link between physical activity and the
412 body's defense system. *J Sport Health Sci* 2019;8:203.

413 [7] Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in
414 stress and their relation to pharmacological actions. *Endocrine reviews* 1984;5:25-44.

415 [8] Sapolsky RM. Endocrinology of the stress-response. in: JB Becker, SM Breedlove,
416 D Crews and MM McCarthy (Eds.), *Behavioral endocrinology*, MIT Press, Cambridge,
417 2002, p. 409.

418 [9] Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress
419 responses? Integrating permissive, suppressive, stimulatory, and preparative actions.
420 *Endocrine reviews* 2000;21:55-89.

421 [10] Lynn CD, Dominguez JT, Decaro JA. Tattooing to "Toughen up": Tattoo
422 experience and secretory immunoglobulin A. *Am.J.Hum.Biol.* 2016;28:603.

423 [11] Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain
424 health and plasticity. *Trends in neurosciences* 2002;25:295.

425 [12] Donges C, Duffield R, Drinkwater E. Effect of resistance or aerobic exercise
426 training on Interleukin-6, C-Reactive protein, and body. *Medicine and Science in Sports
427 and Exercise* 2010;42:304-13.

428 [13] Eöry A, Békési D, Eöry A, Rózsa S. Physical exercise as a resilience factor to
429 mitigate COVID-related allostatic overload. *Psychother.Psychosom.* 2021;90:200-6.

430 [14] Gleeson M. Immune function in sport and exercise. *J.Appl.Physiol.* 2007;103:693.

431 [15] Pay JB, Shaw AM. Towards salivary C-reactive protein as a viable biomarker of
432 systemic inflammation. *Clinical Biochemistry* 2019;68:1-8.

433 [16] Riis JL, Byrne ML, Hernández LM, Robles TF. Salivary bioscience, immunity, and
434 inflammation. *Salivary bioscience: Foundations of interdisciplinary saliva research and
435 applications* 2020;177-213.

436 [17] Mallon S. Samoan tatau as global practice. *Tattoo: Bodies, Art, and Exchange in
437 the Pacific and the West* 2005;145.

438 [18] Mallon S, Galliot S. *Tatau: A history of Samoan tattooing*. University of Hawaii
439 Press, Honolulu, 2018.

440 [19] Mallon S. Against Tradition. *The Contemporary Pacific* 2010;362.

441 [20] Samau B. Perceptions on the Commercialization of the Malu: A Case of Samoa.
442 *Global Journal of Arts, Humanities and Social Sciences* 2016;4:69-80.

443 [21] Mallon S. Samoan Tattooing, Cosmopolitans, Global Culture. Tatau: Samoan
444 Tattoo, New Zealand Art, Global Culture 2010;15.

445 [22] Samoa Ministry of Health. Health Guidelines for Tattooing. in: LTTN Naseri and
446 RM Carney (Eds.), Samoa Ministry of Health, Apia, Samoa, 2017.

447 [23] Lynn C, Howells M. Inking of Immunity Seattle Dataset. Adaptive Human
448 Behavior and Physiology, 2017.

449 [24] Cohen S. Measures of psychological stress. MacArthur Research Network on SES
450 & Health, MacArthur Foundation, 2000.

451 [25] Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress.
452 J.Health Soc.Behav. 1983;24:385.

453 [26] Kugler J, Hess M, Haake D. Secretion of salivary immunoglobulin A in relation to
454 age, saliva flow, mood states, secretion of albumin, cortisol, and catecholamines in
455 saliva. J.Clin.Immunol. 1992;12:45.

456 [27] Hellhammer DH, Wust S, Kudielka BM. Salivary cortisol as a biomarker in stress
457 research. Psychoneuroendocrinology 2009;34:163.

458 [28] Adam EK, Quinn ME, Tavernier R, McQuillan MT, Dahlke KA, Gilbert KE.
459 Diurnal cortisol slopes and mental and physical health outcomes: A systematic review
460 and meta-analysis. Psychoneuroendocrinology 2017;83:25, 6.

461 [29] Steptoe A, Serwinski B. Cortisol Awakening Response. in: G Fink (Ed.), Stress:
462 Concepts, Cognition, Emotion, and Behavior, Academic Press, San Diego, 2016, pp.
463 277-83.

464 [30] Stalder T, Kirschbaum C, Kudielka BM, Adam EK, Pruessner JC, Wüst S, et al.
465 Assessment of the cortisol awakening response: Expert consensus guidelines.
466 Psychoneuroendocrinology 2016;63:414-32.

467 [31] Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ. Location of secretory
468 component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory
469 IgA1 in mucosal immunity. Mucosal Immunology 2009;2:74.

470 [32] Hucklebridge F, Clow A, Evans P. The relationship between salivary secretory
471 immunoglobulin A and cortisol: neuroendocrine response to awakening and the diurnal
472 cycle. International Journal of Psychophysiology 1998;31:69.

473 [33] Li T-L, Gleeson M. The effect of single and repeated bouts of prolonged cycling
474 and circadian variation on saliva flow rate, immunoglobulin A and ??-amylase
475 responses. Journal of sports sciences 2004;22:1016.

476 [34] Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest
477 2003;111:1805.

478 [35] Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. Erythrocyte
479 Sedimentation Rate and C-reactive Protein Measurements and Their Relevance in
480 Clinical Medicine. Wmj 2016;115:319.

481 [36] Tolmay CM, Malan L, van Rooyen JM. The relationship between cortisol, C-
482 reactive protein and hypertension in African and Caucasian women: the POWIRS
483 study. Cardiovasc J Afr 2012;23:78.

484 [37] Wetterö J, von Löhneysen S, Cobar F, Kristenson M, Garvin P, Sjöwall C.
485 Pronounced Diurnal Pattern of Salivary C-Reactive Protein (CRP) With Modest
486 Associations to Circulating CRP Levels. Frontiers in Immunology 2021;11:2.

487 [38] Brandtzaeg P. Do salivary antibodies reliably reflect both mucosal and systemic
488 immunity? Ann.N.Y.Acad.Sci. 2007;1098:288-311.

489 [39] Vila T, Rizk AM, Sultan AS, Jabra-Rizk MA. The power of saliva: Antimicrobial
490 and beyond. PLoS Pathog 2019;15:e1008058.

491 [40] Fries E, Dettenborn L, Kirschbaum C. The cortisol awakening response (CAR):
492 facts and future directions. International Journal of Psychophysiology 2009;72:67-73.

493 [41] Gacouin A, Roussel M, Le Priol J, Azzaoui I, Uhel F, Fest T, et al. Acute alcohol
494 exposure has an independent impact on C-reactive protein levels, neutrophil CD64
495 expression, and subsets of circulating white blood cells differentiated by flow cytometry
496 in nontrauma patients. *Shock* 2014;42:195.

497 [42] Muehlenbein MP, Prall SP, Chester E. Development of a noninvasive salivary
498 measure of functional immunity in humans. *Am.J.Hum.Biol.* 2011, p. 267.

499 [43] George AL, Bennett A. Case studies and theory development in the social sciences.
500 mit Press, 2005.

501 [44] Blackwell AD, Garcia AR. Ecoimmunology in the field: Measuring multiple
502 dimensions of immune function with minimally invasive, field-adapted techniques.
503 *Am.J.Hum.Biol.* 2022;34:e23784.

504 [45] Klein R. Limiting your child's fire time: A guide for concerned paleolithic parents.
505 New Yorker, 2018.

506 [46] Schwartz EB, Granger DA, Susman EJ, Gunnar MR, Laird B. Assessing Salivary
507 Cortisol in Studies of Child Development. *Child Development* 1998;69:1503-13.

508 [47] McDade TW, Williams S, Snodgrass JJ. What a drop can do: Dried blood spots as
509 a minimally invasive method for integrating biomarkers into population-based research.
510 *Demography* 2007;44:899-925.

511 [48] Adam EK, Kumari M. Assessing salivary cortisol in large-scale, epidemiological
512 research. *Psychoneuroendocrinology* 2009;34:1423.

513

514

515 **Figure Captions**

516

517 Figure 1. Providing passive drool saliva sample after day 1 of the *pe'a* tattoo (Tattoo by
518 Su'a Sulu'ape Paulo III, photo by C. Lynn).

519 Figure 2. Morning and diurnal patterns of cortisol, secretory immunoglobulin A (sIgA),
520 C-reactive protein (CRP), and bacteria killing activity (BKA) in response to receiving a
521 traditional hand-tapped tattoo (tattooing took place during shaded period).