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Abstract The short and biased observational record of tropical cyclones (TCs) limits scientific
understanding of how these destructive storms respond to climate forcing. Paleohurricane records use natural

archives (tree rings, coarse‐grained sediment) to reconstruct TC properties (frequency and intensity of rainfall,

wind) over the past few hundreds to thousands of years. However, different sensitivities and sampling biases in

the various paleohurricane proxies restrict our ability to compile these records into regional or basin‐scale TC

estimates. Here we test how well pseudo tree‐ring records of paleohurricanes capture TC rainfall and

occurrence. Using a large set of statistically downscaled storms forced with the Max Planck Institute (MPI‐

ESM‐P) model as boundary conditions for the past millennium, we generate a 1000‐member ensemble of

pseudo tree‐ring records of latewood width from southern Mississippi using a Poisson process‐based random

draw. Pseudo records convert synthetic TC rainfall into latewood width using a previously published statistical

calibration and seasonal sensitivity. We show that fourth quantile thresholds applied to pseudo latewood data

successfully identify years with TC strikes. Comparing pseudo tree‐ring records with pseudo sediment records

from the Gulf Coast indicates promise in combining proxies sensitive to TC rainfall with proxies sensitive to

storm overwash. Sediment records that are sensitive to lower intensity storms (≥Saffir Simpson Category 1) are

more compatible with tree‐ring records, suggesting a need for more of these low intensity threshold records in

the Gulf to facilitate future multi‐proxy efforts to reconstruct past TC properties.

1. Introduction

Tropical cyclones (TCs) are highly destructive natural disasters producing strong winds, intense rainfall, and

storm surge that inundates coastlines and damages infrastructure (Pielke et al., 2008). Tropical cyclone precip-

itation (TCP), in particular, is one of the leading drivers of dangerous conditions, fatalities, and infrastructure

damage during storms (Czajkowski et al., 2017; Rappaport, 2014). For example, Hurricane Harvey generated

over 152 cm of rain in the Houston/Galveston Bay area in 2017. The storm ultimately cost over $125 billion

dollars (Blake & Zelinsky, 2018), and many in Houston are still recovering from the losses. Recent work has

shown that human induced climate change has increased the risk of anomalously high TC rainfall events like

Hurricane Harvey (Emanuel, 2017; Risser & Wehner, 2017; Van Oldenborgh et al., 2017). Observations suggest

that TC rain rate has increased globally, with more rain falling in the outer bands of TCs (Guzman & Jiang, 2021;

Tu et al., 2021). Storms are stalling near the coast more often (Hall & Kossin, 2019) and decaying at a slower rate

(Li & Chakraborty, 2020). In the North Atlantic, precipitation in major landfalling hurricanes has increased

substantially (Touma et al., 2019).

While current and future TC rainfall patterns are well constrained, changes in TC frequency are not (Sobel

et al., 2021). Ultimately, the rain‐related risk associated with TC events is controlled by frequency, in that a storm

cannot impart damages if it does not occur. Model projections of global TC frequency often differ in sign (Lee

et al., 2020); some models show increased frequency (Bhatia et al., 2018), and some show decreased frequency

(Sugi et al., 2017). Furthermore, the short observational (>170 years) and satellite records (>50 years) of TCs

restrict our knowledge of how TC frequency and rainfall are modulated by decadal‐to‐centennial scale climate

variability. Available observations show that storm tracks are modulated by long term climate modes like the

North Atlantic Oscillation via steering winds (Kossin et al., 2010) and broadly, by Atlantic sea surface tem-

perature (SST) patterns (Dare & McBride, 2011; Emanuel, 1999). El Niño‐Southern Oscillation (ENSO) events

also affect TC formation and growth, with La Niña (El Niño) spurring more (fewer) storms in the North Atlantic
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(Gray, 1984; Klotzbach et al., 2017; Patricola et al., 2014). However, the feedbacks between these nonlinear

modes of climate variability and TC properties are still uncertain due to the scarcity of observations over the 20th

century.

To address this, we can use paleohurricane proxies to supplement our observations and extend the record of TC

events back hundreds to thousands of years. The vast majority of paleohurricane records use sediment (Oliva

et al., 2018; E. J. Wallace, Dee, et al., 2021) or tree (Bregy et al., 2022; Miller et al., 2006; Trouet et al., 2016)

cores. Sediment cores record the temporal evolution (frequency) of landfalling TC events. During TCs, high wind

and wave action mobilize coarse‐grained sediment, which subsequently is deposited in various environments,

including coastal ponds/lagoons (Donnelly et al., 2015; Donnelly & Woodruff, 2007; Rodysill et al., 2020) or

blue holes (Schmitt et al., 2020; E. J. Wallace et al., 2019; E. J. Wallace, Donnelly, van Hengstum, Winkler,

McKeon, et al., 2021; Winkler et al., 2020). Tree cores record climate changes at monthly to‐annual resolution

(Tucker & Pearl, 2021). In particular, latewood width (the section of a tree ring that grows during the hurricane

season) in longleaf pine (Pinus palustris, Mill.) is strongly linked to the short duration and high volume pre-

cipitation produced by TCs (P. A. Knapp et al., 2016, 2021; Maxwell et al., 2021). Rain from TCs infiltrates

quickly through the sandy soils and gentle topography near the coast reaching/raising the water table depth.

During these storms, the shallow lateral roots of longleaf pine species can access storm‐related rainwater

(Montpellier et al., 2020). A recently published record from De Soto National Forest calibrated the width of the

latewood portion of tree rings from longleaf pine to TC precipitation data over the same region (Bregy

et al., 2022).

To resolve TC climate signals, there has been a push toward compiling reconstructions from neighboring sites

(e.g., E. J. Wallace, Donnelly, van Hengstum, Winkler, Dizon, et al., 2021). Both sediment‐based and tree‐ring

based records are biased. Sediment records are sensitive only to intense TCs (≥Category 3) that pass nearby

(>200 km) (E. J. Wallace, Dee, et al., 2021). These biases make it more likely that an individual sedimentary

paleohurricane record captures random variability in TCs rather than climate variability (E. J. Wallace

et al., 2020). Tree ring records, on the other hand, are biased toward the rainiest storms. The relationship between

TC precipitation and TC frequency is uncertain. Years with more frequent TCs will likely have more TC rainfall,

but this relationship can be complicated by other TC properties that produce more rain (i.e., translational velocity,

(Hall & Kossin, 2019),). In addition, there is no way to isolate the role of TCs in producing latewood growth bands

in trees compared to other storm systems (e.g., thunderstorms, extratropical cyclones). Until there is a direct

relationship established between TCP and TC frequency, it is difficult to compare sediment data with tree core

data.

In order to reconstruct a basin‐wide or regional TC climate signal, we need large networks of paleohurricane

proxy data (E. J. Wallace, Dee, et al., 2021; E. J. Wallace & Dee, 2022). At present, with sedimentary or tree‐ring

proxies in isolation, we are limited in our ability to reconstruct basin‐scale or regional TC trends over time (E. J.

Wallace, Dee, et al., 2021). Integrating across proxy types in these locations can fill gaps in paleohurricane

networks, yet to date, no work has been done to integrate sedimentary paleohurricane records with tree‐ring

proxies. This is due to challenges related to combining estimates of direct TC occurrence (sourced from sedi-

ment proxies) with TC‐related climate properties (e.g., rainfall estimates sourced from tree‐ring proxies).

To address this problem, here, we explore uncertainties in tree‐ring reconstructions of TCP and frequency and

their combination with sediment proxies using a pseudo proxy forward modeling approach. Proxy system models

are widely used to explore uncertainties in proxy interpretation and to link climate model data to proxies in

common units (Dee et al., 2015; Evans et al., 2013). Pseudo proxy approaches have been successfully applied to

assessing uncertainties in sediment‐based paleohurricane records (Wallace et al., 2020). Scaling up from the

individual records, pseudo proxies have also been used for sensor placement recommendations and network

optimization for paleohurricane records in the North Atlantic (E. J. Wallace, Dee, et al., 2021). Building from

these and other studies, we use a large data set of synthetic TCs to generate the first pseudo tree‐ring latewood

records from the Gulf Coast. We compare the pseudo‐proxy data to actual proxy data including a reconstruction

from longleaf pine in De Soto National Forest in Mississippi (Bregy et al., 2022). We explore key questions

related to merging paleohurricane proxies of different types by comparing our pseudo tree ring record to idealized

pseudo sediment records generated in the same region. These questions include: (a) Can tree‐ring proxies years

when TCs occur? and (b) Can tree‐ring records of TCP be related to sediment records of TC occurrence for a

given location?
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2. Data and Methods

The pseudo proxy approach used here follows three steps. First, we generate large numbers of synthetic TCs using

a statistical/dynamical TC model (Emanuel et al., 2008) driven by a fully forced past millennium simulation from

the Max Planck Institute Earth System Model (MPI‐ESM‐P). Second, we generate pseudo tree‐ring and pseudo

sediment records using the properties of these storms (intensity and derived precipitation) that are captured in

natural archives. Third, all pseudo records are compared to each other as well as observational and proxy data.

Details on our methods for each step in this process are given below.

2.1. The Synthetic Tropical Cyclone Data Set

Building a pseudo record of extreme events (like TCs) requires simulating large numbers of extremes to allow for

robust statistical analyses. The observational record often includes only a small number of extremes impacting a

given location. In our case, only 45 TCs have passed over De Soto National Forest since the beginning of rain

gauge measurements (>1948 CE) (K. Knapp et al., 2010).

We simulate 57,800 TCs (50 storms/year) passing within 223 km of De Soto National Forest (31.08°N, 89.08°W)

over the past millennium using a statistical/dynamical TC model (Emanuel et al., 2008). Synthetic TCs range

from tropical storms to Category 5 hurricanes in intensity. The 223 km radius represents the average radius of

closed isobar for observational storms (Matyas, 2010) and allows us to include only storms that are likely to

generate rainfall at our site. The statistical/dynamical model used here spins up storms from background climate

conditions sourced from the MPI‐ESM‐P last millennium (850–1850 CE) and historical simulations (1851–2005

CE) (Giorgetta et al., 2013). The storm generation methods are summarized in Text S1 in Supporting

Information S1.

Rainfall over the lifetime of each synthetic storm is generated using a tropical cyclone rainfall (TCR) algorithm

(Zhu et al., 2013). Details on the algorithm can be found in Zhu et al. (2013) and Lu et al. (2018), and are

summarized in Text S1 in Supporting Information S1. The TCR model is computationally efficient and can help

characterize TC rainfall climatology (Feldmann et al., 2019) and make risk assessments (Emanuel, 2017). While

the TCR model cannot capture individual convective systems, it can simulate intense eyewall convection and

capture precipitation outside the storm core (Zhu et al., 2013). TCR model output accurately simulates existing

observations of storm rainfall (Feldmann et al., 2019). For this study, we extract total storm precipitation (in mm)

at our De Soto tree core site for each of the 57,800 synthetic storms in our data set. Precipitation amounts per

storm range from 0 to 1932 mm.

2.2. Observational Data Products

We compare our synthetic TC data to two observational products for validation: (a) The International Best Track

Archive for Climate Stewardship (IBTrACS; K. Knapp et al., 2010) and (b) the TC Precipitation Data set

(TCPDat; Bregy et al., 2020). The IBTrACS data set provides the position and intensity of TCs in the North

Atlantic from 1851 to present. The most reliable portion of this data set extends over the satellite era from 1974

onwards and decreases in accuracy and completeness moving further back in time; the era prior to aircraft

reconnaissance (pre‐1944) contains the largest biases (Emanuel, 2003).

We extract observational TCP data from TCPDat at De Soto National Forest (31.08°, −89.08°). TCPDat (Bregy

et al., 2020) is a 0.25° × 0.25° data set of TC precipitation for the continental USA from 1948 to present. This data

set extracts daily precipitation associated with observational TCs from a unified rain gauge data set (the Climate

Prediction Center Unified Precipitation data set (CPC URD (Higgins et al., 2000)). TCPDat offers a spatially

consistent view of TCP but is known to underestimate the magnitude of TCP (Bregy et al., 2020).

2.3. From TCs to Latewood Width of Longleaf Pine

We generate an ensemble of pseudo latewood records by modifying previously published methods for generating

pseudo sediment records (E. J. Wallace et al., 2020). Briefly, we generate 1,000 records of storm occurrence by

randomly drawing an integer number of storms (x) from the 50 storms available for each year of climate. A

Poisson random draw determines x using the annual storm frequency (λ) from the model for that year (0.17 TCs/

year to 1.36 TCs/year). Across our 1,000 records, x ranges from 0 to 8. This method creates 1,000 different
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realizations of storms striking southern Mississippi over the past millennium with different numbers of and

different actual storms occurring in each realization.

To move from storm occurrence to a pseudo tree‐ring reconstruction, we apply a published linear regression

reconstruction model presented in Bregy et al. (2022). This reconstruction model was built by running a linear

regression of July–September TCP totals (from the rain‐gauge‐based observational product TCPDat (Bregy

et al., 2020)) onto the De Soto latewood width data. Details on the De Soto National Forest latewood data can be

in Bregy et al. (2022) but are summarized below. Longleaf pine samples from De Soto National Forest were

collected from living trees, stumps, and archeological samples and latewood ring widths were measured. Samples

were detrended using a two‐thirds smoothing spline. The 2/3 smoothing spline method removes biological and

non‐climatic growth while preserving low‐frequency variability (Cook & Peters, 1981). Adjusted latewood ring

width values showed a much stronger correlation (r = >0.6) with TCP than non‐TCP (r = >0.4) (Bregy

et al., 2022).

Since latewood growth in longleaf pine occurs from July to September (P. A. Knapp et al., 2021; Maxwell

et al., 2021), we limit our synthetic TC data to only events occurring in these months. For each year in each pseudo

record, we sum precipitation across each storm to reach an annual precipitation amount at the site from TCs only

(Figure 1). This precipitation total is a function of both the amount of precipitation in each storm and the fre-

quency of storms passing over the site in that year. Annual precipitation is then converted into latewood width

using Equation 1 (Bregy et al., 2022):

LWa =
TCP + 67.01

94.04
+ ε (1)

where TCP is annual TC precipitation in mm, LWa is adjusted latewood width in mm, and Ɛ is a white noise error

term. The linear relationship in Equation 1 is temporally stable and captures 40% of the variance in seasonal TCP

totals (Bregy et al., 2022). Equation 1 is only calibrated over the observational period (1948–2012). Linear

regression reconstructions bias results toward the mean, so Equation 1 tends to overestimate latewood widths

when TCP is low and underestimate TCP totals for the most extreme events. We introduce an error term to the

calibration equation to account for inherent uncertainties in the calibration (Equation 1).

We convert from latewood width to TC frequency (Figure 2a) using our pseudo tree‐ring records. Years with

simulated latewood widths in the fourth quartile (Q4, 40.07 mm) are counted as years where a stormmade landfall

according to the pseudo tree core. To analyze event frequency patterns, we apply a 50‐year moving sum to our Q4

frequency data as is standard practice in paleotempestology studies (Bregy et al., 2022).

2.4. From TCs to Coastal Overwash Sediment Signatures

Storms raining over De Soto National Forest can also create storm surge along the Gulf Coast. These high waves

can produce overwash signatures in coastal lakes which are proxies of storm occurrence (Brandon et al., 2013;

Lane et al., 2011; Rodysill et al., 2020). Compiling sediment proxies of TC occurrence with tree ring proxies of

TC rainfall requires testing whether these proxies record the same or similar populations of storms. Therefore, we

create a theoretical framework for testing whether our synthetic data set of TC rainfall could translate into

overwash at the coastline.

We create pseudo sediment records using our 1,000 records of storm occurrence fromDe Soto National Forest.We

find the geographic locationwhere each track in the data set intersects the coastline and the intensity of that storm as

it makes landfall (Figure 1b). Existing paleohurricane records from the Gulf Coast are either low‐threshold records

(capture ≥ Category 1 storms; Brandon et al., 2013; Lane et al., 2011) or high‐threshold records (cap-

ture ≥ Category 3 storms; Bregy et al., 2018; K. Liu & Fearn, 2000). Therefore, only storms with landfall in-

tensities ≥ Category 1 (64 knots) and ≥Category 3 (96 knots) leave a deposit in our low‐threshold and high‐

threshold pseudo records, respectively. We assume each record has a minimum sedimentation rate of 1 cm/year

such that each sediment record can only distinguish if at least one storm made landfall each year. If two or more

stormswith high enough intensity occur each year, only one indicator layer is created. Throughout this analysis, we

assume availability of coastal basins appropriate for capturing overwash layers at every place our synthetic storms

make landfall. Both our assumptions (i.e., one cm/year sedimentation rate and ample availability of coastal basins

along theGulf Coast) do not reflect reality but allow us to test an optimal scenario. Our approach ismotivated by the
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idea that if the results suggest that it is possible to relate TC rainfall proxies to TCoverwash proxies in this idealized

scenario, future efforts can assess the practicality of obtaining such measurements.

Each of our pseudo tree‐ring and pseudo sediment records provide an estimate of years with TC strikes at a given

location over the past millennium. To determine whether sediment and tree‐ring records document the same storm

year patterns, we perform correlation analyses between our estimates of TC frequency produced by our different

pseudo records.

2.5. Data Model Comparison: Spectral Analysis

We compare our pseudo records to the real published latewood data to assess how well our synthetic records

capture real TCP variability. We estimate the power spectra of the 1,000 pseudo records of latewood width data

and real latewood width data using Thomson's multi‐taper method (Thomson, 1982). Since annual TCP is related

both to TC frequency and TC rainfall, we also calculated power spectra for synthetic TC frequency and mean

annual TCP over the past millennium. We normalize all data prior to spectral analysis. To isolate significant

spectral peaks across time series, we calculated the power spectra of an autoregressive [AR(1)] model forced by

white noise and with realistic autocorrelation matching our pseudo records (Ault et al., 2013). Peaks in power

spectra exceeding the 95% confidence level of our AR(1) null hypothesis are considered significant.

2.6. Properties of the Rainiest Storms

Paleotempestology proxy reconstructions do not permit investigation of storm properties that leave indicator

layers, but with pseudo proxies, all environmental conditions are known. We use our pseudo latewood records to

analyze the characteristics of the rainiest storms that contribute to larger latewood width growth years in De Soto

National Forest. It is unclear whether Q4 latewood ring width signatures in De Soto longleaf pine trees are biased

toward certain kinds of TCs. We analyze the sinuosity, the intensity at the time of closest passage, translational

speed, direction of passage (east or west of site), and genesis region of synthetic storms generating the 99th, 95th,

and 75th percentile (Q4) peaks in annual TCP/latewood width across our pseudo records. These criteria are

chosen because many of these TC properties impact TCP in observed storms (Matyas, 2010; Touma et al., 2019;

Yu et al., 2017). We define storm sinuosity as the total meandering distance of cyclone travel divided by the

vector length between the start and finish location (Terry & Feng, 2010). Translational velocity is defined as the

average speed of the TC as it travels within a 3° box of the site. All speeds were calculated as the distance between

two hourly points on a track divided by the time between points (i.e., 2 hr). Direction of passage is denoted as

either east or west given that storms passing through southern Mississippi are typically southerly moving either to

the east or west of our tree ring site (Figure 1b). TC genesis density is calculated as the number of TC starting

points per 0.5° × 0.5° box per year.

3. Results

3.1. Data Model‐Comparison: Latewood Records

Pseudo tree‐ring records generated usingMPI synthetic TCP show similar mean latewood widths (1.04 mm) to the

real De Soto paleo archive (0.99 mm). However, the variance in pseudo latewood widths (0.47 mm) is over seven

times larger than the variance in real latewood width (0.06 mm) (Figure 1c). To understand the discrepancy in

latewood width variance, we examined individual properties of the MPI synthetic TCs, most of which compare

favorably to the observations. Genesis locations, track trajectories, and storm max intensity all broadly match

observations within uncertainties (Figures 3a–3d). The differences between our large synthetic TC data set (7,750

storms from 1851 to 2005 CE) and the smaller observational data (121 storms from 1851 to 2005 CE) arise in part

Figure 1. (a) Gulf of Mexico paleohurricane sites (Brandon et al., 2013; Bregy et al., 2018, 2022; Horton et al., 2009; Lane et al., 2011; K.‐B. Liu & Fearn, 1993, 2000;

K.‐B. Liu et al., 2011; Reese et al., 2008; Rodysill et al., 2020; Williams, 2013) by proxy type (shape) and intensity criteria (color). (b) Example high‐threshold pseudo

sediment record. Map shows a synthetic tropical cyclone (TC) making landfall. Intensity at landfall for all storms occurring is shown over the last millennium (gray

bars). TCs that leave a deposit (intensity ≥96 knots) are shown as black stars. The 50‐year window event frequency is plotted (blue). (c) Pseudo latewood records start

with accumulated Tropical cyclone precipitation (TCP) at De Soto National Forest (31.08°N, 89.08°W) from all TCs that pass within a 223 km circle. TCP is converted

into adjusted latewood widths using a published calibration equation (Bregy et al., 2022). An example pseudo latewood record (black) is compared to the real latewood

measurements (blue) (Bregy et al., 2022). Boxplots show the median (center line), interquartile range (box), and outliers (dots) for a single pseudo record (black)

compared to the real latewood proxy (blue).
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from the smaller sample size and observing biases toward landfalling and higher intensity storms (e.g., Landsea &

Franklin, 2013; Vecchi & Knutson, 2011; Villarini et al., 2011) associated with the instrumental record.

Thus, the larger variance created in the pseudo records arises from higher variance in both synthetic TC rainfall

and TC frequency. Storm total accumulated precipitation in MPI synthetic storms is much higher than obser-

vational storms extracted from TCPDat (Figure 3e). Our TC rainfall algorithm downscaled from reanalysis data

matches rain gauge and radar data well (Feldmann et al., 2019). Therefore, this pattern of rainier storms in the

model likely arises from a combination of biases in our observational product (TCPDat) and our climate model

(MPI‐ESM). First, TCPDat, which applies a conservative search radius (223 km) for storm rainfall, is built to

underestimate rainfall amounts over the lifetime of a storm (Bregy et al., 2020). Second, observational rain gauge

data is inherently biased toward capturing less storm rainfall. Most gridded gauge data sets undergo interpolation

and do not capture individual extreme events well (Ensor & Robeson, 2008). The return period of storm rainfall

calculated using radar data from Feldmann et al. (2019) matches our synthetic storms much better than return

periods calculated using TCPDat (gauge data) (Figure S1 in Supporting Information S1). Unfortunately, radar

data rarely spans greater than a 30‐year observational period which makes it less suitable for paleo comparisons

than the >90‐year observational period of gauge data (Feldmann et al., 2019). On the other hand, the MPI‐ESM

simulations are biased toward warmer temperatures over the U.S. Gulf Coast (Giorgetta et al., 2013). These warm

biases in the model generated a longer tail for the distribution of synthetic storm rainfall (Figure 3e).

These outliers in TCP produce unrealistic extremes in both latewoodwidth and precipitation amounts in our pseudo

records (Figure 1c). These biases prevent comparison of patterns in TCP amounts over the pastmillennium. For this

paper, we focus our analyses on TC properties inferred from latewood records that are not related to TCP

magnitude, including storm frequency and spectral properties.

Our pseudo tree‐ring records show similar spectral properties to the real De Soto latewood width record

(Figure 4a). Both records show substantial high‐frequency variability with significant spectral peaks in the 3–7‐

year band associated with El Niño–Southern Oscillation (ENSO) (Diaz & Pulwarty, 1994). Both real and pseudo

tree‐ring records show little low‐frequency variability with few to no significant spectral peaks exceeding

25 years (Figure 4c). This spectral shape matches the shape of synthetic TC frequency but not synthetic TC

rainfall: TC frequency similarly lacks low‐frequency variability, while synthetic rainfall shows significant

variability in the 100‐year and greater ranges of the spectrum. Both frequency and rainfall vary significantly in the

ENSO band (3–7 years) (Figure 4b).

3.2. Converting TC Rainfall Proxy to TC Frequency

The conversion from TC rainfall captured by latewood records into TC frequency metrics is uncertain. Den-

droclimatology records typically assume that fourth quantile (Q4) peaks in latewood width serve as a metric of TC

frequency. We explicitly test this assumption using our pseudo records and find a strong correlation between

frequency of Q4 latewood events and the frequency of JAS storms (Figure 5b, mean rho of 0.75 from 1,000 pseudo

records). Across all 1,000 pseudo records, we find that using aQ4 cutoff of 40.08mmof rain reliably extracts years

with at least one storm (Figure 2b). Daily background precipitation values inMPI are rarely above theQ4 threshold.

Figure 2. (a) Randomly selected example pseudo record of JAS tropical cyclone precipitation from 850 to 2005 CE. The

fourth quantile threshold (40.08 mm) is shown (red dotted line). (b) Box plot of annual precipitation as a function of the

number of storms that occurred in each year. Boxplots show the median (center line), interquartile range (box), and outliers

(dots) for all 1,000 pseudo records.
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In fact, only 39 of 106,352 daily backgroundMPI precipitation values (0.037%) from the pastmillenniumare above

the Q4 cutoff (Figure 6). The Q4 cutoff, however, cannot distinguish between years with one storm and more than

one storm (Figure 2b). This limitation is common to all paleohurricane proxies, though, and should not pose a

Figure 3. (a) Genesis points for 121 observed tropical cyclones (TCs) (red) compared to 1,800 randomly selected MPI synthetic TCs (black) that occurred from 1851 to

2005 CE. (b) 100 randomly selected synthetic (black) and observed (red) tracks from 1851 to 2005. (c) Average TC frequency per year, (d) distribution of maximum

sustained wind speed and (e) total accumulated storm precipitation (in mm) for observed (red) and synthetic storms (black) in the North Atlantic. The TC counts in

panels d and e are normalized by the total number of storms in each data set. All synthetic storms were generated by a statistical downscaling model (Emanuel

et al., 2008). All observed storms were drawn from the IBTrACS database (K. Knapp et al., 2010). Observed TC rainfall in panel e is drawn from rain gauge data

compiled in TCPDat (Bregy et al., 2020).
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Figure 4. (a) Normalized spectral density of an example pseudo latewood width record (blue) compared to real latewood width data (red) (Bregy et al., 2022).

(b) Normalized spectral density of average annual MPI‐ESM synthetic tropical cyclone (TC) precipitation (yellow) compared to MPI TC frequency (green). In both

panels, 95% confidence intervals (shaded regions) and a theoretical AR1 spectrum (black) are shown. (c) Histogram of the number of pseudo records that exhibit

significant spectral density peaks in each frequency band. Significant spectral peaks for synthetic TC frequency, TC rainfall, and the real latewood width data are

overlain in green, yellow, and red, respectively.
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problem for multiproxy comparison. For example, sediment records of storm overwash are also unable to

distinguish between multiple storms making landfall in a year (D. J. Wallace et al., 2014).

Given that quantile thresholds can successfully identify storm frequency using latewood growth data, we can

explore whether multiproxy comparisons on tree ring records and sediment records are possible. Paleohurricane

sediment records can only be combined with tree ring records if the storms that are rainy enough to impact tree

growth are also intense enough at the coastline to generate surge. In our case, we tracked the intensity at landfall of

each of the 57,800 synthetic storms that rained over De Soto National Forest (Figure 1b). Many of the storms that

were identified using the Q4 cutoff in our pseudo tree‐ring records were not categorized as a major hurricane on

landfall (max wind speeds≥96 knots). Approximately 10% of Q4 rainfall storms are major hurricanes (≥Category

3) at landfall while >50% of Q4 rainfall storms are hurricane strength (≥Category 1) at landfall. There is a

significant correlation between the frequency of hurricane landfalls and pseudo latewood records (Figure 5b;

r= 0.52, mean r across 1,000 records). The correlation between the frequency of major hurricane landfalls and Q4

rain events is still significant but much weaker (Figure 5b; r = 0.30, mean r across 1,000 records). These results

suggest that even the rainiest storms at De Soto National Forest would not necessarily create coarse‐grained

overwash layers in coastal basins, especially those basins sensitive to overtopping under major hurricane con-

ditions (e.g., Bregy et al., 2018; K. Liu & Fearn, 2000; Rodysill et al., 2020).

Figure 5. (a) Randomly selected example pseudo record 50‐year moving window event frequency for July–September (JAS)

storms (black), fourth quantile (Q4) latewood width events (green), HT (Category 3 and above) sediment deposits (light

blue), and LT (Category 1 and above) sediment deposits (dark blue). (b) Histogram of the correlation coefficients between

JAS storms and Q4 latewood events (green), Q4 latewood events and LT sediment deposits (dark blue), and Q4 latewood

events and HT sediment deposits (light blue) by number of pseudo records.
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3.3. Analysis of the Rainiest Storms

Using our synthetic storms, we tracked the properties of Q4 storms captured

by our pseudo latewood records. We found a strong relationship between the

closest distance of storm passage and rainfall at the De Soto National Forest

site. Most storms (82%) that generated fourth‐quartile rainfall passed within

150 km of the site (Figure 7a). Similarly, we also found that TCs that passed

to the west of the site rain more (Figure 7e). Most TCs hitting Mississippi are

moving in a northerly direction from the Gulf of Mexico. Therefore, De Soto

National Forest experiences the most rain from the front right quadrant of a

storm when it passes on the west side. TCP observations support this pattern

finding maximum rainfall in the front quadrants of TCs with Atlantic TCs

showing the most precipitation in the front right quadrant (Burpee &

Black, 1989; Didlake & Kumjian, 2018; Lonfat et al., 2004).

Storm properties like intensity, sinuosity, and translational velocity created

less clear relationships. There was no significant difference in the intensity of

storms that generated fourth quantile rain accumulation (average intensity: 70

knots) compared to all events (average intensity: 67 knots). However, 99th

percentile events were substantially more intense (average intensity: 113

knots). There is no difference in the sinuosity of storm tracks for rainy events

versus all events (Figure 7c). The mean translational velocity of rainier storms

is smaller than all events (Figure 7d). Fourth quantile events had an average translational velocity of 6.74 m/s

compared to all events at 7.60 m/s. On average, events in the 99th percentile were almost 3.8 m/s slower than all

events.

Most storms that pass within 223 km of De Soto National Forest form either in the Gulf of Mexico or in the Main

Development Region (MDR: 10–20°N, 80–20°W). This is true in both the MPI synthetic data set and obser-

vations. We do not find strong relationships between storm genesis location and storm rainfall. Only the rainiest

storms (99th percentile events) seem to preferentially form in the MDR before making landfall along the Gulf

coastline (Figure 7f). These events are more intense and rainier, as they take longer to move through favorable

oceanic conditions in the tropics before making landfall. On the other hand, storms forming in the Gulf of Mexico

make landfall shortly after formation and have less time to develop into fully fledged storms.

4. Discussion

In paleotempestology, compilations are quickly being established as an important method for constraining TC

climate shifts and robustly integrating proxy data with TC model output (Wallace & Dee, 2022; Yang

et al., 2024). Ideally, these compilations will use the complete paleohurricane proxy network and integrate

different types of proxies (e.g., trees, sediments). This paper represents proof of concept work that tests the

practicality of using latewood width in coastal trees to reconstruct TC statistics (e.g., rainfall, years with TCs) and

build multiproxy compilations. In this section, we use our analyses to offer suggestions for improving paleo-

hurricane tree core proxies and making regional multiproxy paleohurricane compilations a possibility (Figure 8).

Sediment paleohurricane proxies record changes in TC landfalls; therefore, we tested whether thresholding of tree

ring proxies of TCP (e.g., latewood width) can successfully capture years with TCs. Using synthetic storm climate

for the past millennium and a published calibration between TCP and latewood width, we constructed an

ensemble of pseudo records with similar mean values and spectral properties as real tree ring data from the Gulf

Coast. Setting a fourth quantile threshold to our pseudo latewood data provided an estimate of TC occurrence that

is strongly and significantly correlated with real occurrence (Figure 5b). Our work highlights that current ap-

proaches to reconstruct years with TC strikes using latewood growth bands have promise. We demonstrate a

strong relationship between the amount of rain recorded each year in a latewood record and the occurrence of at

least one storm (Figures 2b and 6). However, we were unable to distinguish whether one storm or many storms

rained on a site each year using latewood width data alone.

A tree‐ring record's inability to distinguish between years with one storm versus years with more than one storm

does not pose a problem for future compilation efforts with sediment records. Even the highest resolution (i.e.,

Figure 6. Boxplot of background daily rainfall totals (mm) in July–

September from MPI‐ESM‐P simulations of past millennium and historical

(850–2005 CE) compared to rainfall totals in MPI synthetic tropical

cyclones run over the same time frame. Daily precipitation in the model is

rarely larger than the Q4 cutoff (40.08 mm, red triangle).
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annual) paleohurricane sediment records also suffer from this bias. Annual sediment archives with one cm/year

sedimentation rates can only distinguish whether at least one storm passed by a site in a year (E. J. Wallace

et al., 2019; Winkler et al., 2022). Since both proxies have similar biases, researchers would not need to bias

correct either proxy before integrating them into a single estimate.

Figure 7. Probability distribution functions of tropical cyclone (TC) distance of closest passage (a), max wind speed (b), sinuosity (c), and translational velocity (d) for

fourth quantile (75th percentile) rainfall (red), 95 percentile rainfall (yellow), 99th percentile rainfall (purple) and all (blue) TC events. (e) Histograms of the proportion

of 75th, 95th, 99th, and all TC events in the synthetic data set that pass De Soto National Forest to the east (blue bar) versus the west (red bar). (f) Anomaly map of the

genesis density for 99th percentile rainfall TC events compared to all TC events.
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Using a fourth quantile threshold on latewood width or reconstructed precipitation amount successfully distin-

guishes between daily background precipitation and TCP (Figure 6) but proves to be a conservative cutoff for

translating TCP to frequency. Across our 1,000 pseudo records, approximately 27% of years with storms over the

past millennium are missed with a Q4 threshold. Using a 70th percentile threshold substantially reduces the

undercounting of years with at least one storm in our pseudo records (only 12% of years with storms are missed).

In addition, a 70th percentile threshold does not overcount storms. Out of 1,000 pseudo records of the past

millennium, we only find one year in one record where the 70th percentile threshold counts a year without a storm

as having one occur. Below a 70th percentile threshold, we find a substantial loss in the skill of distinguishing

between storm years and non‐storm years (Figure S2 in Supporting Information S1). Therefore, we recommend

that future tree ring records use a 70th percentile threshold to distinguish between TC and non‐TC precipitation.

We also tested whether it is possible to establish a threshold that picks out the number of storms that occurred in

each year. Given the wide variety of precipitation amounts that can occur in a single storm, we were not able to use

a percentile threshold approach to distinguish the number of storms occurring in each year (Figure 2b). A 99th

percentile threshold identifies 67% of years with two or more storms in an average past millennium pseudo record

(Figure S2 in Supporting Information S1). We cannot successfully distinguish years with three or more storms

from tree ring data alone.

Our pseudo proxy approach also highlights some of the biases in the types of storms captured in tree‐ring records.

In general, TCs generating Q4 rain events tend to pass slower, move closer to the site and pass on the western side

of De Soto National Forest (Figure 7). The bias in tree ring proxies toward recording more proximal passing TCs

(within a 150‐km radius) implies that we will need an extensive tree ring network along the Gulf Coast to suc-

cessfully reconstruct the actual number of storms that made landfall in this region over the past millennium.

Dividing the U.S. Gulf Coast into >150 km segments suggests that we would need at least 10 different long leaf

pine records from the Gulf shoreline to provide adequate coverage of landfalling TCs. Currently, we only have

one tree ring record of storms from this region (Bregy et al., 2022; Figure 1a).

Fortunately, existing tree ring records can theoretically be combined with sediment records to bolster the paleoTC

observing network. Sediment records of past storms are more abundant along the Gulf coastline (Figure 1a).

Many of the storm properties that promote paleoclimate signatures in longleaf pine trees are also TC

Figure 8. Summary of suggestions for future work aimed at improving tree core proxies of paleohurricane activity and

building regional compilations of both tree and sediment core proxies.
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characteristics that promote overwash and inundation at coastal sediment sites. Lin et al. (2014) characterized

storms that inundated coastal barriers along the Florida Gulf Coast using a hydrodynamic model and found that

83% (17%) of storms that generated enough surge to inundate the barrier and likely generate widespread overwash

passed to the west (east) of the site. Thus, our pseudo proxy work highlights that many of the biases in storms

captured by tree‐ring proxies and sediment proxies overlap. Such overlapping biases should make it easier to

compile/compare sediment and tree ring proxies, because both proxies count the same types of storms and not

separate populations of storms that might experience different responses to climate modes.

Many of the storms that generate peaks in latewood growth in De Soto National Forest also make landfall at

hurricane intensity or greater. We find strong correlations (r = 0.51) between pseudo tree ring records and low

threshold (≥Category 1) pseudo sediment records (Figure 5b). These results suggest that there is promise in

compiling low threshold sediment records (e.g., Brandon et al., 2013; Lane et al., 2011) with nearby latewood

width records. By contrast, the same cannot be said for high threshold sediment records (≥Category 3). Much less

of the variance in all JAS storms and pseudo tree ring records (r = 0.3, mean rho from 1,000 records) is captured

by high threshold pseudo sediment records (Figure 5b). Unfortunately, most paleohurricane reconstructions from

the Gulf Coast are high‐threshold records (Figure 1a).

Many sedimentary paleohurricane records are generated by collecting a single core from the depocenter of a

coastal basin (D. J. Wallace et al., 2014). Overwash fans, however, start at the barrier, and extend back into a basin

(Otvos, 2011). Stronger storms can transport larger grains further away from the barrier (Moore et al., 2007).

Low‐threshold paleohurricane records either collect cores closer to the barrier to capture overwash fans from

lower intensity storms (Rodysill et al., 2020) or apply multiple grain size thresholds to identify both hurricanes

and major hurricanes (Brandon et al., 2013; Lane et al., 2011). Adding hydrodynamic modeling and examining of

sediment grain size distributions could facilitate efforts to tie certain grain sizes to particular wind speed

thresholds (Brandon et al., 2013; Woodruff et al., 2008). To improve storm occurrence estimates and encourage

multi‐proxy comparisons, researchers should revisit high threshold sites/sediment archives and work to recover

low‐threshold records.

All the above paleorecord biases should be considered when interpreting existing paleohurricane records and

compilation of records. Most paleohurricane proxies will more faithfully reconstruct patterns in intense TCs and

individual records will only record proximal passing TC years. To assess regional shifts in TCs, paleoclimate

records need to be compiled. In addition, TC proxy biases are similar to known storm observation biases which

include undercounting of lower intensity and short duration storms especially early in the record (prior to 1940)

(Landsea et al., 2010; Vecchi & Knutson, 2011; Villarini et al., 2011). Future work could consider the feasibility

of applying bias correction techniques established using modern TC observations to paleohurricane

reconstructions.

Unlike their sediment‐based counterparts, tree‐ring records are not limited by temporal resolution. Sediment

records, which are annually resolved at best, often cannot resolve storm response to high frequency variability like

ENSO. Our pseudo latewood records exhibit substantial high frequency variability (particularly in the 3–10‐year

bands) but very little low frequency variability (Figure 4a). Previous work has shown that ENSO variability

modulates TC frequency and precipitation along the North American continent (Khouakhi et al., 2017;

Nogueira & Keim, 2010). Our pseudo proxy work suggests that ENSO also modifies frequency and precipitation

of TCs that make landfall in De Soto National Forest. This variability is captured by latewood records. Synthetic

TC rainfall also shows significant variability in low frequency bands (Figure 4b), yet this low frequency vari-

ability in mean annual rainfall is not resolved by latewood records. By combining sediment proxies (which isolate

low frequency variability) with tree‐ring records (which isolate high frequency variability), future multiproxy

efforts may be able to explore both low and high frequency natural climate forcings on past TCs, critical for

understanding how both will shape the evolution of TC risk in a changing climate.

There are several caveats inherent to this work. Our study is limited to synthetic storms spun up using a single

GCM's climate (MPI‐ESM). The lack of archived daily wind data for the past millennium limits the available

models that can be used for statistical downscaling. The MPI‐ESM model, or any other GCM, likely does not

reproduce real word climate due to biases and uncertainties in past external forcing (Brohan et al., 2012; PAGES

2k‐PMIP3 group, 2015). While MPI climate creates realistic storm tracks and intensity near De Soto National

Forest, the model often produces rainier storms than gauge observations (Figure 3e). These biases prevent
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analyses of changes in rain magnitude with time but allow for estimating years when TCs occur using quantile

thresholds and analyzing pseudo latewood record spectral properties.

Our work highlights the potential for combining sediment records from coastal basins along the Gulf Coast with

latewood records from longleaf pine. However, we here only explored one type of tree ring record in one

geographic location (Bregy et al., 2022). Recent work has also produced longleaf pine records of TCP in the

Carolinas (Maxwell et al., 2021). Further work characterizing how the properties of storms that produce rainy

events change along different coastlines will facilitate sensor placement optimization, pinpointing the best sites

for multiproxy comparison. In the Gulf of Mexico, storms often make landfall moving perpendicular to the

shoreline (Figure 3b); along the US East Coast, storms often move parallel to the coastline (facing northeast) with

their front left quadrant impacting coastal tree sites. Storms moving parallel to the shoreline may produce less

surge on northeast‐facing shorelines of the U.S., making it more difficult to compare tree‐ring sites from the

Carolinas to coastal sediment records.

As more tree core proxies of extreme rainfall are developed, researchers should test how well different types of

reconstruction models represent extremes in precipitation. The linear reconstruction model used for the De Soto

National Forest longleaf pine record (Bregy et al., 2022) may not be the best method of reconstructing TCP.

Linear models bias results toward the mean and limit our ability to reconstruct extremely rainy storm years.

Indeed, the De Soto reconstruction model only captures 40% of the variance in TCP (Bregy et al., 2022). Recent

advances in Bayesian techniques (e.g., Itter et al., 2017; Schofield et al., 2016) and machine learning algorithms

(e.g., Jevšenak et al., 2018; Salehnia & Ahn, 2022) offer opportunities to build reconstruction models that better

fit extreme precipitation data. The use of a linear reconstruction model in this work also allows for ring width to

increase indefinitely with rainfall. More work needs to be done exploring if/when there is a cap on latewood

growth in longleaf pine such that more rainfall does not equal more tree ring growth. Applying such an upper limit

on latewood growth might help resolve the differences in variance between our pseudo latewood records and

actual data (Figure 1c).

Finally, the pseudo proxy work presented here represents the first data‐model comparison effort for tree‐ring

records of paleohurricanes. Most existing proxy system models (e.g., Vaganov–Shashkin‐Lite (VS‐Lite);

Tolwinski‐Ward et al., 2011) for dendrochronology focus on simulating total ring width in trees. This approach

does not allow for explicitly modeling how latewood growth can differ from earlywood growth in response to

extreme events. We explored the influence of TCP on annual tree growth using VS‐Lite (Tolwinski‐Ward

et al., 2011) to generate pseudo estimates of total ring width (TW) in De Soto National Forest (Text S2 in

Supporting Information S1). Our work shows that using background monthly precipitation in a proxy system

model like VS‐Lite cannot produce realistic total ring width values in longleaf pine from De Soto National Forest

(Figure S3a in Supporting Information S1). Only by including precipitation from extreme weather events (namely

TCs) in VS‐Lite were we able to produce realistic TW values (Figure S3b in Supporting Information S1). Our VS‐

Lite results suggest a critical need to build proxy system models that can analyze tree growth response to discrete

events like TCs. To build these proxy system models, we need more empirical data on the response of ecosystems

to TCs (Pruitt et al., 2019) including high‐resolution monitoring before/during/after storms and analysis of

extreme event response in long term ecological data sets (e.g., Mitchell et al., 2020; Patrick et al., 2022; Rother

et al., 2018). Moreover, addressing this is essential to understanding how longleaf pine forests will respond to

changes in the TC hydroclimate incurred by the current warming trend.

5. Conclusions

Understanding the signatures of TC rainfall and occurrence in growth bands in tree rings is a necessary step

toward interpreting dendro‐based records of hurricane activity. There has been an explosion of tree‐ring‐based

paleohurricane proxies in the last decade (e.g., Maxwell et al., 2021; Trouet et al., 2016; Tucker et al., 2022),

and this new proxy type is filling in key gaps in our sediment‐based proxy network (e.g., E. J. Wallace, Dee,

et al., 2021). It is thus important to combine these two types of paleohurricane proxies, but to date, uncertainties

surrounding merging disparate proxy types have not been tested in a pseudo‐proxy approach.

To close this gap, we generated pseudo proxies of latewood tree‐ring records and sediment records from the U.S.

Gulf Coast. We showed that applying traditional quantile thresholds (i.e., Q4‐fourth quantile) to latewood data

successfully captures most of the variance in storm frequency. This conversion from extremes in latewood growth

to TC frequency suggests future multiproxy compilations will be possible. Synthetic TCs recorded in pseudo
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latewood records tend to pass close to a site (within 100–150 km), often on the westward side, and have smaller

translational velocities (Figure 7). These biases match those found in sediment proxies from the Gulf Coast (Lin

et al., 2014) allowing for multi‐proxy compilations that capture the same population of storms.

More sediment proxies recovering low‐intensity storms (≥Category 1) are needed from the coastline to make

future multi‐proxy compilations possible. Our work shows there is strong covariance between low‐threshold

sediment records and tree‐ring records (Figure 5), but the strong relationship breaks down for high threshold

records, which make up most existing sediment records from the Gulf Coast (Figure 1a). Therefore, we

recommend that future efforts focus on returning to existing paleohurricane sites in the Gulf and producing low‐

threshold records from these basins.

Tree‐ring records allow for the reconstruction of high‐frequency changes in paleoTCs. Our pseudo records exhibit

significant spectral peaks in the ENSO 3–7‐year bands suggesting that storm rainfall is modulated by ENSO on

interannual timescales (Figure 4). Low‐frequency variability, on the other hand, is not captured by tree ring

records. By combining sediment and tree‐ring records, we can resolve low‐ and high‐frequency changes in TC

frequency over the past millennium. This work offers insights generated in a constrained pseudo‐proxy test

environment providing strong motivation for scientists to compile and compare existing sediment proxies and

tree‐ring proxies and offers a theoretical approach for doing so. By building multi‐proxy compilations of

paleostorms, we can help offer insights into long‐term TC climate relationships and better constrain TC risk to

coastal communities under ongoing global climate changes.

Data Availability Statement

The synthetic storm data and MATLAB scripts for processing is available on Zenodo (Wallace et al., 2024).
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