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ARTICLE INFO ABSTRACT
Editor: Jurgen Mahlknecht The increasing global demand for meat and dairy products, fueled by rapid industrialization, has led to the
expansion of Animal Feeding Operations (AFOs) in the United States (US). These operations, often found in
Keywords: clusters, generate large amounts of manure, posing a considerable risk to water quality due to the concentrated
Livestock . waste streams they produce. Accurately mapping AFOs is essential for effective environmental and disease
Remote sensing management, yet many facilities remain undocumented due to variations in federal and state regulations. Cur-
Manure . . . . P P . .
CAFO rent techniques for mapping AFOs in the US rely on a mix of manual digitization, aerial imaging, and image

SHAP processing. By applying a machine learning-based random forest (RF) classification method to a socio-
environmental dataset that excluded aerial images in this work, we overcame some of the limitations associ-
ated with aerial image-based approaches, enhancing mapping accuracy to 87 %. We used publicly available
environmental, nutrient-focused, and socioeconomic data downscaled to the parcel level, which more accurately
reflects farm boundaries and operations than previous methods. Our study incorporates 58 variables, with
canopy cover, surrounding vegetation, day and nighttime land surface temperatures, and phosphorus from an-
imals identified as key predictors of AFO presence. The relevance of these variables varies across states, influ-
enced by whether the dominant land covers are human-induced, like croplands, or natural, such as savannas and
grasslands. Thus, our public-data based approach, easily replicable, not only improves the precision of AFO
detection, but also facilitates the monitoring of nutrient flows at the parcel level—critical for nutrient budgeting
and recovery, water quality management, and disease risk assessment and tracing.
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A. Saha et al.
1. Introduction

Over the past fifty years, the United States (US) animal agriculture
industry has witnessed a significant transformation with the rise of
confined facilities largely replacing smaller, dispersed family-owned
farms with open-air enclosures (MacDonald et al., 2018). Animal
Feeding Operations (AFOs), as these facilities are defined in the Clean
Water Act, feed animals for at least 45 days a year within the confined
portion of the facility and avoid growing grass or forage in the confined
area where animals are kept; essentially distinguishing them from
grazing operations (United States Environmental Protection Agency
[USEPA], 2009). While confinement areas do not sustain crops, it is
common for AFOs to be part of larger agricultural operations that
include crop production for feed (Centner, 2010). These crops are
typically grown in fields near the confinement areas (Centner, 2010).

Since the 1960s, with improvements in agricultural technology and
animal breeding programs, AFOs have evolved into larger, high-density,
intensive operations driven by a focus on production efficiency to meet
escalating consumer demand (Mallin and Cahoon, 2003; Key et al.,
2017; Walljasper, 2018). Larger AFOs, as defined by total number of
animals varying by animal type, called Concentrated Animal Feeding
Operations (CAFOs), have helped to double milk production, triple meat
production, and quadruple egg production (Pew Commission, 2009),
but also have attracted stricter regulations and more scrutiny as they
produce massive quantities of manure, with USDA-based census data
and livestock reports estimating it between 1.2 and 1.37 billion tons
(wet weight) annually—almost 3 to 20 times more than the human
waste generated in US each year (USEPA, 2005). A typical small CAFO,
housing no more than 300 cattle, was estimated to generate as much
waste as produced by the urine and feces of 16,000 humans (Sierra Club,
2021).

While manure from animal facilities provides beneficial nutrients
like phosphorus (P) and nitrogen (N), its overapplication can cause
ecological harm. In the US, animal manure constitutes approximately
50 % of P applications to landscapes (Bouwman et al., 2017). As a result,
excessive nutrients can lead to eutrophication, damaging water bodies
(Devlin and Brodie, 2023), while leaks from manure lagoons may
pollute groundwater (Rudko et al., 2023). Additionally, during overflow
events, these leaks can affect surface water systems (Raff and Meyer,
2022; Aneja et al., 2003). Antibiotics and pharmaceuticals used in ani-
mal feed can also be delivered to surface waters from animal operations,
raising concerns about microbial resistance (Lopatto et al., 2019;
Kiimmerer, 2004; West et al., 2011; Burkholder et al., 2007). The
proximity to these operations also poses health risks to nearby residents,
leading to diseases like methemoglobinemia and hyperthyroidism and
causing adverse reproductive outcomes (Kronberg and Ryschawy, 2019;
Ward et al., 2005; Seffner, 1995; Arbuckle et al., 1988). Furthermore,
increased atmospheric particulate matter from CAFOs can degrade air
quality, exacerbating respiratory and other health problems (Kiimmerer,
2004; Cole et al., 2000) and even causing leukemia (Fisher et al., 2020)
among local populations.

Any AFO meeting the EPA’s CAFO definition based on the threshold
of animal types (Hribar, 2010) must adhere to the National Pollutant
Discharge Elimination System (NPDES) program under the Clean Water
Act. Initially, the 2003 rule required all operations meeting criteria to be
defined as a CAFO to obtain NPDES permits and collect essential data on
their operations and manure management. However, changes in 2008
revised the rule to allow facilities to opt out of the permit requirement if
they demonstrated no potential for waste discharge into the Waters of
the United States (WOTUS). Thereby, the implementation of NPDES
permits now varies across states—some mandate NPDES permits for all
CAFOs as defined in the Clean Water Act, others only for those dis-
charging into WOTUS, and a few states enforce stricter regulations than
federal standards (Rosov et al., 2020). Even for states that require all
federally defined CAFOs to have a permit, because the permits are
inventory-based, clusters of facilities under inventory thresholds may go
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under-regulated and unmonitored across the US (Miralha et al., 2022).
These inconsistencies make it challenging to compare data across states
and to develop a comprehensive national understanding of the impacts
of CAFO operations. Privacy laws further complicate this by allowing
farmers to withhold location information (Steinzor and Huang, 2012).
As a result, there is a pressing need to design a framework that can map
all animal operations to better evaluate impacts and improve
management.

Historically, efforts to map and monitor AFOs have relied on ground
investigations and aerial surveys conducted by various non-profit and
public interest groups. Notable among these were initiatives like the
‘Exposing Fields of Filth’ project, spearheaded by the Environmental
Working Group (EWG) and the Water Keeper Alliance that mapped
CAFOs during flooding seasons (EWG, 2016). These traditional methods,
however, require extensive manual labor and are resource and time
intensive. In recent years, with the development of machine learning
tools and remote sensing data availability, approaches to locate animal
operations have veered towards utilizing aerial imagery and deep
learning algorithms. Using an image classification technique over high-
resolution images from the US Department of Agriculture’s National
Agricultural Imagery Program (NAIP), Handan-Nader and Ho (2019)
were able to train a convoluted neural network that identified an
additional 589 poultry AFOs (or a 15 % increase) when compared with
manual estimates across North Carolina. Robinson et al. (2022) used
image labeling, segmentation, and object-based filtering techniques to
train a convoluted neural network on 42-Terabytes (TB) of 1-m NAIP
imagery and identified poultry AFOs with up to 83 % accuracy across ten
counties in California. Around the same time, Zhu et al. (2022) used over
86,000 georeferenced aerial images from Sentinel-1 and Sentinel-2 to
develop a multi-sensor database, Methane Tracking Emission Reference
Database (Meter-ML), that identified methane emitting AFOs with up to
91.5 % precision (i.e., the proportion of positive identifications that are
correct).

However, these advanced techniques also come with challenges,
including significant computational demands for image processing and
data development. Additionally, the performance of models based on
image classification tends to decline when the images are not centered
around the facility but are tiled over the entire study area. For example,
in Handan-Nader and Ho’s (2019) model, the recall (or the proportion of
actual positives correctly identified) drops from 93.72 % to 54 % from
image decentering. In a recent study (Saha, 2022), only 83 % of publicly
available AFO location data points were correctly centered on the AFO
structures. Moreover, these image processing methods also risk missing
AFOs not adequately represented in training images and are constrained
by changes in and around animal facilities over time or due to spatial
variations by state. For example, swine AFOs in North Carolina pri-
marily have waste lagoons located next to the barn structures whereas
swine facilities in many portions of the Midwest have manure lagoons
beneath the structure, making the development of an image-based swine
model applicable to multiple regions challenging.

Given these issues, there is a critical need to develop a more robust
and efficient method of mapping AFOs that utilizes easily sourced
datasets to detect animal operations without taking significant time or
data and human labor. To address this need, we present an innovative
machine learning-based method that leverages publicly available data-
sets from various governmental agencies and public institutions,
without the inclusion of computationally intensive aerial imagery, and
enables the detection of AFOs with high accuracy by employing a parcel-
scale data synthesis.

2. Materials and methods

For this work we developed a random forest (RF) classification model
that uses environmental raster data (Section 2.1.2), atmospheric data
(Section 2.1.3), census data (Section 2.1.4), county level manure
nutrient data (Section 2.1.5), soil P data (Section 2.1.6) and locations of
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meat processing facilities (Section 2.1.6) to predict AFO locations
(Section 2.1.1) at a parcel scale (Section 2.1.7). A tree-based model like
RF has generally been observed to better represent complex relation-
ships between datasets of different categories, so we therefore selected a
RF model for our work (Ahmad et al., 2017; Chowdhury et al., 2020).
The RF model was trained using the target variable and 58 predictor
variables. About 80 % of the total input dataset (comprising predictor
and target variables) was used for training, while the remaining 20 %
was used for testing, following commonly applied splits for training
machine learning models (Hino et al., 2018). The model also used 500
trees after a brief tuning process to detect complex patterns and in-
teractions between datasets and a seed determined by the length of the
training dataset minus one was used to make sure that every time the
model is run it gives the same results.

2.1. Description of input datasets

2.1.1. Target variable

Since the goal of our study was to identify where AFOs are located,
one part of our target variable comprised the latitude and longitude of
these facilities. Despite challenges with available AFO data due to var-
iations in state regulations, we successfully gathered, verified (ground-
truthed), geocoded, and digitized AFO locations into point shapefiles
using ArcGIS-based tools for eighteen US states: Alabama (AL), Arizona
(AZ), Florida (FL), Indiana (IN), Iowa (IA), Michigan (MI), Minnesota
(MN), Mississippi (MS), Missouri (MO), North Carolina (NC), Ohio (OH),
Oregon (OR), Pennsylvania (PA), Tennessee (TN), Texas (TX), Wisconsin
(WD), South Carolina (SC), and Louisiana (LA), as documented in Sup-
plemental Table S1.

The other part of our target variable consisted of non-AFO locations.
These points were located near AFOs but under separate ownership (e.g.
parcels) to ensure they were not part of the same AFO facility. The goal
of including points close to AFOs was to enable the model to distinguish
environmental signatures not directly impacted by the AFOs but nearby.
The points were distributed across diverse land covers, with the majority
coming from cropland (37.3 %), followed by savanna (35.6 %), forest
areas (12.6 %), grasslands (7.5 %), residential areas (6 %), wetlands
(0.6 %), shrublands (0.3 %), barren lands (0.1 %), and water bodies
(0.01 %).

Incorporating non-AFO locations was critical since our modeling task
involved predicting whether a location was an AFO or not. By defining
our target variable into two classes— ‘non-AFO’ and ‘AFO’—the RF
model developed in our study could effectively learn from the predictor
variables and differentiate between these two categories. The target
variable input data for our study was developed in a binary format, with
‘1’ denoting an AFO location and ‘0’ denoting a non-AFO location. In
total, 9410 AFO locations and 2519 non-AFO locations were considered
in our study, with the distribution of these locations detailed in Table 1.

2.1.2. Terrestrial predictor variables (n = 14)

In addition to the target variable, the training and testing dataset of
our RF model included predictor variables. The first predictor variable
set comprised of terrestrial environmental metrics derived from MODIS
(Moderate Resolution Imaging Spectroradiometer) satellite imagery
captured between 2017 and 2018. Available in raster format with spatial
resolutions ranging from 250 to 1000 m per pixel grid, these metrics
encompass Land Use Land Cover (LULC), Percent Tree Cover (PTC), Leaf
Area Index (LAI), Normalized Difference Vegetation Index (NDVI), Land
Surface Temperature during both day (LST Day) and night (LST Night),
and Evapotranspiration (ET). More details can be found in Supplemental
Table S2. Thereafter, we simplified the MODIS LULC data into eight key
categories relevant to our target variable locations - cropland, grassland,
savannas, forest, shrubland, wetland, urban, and barren. Savannas, as
defined in our study, represent a mixed ecosystem intermingled with
woodlands, grass, and other herbaceous vegetation (Fowler and Beck-
age, 2019). For each LULC category, we created raster maps for the US
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Table 1
Distribution of AFO and non-AFO locations across eighteen US states in the
complete model input, including both training and testing datasets.

Geographical region®  State abbreviation Percentage (%) of total
input data

(Training and testing)

AFO Non-AFO

Midwest IA, IN, MI, MN, MO, OH, WI 39.66 10.13
Northeast PA 2.46 0.26
West AZ, CA, OR 3.65 0.47
Southeast AL, FL, LA, MS, NC, SC 31.08 9.48
Southwest TX 1.85 0.74

4Geographical regions are based on maps developed by CDC’s National Centre
for Health Statistics (more details can be found here: https://www.cdc.gov/nch
s/hus/sources-definitions/geographic-region.htm).

where pixels representing a specific land cover were assigned a value of
1, and all other pixels were assigned a value of 0. The method on how
these land categories were determined can be found in Miralha et al.
(2021).

Both PTC and NDVI are dimensionless indices derived from MODIS
data; PTC is measured annually, and NDVI, which assesses plant health
or greenness, is updated every 16 days based on optimal pixel values.
The LAI calculated by MODIS every 8 days, quantifies canopy density. It
measures the total leaf area per unit ground area for broadleaf species
and half the total needle surface area for conifers (Myeni et al., 1997).
LST for day and night is recorded in Kelvin and is averaged over an 8-day
period. ET, measured in millimeters per 8-day interval, captures the
total water loss due to soil evaporation and plant transpiration per pixel
area. More details on the various MODIS products can also be found in
Supplemental Table S2.

Although the NLCD dataset offers land cover information at a higher
spatial resolution (30 m), MODIS satellite imagery emerged as the
preferred option for our study, particularly due to its proven effective-
ness in CAFO detection. For example, Martin et al. (2018) identified
frequent misclassifications of CAFOs as natural wetlands using land
cover data from NLCD, a problem not observed with MODIS. Further-
more, MODIS has shown higher accuracy in representing forest cover,
evidenced by a lower mean squared error (Song et al., 2014). Additional
studies, such as those documented by Miralha et al. (2021), further
underscored the superiority of MODIS in detecting AFOs compared to
NLCD.

In total, our study considered 14 terrestrial environmental variables,
8 of which were land cover categories. For our analysis, we considered
only the summer season (June 15th to September 15th) values for the
vegetation-based variables since this period coincides with peak
growing season, enabling us to capture the best overall health and
density of vegetation. This approach also helped us avoid issues arising
from cloud cover and snow effects.

The relationship between these land cover alterations and changes in
terrestrial variables has been a focal point of ecological research for
decades. As early as 1985, Tucker et al. established a direct correlation
between deforestation and the decline in NDVI, highlighting how land
use changes impact vegetation indices. Similarly, Wickham et al. (2012)
observed that forests, which have lower albedo due to their ability to
absorb and retain more solar radiation, exhibit lower daytime LST and
higher nighttime LST compared to croplands and grasslands. Further
studies, such as those by Ishtiaque et al. (2016), Yu et al. (2019), and
Miralha et al. (2021), have linked shifts from forest to cropland or
shrublands with increases in daytime LST and decreases in PTC, ET, and
LAL

However, this relationship is not always straightforward and can be
influenced by a variety of competing environmental factors. For
instance, Pettorelli et al. (2005) showed that NDVI can decline in natural
land covers such as grasslands and savannas due to multiple stressors
including drought, diseases, overgrazing, and fires. In agricultural
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settings, Wardlow and Egbert (2008) noted that NDVI typically rises
from the planting phase to the senescence phase, reflecting the growth
and maturation of crops, before declining post-harvest. Asner et al.
(2003) found that while mature forest trees often have higher LAI values
than most crops due to their perennial nature and layered foliage, well-
managed crops with high planting densities can achieve similar high LAI
values, but only during the peak growing season. Quintanar et al. (2009)
observed that LST can also be significantly influenced by anthropogenic
modifications, like manure lagoons. These lagoons, affected by strong
thermal stratification from solar radiation, exhibit higher daytime latent
heat flux and, due to heat redistribution, lower nighttime surface tem-
peratures. For ET, Allen et al. (2011) further associated its increase with
factors such as low albedo and extensive irrigation practices. Thereby,
by integrating these terrestrial variables into our study, we can effec-
tively highlight the dynamic nature and complexity of their interactions
with land cover changes. Influenced by both natural events and human
activities, these variables are essential for achieving our study’s objec-
tive to accurately characterize the diverse environmental conditions
surrounding AFOs across the eighteen states under examination.

2.1.3. Atmospheric predictor variables (n = 3)

The second set of environmental variables emphasizes the impact of
atmospheric emissions on air quality, particularly focusing on nitroge-
nous pollutants such as ammonia and nitrogen oxides released from
AFOs and agricultural areas.

Ammonia emissions, originating from crop fields, grazing fields, and
various feedlot operations such as housing, storage, retention pools, and
lagoons, significantly affect human health by contributing to the for-
mation of aerosols (USEPA, 2004). Nitrogen oxides released from crop
fields and agricultural machinery also form hazardous aerosols, severely
impacting air quality and human health (USEPA, 2004). Therefore,
aerosols, particularly fine particulate matter (PM2.5; particles with a
diameter of <2.5 pm) near agricultural regions, predominantly consist
of ammonium and nitrate particulates due to the conversion of ammonia
and nitrogen oxides into these particulate forms (Hristov, 2011).

According to a study by Battye et al. (1994), about 43.4 % of the
anthropogenic ammonia emissions within the US came from the cattle
industry, followed by the swine and poultry industries, which contribute
26.7 % and 10.1 %, respectively. Fertilizer application was responsible
for 9.5 % of these emissions (Battye et al., 1994). On the other hand, an
air quality report by USEPA (2004) listed about 4 % of nitrogen oxide to
be coming from on-field agricultural sources.

Currently, within the agricultural sector, CAFO-based air emissions
are addressed by state regulations alongside federal laws such as the
USEPA’s Clean Air Act (CAA), the Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA), and the Emer-
gency Planning and Community Right-to-Know Act (EPCRA) (Moses and
Tomaselli, 2017). However, the USEPA does not have an accepted
methodology to measure hazardous emissions from animal waste.
Instead, the agency recommends that farm owners use past data,
process-based models, engineering approximations, and best judgment
to quantify the releases.

To address this challenge and ensure a consistent dataset across the
US, we utilized air quality data developed through a satellite-derived
method by Van Donkelaar et al. (2019). This method combines Aero-
sol Optical Depth (AOD) measurements from MODIS, Multi-angle Im-
aging SpectroRadiometer (MISR), and SeaWiFS instruments with the
GEOS-Chem chemical transport model to generate aerosol projections.
The results are then calibrated using regional ground-based observations
of both total PM2.5 and its components. Finally, the calibrated data is
analyzed using Geographically Weighted Regression (GWR) to derive
the final compositional estimates.

For our study, we considered three variables — PM2.5 and its
compositional estimates of nitrate (NO3) and ammonium (NHZ). PM2.5
represents the total particulates in the air, while the free radicals, NO3
and NH{, serve as proxy representations of nitrogenous emissions. The
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concentrations of these variables were in micrograms per cubic meter
(pg m~3) of air within a 1.1 km-pixel grid.

2.1.4. Social and economic predictor variables (n = 35)

The third predictor set is comprised of social and economic variables
obtained from the US Census Bureau (2016) that offers a comprehensive
demographic and financial overview at the county level. The main goal
of including socioeconomic variables was to incorporate aspects of
environmental justice and environmental racism since studies have
found that in many areas across the US, AFOs cluster around low-income
minority communities (Nicole, 2013). For example, a survey of CAFOs in
North Carolina — one of the largest swine producers in the US according
to the USDA in 2017 — found that these operations were dispropor-
tionately located in communities with low socioeconomic status and
high minority populations (Son et al., 2021). Further analysis by Quist
et al. (2022) quantified the disparity, revealing that the proportion of
Black, Hispanic, and American Indian residents living within 3 miles of a
CAFO was 1.42, 1.42, and 2.20 times higher, respectively, compared to
White residents.

A study by Wilson et al. (2002) found that in Mississippi, hog-based
livestock operations had high percentages of low-income, African
American residents living nearby, while in Ohio, Hispanic communities
were disproportionately affected by CAFOs (Lenhardt and Ogneva-
Himmelberger, 2013). A study by Nicole (2013) noted that Black resi-
dents in CAFO-dominated regions in NC often face high rates of poverty.
The 21 social variables include information related to population de-
mographics, such as total population count, gender distribution, racial
composition, and voter registration data by gender. The data also
differentiated educational attainment into specific age groups and ed-
ucation levels, from those with less than a ninth-grade education to
those holding graduate or professional degrees. Gender-based variables
were considered to better understand whether differences in employ-
ment, education, and political engagement between sexes—particularly
in communities with high voting participation—impact CAFO estab-
lishment. An anthropological study by Sterling (2015) highlighted that
in La Salle County, Illinois, a community mobilization led to rezoning
and the denial of permits for AFOs, with many the protesting citizens
being community college graduates, faculty members, and scientists.

The remainder 14 variables were economic in nature and captured
household income across a wide spectrum, from those earning less than
US$10,000 annually to households with incomes over US$200,000. This
income data also provided information about health insurance coverage,
by sub-dividing the population into groups having private, public, and
no health insurance. Details of all the socioeconomic variables are in
Supplemental Table S3. Although US census data is available at the tract
level, we chose to use county-level estimates because county-level ag-
gregates provide us with broader, more consistent coverage and helps us
avoid the noise associated with tract-level information, particularly in
sparsely populated regions. Moreover, since many regulatory decisions
regarding the establishment of animal operations are made at the county
level, county-level census data align well with decision-making frame-
works. Using county-level data also simplifies processing and reduces
computational complexity, which was also one of the goals of this study.

2.1.5. Manure nutrient-based predictor variables (n = 4)

The nutrient variables were derived from the USGS calculations of
manure per county by Falcone (2021). These variables quantify the
nutrients generated in each US county from animals, where the animal
numbers are producer figures from their inventory. The use of these
variables in our study was also associated with the underlying
assumption that counties with a greater number of animals in AFOs
produce more manure, and the fact that these data are based on animal
inventories from the National Agriculture Statistics Service’s Agricul-
tural Census. While quinquennial, county-level data cannot help identify
specific operations, we hypothesized that it would be correlated with
AFOs. The 4 variables used included common animal N (kilogram - kg)
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and common animal P (kg), as well as other animal N (kg) and other
animal P (kg). In our study, we will assume common animal N and P as
nutrients generated by livestock (beef, dairy, hog, swine) and poultry,
while other animal N and P are nutrients produced by sheep and horses.

2.1.6. Additional predictor variables (n = 2)

We also incorporated soil P concentrations and the proximity of each
target variable to the nearest meat processing plant (MPP) as two
additional variables. The soil P concentration, measured in milligrams of
phosphorus per kg of soil (mg kg™!), estimates the phosphorus content
in the top 5 centimeters (cm) of the soil profile and was sourced from a
USGS database developed by Smith et al. (2013). The USGS database
consisted of soil core samples collected from 4857 sites (1 site sampled
per 1600 km?) across conterminous US. Thereafter, we interpolated the
sample soil P values from these sites using ArcGIS-based tools to
generate a 10-km spatial map of the US. The soil P variable was included
because findings by Long et al. (2018) and Waldrip et al. (2023)
demonstrated that soils surrounding AFOs have substantial P build-up
due to manure overapplication and nutrient-rich runoff from these op-
erations. The MPP variable was included to measure how far AFOs are
from animal processing plants, as slaughter plants generally tend to be
near feedlots (MacDonald et al., 2000). The MPP locations were
retrieved from the Meat, Poultry, and Egg Product Inspection directory
maintained by the Food Safety and Inspection Service (FSIS) under the
US Department of Agriculture (USDA) (USDA-FSIS, 2023). The distance
between MPP and each target variable location was estimated using the
Point Distance analysis tool in ArcGIS Pro version 3.2.0, measured in
km.

2.1.7. Parcel data

Parcels are spatial geographic units that delineate the perimeter
boundaries of land ownership units. A single parcel is a polygon
shapefile characterized by curves and angles that represent the contours
of a property. As a result, a parcel provides a more accurate spatial
representation of a property unit, unlike pixel grids in raster data (see
Fig. 1-a and b), which may cross parcel boundaries in a non-uniform
manner. Previous studies have used parcel data to improve representa-
tion and model agricultural management units (Kalcic et al., 2015). We
acquired nation-wide parcel data through a collaboration with Regrid
(https://regrid.com/company) under their ‘Data with Purpose’ pro-
gram, which provides academics access to such data at a flexible
licensing fee.
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2.2. Data processing and simulation of the random forest classification
model

After the input variables were collected, we processed them using
ArcGIS Pro version 3.2.0 to scale all variables to the parcel scale (Fig. 1).
In cases where the data were larger than a particular parcel, that value
was assigned to the parcel. In cases where there were multiple values for
one data within a parcel, we took a weighted average value, or in cases
of categorical data like land use, we selected the majority category.

For each state, the average time for processing each terrestrial var-
iable ranged from 20 to 62 min, with those with lower spatial resolution
taking less time. The average downscaling time per state for each air
quality variable was about 28 min. Meanwhile, the downscaling of
socio-economic variables averaged about 8 min per state.

The final downscaled file had 59 columns, where 58 columns were
the predictor variables, and one column was the target variable. The
number of rows represented parcels where either AFO or non-AFO lo-
cations were identified. Each row included a single observation of a
parcel, with values for 58 predictor variables and 1 target variable class
(AFO or non-AFO). This final tabular file was then normalized using a
linear function to ensure that all the variables used in our input dataset
were on the same scale (between 0 and 1), and then used as input for our
RF model.

The RF model was initially analyzed at the national level, encom-
passing eighteen states. Its performance was assessed to determine how
effectively it identified AFO parcels, the number of non-AFO parcels it
misidentified as AFOs, and the accuracy with which it recognized non-
AFOs. This assessment was conducted using a confusion matrix, one of
the most common machine-learning evaluation techniques, focusing on
its precision score. A confusion matrix associated with a classification
model illustrates the relationship between the predicted and actual
classifications made by the model (Visa et al., 2011). Subsequently,
predictive variables influencing the model’s predictions were analyzed
to see how and to what extent they aided the model in classifying a
parcel as an AFO.

Generally, identifying these variables—otherwise known in machine
learning as feature selection—in high-dimensional models, such as ours,
is both a boon and a curse. While more dimensions can help us explore
patterns, they may also add complexity and result in data redundancy.
To address this problem, we used Shapley Additive exPlanation (SHAP)-
value-based feature selection (Lundberg and Lee, 2017).

The SHAP framework is model-agnostic and incorporates principles

Fig. 1. Orthoimages (Fig. a and b) of Animal Feeding Operations (AFOs) in Wisconsin (highlighted by yellow points on each image) with pink lines representing
parcel boundaries and blue lines representing a 500-meter land cover pixel grid. Figure (a) illustrates a small AFO facility with the edges of the parcel border
representing a semi-cleared vegetation of a crop field around the AFO. In figure (b) it is clear that the AFO parcel has multiple grid cells representing it. These

examples highlight the importance of processing-scale in machine learning models.
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from game theory to assess the contribution of each feature towards the
predicted outcome of a model for each individual instance. Unlike the
SHAP framework, traditional methods like permutation importance
provide a global perspective and assess feature importance across the
entire dataset. While other impurity-based feature selection methods,
using Gini coefficients or Mean Square Error, tend to strongly favor
features having high cardinality. Therefore, the SHAP values generated
using this framework quantified the contribution of each feature as the
difference between the actual model output for that sample and the
expected value (or baseline) of the model over the dataset. Following
this methodology, the prediction of our machine learning model, f(x),
can be expressed as:

f(x) = base value + sum of SHAP values

where base value is the average prediction across all data points in the
absence of any features. (i.e., the model’s output without any input
features). It serves as the reference against which the contributions of
individual features are measured.

For our study, we used a SHAP-based summary plot (Fig. 2-c) to
determine the important features that affect our model prediction. The
features impacting our model output are listed along the vertical axis,
ranked from top to bottom based on their overall importance, while the
horizontal axis represents the SHAP values. The line crossing through
the SHAP value of zero is called the baseline. Features with positive
SHAP values positively impact the target prediction, while those with
negative values adversely affect it. A SHAP value of zero means the
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feature has no impact.

Each dot on the plot (Fig. 2-c) is a SHAP value for a feature and an
individual prediction, where color indicates the actual value of the
feature for that prediction — from low (purple) to high (yellow). SHAP
does not classify features ‘high’ or ‘low’ in an absolute sense. It considers
a feature’s value relative to the distribution of that feature within the
data. Dots far to the right of the baseline indicate that the feature has
increased our model’s capacity to identify the target, in this case, an
AFO. Conversely, dots to the left of the baseline signify that the feature
decreases the prediction output. The greater the spread of dots from the
baseline, the stronger the impact (either positive or negative) on the
model’s output. Since land cover types are represented in binary format,
their values are depicted in either yellow or purple. Other continuous
features are represented by a range of shades within the color gradient
illustrated in Fig. 2-c. For ease of explanation, the values of continuous
features are divided into three parts — low (ranging from 0 to 0.33),
moderate (ranging from 0.34 to 0.66), and high (ranging from 0.67 to 1).
Additionally, the air emission-based features were further assessed using
a scatter plot to better understand their source contributions. This
analysis was particularly relevant as both NH4 and NO3 particulates are
emitted by both AFO and non-AFO sources.

Building on our national-scale results, we further evaluated the
effectiveness of our model at the state level by focusing on the interac-
tion between the ten most sensitive features, excluding land cover. Since
land cover often dominates model analyses, exploring the other pa-
rameters allows us to better understand the strength of our model and
the subtle interactions that support the prediction of AFO parcels. By
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isolating these features, we aimed to gain robust insights into regional
terrestrial signatures, anthropogenic impacts, air and soil composition,
and demographic patterns. This detailed analysis will help us develop
future frameworks designed to enhance the usability and predictive
accuracy of the model across diverse environments and geographic
regions.

To facilitate these analyses, we first determined the dominant land
cover type for each state by analyzing the most prevalent land covers in
our test parcels. We classified states as having a dominant land cover if it
accounted for >50 % of the test parcels within that state. Based on this
criterion, the eighteen states were grouped into three categories - ten
states where cropland was the dominant land cover, six states predom-
inantly covered by savanna, and two states where no single land cover
type was dominant. Thereafter, we segmented our test data according to
these three categories and processed each segment through our RF
classifier model to generate SHAP summaries. The summaries will
identify the key features influencing model predictions for each cate-
gory, specifically highlighting the drivers behind correct AFO pre-
dictions, false positives, and false negatives.

3. Results and discussion

The RF classification model developed for our study detected AFO
parcels (true positives) and non-AFO parcels (true negatives) at an
overall accuracy of 87 %. Accuracy is defined as the number of correct
predictions from total number of predictions. We tested the model with
2386 parcels, of which 1909 were AFOs and 477 were non-AFOs. The
model identified 2050 parcels as AFOs and 336 as non-AFOs.

The model demonstrated a high recall of 0.95, accurately identifying
about 95 % of test AFO parcels. This assessment can be further elabo-
rated from the confusion matrix (Fig. 2-a), which indicated that out of
1909 AFOs, the model could accurately identify 1819 of them. Since
recall, or true positive rate, measures how much of a particular target the
model correctly identifies, it is intrinsically dependent on the proportion
of false negatives predicted by the model. Therefore, higher false neg-
atives result in a lower recall value. In our study, only 5 % of AFO parcels
were falsely identified as non-AFOs. The model also achieved a precision
score of 0.89, indicating that 89 % of the predicted AFOs were true
positives. Precision is influenced by the rate of false positives, which was
about 11 % for AFO predictions.

In machine learning, precision and recall metrics focus exclusively
on predicting true positives, like AFO parcels. However, our research
extended this concept to evaluate model performance in identifying non-
AFO parcels nationally to discern the underlying data-dependent factors
that could enhance our model. Our findings reveal that the model suc-
cessfully identified only 52 % of the actual non-AFO parcels, missing
nearly half. This discrepancy is primarily due to the composition of our
testing data, where only 19 % of samples were non-AFOs, leading to a
significant class imbalance. This imbalance resulted in an elevated false
positive rate for non-AFO predictions—27 %, which translates to
approximately 231 out of 477 non-AFO parcels being incorrectly clas-
sified as AFOs by our RF model. The F1 score, which measures the
harmonic balance between recall and precision, was estimated to have a
weighted average value of 0.86, indicating a solid balance between
precision and recall and demonstrating that our model is highly effective
at distinguishing the dominant positive class (AFO parcels) with mini-
mal errors.

The effectiveness of our RF model can be further understood with the
help of the Receiver Operating Characteristic Curve (ROC; Fig. 2-b). The
ROC curve diagnoses the classification ability of our model and has two
parameters — True Positive Rate (TPR), signifying recall, and False
Positive Rate (FPR). Initially, the ROC curve rises sharply, indicating a
high TPR with only a minimal increase in FPR. This result demonstrates
the ability of our classifier to effectively distinguish between classes with
minimal false positives. However, the curve starts to flatten after
reaching the center, suggesting that an increase in sensitivity diminishes
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classifier performance and leads to more false positives. Despite these
challenges, an area under the curve (AUC) score of 0.73 indicates that
the classifier performs reasonably well in differentiating between the
two classes, albeit with some false positives.

3.1. Key variables (features) influencing our model predictions on a
national scale

The model results on a national scale, comprising eighteen states, for
the twenty most sensitive features, as evidenced by the SHAP plot
(Fig. 2-¢), revealed PTC as the most influential feature in our pre-
dictions. The longer spread of high PTC values on the left of the baseline
demonstrated that tree cover is negatively associated with AFOs. This
finding aligns with existing studies that suggested that areas adjacent to
animal operations often undergo deforestation (Miralha et al., 2021). In
addition to PTC, the nutrients (N and P) generated from livestock and
poultry (i.e., Common_Animal N and Common_Animal_P, respectively)
also significantly impacted model predictions. However, manure P was
identified to be more sensitive, as it was found to have more inherent
variability towards the classes, AFO and non-AFO. This is reflected in the
Spearman correlation coefficient for P (0.31), which, while not very
high, is slightly higher than that for N (0.28), suggesting a stronger
monotonic relationship with the class labels.

The lack of significant canopy cover around AFO parcels is also
supported by thermal signatures, where moderate daytime LST and low-
to-moderate nighttime LST—reflective of diverse crop management
practices and grazing—were identified as significant features helping
our model detect AFOs accurately. This observation is further validated
by the spread of low SHAP cropland values to the right of the baseline,
which indicatesthat most AFO parcels are found in croplands.

Both NH} and NO3 particulates (Ammonium_PM and Nitrate_PM,
respectively, in Fig. 2-¢) exhibited mixed impacts on AFO prediction,
indicating that AFOs emit a range of these particulates. To better un-
derstand this phenomenon, we used a scatter plot to observe their dis-
tribution across both AFO and non-AFO parcels under different land
covers, as shown in Fig. 3. From these observations, we identified two
distinct clusters - one includes parcels that release significant amounts of
both N-based compounds (emissions to the right of the short blue dash
lines at y = 0.67), another consists of parcels emitting moderate levels of
both NO3 and NHJ (emissions between the short pink dash lines at y =
0.34 and short blue dash lines y = 0.67), and the third represents parcels
with low NH{ and NO3 emissions (emissions left of the short pink dash
lines at y = 0.34).

The widespread overlap of atmospheric NHf and NO3 particulates in
the first cluster suggests many non-AFO and AFO parcels have compa-
rable emission rates. High emissions from non-AFO parcels in agricul-
tural areas are often attributed to intensive fertilization practices and
agricultural machinery, or due to intensive pasture. In some cases, high
nitrate emission rates from non-AFO parcels may also result from in-
dustries (USEPA, 2004), particularly if these parcels are located near
urban centers. High emissions from AFOs typically originate from par-
cels that either house numerous animals or feature intensively managed
cropland or herbaceous vegetation, such as savannas and croplands,
alongside an AFO.

Moderate to low NHJ and NO3 emissions are often associated with
parcels having semi-managed savannas or grasslands, smaller AFO fa-
cilities, or a combination of small facilities and semi-managed vegeta-
tion. The relationship between low or moderate NH} and NO3 emissions
is non-linear, underscoring that in many such areas, localized factors
such as animal types, barn design, feed, management practices, pasture,
regulatory oversight, and climate conditions influence the predomi-
nance of either form of emission.

On a national scale, the study revealed a nuanced impact of NDVI
and LAI, on predicting AFO presence across eighteen states. Generally,
the model identifies AFOs in parcels exhibiting low-to-moderate NDVI
and LAI values (Fig. 2-c), signifying various stages of crop cultivation
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Fig. 3. Scatter plot showing the distribution Nitrate Particulate Matter (Nitrate PM) and Ammonium Particulate Matter (Ammonium PM) across various land uses
present in our test data for both Animal Feeding Operation (AFO) and non-AFO based sources.

and grazing. The relevance of these observations is underscored by the
timing of our data collection, which coincided with peak summer—a
period that aligns with diverse crop growth and harvest schedules across
the US.

However, we also note exceptions where high NDVI and LAI values
strongly suggest the presence of AFOs. These anomalies can be repre-
sentative of areas with healthy natural land cover or are the result of
regulatory influences. For instance, a study by Miralha et al. (2021)
observed that CAFOs in Michigan’s Lower Peninsula exhibited higher
NDVI and LAL likely due to regulated agricultural practices. Similarly,
Qi et al. (2017) reported improvements in NDVI around CAFOs
following the implementation of environmental regulations, suggesting
that such measures can significantly impact the surrounding vegeta-
tion’s health and density.

The ET rate and forest cover had a lesser impact compared to other
features but were still significant enough to affect model output (Fig. 2-
¢). Moderate ET values tended to favor AFO prediction signaling that
most AFOs have some measure of biomass loss around them. A spread of
low ET values to the left of the baseline are indicative of barren and
urban land parcels, as they have strong negative impact on AFO pre-
dictions. The high forest cover values and their negative impact on AFO
identification corroborated our earlier PTC-focused observation that a
dense tree cover does not surround the majority of AFOs across the states
considered in our study.

Although most values of these features centered around the baseline,
the spread of high values to the right indicated that in several cases, AFO
locations had higher P levels in the top 5 cm of soil (Top5Cm_SoilP) and
were located near an MPP as shown in Fig. 2-c. High soil P levels can be
indicative of soils near operations that house large numbers of animals
in a livestock-dense county. Additionally, the elevated soil P can also be
an artifact of the type of animal, such as poultry, which releases more P
per ton of manure than swine or cattle (Lorimor et al., 2004).

Other features like N and P from sheep and horses (i.e., Other -
Animal N and Other Animal P, respectively) had more neutral to
negative impact, suggesting that nutrients from sources like sheep and
horses might be less indicative of AFO locations than those from other
more intensive animal operations, which coincides with typical animal

management practices for these animals.

Social features had a smaller impact on improving AFO location
accuracy compared to environmental factors. However, a slight shift to
the right of the baseline suggested that communities with a higher
population of African Americans (i.e., Black_AA) were more prevalent in
some AFO areas (Fig. 2-c). This observation validated exiting studies
(Son et al., 2021) which identified significant black population around
CAFOs across many US states.

Our SHAP-based economic assessment revealed that higher con-
centrations of AFOs tended to be in counties with fewer households
earning within the US$75,000 to US$100,000 (i.e., Income 75k_100k;
Fig. 2-c) range, alongside a low proportion of households with incomes
between US$25,000 and US$35,000 ((Income25k_35k); Fig. 2-c¢). This
pattern indicates a generally lower economic status in these counties,
aligning with existing research that often links AFOs to economically
disadvantaged areas (Son et al., 2021; Nicole, 2013). However, given
that of all the income categories analyzed, which ranged from less than
US$10,000 to over US$200,000, these two income brackets were spe-
cifically highlighted as significant points towards a need for further
research using more detailed data, such as that from census tracts, to
better understand the dynamics between race and income around AFOs.

3.2. State-wise analysis of model results

The state-wise assessment to identify the dominant land cover type
across the eighteen states found that cropland was the most dominant
land cover (i.e., land cover most commonly associated with test parcels)
in all the Midwestern states considered for our study. Other states with
cropland as the common land cover were PA in the Northeast, OR in the
West, and TN in the Southeast. On the other hand, the Southeastern
states had savanna as the dominant land cover (i.e., land cover
commonly found around test parcels). Therefore, dominant land cover
was used to present and group state-based results.

3.2.1. States with croplands as the dominant land cover
The results indicated that our model achieved an average accuracy of
0.89 and an average recall of 0.95 in states where cropland is the
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predominant land use (Table 2). Specifically, in MI, OH, PA, and TN, the
model achieved a perfect recall score of 1.0, successfully identifying all
AFOs within these states. In contrast, IA, MO, IN, and MN recorded recall
scores above 0.93, whereas WI had a notably lower recall of 0.72. OR
also performed well, with a recall score of 0.96. Despite TN’s high recall
rate, publicly available data on AFO locations were limited, accounting
for only 0.24 % of the total training parcels and 0.13 % of the total
testing parcels. More work is needed to combine georeferencing and new
data to identify more AFOs in states with limited public data.

The relatively lower recall score for WI can be attributed to the
model incorrectly classifying about 8.3 % of the AFO parcels as false
negatives. Furthermore, in WI the model incorrectly identified 21.8 % of
non-AFO parcels as false positives, which consequently reduced its
precision score, as detailed in Table 2. Although MN, OH, IN, and IA had
false positive rates of approximately 13.9 %, 13.6 %, 10.7 %, and 10.2 %
respectively, they exhibited significantly low or negligible false negative
rates, which contributed to their higher recall scores (Table 2).

Features Influencing AFO Parcel Predictions in States Dominated
by Cropland — About 92 % of the AFOs in the ten cropland-dominated
states had crop-specific land cover, 4 % had savannas, 3 % had grass-
lands, and 1 % had forests. As a result, across these states, the lack of tree
cover (low PTC) emerged as the most influential factor for identifying
AFO parcels, as evidenced in the SHAP summary plot (Fig. 4-a). In three
OR parcels, however, moderate PTC values indicated the presence of
AFOs, suggesting that these AFOs were adjacent to forests.

Although savannas also feature mixed vegetation, the absence of
woody canopies near AFO parcels in these states suggests land cover
alteration. A study by Fowler and Beckage (2019) validated this obser-
vation and indicated that savannas in crop growing regions across the
US have been severely impacted by row-crop expansion, land manage-
ment, and grazing.

Considering the land cover scenario around AFOs in these regions,
changes in LST were found to be sensitive towards detecting AFO
presence. Based on the model results on Fig. 4-a, moderate-to-high
nighttime LST and high daytime LST had a positive influence on AFO
prediction. Interestingly, low nighttime LST in these states was typically
attributed to non-AFO urban parcels. This phenomenon can be influ-
enced by the extensive use of heat-absorbing materials like asphalt and

Table 2
State level description of RF classification results, test data and land cover.
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concrete in urban areas. These materials absorb heat during the day and
release it at night, keeping the surface temperature cooler (Azevedo
et al., 2016). Additionally, urban areas often incorporate high-albedo
materials like white paint and light-colored rooftops, which contribute
to the same cooling effect (Taha et al., 1992).

In addition to the top three features, the model effectively utilized
information from livestock and poultry manure nutrients, particularly P,
to enhance its predictions of AFO locations. Counties with higher
manure P production yielded increased model confidence in identifying
AFO parcels within those areas (Fig. 4-a). This trend underscores the
usefulness of self-reported census data on animal numbers, suggesting
that more animals are likely indicative of more AFOs or intensive op-
erations. Furthermore, this county-level census data can serve as a
“bounding” dataset for refining predictions and guiding future research
efforts in AFO studies. The ability of the model to identify AFO parcels in
cropland dominated states was also improved by observing low-to-
moderate values of NDVI and LAI, along with moderate values of ET.
These indicators are typical of biomass degradation from activities such
as harvesting and cutting in croplands, as well as grazing in savannas
and grasslands. Since ET can serve as a proxy for irrigation activity, the
positive correlation of moderate ET values can also suggest that some
AFOs in these states have irrigated fields within their property (parcel).

The educational level of residents in a county also influenced the
model’s predictions in these cropland-dominated states. The majority of
AFO parcels identified by the model were located in counties where only
a small percentage of residents over the age of 25 held an associate
degree (denoted as E25_AD). While this observation was not influential
at the national scale, it corresponds with findings from a Midwest-
focused study by Carrel et al. (2016), which analyzed swine CAFOs in
Iowa and noted generally lower levels of college education among res-
idents in these areas.

Since most cropland-dominated states were within the ‘Corn Belt,’
which contributed 35 % of US agricultural ammonia emissions in 2014
(Hu et al., 2021), NO3 particulates positively influenced the identifi-
cation of AFOs (Fig. 4-a). However, as illustrated in Fig. 3, parcels used
for crop cultivation and those housing AFOs can demonstrate similar
trends in air pollution levels, making it challenging to distinguish be-
tween these two land uses based on this metric alone. As a result, the

State Model Results Test Data Statistics
Percentage (%) of Test Percentage (%) of Test Data
Data
Accuracy Precision Recall Recall Predicted Predicted Samples Cropland  Shrubland  Forest  Savannas  Grasslands  Urban
Score Score Score Score False False in State
(AFO) (AFO) (non- Positives Negatives
AFO)
Alabama 0.80 0.76 1.00 0.43 20.00 0.00 0.84 15.00 0.00 5.00  70.00 10.00 0.00
Arizona 0.33 1.00 0.33 0.00 0.00 66.67 0.13 33.00 67.00 0.00 0.00 0.00 0.00
Florida 0.71 0.33 0.05 0.96 2.78 26.39 3.02 6.00 0.00 0.00  57.00 37.00 0.00
TIowa 0.88 0.89 0.99 0.08 10.75 1.10 19.11 99.00 0.00 0.00 1.00 0.00 0.00
Indiana 0.85 0.89 0.94 0.27 10.26 5.13 13.08 95.00 0.00 1.00 3.00 1.00 0.00
Louisiana 0.96 0.95 1.00 0.90 3.51 0.00 2.39 4.00 0.00 0.00  70.00 13.00 13.00
Michigan 0.98 0.98 1.00 0.50 2.04 0.00 2.05 94.00 0.00 0.00 4.00 0.00 2.00
Minnesota 0.81 0.84 0.93 0.36 13.91 5.22 4.82 89.00 0.00 3.00 6.00 3.00 0.00
Missouri 0.93 0.94 0.98 0.54 5.26 1.75 4.78 73.00 0.00 3.00 18.00 6.00 0.00
Mississippi 0.88 0.88 0.98 0.44 10.62 1.47 11.44 4.00 0.00 5.00 89.00 2.00 0.00
North 0.83 0.85 0.94 0.42 12.68 4.51 14.88 30.00 0.00 4.00  63.00 3.00 0.00
Carolina
Ohio 0.86 0.67 1.00 0.81 13.64 0.00 0.92 55.00 0.00 0.00 9.00 5.00 31.00
Oregon 0.93 0.96 0.96 0.73 3.26 3.26 3.86 51.00 0.00 10.00 9.00 29.00 1.00
Pennsylvania  0.98 0.98 1.00 0.75 1.56 0.00 2.68 86.00 0.00 5.00 9.00 0.00 0.00
South 0.94 0.96 0.97 0.50 3.67 2.75 9.14 8.00 0.00 2.00  77.00 10.00 3.00
Carolina

Tennessee 1.00 1.00 1.00 1.00 0.00 0.00 0.13 67.00 0.00 0.00  33.00 0.00 0.00
Texas 0.82 0.84 0.94 0.44 13.85 4.62 2.72 47.00 0.00 2.00 5.00 45.00 1.00
Wisconsin 0.70 0.50 0.72 0.69 21.88 8.33 4.02 54.00 0.00 19.00  21.00 1.00 5.00
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Fig. 4. State level results of the Random Forest classification model showing Shapley Additive exPlanation (SHAP) summary plot of features influencing (a) Animal
Feeding Operation (AFO) parcel predictions in cropland-dominated states, (b) AFO parcel predictions in savanna-dominated states, (c) false positive prediction of
AFO parcels in cropland-dominated states, and (d) false positive prediction of AFO parcels in savanna-dominated states.

model leveraged other features to distinguish AFO from non-AFO par-
cels more effectively. Thus, while NO3 emissions may be a significant
factor in identifying AFO land parcels, their influence was less decisive
than the other features.

The ability of our model to correctly identify AFO land parcels with
high recall is crucial for nutrient sustainability and the protection of at-
risk communities through environmental justice initiatives, particularly
in IA and other contiguous Upper Midwestern states. The Upper Midwest
hosts the majority of the US swine operations, with IA producing about
31.4 % of the total swine livestock in the US. MN and IN follow with 12
% and 5.5 % respectively (USDA, 2015). However, more than any other
state, IA puts communities around AFOs at risk by maintaining one of
the lowest rates of NPDES permitting, thereby making the state an
attractive destination for major meat-based brands such as Hormel,
Smithfield, and Cargill (Kolbe, 2013; Carrel et al., 2016). Based on the
NPDES implementation records, of the 12,367 AFOs registered in the
Iowa Department of Natural Resources database, only 4 % were under
NPDES regulations.

Features Influnecing False Positive Predictions of AFO Parcels in
States Dominated by Cropland — While 57 % of the total false positives
in our study occurred in cropland-dominated states, approximately 91 %
of these false positives originated from crop-growing parcels. A SHAP
analysis (see Fig. 4-c) exploring the reasons behind these statistics
revealed that, similar to actual AFO identification, the lack of tree cover
was the most decisive factor leading our model to misidentify non-AFO
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parcels as AFOs, indicating that in these states AFO and their sur-
roundings are more environmentally degraded than many cultivated
areas. As a result, crop parcels characterized by comparatively lower
NDVI and more extreme daytime LST were erroneously classified by the
model as having an AFO facility.

Further analysis of our model results also corroborated that envi-
ronmentally vulnerable crop parcels in agriculturally intensive states
were more likely to be misidentified as AFOs by the model. For instance,
parcels with high NO3 emissions and elevated topsoil P levels (Fig. 4-c)
were also frequently misclassified by the model as AFOs. The likely
cause of these misclassifications can be due to the spread of manure
nutrients beyond the boundaries of AFO parcels, especially in counties
with high livestock and poultry-based manure production. Among
manure nutrients, P proved to be particularly influential, highlighting its
sensitivity in detecting environmental patterns indicative of AFOs.

In addition to these dominant features, other factors, although
limited in their influence, also contribute to the model’s tendency to
misclassify. These features also act as filters by mirroring common
characteristics found in actual AFOs in these cropland-dominated states.
In our study, ET, and education levels of residents above the age of 25
(E25_AD) were found to be two such features (Fig. 4-c).

The remaining 9 % of false positive predictions occurred in savanna
and grassland parcels in the Upper Midwest. These areas exhibit
terrestrial characteristics similar to those of AFO parcels, likely influ-
enced by intense grazing, which contributed to their misclassification.
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Elevated NO3 and soil P levels, likely from the accumulation of pasture
manure and urine, along with their presence in counties known for high
livestock and poultry-based manure P outputs, further corroborate this
analysis. Additionally, the educational levels of individuals over the age
of 25 (E25_AD) in these regions were comparable to those residing near
AFO parcels, which also increased their likelihood of misclassification.

3.2.2. States with savannas as the dominant land cover

In addition to cropland, the RF model developed for this study also
demonstrated considerable reliability in identifying AFOs in states
where savannas were the predominant land cover. States with such
characteristic account for about 42 % of the test parcels. According to
our results (Table 2), AL and LA achieved the highest recall scores of 1.0,
effectively identifying all AFO parcels within these states. They were
followed by MS, SC, and NC, each with recall scores above 0.94. How-
ever, FL recorded a significantly lower recall score of 0.05, mainly
because 26.4 % of its AFO parcels were misclassified as false negatives
by the model. Despite this, the model achieved a non-AFO recall score of
0.96 in FL, indicating that nearly all actual non-AFO parcels were
correctly identified.

The effectiveness of our model in identifying AFOs is particularly
crucial in NC, a state recognized as a nutrient hotspot and responsible for
contributing 13 % of total swine production in the US (USDA, 2015).
Research by Yang et al. (2016) further highlighted this and noted that
this contribution has been increasing ever since. Between 1930 and
2012, N and P levels generated from animal manure in NC increased by
approximately 70 %, leading to a 40 % and 70 % rise in N and P loading
to water bodies, respectively (Yang et al., 2016).

Features Influencing AFO Parcel Predictions in States Dominated
by Savanna — In states dominated by savannas, our analysis found that
76 % of AFOs are located within this land cover. Additionally, 17 % are
found in croplands, 6 % are in grasslands, and 1 % are situated in forests.
NDVI emerged as the most effective indicator for identifying AFO par-
cels in this region. Higher NDVI values, indicative of healthier plants, led
the model to classify parcels as non-AFO, while low-to-moderate NDVI
values swayed the model towards AFO predictions. The pattern can be
attributed to the greater prevalence of vegetation creating a more
distinct NDVI spread, unlike in cropland-dominated states where a
greater proportion of area is under anthropogenic impact resulting in
less NDVI variation. This is evident from the narrower spread in NDVI
values around the baseline, as shown in Fig. 4-a. Additionally, factors
such as low to moderate tree cover, along with low-to-moderate daytime
and nighttime LST values—indicators of reduced biomass conditions in
croplands, savannas, and grasslands—also played a significant role in
enhancing the accuracy of AFO location predictions, as detailed in
Fig. 4-b.

Moderate-to-high levels of NH4 particulates were also observed to
positively influence AFO prediction in savanna-dominated states, sup-
porting the notion that even in regulated surroundings, AFOs can cause
some form of environmental deterioration. As a result, within the
context of model training, air quality surrounding grassland and
savanna parcels substantially influenced the model’s tendency to predict
the presence of AFO parcels. This effect was more pronounced than the
air quality around AFOs and crop-growing parcels since they often
exhibit similar patterns (Fig. 3).

In these savanna-dominated states, the model also demonstrated
increased sensitivity to even slight changes in manure nutrient data. As a
result, it identified more AFO parcels in counties with moderate-to-high
levels of livestock and poultry-based manure nutrients, primarily P,
viewing these areas as more animal-intensive. This observation aligns
with findings from Bian et al. (2021), who reported that since 1980,
manure N and P production have become increasingly concentrated,
creating nutrient hotspots in the Southeastern US, especially in NC,
while neighboring areas have experienced a decline in these nutrients.

Additionally, moderate ET values positively correlated with the
prediction of AFO parcels, reflecting attributes of herbaceous
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vegetation, crop growth, and even irrigation. For the LAI, both moderate
and high values shifted the model towards predicting AFOs. However,
since low NDVI values sometimes correlate more strongly with AFOs, it
can be inferred that even in some areas where the vegetation is dense, its
overall health is compromised by factors such as nutrient deficiency,
water stress, or diseases. Furthermore, although less influential than
other features, higher soil P levels positively impacted the model’s
ability to identify AFOs, reflecting a pattern consistent with manure
nutrient generation.

Features Influencing False Positive Predictions of AFO Parcels in
States Dominated by Savanna — In these six states, AL recorded the
highest false positive rate at 20 %, followed by NC at 13 %, and MS at
10.6 %, as detailed in Table 2. Similar to AFO prediction, the RF model
was found to be sensitive to slight changes in livestock and poultry-
based manure nutrients, especially P. A SHAP summary plot (Fig. 4-d)
indicated that misidentification of non-AFO to AFO parcels primarily
occurred in counties exhibiting moderate-to-high values for manure
nutrients. Contributing features supporting the misclassification also
included moderate daytime LST, low-to-moderate nighttime LST, and
moderate-to-high NHJ emissions, as illustrated in Fig. 4-d.

The misidentification of non-AFO parcels as AFOs in these six states
can also be attributed to the prevalence of non-AFO parcels in areas with
a significant presence of African American families earning between US
$10,000 and US$15,000 (Incomel0k_15k; Fig. 4-d). This observation is
consistent with the broader national trends identified in our study and
corroborated by various studies mentioned previously, which noted that
residents living near these facilities predominantly belong to commu-
nities of color and are financially disadvantaged.

3.2.3. States with mixed land cover as the dominant land cover

States such as TX and AZ, which feature mixed land cover, accounted
for 3 % of the test parcels, as detailed in Table 2. In TX, approximately
47 % of the parcels were designated for agricultural use, and about 45 %
were covered by grasslands. The remaining parcels were comprised of
savannas (5 %), forests (2 %), and urban pockets (1 %). In contrast, AZ
parcels were predominantly under shrubland (67 %), with crops making
up the remaining 33 %.

For TX, the RF model achieved a high recall score of 0.94 and
recorded a false positive rate of 13.8 %. In contrast, AZ saw a much
lower recall score of 0.33, with a substantial 66.7 % of AFOs mis-
classified as false negatives (Table 2). The limited dataset from AZ,
which constituted only 0.13 % of the testing data, contributed to these
poor results. While the model successfully identified an AFO within an
agricultural parcel in AZ, it failed to recognize AFOs in parcels charac-
terized by shrubland. These findings underscore the need for more
comprehensive data that encompasses the full range of geographical and
climatic regions across the US. As result, given the superior data quality
in TX among states with mixed land cover, we focused our detailed
analysis exclusively on the factors influencing model performance
within this state.

Features Influencing AFO Parcel Predictions in States Dominated
by Mixed Land Use —Based on SHAP summary plot for TX (Supple-
mental Fig. S1-a) low nighttime LST, indicative of biomass loss from
agricultural activity, along with high NO3 particulates and low-to-
moderate daytime LST, were identified as strong predictors for AFO
parcels near crop fields. On the other hand, AFO parcels near grasslands
and savannas were associated with moderate-to-high nighttime LST,
moderate daytime LST, and moderate NO3 particulates. Counties
generating high livestock and poultry-based manure nutrients signifi-
cantly influenced the identification of AFO parcels within them, while
counties moderate nutrient values had a negative impact. Among nu-
trients, P demonstrated particular sensitivity, a trend that is consistent
across various states. Additionally, the proximity of AFO facilities to
meat processing plants also aided the model in detecting AFO parcels.
Our results revealed that most AFOs in Texas are located a short distance
from processing facilities, with a significant proportion of these being
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dairy operations (Rompala, 2023).

Features Influencing False Positives Predictions of AFO Parcels in
States Dominated by Mixed Land Use — The analysis of false positives
in TX using SHAP values (Supplemental Fig. S1-b) showed that parcels
incorrectly identified as AFOs were often located in areas where
households typically earn between US$25,000 and US$35,000 annually
(Income25k_35k). Additionally, moderate nighttime LST and high NO3
emissions were also significant contributors to the model incorrectly
classifying non-AFO parcels as AFOs. Furthermore, the model frequently
misclassified non-AFO parcels in counties with elevated levels of N and P
from livestock and poultry manure.

The impact of socioeconomic factors in TX reflects the environmental
justice concerns commonly associated with AFOs across the US. Addi-
tional metrics indicative of poverty, such as low educational qualifica-
tion (less than 9th grade; see E25_less_9 in Supplemental Fig. S1-b) and
lack of health insurance coverage (i.e., with_public_HIC), also strongly
influenced false positive predictions. In contrast, higher income levels
(Income75k_100k) had the opposite effect. These findings are further
supported by a study from Salzano (2023), which noted a positive as-
sociation between poverty and high exposure to CAFOs in TX.

3.2.4. Features influencing false negative predictions of AFO parcels across
all states

Although smaller in proportion, our model also misidentified 4.7 %
of actual AFO parcels as non-AFOs (false negatives). Understanding
these misclassifications is essential since they impact the overall accu-
racy of our model predictions. These false negative predictions can be
considered as ‘rare events’, representing AFO parcels in conditions not
commonly seen in most states. A SHAP analysis (Supplemental Fig. S2)
conducted across eighteen states, with a particular focus on Florida,
revealed that the RF model tends to misclassify AFOs as non-AFOs in
parcels with high nighttime LST and substantial tree cover, suggesting
that although the model can recognize some AFOs near low albedo areas
such as forests, it may not do so consistently without additional features
indicating otherwise. The capacity of the model for false positive pre-
dictions also increased in parcels that had high atmospheric NO3 but
were located in counties with low N and P production from livestock and
poultry operations, highlighting the limitations of our air quality data
where atmospheric influences from non-agricultural sources can skew
results. Additionally, the model’s tendency to mistakenly categorize an
AFO as a non-AFO was also positively influenced by counties having
comparatively higher educational levels among residents, specifically
those with associate or bachelor’s degrees (as shown in Supplemental
Fig. S2). This finding stands in contrast to the general trend observed in
AFO locations, where the majority of surrounding populations tend to be
less educated and poor (Son et al., 2021).

In our study covering eighteen states, the model successfully iden-
tified AFO and non-AFO parcels with an accuracy exceeding 80 % in
fourteen of them, as illustrated in Supplemental Fig. S3. Notably, the
model achieved an accuracy of over 85 % in most states across the
Midwest, Northeast, West, and Southeast regions where cropland or
savanna predominated as the land cover. FL, however, was an exception;
as one of the largest states in the study, it recorded an accuracy of only
71 %. A map representing all the parcel locations, as well as those
correctly identified as AFOs, non-AFOs, and those incorrectly identified
as false positives and negatives, is illustrated in Fig. 5-a and b.

Predicting AFOs where there are none may help to improve larger-
scale ecosystem management as these areas may be at risk from
nearby AFO activities or future AFO expansion. This predictive capa-
bility facilitates early intervention and enhances monitoring of potential
deteriorations in water, soil, and air quality, thus preempting environ-
mental issues before they escalate. Additionally, by highlighting these
ecologically vulnerable parcels, our findings can drive policy changes
and direct resources towards improving the health and welfare of
affected communities.

Considering both national and state-level results, PTC emerged as the

12

Science of the Total Environment 960 (2025) 178312

most robust predictor in determining whether an area qualifies as an
AFO, contributing to accurate true positive identifications. Across
various states, the effectiveness of PTC is reinforced by the NDVI, day-
time and nighttime LST, and the amount of P from manure produced by
livestock and poultry. However, the extent to which these parameters
influence AFO prediction varies by state, due to differing environmental
and operational characteristics. As a result, instead of relying on a uni-
form national model, there is a crucial need for regional machine
learning models that utilize only the features specific to each region to
identify AFO locations. By adopting this approach, the models could
provide more precise and locally relevant insights about AFO preva-
lence, taking into account the extent of anthropogenic activity as well as
the effects of different animal types (e.g., cattle vs. poultry) on variables
such as manure composition, atmospheric emissions, and soil nutrient
accumulation.

3.3. Study limitations

Although our study focuses on a parcel scale, many of our predictive
features operate at scales larger than individual parcels. While this
approach reduces computational complexity in predicting AFO loca-
tions, it also leaves significant room for improvement. Environmental
data with resolutions ranging between 250 and 1000 m can blend sig-
nals from multiple land-use types within a single pixel, thereby
obscuring granular information and causing feature signals from smaller
parcels to be lost entirely. Similarly, socioeconomic-based predictive
features aggregated at the county level fail to capture diverse parcel-
specific characteristics. Additionally, census data, the source of the so-
cioeconomic features, typically are estimated at fixed intervals and can
fail to capture dynamic changes around individual parcels.

Our RF modeling effort can also be affected by uncertainties arising
from the soil P predictor. Since the soil P data is derived from an
interpolated soil P map, it assumes spatial continuity. This assumption
may not accurately reflect actual conditions, particularly in areas with
sparse sampling points. Moreover, in areas where sample points are
unevenly distributed, interpolation can be less reliable, leading to po-
tential biases in predictions. Finally, we are limited by the training data
available for our model. Future efforts should focus on expanding these
data to additional land uses and regions, as well as incorporating data
such as animal type and facility structure. We also did not have an equal
amount of AFO and non-AFO data points for our training process. While
additional testing showed little impact on our results when the ratio of
AFO to non-AFOs was changed, future work could explore the expanse
and variability of non-AFO data for its impact on model predictions.

4. Conclusion

We provided the first study identifying AFO locations on a parcel
level, utilizing a unique approach that overcomes the limitations
commonly faced by traditional mapping methods based on aerial im-
ages. By leveraging publicly available datasets that include geograph-
ical, environmental, and socio-economic variables, our study developed
a RF-based machine learning model that effectively discerned patterns
and identified properties with AFO facilities with high accuracy.

Although the development of new large language models signifi-
cantly advances image classification through multimodal learning,
feature extraction, and semantic understanding, the method developed
for our study is not only easy to implement and replicable but also aims
to democratize information access. Our approach uniquely addressed
AFO identification by focusing on publicly available environmental data
and socioeconomic data, many of which are also available globally.
Additionally, our method provided a robust understanding of terrestrial
environmental patterns in landscapes dominated by crop and animal
agriculture across various US regions. It proved particularly effective in
identifying AFOs and nutrient hotspots in the Midwestern and South-
eastern states, underscoring its significance as an essential tool for
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Test Locations Land Cover
£ Non-AFO B Mixed
° AFO B Forest
Savanna and
- Grasslands
Cropland

Predicted AFO Locations  Land Cover

¢ False Negative B Mixed

4k False Positive B Forest

4¢ Non-AFO =1 Savanna and
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Fig. 5. Map showing (a) test Animal Feeding Operation (AFO) and non-AFO locations across the eighteen US states considered in our study. The background depicts
four primary land cover groups across contiguous US, where Forest refers to forest land cover, and mixed refers to all land covers other than forests, savannas,
grasslands, and croplands, and (b) predicted results from the random forest classification model used in our study showing false positives, false negatives, correctly
predicted non-AFO (i.e., non-AFO) and AFO (i.e., AFO) locations, against the same land cover background.
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environmental monitoring and nutrient management studies. By incor-
porating manure nutrients as features of animal agriculture, our model
identified P as a more significant ecological marker for predicting AFO
locations than N, further emphasizing its potential in nutrient manage-
ment studies, especially in developing targeted source-sink-based Pma-
nagement strategies. Additionally, given the ease of replicability due to
the use of public data sources, our approach could be used globally to
identify AFOs in other countries, by focusing on extent of tree cover
(PTC) and vegetation indices as metrics for identifying AFO locations.

Although our current approach focused on locating AFOs at a parcel
level was successful, it was limited to only eighteen states. Efforts are
ongoing to extend this strategy to cover the entire US. Future work will
also involve updating our input datasets with high-resolution land cover
and methane emissions data. Since manure lagoons are well-
documented sources of methane emissions, incorporating this informa-
tion could enhance the accuracy and utility of our model, improving its
application in ongoing environmental monitoring and management
efforts.
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