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I commend the authors for presenting a groundbreaking
work that transcends traditional data-splitting by introduc-
ing the concept of data fission and its application in selec-
tive inference. They have shown that data fission can be effec-
tively achieved through carefully chosen external randomiza-
tion, depending on the underlying distributional assumptions.
This novel idea holds great promise for advancing research
into innovative, statistically sound, and computationally efficient
data-driven strategies for selective inference.

In my comments, I will outline several potential pathways
for future research on testing Gaussian means against two-sided
alternatives in line with this article.

First, I will build upon the work of Sarkar and Tang (2022)
by adapting their selective inference framework using knock-
offs for testing regression coefficients in a fixed-design model,
applying similar principles to testing Gaussian means through
data fission. Additionally, I will propose a new research direction
focused on testing or interval estimation of Gaussian means
within a selective inference framework, incorporating recent
developments from Sarkar and Zhang (in press).

Second, for testing Gaussian means with unknown variances
in a selective inference framework, I will present a method
for fissioning the two-sided t-test or the corresponding β-test
statistics.

Let X ∼ Nd(μ,�), where μ = (μ1, . . . ,μd) is unknown
and � is a known pd matrix. For any � = diag {δi}, for which
�−1−� is positive definite, let us decomposeX as follows using
an independently drawn Z ∼ Nd(0, Id):

f (X) = X + (�−1 − �)−1(� − ���)
1
2Z

g(X) = X − �−1(� − ���)
1
2Z,

Then, f (X) and g(X) are jointly distributed as Gaussian with

E(f (X)) = E(g(X)) = μ,
cov(f (X)) = � + (�−1 − �)−1(� − ���)

(�−1 − �)−1

= � + ��(�−1 − �)−1
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= [�(�−1 − �) + ��](�−1 − �)−1

= (�−1 − �)−1

cov(g(X)) = � + �−1(� − ���)�−1

= � + �−1 − � = �−1

cov(f (X), g(X)) = � − (�−1 − �)−1(� − ���)�−1

= � − ���−1 = O,

The decomposition discussed here extends one of the Gaus-
sian examples given in the paper under discussion, but it now
ensures that g(X) exhibits internal independence. This feature
is crucial as it allows for the implementation of theoretically
valid false discovery rate (FDR) controlled multiple testing, as
outlined in Sarkar and Tang (2022), and enables false coverage
rate (FCR) controlled interval estimation for the μi’s (as in the
paper under discussion) after their selection using f (X).

With the introduction of a theoretically valid FDRcontrolling
method, such as the dependence-adjusted Benjamini-Hochberg
(DBH) procedure mentioned in Fithian and Lei (2022), one
can apply this approach during the selection phase using f (X).
Alternatively, one could reverse the roles of f (X) and g(X), using
f (X) to test hypotheses while ensuring FDR control after their
selection using g(X). This strategy may provide a more nuanced
exploitation of the underlying correlation structure, potentially
increasing efficiency in the selective inference framework.

However, it is important to note that the DBH procedure
involves a complex algorithm that produces a calibrated thresh-
old for each hypothesis, which may not be straightforward for
users compared to the original Benjamini-Hochberg method.
To address this, the recently introduced Shifted Benjamini-
Hochberg (SBH) method, as detailed in Sarkar and Zhang (in
press), offers a simpler alternative. The SBHmethod (see below)
leverages partial information from the correlation matrix, such
as multiple correlations or eigenvalues, trading off some sta-
tistical power for the sake of maintaining the user-friendly
nature of the original BH procedure. This method could lead to
more computationally efficient strategies for selective inference
concerning Gaussian means when the correlation structure is
known.
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Shifted BH Method. Given X = (X1, . . . ,Xd)
′ ∼ Nd(μ,�),

where � is a known correlation matrix, consider testing Hi :
μi = 0 against μi �= 0 simultaneously for i = 1, . . . , d. Let
τi = 1−R2i , where R

2
i is the squared multiple correlation between

Xi and X−i, or τi = τ , for some τ ∈ (0, η), where η is the
minimum eigen value of �. With � = 1 − �̄ denoting the cdf of
χ2
1 distribution, define P̃i = �̄

(
X2
i /τi

)
, for i = 1, . . . , d. Sort the

P̃i’s as P̃(1) ≤ · · · ≤ P̃(d), and find R = max{i : P̃(i) ≤ iα1}, where∑d
i=1 �̄{τi�̄−1(α1)} = α. Reject Hi for all i such that P̃i ≤ P̃(R).
Now, suppose Y = (Y1, . . . ,Yd)

′ ∼
Nd((μ1, . . . ,μd), diag{σ 2

i }), where σ 2
i is unknown and

estimated unbiasedly using Vi ∼ σ 2
i χ2

n , which is independent
of Yi, for each i = 1, . . . , d. Let Xi = Y2

i /(Y
2
i + Vi), one-

to-one transformation of the usual t2 test statistic, be the test
statistic that is used to marginally test μi = 0 against μi �= 0.
The following decomposition of each Xi represents fissioned
versions of X and can provide selective inference frameworks
for the μi’s:

Draw Z1, . . . ,Zd independently from Beta ((d − 1)/2,
(n − d + 1)/2) distribution, for any fixed 1 < d < n+1. Define
f (Xi) = Zi + (1 − Zi)Xi and g(Xi) = Xi/[Zi + (1 − Zi)Xi].
The f (Xi) and g(Xi) are independent, conditional on
(J1, . . . , Jd), where Ji ∼ Poisson(μ2

i /2σ
2
i ). Moreover,

f (Xi) ∼ Beta ((d + 2Ji)/2, (n − d + 1)/2) and g(Xi) ∼
Beta ((1 + 2Ji)/2, (d − 1)/2). This can be checked by noting
that

f (Xi) = Y2
i + ViZi

Y2
i + ViZi + Vi(1 − Zi)

and g(Xi) = Y2
i

Y2
i + ViZi

,

with Y2
i , ViZi and Vi(1 − Zi) being independently distributed

as χ2
1+2Ji , χ2

d−1, and χ2
n−d+1, respectively, conditionally given

Ji. Larger (or smaller) Zi indicates that f (Xi) is more (or less)
informative.

Simultaneous inference for theμi’s, in terms of testingμi = 0
(i.e., Ji = 0) against μi �= 0 (i.e., Ji �= 0), or in terms of interval
estimation, can be carried out in a selective inference framework
with f (X) considered for selection and g(X) for inference.
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