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Abstract—In large-scale multidisciplinary consortia endeavors
that address problems of research, industry, and public-good sig-
nificance, it is typically a priority to integrate the heterogeneous
data contributed by the consortia participants into a unified
data representation. Knowledge graphs (KGs) are a typical
choice for the data model of the resulting data repositories.
To overcome potential issues with terminology misalignment,
consortia commonly dedicate resources to the development of
shared languages (vocabularies), with the intent of enabling
diverse participants to understand and build on each other’s
work. Our research focus in this paper is on the challenge
of automating integration into unified KGs of diverse data
that potentially use different terminology, with the help of the
available shared languages to resolve terminology clashes.

To address the challenge, we introduce a data-integration
workflow called INTEGRATE-KG that is domain agnostic, yet
domain aware through opportunities for the involvement of
humans-in-the-loop. A key feature of the approach is in its use
of the synonyms available for the shared languages to automate
semantics-level terminology alignment across the individual data
contributions after they have been submitted for integration.
INTEGRATE-KG also includes a module for automatically
enriching the available shared languages, with opportunities for
domain experts to provide semantic corrections and feedback.
We present the workflow, report on our experiences with
applying it to experimental, survey, and shared-language data on
phosphorus sustainability, and provide suggestions for involving
domain experts in INTEGRATE-KG as humans-in-the-loop.

Index Terms—Knowledge graphs for big scientific and exper-
imental data; knowledge-graph construction; knowledge-graph
applications.

I. INTRODUCTION

Major projects addressing problems of research, industry,
and public-good significance are commonly approached by
consortia of stakeholders that have diverse backgrounds. Hav-
ing a multidisciplinary team of research scientists study a
topic of shared interest, such as phosphorus sustainability,
from different perspectives and at a variety of scales would be
a typical example. On such consortia projects, it is common
for different consortium subgroups to provide their data
contributions to the shared information pool in a variety
of formats, such as spreadsheets, text, and images. Further,
the diversity of the participants’ backgrounds means that
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different subgroups within the consortium are not necessarily
using the same terminology for the items being worked on
independently in the subgroups. As an example, the terms
“Aluminum Oxide” and “alumina” are used in different sub-
areas of materials science to refer to the same chemical Al,Os3.

In large-scale multidisciplinary consortia endeavors, it is
typically a priority to integrate the heterogeneous data con-
tributed by the subgroups into a unified data representation. As
terminology issues might serve as a barrier to the free sharing
of the contributed information in pursuit of new insights
and discoveries, consortia commonly dedicate resources to
the development of shared languages (vocabularies), with
the intent of enabling diverse participants to understand and
build on each other’s work. Our research focus in this paper
is on the problem of automating integration into unified
data repositories of diverse data contributions that potentially
use different terminology, with the help of the commonly
developed shared languages to resolve terminology clashes.

Consider a motivating example that stems from the use
case that we showcase in this paper. Fig. 1 shows some of
the large-scale data coming from teams that work in the Sci-
ence and Technologies for Phosphorus Sustainability (STEPS)
Center,! a multidisciplinary consortium with a unique large-
scale data portfolio and unique challenges associated with
it. In STEPS, researchers and research teams, stakeholders,
and clients coming from different backgrounds and multiple
disciplines generate and analyze data in a number of formats,
at a variety of scales, and typically with different structures.
The data related to phosphorus sustainability obtained at the
STEPS Center range from numerical databases to qualitative
data sets and include text, graphical information, and spatial
data. Integrating such diverse data for further analysis and
collaboration is challenging, due to inconsistencies in data
standards, the ways the data are stored and shared, and
how they can be interpreted by researchers coming from
different backgrounds due to the terminology differences.
Fig. 1 also shows the information-integration objective for
the consortium, with the integrated data being unified both
format-wise and terminology-wise, thus enabling accelerated
scientific discovery through shared knowledge.

Many multidisciplinary consortia, including the STEPS

Thttps://steps-center.org
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Large-scale data coming from teams that work in the Science and Technologies for Phosphorus Sustainability (STEPS) Center, as well as the

information-integration objective for the Center, with the integrated data being unified format-wise and terminology-wise, thus enabling accelerated scientific
discovery through shared knowledge. Fig. 1(a) depicts the types of source data: experimental data, survey data, and shared-language data. Fig. 1(b) shows the
individual knowledge graphs (KGs) constructed from these source data, and Fig. 1(c) depicts the integrated KG, open to refinements by humans-in-the-loop.

Center, choose knowledge graphs (KGs) to integrate their
data. This choice is justified by the flexible triple-based
“subject-predicate-object” KG representation of the data that
enables explicit modeling of relationships between entities.
The KG data model also makes it easy to incorporate metadata
and reasoning into the data [1]. The domain-agnostic approach
that we introduce in this paper, called INTEGRATE-KG, is
designed to automate integration of diverse data using the
flexible metadata-enabling KG data model as the unified data
representation in the envisioned integrated repository.

The main focus of the proposed INTEGRATE-KG work-
flow is that of resolving potential terminology clashes between
the data contributions made by participants with differing
backgrounds. To this end, INTEGRATE-KG takes advantage
of any available shared language developed in the project. A
straightforward approach to the needed terminology alignment
would call on the data contributors to translate their data
using the agreed-on shared terminology prior to submitting
their data for integration. We recognize that requiring such
an effort could be a burden on the project participants. As
a result, a key feature of INTEGRATE-KG is in its use of
the synonyms available for the shared languages to automate
terminology alignment across the individual data contributions
after they have been submitted for integration. In addition,
INTEGRATE-KG includes a module for automatically en-
riching the available shared languages, with opportunities for
domain experts to provide corrections and feedback.

To the best of our knowledge, the project that is the closest
to ours in its aims and methods is the BUILD-KG effort
by Schatz and colleagues [2]. The BUILD-KG approach is
designed to automate integration into the KG format of data
in a variety of representations. After the data have all been
converted into the KG format, the last step in BUILD-KG is
to connect the resulting individual KG fragments using the
same terms that occur across these KGs. (E.g., the vertices
for “alumina” that occur in several individual KGs would all
get merged into a single vertex.) From our experience with
the STEPS Center use case, this approach to integrating KGs
arising from different data sources can miss significant oppor-
tunities for enabling data interoperability and richer analytics,
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with much of the data connections potentially remaining
untapped. The key feature of the proposed INTEGRATE-KG
approach that we discussed earlier addresses this challenge
by providing enriched semantics-oriented ways to connect
individual KGs arising from different sources into a holistic
KG. (E.g., INTEGRATE-KG would not only connect all the
vertices for “alumina,” but will also connect them with all
the vertices for “Aluminum Oxide,” which is a synonym for
“alumina.”’) As a result, the KGs returned by INTEGRATE-
KG can open new avenues for efficient data navigation, pattern
discovery, and analytics across the entire multidisciplinary
organizations that have contributed their data to the KGs.

Our specific contributions in this paper are as follows:

e We propose a domain-agnostic, humans-in-the-loop
workflow called INTEGRATE-KG to construct KGs
from structured and unstructured data with the use of
the shared languages adopted within the given use cases,
which makes INTEGRATE-KG domain aware;

o We introduce domain-agnostic procedures for automating
semantic terminology alignment across the individual
data contributions in a given use case after they have been
submitted for integration, with the help of the synonyms
available for the terms in the shared languages;

« We propose an approach for automatically enriching the
shared languages developed for particular use cases, with
opportunities for humans-in-the-loop to provide domain-
aware semantics-level corrections and feedback;

o We outline our implementation of INTEGRATE-KG, and
report on our experiences with applying it to experimen-
tal, survey, and shared-language STEPS-Center data; and

e« We report on our experiences working with STEPS
researchers, and provide tips on involving scientists as
humans-in-the-loop in the INTEGRATE-KG workflow.

The remainder of this paper is organized as follows. We

review related work in Section II and provide a problem state-
ment in Section III. In Section IV, we introduce our proposed
domain-agnostic yet domain-aware framework, illustrating it
in Section V with a real-world STEPS-Center use case. In
Section VI, we describe the role of humans-in-the-loop in the
INTEGRATE-KG workflow. We conclude in Section VII.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 23,2025 at 20:05:58 UTC from IEEE Xplore. Restrictions apply.



II. RELATED WORK

Our work is related to efforts in the fields of knowledge
graph (KG) construction and integration, see, e.g., [2]-[12].

Most KG construction efforts focus on extracting infor-
mation from text and converting it to the KG format, e.g.,
[3], [4]. The approaches of [2], [5] focus on constructing
KGs from data formats beyond text, e.g., spreadsheet data,
images, and code. Our proposed INTEGRATE-KG workflow
also focuses on constructing KGs from data format beyond
text, but expands upon [2], [5] to include support for two
new data formats: survey data and shared-language data. The
work of [13] also handles multiple data types, specifically
various file types, but it handles them individually rather than
as collections of related data that may overlap. This is in
contrast to INTEGRATE-KG, which specifically addresses
the case where data may overlap. [13] also does not involve
domain experts in the construction process, as INTEGRATE-
KG does, which may limit its applicability to data where
domain expertise is required to understand the semantics.

Many KG construction efforts are domain-specific, i.e.,
tailored to the needs of a particular field [14]. For instance,
[7] focuses on cybersecurity education, while [8], [9] apply
to biology and biomedicine, [10] specializes in the Food,
Energy, Water (FEW) domain, and [11] handles judicial cases.
While effective, these methods are often limited to their re-
spective domains. In contrast, the proposed INTEGRATE-KG
workflow is entirely domain-agnostic. While we demonstrate
INTEGRATE-KG through a use case in materials science, it
can be easily applied to other domains.

Existing KG-integration approaches, e.g., [4], [5], [12],
perform entity alignment via textual similarity or embeddings,
and can struggle to effectively handle complex data. In con-
trast, INTEGRATE-KG relies on shared-language data from
domain scientists to introduce relationships between synony-
mous vertices of interest. INTEGRATE-KG also accomodates
incremental updates, as recommended by [15].

The work of [2] also considers the integration of KGs from
multiple sources. However, it requires the input KGs to use
unified terminology and only handles the case where vertices
have the same name. In contrast, our proposed INTEGRATE-
KG framework extends that of [2] by integrating KGs using
shared-language data from various sources, not requiring the
terminology to be unified ahead of time.

ITI. BACKGROUND AND PROBLEM STATEMENT

Definition 1 (Knowledge Graph): A knowledge graph (KG)
is a 5-tuple G = (V, T, 1, P, E), where V is the set of vertices
(entities), T is the set of vertex types, T : V — T is the vertex-
type labeling function that assigns to each vertex a vertex
type in T, P is the set of predicates, and E CV X P xV
is the set of triples (edges). Each element (s,p,0) € E is
called a triple (edge) and encodes the real-world fact in the
form of the relationship p € P between the subject vertex
s € V and the object vertex o € V. For example, the
triple (phosphate,is_part_of, fertilizer) encodes
the fact that “phosphate is part of fertilizer.”

Definition 2 (KG Construction): KG construction involves
transforming a data set D into a KG G. The process is formal-
ized as C : D x K(D) — G, where K(D) denotes background
information KC applied to D to facilitate construction. K can
include, e.g., domain-specific rules and synonym matching.
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The function C creates the vertices V, vertex types T, vertex-
type labeling function 7, predicates P, and triples F, ensuring
that G aligns with the semantics encoded in K.

Definition 3 (KG Integration): KG integration is the process
of merging a set of multiple KGs G = {G1,Ga2,...,G,}
into a single, unified KG K. This process is formalized as
T :G x G — K, where G, is a shared-language KG that
facilitates the integration process. The function Z connects
vertices across the various input KGs based on the triples in
G, resulting in an integrated KG K = (V,T,7, P, E) that
synthesizes the information from the individual KGs.

We now introduce the problem statement for our work:
Given a set D of heterogeneous data sources and a shared-
language repository L that connects related terms across the
sources in D, integrate the data in D into a unified KG
K = (V,T,7,P,E) that could enable richer analytics not
supported by the sources taken in isolation. The shared-
language repository L includes terms with their meanings and
synonyms. The repository is formatted as a spreadsheet, where
rows represent individual terms and columns include the term
name, meaning and synonyms. Terms and synonyms can be
encoded as KG vertices with edges connecting them.

To limit the scope of this problem, we focus on two source
types for D: (1) experimental data and (2) survey data. These
types have been selected due to their prominent usage by
domain scientists. Experimental data include observations and
measurements that can be encoded as KG vertices. They
are stored in tables or spreadsheets, where rows represent
individual experiments, and columns specify attributes (obser-
vations and measurements) that are recorded. Relationships
between attributes are provided in a separate sheet and can
be encoded as KG edges. Survey data include questions and
responses that can be encoded as KG vertices, along with
response counts and percentages. They are stored in tables
or spreadsheets, where each sheet details a question and its
responses. Relationships between questions and responses can
be encoded as KG edges. More detailed descriptions of these
data sources can be found in Section IV.

IV. THE INTEGRATE-KG WORKFLOW

We now introduce our proposed domain-agnostic workflow
called INTEGRATE-KG for integrating heterogeneous data
sources into a unified knowledge graph (KG) that could
enable richer analytics not supported by the sources taken
in isolation. Sections IV-A, IV-B, and IV-C, describe the
processes for constructing KGs from experimental, survey,
and shared-language data, respectively. Then, Section IV-D,
details the procedure for integrating individual KGs into a
unified, cohesive KG by using the shared-language KG.

A. Constructing a KG from Experimental Data

The proposed domain-agnostic process for KG construction
from experimental data requires the data to be in the format
described in Section IV-A1. The output KG and its ontology
are discussed in Section IV-A2. The necessary experimental-
data preprocessing is detailed in Section IV-A3, and the
construction process is presented in Section IV-A4.

1) The Input Data: The process accepts experimental data
in a specific format, which was first introduced in [2] and
can be achieved through collaboration with domain scientists,
see Section VI-A for the details. The format introduced in [2]



consists of: (1) a relation sheet R, and (2) a triple sheet S.
The relation sheet R is analogous to a relational table, i.e.,
each row corresponds to a single data object and each column
corresponds to an attribute. Each cell entry in R is a desired
vertex in the resulting KG whose vertex type will be the
column header. The triple sheet S' consists of three columns:
Subject, Predicate, and Object. Each row (st,p,ot) € S is a
desired triple type in the resulting KG. Here, st and ot are
column headers from R and indicate the subject and object
vertex types that have the relationship p. Thus, the role of
the triple sheet S is to enumerate the relationships (edges)
between the entities (vertices) in the relation sheet R. See
Section V-C1 for example input data.

2) The Output KG: The KG G = (V, T, 1, P, E)) generated
by the construction process of Section IV-A4 contains the
data from the relation sheet R organized according to the
triple sheet S. The vertex set V' consists of all the unique
entries in R; entries that appear in multiple rows correspond
to a single vertex. The set of vertex types 71" consists of the
column headers of R, and the vertex-type labeling function 7
maps each entry in R to its corresponding column header. The
predicate set P consists of all the entries from the Predicate
column of S, and the set of triples F consists of a single triple
of each triple type (st,p, ot) in S for each data object d in R.
Here, the subject and object of the triple are the entries from
d in columns st and ot.

3) The Data Preprocessing: After formatting the input data
according to the specifications in Section IV-Al, the data
are preprocessed to ensure successful KG construction, First,
the relation sheet R and the triple sheet S are checked for
compatibility, i.e., to ensure that the triple types found in .S use
vertex types found in the column headers of R. Next, miss-
ing values are addressed through data imputation, ensuring
data completeness without compromising the integrity of the
information. These values are also flagged for expert revision.

4) The Construction Process: The process for constructing
a KG from experimental data was first presented in [2]. The
algorithm takes as inputs the relation sheet R and the triple
sheet S, formatted as specified in Section IV-A1, and outputs
the KG G described in Section IV-A2.

The algorithm first makes an empty KG G. Then, vertices
are added to G: one vertex v for each unique entry e in the
relation sheet R. The vertex v is given vertex type ¢, where
t is the column header corresponding to e. The creation of v
can be accomplished via the following query:?

MERGE (v :t {name : e}) (1

This query ensures that the vertex v is created only if it does
not already exist, thereby avoiding duplicates.

We expand upon the approach of [2] for the case of relation-
sheet entries that were flagged during the data preprocessing
of Section IV-A3. For such an entry e, its corresponding vertex
v is flagged by modifying (1) to include the following clause:

2)

Next, edges are added to G: one edge for each triple type
in the triple sheet .S for each data object in the relation sheet
R. That is, the algorithm iterates over each row, i.e., triple
type (st,p,ot), in S, and over each row, i.e., data object d, in

SET v.flag = True

2All queries are presented in the Cypher [16] query language.
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R, creating the triple (s, p,0) by extracting s and o from the
entries of the st and ot columns of d. The creation of (s, p, 0)
can be accomplished via the following query:

MATCH (v : st {name : s}), (v, : ot {name : o})

MERGE (vs) — [: p] = (vo) 3

This query identifies the vertices corresponding to s and o,
and ensures that an edge of type p between is created between
them if it does not already exist, thereby avoiding duplicates.
After creating these vertices and edges, G contains the data
from relation sheet R organized according to triple sheet .S,
and is returned as the output of the construction process.

B. Constructing a KG from Survey Data

The proposed domain-agnostic process for KG construction
from survey data requires the data to be in the format
described in Section IV-B1. The output KG and its ontology
are discussed in Section IV-B2. The necessary survey-data
preprocessing is detailed in Section IV-B3, and the construc-
tion process is presented in Section IV-B4.

1) The Input Data: The process accepts survey data as
a set of spreadsheets S, where each sheet details a single
survey question and its responses. The first row of each sheet
contains the question posed to participants. Subsequent rows
list the responses, with columns Response Text, Count, and
Percent indicating the response text, the numerical count of
participants who selected the response, and the percentage that
this count represents out of the total number of responses. See
Section V-D1 for example input data.

2) The Output KG: The KG G = (V, T, 7, P, E) generated
by the construction process of Section IV-B4 contains the
data from the set of survey sheets S, along with keywords
extracted during the data preprocessing of Section IV-B3.
The vertex set V' consists of all the unique questions and
responses from S, and all the unique keywords. The set of
vertex types 7' = {Question,Response,Keyword}, and
the vertex-type labeling function 7 maps each question to the
type Question, each response to the type Response, and
each keyword to the type Keyword. The predicate set P =
{HAS_RESPONSE, HAS_KEYWORD}, and the set of triples
consists of a single triple with predicate HAS_ RESPONSE be-
tween each question and each of its corresponding responses,
and a single triple with predicate HAS_KEYWORD between
each question and each of its keywords.

3) The Data Preprocessing: After formatting the input data
according to the specifications in Section IV-B1, the data are
preprocessed to extract keywords from the survey questions.
The purpose of these keywords is primarily to enhance the
resulting KG and its ability to integrate with other KGs.

The data-preprocessing steps are outlined in Algorithm 1,
which takes as input the set S of raw survey sheets, formatted
as specified in Section IV-B1, and produces as output a set
S’ of preprocessed survey sheets.

First, the set S’ is initialized as the empty set (line 1). Then,
the algorithm iterates over each sheet s in S (lines 2-7). The
first row of the sheet, s[0], contains the question text g, which
is extracted (line 3) via the following regular expression:?

\b (Do |Have |How |What |Which|Why) \b.*?\?

3In practice, this expression can be expanded to support a specific use case
by including additional question-starting words separated by the delimiter | .
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Algorithm 1: Preprocessing Survey Data.

Algorithm 2: Constructing a KG from Survey Data.

Input: Set of raw survey sheets S.
Output: Set of preprocessed survey sheets S’.

1. S« @;

2: for sheet s € S do

3: q < parse(s[O]); // parse out the question text
4 s[0] < q;

5: keywords + extract_keywords(q);

6: s < s.append(keywords);

7: S+ S'U{sh

8: return S’;

This pattern searches for common question-starting words,
e.g. Do, How, Have, and What, and extracts the entire
sentence up to the first question mark. It ensures that the
complete question text is retrieved, even if it contains complex
or variable structures. The extracted question text q is placed
back in s[0] for use during construction (line 4).

Next, keywords are extracted from the question text ¢ via
natural language processing (NLP) techniques (line 5). The
keyword extraction involves the following steps:

1)

The text ¢ is tokenized, i.e., split into individual words.
2) 2 13 "

Stop words, e.g., “the,” “is,” and “in,” are removed
because they are insignificant to the meaning of q.

The remaining words are tagged with their part of speech
(POS), which identifies their grammatical roles, e.g.,
noun (NN tag), verb (VB tag), or adjective (JJ tag).
Single and compound nouns are extracted as keywords
by identifying POS-tag patterns JJ + NN and NN + NN.

The extracted keywords are appended to the end of the sheet
s (line 6), which is then added to the set S’ (line 7).

After iterating through all sheets, the complete set S’ is
returned as the output of Algorithm 1 (line 8).

4) The Construction Process: The process for constructing
a KG from survey data is outlined in Algorithm 2. The
algorithm takes as input the set of preprocessed survey sheets
S’ (output by Algorithm 1) and outputs the KG G described
in Section IV-B2.

First, an empty KG G is made (line 1). Then, the algorithm
iterates over each sheet s in S’ (lines 2—16). The first row of
the sheet contains the question text g (line 3). A corresponding
vertex v of type Question is created (line 4) with g stored
in the property text (line 5). The creation of v can be
accomplished via the following query:

3)

4)

MERGE (v : Question {text : q}) 4)

This query creates a new vertex v of type Question with
property v.text = g, if such a vertex does not already exist.

Next, the algorithm iterates over the remaining rows of the
sheet s (lines 6-11), except for the last line, which contains the
keywords. Each row corresponds to a response r. A vertex w
of type Response is created (line 7) with the property text
that is extracted from the Response Text (line 8) column of
the row. The creation of w can be accomplished via a query
similar to (4). Also, an edge e between the question vertex
v and its response vertex w is created (line 9) with predicate
HAS_RESPONSE and properties count and percent that
are extracted from the Count (line 10) and Percent (line 11)
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Input: Set of preprocessed survey sheets S’.
Output: KG G containing the data from S’.

1: G+ 0; // initialize an empty KG G

2: for sheet s € S’ do

3: q < 8[0]; /l extract the question text

4 v < G.create_vertex(Question);

5: v.text < q;

6: for row r € s[1: —1] do

7 w 4 G.create_vertex(Response);

8 w.text  r[Response Text|,

9 e + G.create_edge(v, HAS_RESPONSE, w);

e.count « r[Count];
11: e.percent < r[Percent];
12: keywords — S[—l]; // extract the keywords
13: for keyword k € keywords do
14: x < G.create_vertex(Keyword);
15: xr.name < k;
16: G .create_edge(v, HAS_KEYWORD, x);

17: return G,

columns of the row. This edge creation can be accomplished
via the following query:

MATCH (v : Question {text : ¢}),
(w: Response {text :r})
MERGE (v) — [e : HAS_RESPONSE| — (w)
4)

This query identifies the vertices v, w and ensures that an edge
of type HAS_RESPONSE with properties e.count = ¢ and
e.percent = p is created between them.

Next, the algorithm extracts the keywords from the final
row of the sheet s (line 12), and iterates over each keyword
k (lines 13—-16). A vertex x of type Keyword is created (line
14) with k stored in the property name (line 15). The creation
of x can be accomplished via a query similar to (4). Also, an
edge with predicate HAS_KEYWORD is created between the
question vertex v and its keyword vertex x (line 16). This
edge creation can be accomplished via a query similar to (5).

After creating these vertices and edges, G contains the data
from the set of survey sheets S, and is returned as the output
of the construction process of Algorithm 2 (line 17).

SET e.count = ¢, e.percent =p

C. Constructing a KG from Shared-Language Data

The proposed domain-agnostic process for KG construction
from shared-language data requires the data to be in the format
described in Section IV-C1. The output KG and its ontol-
ogy are discussed in Section IV-C2. The necessary shared-
language data preprocessing is detailed in Section IV-C3, and
the construction process is presented in Section IV-C4.

1) The Input Data: The process accepts shared-language
data as a spreadsheet L with three columns: Term, Meaning,
and Synonyms. Each row corresponds to a single term with
the entry in the Term column specifying the term name, the
entry in the Meaning column providing a brief description or
explanation of the term, and the entry/entries in the Syronyms
column listing synonyms of the term. Synonyms can also be
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Algorithm 3: Preprocessing Shared-Language Data.
Input: Shared-language sheet L and similarity threshold o.
Output: Preprocessed shared-language sheet L'.

1. L'+ L;

2: for row r € L' do

3 keywords + extract_keywords(r[Meaning));
4; synonyms <« filter_keywords(r[Term], keywords, o);
5
6

r|Synonyms] < r[Synonyms] U synonyms;
. return L’;

extracted automatically (see Section IV-C3 for the details).
See Section V-E1 for example input data.

2) The Output KG: The KG G = (V,T,7, P, E) gener-
ated by the construction process of Section IV-C4 contains
the data from the shared-language sheet L with appropriate
relationships between synonyms. The vertex set V' consists of
all the unique entries from the Term and Synonyms columns
of L. The set of vertex types T' = {Term}, and the vertex-
type labeling function 7 maps all vertices to the type Term
since synonyms are considered terms themselves. The set of
predicates P = {HAS_SYNONYM}, and the set of triples
E consists of a single triple with predicate HAS__SYNONYM
between each term ¢ from the Term column and each of its
synonyms s from the Syronyms column.

3) The Data Preprocessing: After formatting the input data
according to the specifications in Section IV-C1, the data are
preprocessed to extract additional synonyms above a thresh-
old. While experts can contribute high-quality synonyms in
the input, their contributions can require non-negligible man-
ual efforts. Thus, automatic extraction of additional synonyms
is beneficial. The purpose of these synonyms is primarily
to enhance the resulting KG and its ability to facilitate the
integration of multiple KGs (see Section IV-D for the details).

The data-preprocessing steps are outlined in Algorithm 3,
which takes as input the shared-language sheet L, formatted
as specified in Section IV-C1, along with the threshold o that
can be tuned via expert collaboration, see Section VI-C, and
produces as output a preprocessed shared-language sheet L.

First, the sheet L' is initialized with the data from the sheet
L (line 1). Then, the algorithm iterates over each row, i.e.,
term ¢, of L' (lines 2-5). Keywords are extracted from the
meaning of term ¢, which is found in the Meaning column of
the row (line 3), via the same process used in Section IV-B3.

The keywords are then filtered down to a list of true
synonyms (line 4) by computing the similarity s between the
term ¢ found in Term column of the row and each keyword
k, and keeping only those keywords whose scores exceed
the similarity threshold o. The similarity is computed via a
combination of three measures, which each capture different
aspects of the relationship between terms and keywords.

1) The TF-IDF [17] similarity measure F' quantifies the
importance of a keyword based on its frequency and
uniqueness in text. For the term ¢ and the keyword k,
TF-IDF captures the frequency of k in the meaning of ¢
relative to its frequency in all the meanings found in the
Meaning column of the shared-language sheet L.

The Word2Vec [18] similarity measure W captures the
semantic similarity of a term and keyword based on

2)
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Algorithm 4: Constructing a KG from Shared-Language
Data.

Input: Preprocessed shared-language sheet L'.

Output: KG G containing the data from L’.

G+ @; // initialize an empty KG G
for row r € L’ do
v < G.create_vertex(Term);
v.name < r[Term|;v.meaning « r|Meaning|;
for synonym s € row[Synonyms| do
w « G.create_vertex(Term);
w.name  s;
G .create_edge(v, HAS_SYNONYM, w);

1:
2:
3
4
5:
6
7
8
9: return G;

textual context. The Word2Vec model is pretrained on the
meanings found in the Meaning column of the sheet L’'.
The model is then used to generate vector representations
of the term ¢ and the keyword k, and the cosine similarity
[19] of the two vectors is calculated.

The BERT [20] similarity measure B provides a deep,
context-aware comparison of the term and keyword. The
BERT model was pretrained on the English language in
[20]. The model is used to generate vector representa-
tions of the term ¢ and the keyword k, and the cosine
similarity [19] of the two vectors is calculated.

3)

The final similarity between the keyword k and the term ¢ is:
s(tk) =ax F(t,k)+ B x W(t,k)+~vx B(t,k) (6)

Here, the weights «, 3, v can be tuned for a given domain
and/or use case. For instance, in complex domains a greater
weight v can be assigned to the context-aware measure B to
capture nuanced semantics, while in less specialized domains
the statistical measure I’ can be prioritized via assigning
a greater value to «. These weights enable the similarity
function (6) to adapt to diverse domains.

After computing the similarity scores and applying the
threshold o, the remaining keywords (synonyms) are added
to the Synonyms column of the row (line 5).

After iterating through all rows, i.e., terms, the sheet L’ is
returned as the output of Algorithm 3 (line 6).

4) The Construction Process: The process for constructing
a KG from shared-language data is outlined in Algorithm 4.
The algorithm takes as input the preprocessed shared-language
sheet L’ (output by Algorithm 3) and outputs the KG G
described in Section IV-C2.

First, an empty KG G is made (line 1). Then, the algo-
rithm iterates over each row, i.e., term, of L’ (lines 2-8). A
corresponding vertex v of type Term is created (line 3) with
properties name and meaning extracted from the ZTerm and
Meaning columns of the row (line 4). The creation of v can
be accomplished via the following query:

(N

This query creates a new vertex v of type Term with
properties v.name = n and v.meaning = m, if such a
vertex does not already exist.

Next, the algorithm iterates over each synonym s from
the Synonyms column of the row (lines 5-8). A vertex w

MERGE (v : Term {name : n,meaning : m})
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Algorithm 5: Integrating Multiple KGs.
Input: Set of KGs G {G1,Go, ..
language KG G..
Output: Integrated KG K.

I: K<+ GiUGoU---UGy; /] initialize the KG K

2: synonym_pairs + find_synonym_pairs(Gr,);

/| create edges between synonyms
. for pair (A, B) € synonym_pairs do
if A, B € K then

K .create_edge(A, HAS_SYNONYM, B);

return K;

.,G,} and shared-

S A

of type Term is created (line 6) with w.name s (line
7) to represent s. The creation of w can be accomplished
via a query similar to (7). Also, an edge with predicate
HAS_SYNONYM is created between the term vertex v and
its synonym vertex w (line 8). This edge creation can be
accomplished via the following query:

MATCH (v: Term {name : n}), (w
MERGE (v) — [: HAS_SYNONYM] — (w)

: Term {name : s})
®)

This query identifies the vertices v, w corresponding to the
term and its synonym, and ensures that an edge of type
HAS_SYNONYM is created between them.

After creating the vertices and edges, G contains the data
from the shared-language sheet L’, and is returned as the
output of the construction process of Algorithm 4 (line 9).

D. Integrating Multiple KGs Using the Shared-Language KG

The integration process for combining multiple input KGs
into a single, unified KG takes as input the KGs that are
derived via the construction processes of Sections IV-A and
IV-B from various data sources, such as experimental data and
survey data. The integration is facilitated by a shared-language
KG, constructed via the process of Section IV-C, that provides
synonym mappings to ensure consistent alignment between
terms across the input KGs.

The integration process is outlined in Algorithm 5, which
takes as inputs the set of KGs G and the shared-language KG
G, and outputs the KG K that integrates all the KGs from
G according to the data in Gp.

First, the integrated KG K is populated with all the data
from the input KGs in G (line 1). Then, the pairs of vertices
connected via a HAS_SYNONYM edge are extracted from the
shared-language KG G, (line 2) via the following query:

MATCH (A : Term) — [: HAS_SYNONYM] — (B : Term)
RETURN A.name, B.name ®
Next, the algorithm iterates over each synonym pair (A, B)
(lines 3-5). If vertices corresponding to A and B exist in
K (line 4), then an edge with predicate HAS_SYNONYM is
created between them (line 5) via the following query:
MATCH (v4 {name: A}), (vp {name : B})

MERGE (v4) — [ HAS_SYNONYM] — (vg) (10)

This query identifies the vertices v4,vp corresponding to
the terms A and B, and ensures that an edge of type
HAS_SYNONYM is created between them.
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After all appropriate HAS_SYNONYM edges are created
between synonyms, the integrated KG K is returned as the
output of the integration process of Algorithm 5 (line 6).

V. THE USE CASE WITH STEPS-CENTER DATA

We now describe our implementation of the proposed
INTEGRATE-KG workflow and detail its application to our
STEPS-Center* use case in the materials science domain.
The tools used to implement the workflow are presented in
Section V-A, and the source data for the use case is described
in Section V-B. Our instantiations of the workflow for the
STEPS experimental, survey, and shared-language data are
detailed in Sections V-C, V-D, and V-E, respectively. Finally,
the integration of the STEPS use-case data sets into a unified,
cohesive knowledge graph (KG) is discussed in Section V-E.

A. Tools Used in our Implementation of INTEGRATE-KG

Tools required to implement the INTEGRATE-KG work-
flow include a graph data-management system (DBMS), a
graph query language, and a programming language with
various specialized libraries. In our implementation, we used
the Neo4j graph DBMS [21] with the Cypher graph query
language [16]. We implemented the workflow in Python [22],
using the py2neo [23] library for connecting to Neo4j and
executing Cypher queries within Python code, and using the
pandas [24], [25] library for reading and preprocessing the
source data. Additionally, we used the re [26] library for
the regular-expression matching mentioned in Section IV-B3,
the NLTK [27] library for the natural language processing
(NLP) steps described in Sections IV-B3 and IV-C3, and
the sklearn [28], gensim [29], and transformers [30]
libraries, respectively, for the TF-IDF, Word2Vec, and BERT
similarity measures discussed in Section IV-C3.

B. The Source Data in the STEPS-Center Use Case

As a use case for testing the proposed INTEGRATE-
KG workflow, we applied the workflow to data provided
by researchers across multiple disciplines and teams within
the STEPS Center. These data included experimental results,
survey responses, and a shared-language repository. Inte-
grating these data sets via the INTEGRATE-KG workflow
generated a single, unified KG that gives STEPS scientists
the ability to make significant new discoveries. Leveraging
the shared-language data of Data Set 3 (see Section V-B3)
enabled harmonization of the data from the different research
disciplines and teams within STEPS.

The datasets generated by STEPS scientists are as follows:

1) Data Set 1: Experimental Data: This data was generated
from various phosphate-sorption experiments using different
materials. The data consist of spreadsheets detailing various
experimental settings and measurements, e.g., sorbent materi-
als, sorbent dosages, and phosphate-removal percentages. The
results provide insights into the phosphate-binding efficacy of
different materials, e.g., AloO3, FeoO3, and CeOs.

2) Data Set 2: Survey Data: This data was collected as
detailed in [31]. An online survey underwent IRB review
(NC State, IRB protocol 25,268) and was then completed
anonymously by 96 expert stakeholders in the U.S. and abroad
who were familiar with and currently worked in a variety
of fields and sectors related to phosphorus management. The

“https://steps-center.org
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TABLE I
FRAGMENT OF THE RELATION SHEET FROM DATA SET 1 (SEE SECTION
V-B1) USED WITH TABLE II AS INPUT TO THE KG CONSTRUCTION
PROCESS OF SECTION IV-A4. EACH ROW DESCRIBES A SINGLE DATA
OBJECT, AND THE COLUMNS REPRESENT DIFFERENT ATTRIBUTES.

. Sorbent Initial P Avg. % P
Exp. ID  Material Dosage (g/L) Conc. (mg/L)  Removed
El AlxO3 1 5 15.94
E2 Fe203 1 5 8.94
E3 CeO2 1 5 92.32
TABLE 11

FRAGMENT OF THE TRIPLE SHEET FROM DATA SET 1 (SEE SECTION
V-B1) USED WITH TABLE I AS INPUT TO THE KG CONSTRUCTION
PROCESS OF SECTION IV-A4. EACH ROW IS A TRIPLE OF THE FORM
(st,p, ot), WHERE st AND ot ARE VERTEX TYPES AND p IS A PREDICATE.

Subject Predicate Object

Exp. ID USED Material

Material USED_IN_DOSAGE Sorbent Dosage (g/L)
Exp. ID STARTED_AT Initial P Conc. (mg/L)
Exp. ID RESULTED_IN Avg % P Removed
Material AFFECTED Avg % P Removed

survey aimed to elicit information regarding stakeholder per-
ceptions, concerns, and needs related to achieving phosphorus
sustainability. The results from this work offered a nuanced
understanding of the landscape of phosphorus sustainability,
revealing key stakeholder concerns and priorities. The data
consist of survey questions and corresponding responses.

3) Data Set 3: Shared-Language Data: This data consists
of a bank of terms identified by STEPS participants as un-
known or polysemous, i.e., having multiple meanings across
disciplines. The data include contextual meanings and syn-
onyms from STEPS participants to assist in the resolution of
terminological discrepancies across disciplines and to create
a shared language within STEPS.

C. Constructing a KG from STEPS Experimental Data

We now discuss our experience of constructing a KG from
the experimental data in our STEPS use case. Those data come
from Data Set 1, see Section V-B1 for the details.

1) The Input Data: To arrive at the required input format
specified in Section IV-Al, we used the relation sheet R
provided by Data Set 1 and generated a triple sheet S with
the help of domain scientists. Table I shows a fragment of the
relation sheet R, which contains data about the experiments
conducted. Each data object (row) in R contains information
about a single experiment, e.g., the experiment (exp.) ID, the
material used, and the sorbent dosage. For example, the first
row of Table I details the experiment with ID EI, which
used the material AloO3 at a sorbent dosage of 1 g/L; the
experiment had an initial Phosphorus (P) concentration (conc.)
of 5 mg/L and resulted in an average P removal of 15.94%.

Table II shows a fragment of the triple sheet S, which
specifies the triple types desired in the resulting KG. Each
row contains the subject type, predicate, and object type for
a single triple type. For example, the first row specifies the
triple type (Exp. ID, USED, Material), which indicates
that each Exp. ID and the corresponding Material are
connected via the USED relationship.

2) The 0utput KG: The KG Gg = (VE,TE,TE,PE,EE)
produced by the construction process of Section IV-A4 con-
tains the data from the relation sheet R organized according
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TABLE III
SAMPLE SURVEY SHEET FROM DATA SET 2 (SEE SECTION V-B2) USED
AS INPUT TO THE DATA PREPROCESSING OF SECTION IV-B3. THE FIRST
ROW INCLUDES THE SURVEY QUESTION AND SUBSEQUENT ROWS
PROVIDE THE DISTRIBUTION OF THE PARTICIPANT RESPONSES.

Participant involvement in P management. Responses to
“Do you currently work in, conduct research, and/or are
involved in activities related to phosphorus management?”

Response Text Count Percent
Yes 78 81.3%
Maybe 4 4.2%

No 13 13.5%
Prefer not to answer 1 1%

to the triple sheet S. The vertex set Vg consists of all the
unique entries in R, i.e., Vg = {EIl, E2, E3, Al,03, Fe50s,
Ce0-, 1, 5, 15.94, 8.94, 92.32}. The set of vertex types Tk
consists of the column headers of R, ie., Tp = {Exp.
ID, Material, Sorbent Dosage (g/L), Initial
P Conc. (mg/L), Avg. % P Removed}. The vertex-
type labeling function 7 maps each entry in R to its
corresponding column header, e.g., 7(El) = Exp. ID
and 7(AloO3) = Material. The predicate set Pg con-
sists of all the entries from the Predicate column of S,
ie, P = {USED, USED_IN_DOSAGE, STARTED_AT,
RESULTED_IN, AFFECTED}. The set of triples Eg consists
of a single triple (s,p,0) of each triple type (st,p,ot) in
S for each data object d in R, where s and o are the
entries from d in the columns st and ot. For instance,
(E1,USED,Al,03) € Eg, representing that the experiment
E1I used the material Al;Os3.

3) The Data Preprocessing: Following the data-
preprocessing steps of Section IV-A3, we verified that
the relation sheet R and the triple sheet S of Section
V-C1 were compatible. That is, the triple types in S used
vertex-type headers from R. We also used data imputation to
fill in missing values, flagging the imputed values for expert
revision, see Section VI-A for the details.

4) The Construction Process: We implemented the con-
struction process of Section IV-A4 using the tools mentioned
in Section V-A. Using the relation sheet R and the triple sheet
S of Section V-C1 as inputs, the process generated the KG
Gg = (Vg,Tg,TE, Pr, Eg) described in Section V-C2.

D. Constructing a KG from STEPS Survey Data

We now discuss our experience of constructing a KG from
the survey data in our STEPS use case. Those data come from
Data Set 2, see Section V-B2 for the details.

1) The Input Data: To align with the required input format
specified in Section IV-B1, we used the set of survey sheets
S provided by Data Set 2, where each sheet details a single
survey question and its responses. Table III shows a sample
survey sheet for the question stated in the first row. The sub-
sequent rows list the participant responses, e.g., “Yes,” along
with the number of participants who selected the response and
the percentage out of the total number of responses.

2) The Output KG: The KG Gg = (VS7T57T5,P5,E5)
produced by the construction process of Section IV-B4 con-
tains the data from the set of survey sheets S, along with
keywords extracted during the preprocessing of Section V-D3.
The vertex set Vg consists of all the unique questions and re-
sponses from &S, and all the unique keywords, i.e., Vs = {“Do



TABLE IV
FRAGMENT OF THE SHARED-LANGUAGE SHEET FROM DATA SET 3 (SEE
SECTION V-B3) USED AS INPUT TO THE DATA PREPROCESSING OF
SECTION IV-C3. EACH ROW DETAILS A SINGLE TERM, INCLUDING ITS
NAME, MEANING, AND SYNONYMS.

Term Meaning Synonyms
Phosphorus Managing phosphorus flux in ecosystems, P Management,
management  focusing on its movement and removal to P Removal
maintain environmental balance.
Alumina Chemical compound aluminum oxide that ~ Al2Os3,
is widely used as an adsorbent, as a cata-  Activated
lyst, and in various industrial applications  alumina

due to its hardness and high melting point.

. management?”, Yes, Maybe, No, Prefer not to answer,
work, research, phosphorus management}. The vertex-types
set Ts = {Question, Response, Keyword}. The vertex-
type labeling function 7¢ maps each question, response, and
keyword to its corresponding type in Ts, e.g., 7s(Yes)
Response and Tg(research) = Keyword. The predicate
set Ps = {HAS_RESPONSE, HAS_KEYWORD}. The set of
triples Fg consists of a single triple (¢, HAS_RESPONSE, 1)
between each question ¢ and each of its responses r, and a
single triple (¢, HAS_KEYWORD, k) between each question ¢
and each of its keywords k. For instance, (“Do ... manage-
ment?”, HAS_RESPONSE, Yes) € Eg, representing that the
question “Do ... management?” has the response Yes.

3) The Data Preprocessing: We implemented the data-
preprocessing steps of Section IV-B3 using the tools men-
tioned in Section V-A. Using the set S of survey sheets of
Section V-D1 as input, the preprocessing generated the set
S’ of preprocessed sheets. For example, the question “Do ...
management?” and keywords work, research, and phosphorus
management were extracted from the sheet of Table III.

4) The Construction Process: We implemented the con-
struction process of Section IV-B4 using the tools mentioned
in Section V-A. Using the set S’ of preprocessed survey
sheets of Section V-D3 as input, the process generated the
KG Gs = (Vs,Ts,7s, Ps, Eg) described in Section V-D2.

E. Constructing a KG from STEPS Shared-Language Data

We now discuss our experience of constructing a KG from
the shared-language data in our use case. Those data come
from Data Set 3, see Section V-B3 for the details.

1) The Input Data: To align with the input format specified
in Section IV-C1, we used the shared-language sheet L pro-
vided by Data Set 3. Table IV shows a fragment of L, which
contains terms, meanings, and synonyms related to phospho-
rus sustainability. Each row details a single term, giving the
term name, meaning, and synonyms. For example, the first
row of Table IV specifies the term phosphorus management,
which means “managing phosphorus flux in ecosystems...”
and has synonyms P management and P removal.

2) The Output KG: The KG G}, = (VL,TL,TL,PL,EL)
generated by the construction process of Section IV-C4 con-
tains the data extracted from the shared-language sheet L.
The vertex set Vi, consists of all the terms and synonyms
in L, i.e., Vi, = {Phosphorus management, P management,
P removal, Alumina, Al;O3, Activated alumina}. The vertex-
types set T;, = {Term}. The vertex-type labeling function 77,
maps each vertex in V7, to the type Term, e.g., T(Alumina) =
Term. The predicate set P, = {HAS_SYNONYM}. The set of
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triples Ey, consists of a single triple (¢, HAS_SYNONYM, s)
between each term ¢ from the Term column of L and each of
its synonyms s from the Syronyms column of L. For instance,
(Alumina, HAS_SYNONYM, Al,O3) € Ep, representing that
the term Alumina has the synonym Al Os.

3) The Data Preprocessing: We implemented the data-
preprocessing steps of Section IV-C3 using the tools men-
tioned in Section V-A. Using the shared-language sheet L
of Section V-El and the threshold ¢ = 80% as inputs,
the preprocessing generated the preprocessed shared-language
sheet L’. The weights a = 0.2, 8 = 0.3, and v = 0.5 were
used to compute the similarity s of Eq. 6.° For example, the
synonym aluminum oxide was extracted from the meaning of
the term alumina of the shared-language sheet of Table IV.

4) The Construction Process: We implemented the con-
struction process of Section IV-C4 using the tools mentioned
in Section V-A. Using the preprocessed shared-language sheet
L’ of Section V-E3 as input, the process generated the KG
Grp = (Vp,TL, 7L, Pr, Er) described in Section V-E2.

F. Integrating Multiple KGs Using the Shared-Language KG

For our use case, it would be helpful to STEPS scientists if
the experimental and survey KGs G and Gg were integrated
into a single KG K that could enable them to investigate
connections between their previously disparate data.

We implemented the integration process of Section IV-D
using the tools mentioned in Section V-A. Using the set G =
{GEg,Gs} of KGs and the shared-language KG G, as inputs,
the process generated the integrated KG K.

VI. HUMANS-IN-THE-LOOP IN THE WORKFLOW

We now discuss the role of domain scientists as humans-
in-the-loop in INTEGRATE-KG. Their involvement can be
beneficial before, during, and after knowledge graph (KG)
construction and integration to ensure that the resulting KG
will be both accurate and useful for their specific needs.

A. Constructing a KG from Experimental Data

Domain scientists can assist in KG-construction from ex-
perimental data by determining the relationships between
data-sheet entries, which form the triple sheet, and by han-
dling missing data. To build the triple sheet, we recommend
following the data-preprocessing steps outlined in [2] with
humans-in-the-loop. To handle missing data, domain scientists
can intervene after KG construction. During construction,
missing data are flagged, so the scientists can review the
flagged vertices in the KG and submit revisions at any point.

B. Constructing a KG from Survey Data

Domain scientists can assist in KG-construction from sur-
vey data by refining the keywords that are automatically ex-
tracted from the survey questions. To do this, we recommend
providing the survey questions and keywords to domain sci-
entists and allowing them to submit revisions, e.g., additions,
modifications, or deletions, before KG construction. This
ensures the accuracy of the final set of keywords, preventing
any spurious keywords from making it into the resulting
KG. In our use case, domain scientists added the keyword
phosphorus removal for the survey question presented in
Table III because phosphorus management (the focus of the
question) can lead to phosphorus removal.

5The weights were chosen based on performance during validation tests.
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C. Constructing a KG from Shared-Language Data

Domain scientists can assist in KG-construction from
shared-language data by refining the synonyms that are au-
tomatically extracted from the term meanings. To do this, we
recommend following the same strategy used in Section VI-B.
They can also assist in tuning the similarity threshold o used
to filter the synonyms. Their assistance ensures that the final
set of synonyms used when constructing the KG aligns with
the expectations and understanding of the domain scientists. In
our use case, domain scientists added the synonym sapphire
for the term alumina originating from the shared-language
data of Table IV because sapphire is the single crystalline
form of alumina.

D. Refining the Integrated KG

After integrating the disparate data sets into a single,
unified KG, domain scientists can continue to enrich the
resulting KG. In their review and use of the KG, they can
submit additional relationships between entities across the
data sets, providing richer connections that can be used in
their further data analysis and exploration. For instance, in
our STEPS-Center KG K (see Section V), domain scientists
added the relationship MAY_FACILITATE between the 92.32
vertex of type Avg. % P Removed originating from the
experimental data of Table I and the phosphorus management
vertex of type KEYWORD originating from the survey data of
Table III. This relationship bridges experimental findings with
stakeholder priorities reported in the survey responses.

E. Using the Integrated KG

Domain scientists can leverage the integrated KG to explore
queries across their heterogeneous data. In our use case,
STEPS scientists are now able to query connections between
material performance, which was originally reported in their
experimental data, and stakeholder feedback, which was origi-
nally reported in their survey data. With the continuing ability
to refine the KG, it can become a dynamic, interdisciplinary
tool for data exploration, as opposed to a static data repository.
Data analytics over such a tool can yield actionable insights
and informed decision-making across domains.

VII. CONCLUSION

In this paper, we presented the INTEGRATE-KG workflow
for integrating heterogeneous data from multiple sources into
a single unified knowledge graph (KG) that can open new
avenues for data analytics. The workflow aims to address
the challenge of automating integration into unified KGs of
diverse data that potentially use different terminology, with the
help of the available shared languages to resolve terminology
clashes. While domain-agnostic, INTEGRATE-KG is also
domain aware, due to the opportunities available for the
involvement of humans-in-the-loop in the process. A key
feature of INTEGRATE-KG is in its use of shared languages
to automate semantics-level terminology alignment across the
individual data contributions after they have been submitted
for integration. In addition, INTEGRATE-KG includes a mod-
ule for automatically enriching the shared languages, with
opportunities for domain experts to provide corrections and
feedback. We introduced the workflow, reported on our expe-
riences with applying it to experimental, survey, and shared-
language data in the STEPS Center focusing on phosphorus
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sustainability, and provided suggestions for involving domain
scientists in INTEGRATE-KG as humans-in-the-loop. Future
work includes adapting the presentation of analytical results
on the KGs generated by INTEGRATE-KG, such that the
terminology used in the presentation would be tailored to
audiences across different disciplines.
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