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Abstract. We consider an area-minimizing integral current of dimension m and codimen-
sion at least 2 and fix an arbitrary interior singular point q where at least one tangent cone
is flat. For any vanishing sequence of scales around q along which the rescaled currents
converge to a flat cone, we define a suitable “singularity degree" of the rescalings, which
is a real number bigger than or equal to 1. We show that this number is independent of
the chosen sequence and we prove several interesting properties linked to its value. Our
study prepares the ground for two companion works, where we show that the singular set is
(m— 2)-rectifiable and the tangent cone is unique at 72 -a.e. point.
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1. INTRODUCTION

Suppose that T is an m-dimensional integral current in a complete smooth Riemannian
manifold Z. We assume that 7 is area-minimizing in some (relatively) open Q c Z, i.e.

M(T +0S) = M(T)
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for any (m + 1)-dimensional integral current S supported in Q. A point p € spt(7T) is called
an interior regular point if there is a ball B, (p) in which T is, up to multiplicity, an embed-
ded submanifold of £ without boundary in B, (p). Its complement in spt(7T) \ spt(d7) is
called the interior singular set and from now on will be denoted by Sing(T).

Determining the size and structure of Sing(7) is a problem that has attracted a lot of
interest for several decades. The answer depends sensibly on the codimension of T in Z.
If the codimension is one, the works of De Giorgi, Fleming, Almgren, Simons, and Federer
in the sixties and early seventies show that the Hausdorff dimension of Sing(T) is at most
m—7, cf. [20]. Moreover, the bound is optimal in view of the famous Simons’ cone, cf. [3,4].
The monograph of Almgren [5] showed in the early eighties that when the codimension is
higher than one, the Hausdorff dimension of Sing(T) is at most m—2, and Almgren’s theory
has since been simplified and made more transparent in the series of works [11-15]. Alm-
gren’s bound is also sharp, given that every holomorphic subvariety of a Kdhler manifold
is an area-minimizing integral current.

In the nineties Simon proved (see [26]) that in codimension one, Sing(7T) is (m —7)-
rectifiable. Much more recently, Naber and Valtorta in [27] showed that it has locally finite
A"~ "-measure. In fact [27] exploits the groundbreaking ideas of the earlier work [25] to
recover at the same time the latter information and the rectifiability, using independent
techniques to Simon. The work of Simon, however, implies also the uniqueness of the
tangent cone at #" ’-a.e. point in spt(T) \'spt(dT). The aim of this and its two com-
panion works [9, 10] is to prove the following counterpart of Simon’s theorem in higher
codimension.

Theorem 1.1. Let T be an m-dimensional area-minimizing current in a C>*° complete
Riemannian manifold of dimension m+ n = m+ 2, with xo > 0. Then Sing(T) is (m —2)-
rectifiable and there is a unique tangent cone at 7™ 2-a.e. q € Sing(T).

Theorem 1.1 can in fact be improved in the case of m = 2, in which it is known that
the singularities are isolated, cf. [6] and [16-18]. Note also that the uniqueness of tangent
cones in the latter case is known since the work of White in the eighties, cf. [31]. In higher
dimensions the regularity of Sing(T) given by Theorem 1.1 is optimal, as the recent work
[32] shows that Sing(T) can be a fractal with arbitrary dimension x < m —2. It is how-
ever possible to improve the rectifiability statement if one takes a less stringent definition
of Sing(T), because the examples of [32] are locally immersed submanifolds. Moreover,
our techniques are far from showing that Sing(T) has locally finite .#™2-measure, which
could be expected, and the general uniqueness of tangent cones remains widely open.

1.1. Flatsingularities. The main issue is to establish the (m —2)-rectifiability of those sin-
gular points where at least one tangent cone is supported in an m-dimensional plane,
since the remaining portion of the singular set is, by [27], (m — 2)-rectifiable. However,
we independently establish the (m — 2)-rectifiability of the singular points with non-flat
tangent cones as a consequence of our work [10]. From now on if a tangent cone is sup-
ported in an m-dimensional plane we will call it flat and a p € Sing(T) with at least one
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flat tangent cone will be called a flat singular point. We know from the constancy theo-
rem (cf. [20]) that a flat tangent cone at a point ¢ must be an oriented m-dimensional
plane counted with a positive integer multiplicity Q. The latter is indeed the density of
the current at g and Allard’s celebrated regularity theorem [2] guarantees that if Q =1 the
pointis regular. We emphasize that the striking difference in complexity between the codi-
mension one case and the case of higher codimension hinges on the fact that, in higher
codimension, flat singular points might exist, while they cannot in codimension one. The
latter phenomenon is due to the local characterization of integral hypercurrents as super-
positions of boundaries of Caccioppoli sets (cf. [28, Theorem 27.6, Corollary 27.8]), which
is very specific to the codimension one setting. The typical examples of area minimizers
with flat singular points in higher codimension are branching singularities of holomor-
phic subvarieties of Kdhler manifolds. Note moreover that the uniqueness of the tangent
cone is still unknown at flat singular points, even under the stronger assumption that all
tangent cones at the considered point are flat.

In this paper we will be concerned with the definition and properties of a suitable notion
of “singularity degree” of T at flat singular points. This is a real parameter which will be
then used to suitably subdivide the set of flat singular points of T'.

Example 1.2. We illustrate the intuition behind the singularity degree in the example of a
holomorphic curve in C?, defined by

A:={w?=2":(z,w) e CH.
In this example we require that:

e p>(Q =2 are coprime integers;
e k(0) #0.

Recall that, by Federer’s classical theorem, A (with the standard orientation given by the
complex structure) induces a 2-dimensional integral area-minimizing current 7 = [A] in
R* = C2. Since p is not a multiple of Q and the latter is strictly larger than 1, the origin is an
interior singular point of T. Moreover, since p and Q are coprime and p is larger than Q,
the (unique) tangent cone to T at 0 is given by Q[{w = 0}]. In this particular example our
notion of singularity degree of T at the flat singular point 0 gives the number p/Q.

1.2. Singularity degree. A priori we have very little knowledge of the structure of the sin-
gularities at a general flat singular point of an area-minimizing current of arbitrary dimen-
sion and codimension. Thus, our definition of singularity degree will necessarily be some-
what involved. In particular, given a flat singular point g, we will first identify a suitable
analytical definition of singularity degree for a given infinitesimal sequence {r;} of blow-
up scales along which the rescaled currents Ty ;, (cf. Section 2 for the definition) converge
to a flat tangent cone. These numbers, which might depend on {ry}, will be called singu-
lar frequency values, cf. Definition 2.6. The singularity degree of T at a flat singular point
x will then be defined as the infimum of the singular frequency values at x, cf. Definition
2.8. We will prove a series of interesting properties related to the singularity degree, among
which we select the following three:
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(i) we will show that the singularity degree is necessarily at least 1, due to the Hardt-
Simon inequality and we will show that the singular frequency values all coincide
with the singularity degree, i.e. they are the same number, independent of the
subsequence, cf. Theorem 2.9;

(ii) for each infinitesimal blow-up scale we will, up to extraction of a subsequence,
identify a suitable rescaled limit, which will be an homogeneous multivalued func-
tion and whose degree of homogeneity is indeed the singularity degree, cf. Theo-
rem 2.10();

(iii) when the singularity degree is strictly larger than 1 we will show that the (flat) tan-
gent cone at x is unique and the current decays to it polynomially fast, cf. Theorem
2.10(iv).

In the work [9] we will then show that the set of flat singular points where the singularity
degree is strictly larger than 1 is (m — 2)-rectifiable while in [10] we will complete the proof
by showing that the set of flat singular points where the singularity degree is 1 is 4™ 2
negligible. Concerning the uniqueness of the tangent cone, in this paper we show that it
is unique at flat singular points where the singularity degree is strictly larger than 1, while
[10] will complete the proof by showing .2 2-a.e. uniqueness.

The three properties (i)-(ii)- (iii) will be fundamental in establishing the proof of The-
orem 1.1, however they are not the only important points from this paper which will be
heavily used in [9, 10], for instance the BV estimate of Proposition 6.2 is crucial for [9].

1.3. Comparison with the work of Krummel & Wickramasekera. At the same time this
and the accompanying works [9, 10] were being finished, Krummel & Wickramasekera in-
dependently were completing a program also establishing Theorem 1.1 (see [22-24]). Here
we take a moment to discuss the differences and similarities between the two programs,
each point addressing a key aspect of each of the three papers in each of the programs.
One underlying theme in both programs is to relate structural properties of the singular
set to the rate of decay of the current at certain points to its tangent cone.

 In both approaches a monotonicity formula plays an important role in the first
step. In our approach, Almgren’s monotonicity formula enters to associate to flat
singular points (namely, singular points at which at least one tangent cone is sup-
ported on a plane) a real number, referred to as the singularity degree, which takes
values at least 1. This number is morally the infinitesimal homogeneity of the cur-
rent relative to the average of its “sheets” (the role of which is played by center
manifolds which are possibly varying with the scale). A byproduct is that, when
the singularity degree is strictly larger than 1, the rate of decay to the tangent plane
is at least a power law. This is accomplished in the present paper. In their ap-
proach, Krummel & Wickramasekera define a “planar frequency function” at the
level of the current (see [22]), whose definition does not require the introduction
of a center manifold, and show that it satisfies a suitable approximate monotonic-
ity whenever the current is decaying to a plane on some interval of radii about a
given point. Using this, they prove a certain decomposition theorem holds for the
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singular set, namely that locally about points of density Q (for given Q € Z5,), the
singular set splits into two disjoint sets, namely a relatively closed set (denoted in
[22] by 98) where the current is decaying with a power law at all scales to a tan-
gent plane with a fixed lower bound on the decay rate, and a set which satisfies a
uniform weak approximation property. The latter set could still contain flat sin-
gular points. In our approach the analogous set to 28 would be the intersection of
$0,>1+6(T) with some appropriately small ball and for some appropriate choice of
the small threshold  (we refer the reader to [9] for the precise definition). Strictly
speaking the two sets do not coincide because the set % in [22] has some uniform
control in the prefactor of the power-lay decay to the unique flat tangent. This uni-
form control could possibly be achieved by making some of our arguments more
quantitative.

 In both cases, one exploits the power law decay rate at each “good” flat singular
point (i.e. points where the singularity degree is strictly larger than 1 in our setting,
whilst for Krummel & Wickramasekera it is the subset 98 described above), in order
to prove (m — 2)-rectifiability for this subset. For our program, this is achieved in
[9], whilst for Krummel & Wickramasekera this is achieved in forthcoming work
[24]. However, in Krummel & Wickramasekera’s work, the construction of a center
manifold is only needed to study flat singular points where not only is the tangent
plane unique, but additionally the current is decaying at least quadratically to this
tangent plane. In such a setting, the center manifold construction is much simpler
(one does not need to deal with intervals of flattening or changing center manifolds
as described in Section 2, for example). The reason for this is that they are able
to study the set of flat singular points in the set 28 described above at which the
decay rate to the tangent plane is a power law with order strictly less than 2 via
their planar frequency function. See Section 2.6 for a more in-depth discussion of
this matter.

 In both approaches one must also deal with “slowly decaying” flat singular points;
in our works this is when the decay value is exactly 1 and for Krummel & Wick-
ramasekera these points are contained in the second set of their decomposition
theorem described above. This part is highly non-trivial, and in both programs it is
shown that the relevant set is /#"*~2-null. For us, this is addressed in [10] and for
Krummel & Wickramasekera this is handled in [23].

It should be noted that aside from the definition of our singularity degree a priori requiring
center manifolds (which are a posteriori not necessary in the slow decay case), the order
of the last two points above is irrelevant for concluding the program. One could conduct
them in either order, and indeed in our case the last point above is chronologically the last
step whilst in Krummel & Wickramasekera’s program it is the second step.

One difference between the two sets of works is that our results are all in the general
setting of a sufficiently smooth ambient Riemannian manifold, whilst the statements of
[22-24] are in the Euclidean setting. However, we believe that this is also just a technical
matter and not a substantial difference.
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Two other differences have already been pointed out above:

(i) Whilst Krummel & Wickramasekera show that the set of singular points without a
power law decay rate of some fixed small order to a unique tangent plane is 7" 2-
null, we show that the set of points with singularity degree exactly equal to 1 is
A™~2_null. The former corresponds to points where our singularity degree is be-
tween 1 and 1 + 6, for a sufficiently small choice of 6 > 0.

(ii) Whilst Krummel & Wickramasekera get a uniform decay estimate for their set %,
we do not pursue this for the corresponding set §¢,>1+5(T) in our approach and we
instead subdivide it in a countable unions of sets for which the rate and the starting
scale for the decay is uniform. In [9] these sets are denoted by G ; for those points
with subquadratic decay, and a single set S for the points with superquadratic de-
cay (here the starting decay scale is shown to be locally uniform).

The combination of (i) and (ii) allow Krummel & Wickramasekera to achieve the additional
conclusion that in fact the set of flat singular points in a sufficiently small neighborhood
U of a point of density Q can be decomposed into the union of finitely many sets, say
F,U... Fy, each of which has locally finite /™2 measure. In fact they show that 2 enjoys
the latter structure while the flat singularities in its complement form an ™ 2-null set.
We caution the reader that this decomposition does not yield the finiteness of the measure
of the whole set of flat singular points in U because the sets F; are not apriori closed.

This raises the natural question of whether our approach is also amenable to yield simi-
lar conclusions. We in fact do not believe that (i) is a substantial obstacle for our approach
and we think that it is possible to achieve an analogous statement (see [10] for a more
detailed explanation). Concerning point (ii) we also believe that a suitable refinement
of our argument can achieve a uniform decay estimate directly for §¢ >145(T) in a suffi-
ciently small neighborhood of a point of density Q. These considerations are obviously
influenced by the insight learned from the works of Krummel & Wickramasekera.

Provided one can prove the analogous statements to (i) and (ii) in our case (or using the
estimates of Krummel and Wickramasekera in combination with our techniques, when
the ambient is the Euclidean space), our approach in [9] would yield the conclusion that
$0,>1+5(T) can be decomposed into two sets with locally finite A2 measure and that
the flat singular points in its complement form an "™ 2-null set. In fact, since in our
paper we use a modification of the Naber-Valtorta approach, these two sets would have
locally finite (m — 2)-dimensional Minkowski content. In order to tackle the question of
whether §g >145(T) itself has locally finite Minkowski content, one would need instead to
suitably modify the arguments in [9] in order to tackle low frequency and high frequency
points at the same time, a task which is certainly more challenging.

Finally, Krummel & Wickramasekera additionally establish the existence of a unique
non-zero (multi-valued) Dirichlet-minimizing tangent function at #™ 2-a.e. flat singu-
lar point of the current. This is inherently different from our approach in [9], given that
one major point of the Naber-Valtorta technique is being able to tackle the rectifiability
question without addressing the uniqueness of the tangent functions.
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2. MAIN STATEMENTS

In this section we define the singular fequency values and the singularity degree and
give the main statements. We follow heavily the notation and terminology of the papers
[14,15] and from now on we will always make the following assumption.

Assumption 2.1. T is an m-dimensional integral current in ZNQ with dTL.Q = 0, where Q
is an open set of R”+" = R"*"*! and ¥ is an (m + 71)-dimensional embedded submanifold
of class C**0 with x( > 0. T is area-minimizing in XN Q and 7 = 2. 0 € Q is a flat singular
point of T'and Q € N\ {0, 1} is the density of T at 0.

We will henceforth let C and Cy denote dimensional constants, depending only on m, n, Q.
The currents Ty, will denote the dilations (i4,r)4 T, where (4, (x) := x;r". Since our state-
ments are invariant under dilations, we can also assume that

Assumption 2.2. T and X satisfy Assumption 2.1 with Q = B; 7 and ZnB; 7 (p) is the
graph of a C>* function W), : T,ZN B, 7 (p) — T,Z* for every p € ZNB; /. Moreover
cX)= sup [[D¥pllcex <E,
PEZNB; /7

where £ is a small positive constant which will be specified later.

In particular the following uniform control on the second fundamental form Ay of Zn
B, /m holds:
A:=| Ay ||C0(zﬁB7m) < Coe(2) < Cpé.

Following [15, Section 2] we introduce appropriate disjoint intervals ]s;, ¢;] <]0,1], called
intervals of flattening, the union of which contains® those radii  such that the spherical
excess E(T,Bg \/ﬁr) (cf. [14, Definition 1.2] for the definition) falls below a positive fixed
threshold e%. Arguing as in [15, Section 2] for each rescaled current To,¢; and rescaled am-
bient manifold Z,;, we follow the algorithm detailed in [14] to produce a center manifold
( and an appropriate multivalued map N : 4 — «/o(R™*"). The latter takes values in the
normal bundle of .4 and gives an efficient approximation of the current Ty ; ;in B3\ By, /).
For technical reasons, however, we will use a slightly different definition for the parameter
my in [14, Assumption 1.3]. Our my, which we denote by my ; to underline the depen-
dence on j, is defined as

. =2 2-20
(2.1) my, .—max{E(TO,[j,B(;m),s tj 2

where 6, > 0 is the parameter in [14, Assumption 1.8]. It can be readily checked that this
change is of no consequence for the conclusions of [14, 15], the relevant point is that, be-
cause of simple scaling considerations, c(Zo,¢;) Smy,j, therefore all the estimates claimed

Ut is not necessarily true that the inequality E(T,Bg, ;) < E% holds for all r €]s;, t;]. However the inequality
certainly holds at all r = ¢}, while for the remaining radii in the interval holds up to a suitably fixed constant
C, cf. [15].
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in [14, 15] are valid with our different choice of parameter my ;, provided we choose it to
fall below the same threshold €3 as in [15]. In light of this, we will henceforth make the
following assumption.

Assumption 2.3. T and X satisfy Assumption 2.2. The parameter £ is chosen small enough
so that mg < €3.

Before proceeding we record a fact proved in [15], which is however not explicitly stated
there.

Lemma 2.4. Suppose that T and Z are as in Assumption 2.3. If {j;} c N is the set of indices
such that tj, < sj,_1, then either the latter is finite (i.e. ilsj, tjl contains some open interval
10,p0), or

.. 2
(2.2) hmilnfE(To,rjins\/m) > €5,

For the sake of clarity, we prove this again here; see Section 2.5. Since we will repeatedly
use it throughout the rest of the paper, it is convenient to introduce the following termi-
nology.

Definition 2.5. Let T and Z be as in Assumption 2.1. A blow-up sequence of radii {ry} is a
vanishing sequence of positive real numbers such that Ty ;, converges to a flat tangent cone.

Of course a similar concept can be introduced by considering a different flat singular
point x instead of the origin. In that case we will say that the sequence is a blow-up se-
quence at the flat singular point x.

Note that, having fixed a blow-up sequence {ry}, for every k sufficiently large there is a
unique j(k) such that r¢ €]s;(x), £jk)] and we use the following shorthand notations:

e Ti and X for the rescaled currents To,t;40 -Beym and ambient manifolds 20,140

e M} and N for the corresponding center manifolds and normal approximations of
Ty.

2.1. Compactness procedure. Let T satisfy Assumption 2.3 and let % € ]23;;(’2 ") %] be
the scale at which the reverse Sobolev inequality [15, Corollary 5.3] holds for r = % Then

]. We rescale further the currents Ty, the ambient manifolds X

= 25 r 2r
let 7y = = e | L, =L

k= 350 ] Lk tjtk)
and the center manifolds to

T = (10,7 )4 Tk = ((lO,fktj(k])ﬁT) L Beym Sk =107 (Zk), M= 1o, (M) .

Tk
Define
Ni: by — do®R™™),  Ni(p) = %Nk(fkp)y
and let ,
U = Nl;:;ek, U : g > By — g R™,

where ey is the exponential map at py := Q’;—}EO) € M. defined on B; c 7} = Tpk./%zk and
h; = IINklle(%/z). The reverse Sobolev inequality of [15, Corollary 5.3] gives a uniform
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control on the W12 norm of uj on B3/, (0, 7;) (which denotes the unit disk of 74 centered
at 0 and with radius 3/2).

Then, following the proof of [15, Theorem 6.2], there exists a subsequence (not rela-
beled) a limiting m-plane 7y and a Dir-minimizing map u € W2 (Bs2(0, 70); AQ (né)) with
nou=0and |ul 2, =1, such that (after we apply a suitable rotation to map 7 onto 7)

(2.3) up — u strongly in Wllc;i NI

Recall that Almgren’s famous frequency function for Dir-minimizers u: Q c R — /o (R")
at a center point x € Q and scale r > 0 is defined by

2
rfBr(x) |Du|

J: 0B, (%) |ul?
We refer the reader to [11, Chapter 3] for the basic properties of the frequency function.
The monotonicity of the frequency function [11, Theorem 3.15] for Dir-minimizers yields
existence of the limit as r | 0. It is more convenient to work with a smoother version of
the frequency function, which has more robust convergence properties. Following [14]
we consider a Lipschitz cut-off function ¢ : [0,00) — [0, 1] which vanishes identically for ¢
sufficiently large, equals 1 for ¢ sufficiently small and is monotone nonincreasing. We then

introduce
Dﬂx,r):z/lDu()/)I%(@) dy,
lu(y))? ,(Iy—xl)
Hu( ) )::_ d )
X, T 7 ¢ . y
1) = Ruer)
Hu(x; r)

The same computations showing the monotonicity of Almgren’s frequency function for
Dir-minimizers apply to the latter smoothed variant (cf. for instance [14, Section 3]; note
that Almgren’s frequency function corresponds, formally, to the choice ¢ = 1|y ;). More-
over, it can be readily checked that all these smoothed frequency functions are constant
when the map is radially homogeneous, and this constant is the degree of homogeneity of
the map. It follows then from the arguments in [11, Section 3.3, Section 3.5] that the limit

Iy, (0) =lim I,,(x, 1)
rlo

is independent of the weight ¢, and I ,(0) = c(m, Q) > 0 whenever u(x) = Q[0]. For the
rest of the paper we will fix a convenient specific choice of ¢, given by

1 for0<t< %
(2.4) p() =4 2-2t fori<r<l
0 otherwise.

When x = 0, we will omit the dependency on x for I and related quantities, and will merely
write I, (r).
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Definition 2.6. Any map u as defined by the above compactness procedure is called a fine
blow-up limit along the sequence ry and the set

F(T,0) :={1,(0) : uisa fine blow-up along some ry | 0}

is the set of singular frequency values of T at 0.

Remark 2.7. In the rest of the notes we will often omit the adjective ‘singular”. The reason
for using the adjective “fine” is that later on we will also introduce a notion of coarse blow-
up, cf. Definition 3.1.

Definition 2.8. The singularity degree of T at the flat singular point 0 is defined as
I(T,0) :=infla: a € F(T,0)}.

A simple translation allows to extend all the definitions above to any flat interior singular
point x of T. We will therefore use I(T, x) and % (T, x) for the singularity degree and the
frequency values of T at such an x.

2.2. Main results. We are now in a position to state the main results of this article. Our
primary result here is the following.

Theorem 2.9. Assume that T satisfies Assumption 2.3. ThenI(T,0) =1 and & (T,0) = {I(T,0)},
i.e. there is one unique frequency value for T at 0 and it coincides with the singularity de-
gree.

However, our analysis delivers a number of additional pieces of information. We report
them here even though some statements will need notions which will be only introduced
in the next sections.

Theorem 2.10. Under the same assumptions of Theorem 2.9 the following holds:

(i) All fine blow-ups are radially homogeneous and their homogeneity degree is 1(T,0).
(ii) Ifsj, = 0 for some jo, thenlim, oIy, (r) =1(T,0) (see below for the definition of In; ).
(iii) If{s;} is infinite, then the functionsIy; converge uniformly toI(T,0) ifI(T,0) > 1, while,
when I(T,0) = 1, limg—ooIny, (%) =1(T,0) = 1 for every blow-up sequence ry (recall
that j(k) is such that ri €18k, Lji)1)-
(iv) IfI(T,0) > 1, then Ty, converge polynomially fast to a unique flat tangent coneasr | 0.
) IfI(T,0) > 265, then sj, = 0 for some jo.

(i) IfI(T,0) <2 - 0> then {s;} is infinite andinfjj—; > 0.

2.3. Rectifiability. Following Almgren (cf. also [33]), the set spt(T) \ spt(0T) can be strat-
ified through

y(k) (T) = {x € spt (T)\ spt 0T) : any tangent cone of T at x splits off } ,

no more than a k-dimensional subspace

where k=0,1,..., m. In particular

SO eV ... c ™ V(1) c #"(T) = spt(T) \ spt(AT).
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Almgren’s argument (which can be seen as a suitable generalization of Federer’s reduction
argument, cf. [21]) showed that

dim (%)) < k.

In their recent groundbreaking work [27], Naber and Valtorta further proved that . &) (1)
is k-rectifiable. Moreover, due to the classification of one-dimensional area-minimizing
cones (which are necessarily 1-dimensional lines with integer multiplicity), =D (T)\
F#"m=2)(T) = @. Finally, the set of flat singular points of T (from now on denoted by F(T))
is given by
F(T) = Sing(T) \ "™~ V(T) = Sing(T) \ "™ 2/(T).

Thus, proving the (m — 2)-rectifiability of Sing(T) is equivalent to proving the (m — 2)-
rectifiability of §(7). In our forthcoming works [9, 10] the singularity degree will be used
to further stratify §(7). The main result of [9] will be the following

Theorem 2.11. Let T be as in Theorem 1.1 Then the set {q € §(T) : (T, q) > 1} is (m - 2)-
rectifiable.

Clearly, in view of the above theorem and of Theorem 2.9, the remaining (challenging)
step to prove the rectifiability of Sing(T) is to show that the set {g € §(T) : I(T,0) = 1} is
(m —2)-rectifiable. In [10] we will then show

Theorem 2.12. Let T be as in Theorem 1.1. Then #™ 2({q € F(T) :I(T,q) =1}) = 0.

Combined with Theorem 2.10 Theorem 2.12 implies the uniqueness of the flat tangent
cone at A" 2-a.e. flat singular point. To conclude the proof of Theorem 1.1 in [10] we will
also show

Theorem 2.13. The tangent cone is unique at 7™ -a.e. p € "2 (T).

2.4. Frequency function. We end the section by introducing a pivotal object in our argu-
ments, the ¢-regularized frequency function of the normal approximation of T, cf. [15].
Recalling the function ¢ : [0,00] of (2.4), for a given center manifold .# with correspond-
ing .4 -normal approximation N : 4 — <fo(R™*"), the ¢-regularized frequency function
In(x,7r) of N at a center point x € .4 and scale r > 0 is defined as follows:

rDy(x,r)
In(x,r):= —HN(x, m
where
Dy (x,7) ::/ |DN|2¢(M) dy,
U r
and

Ivyd(y,x)|2|N|Z¢,(d(y,x)) dy
u aAyx r

Here d is the geodesic distance on the center manifold .4 and we simply write d(y) for
the geodesic distance d(0, y). We additionally let p denote the orthogonal projection on
A (and we recall that, by the estimates in [14], the points x of interest, which belong to
the support of T, are in a regular tubular neighborhood of .#). Since we will often take the

Hy(x, 1) =~
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above quantities to be centered at x = 0, we will omit the implicit dependency on x most
of the time.

A major starting point of our paper is the fact that the frequency function is bounded
away from infinity and 0 (independently of the choice of center manifold and correspond-
ing normal approximation). The rightmost inequality is the most important analytical
estimate of Almgren’s regularity theory, while the left has been established only recently
by the second author in [29]. More precisely, the following holds:

Theorem 2.14. Under the assumptions of Theorem 2.9,

(2.5) O<1nf inf Iy, (r)<sup sup Iy, (r) <oco.

re]t—f’a] re] 3]

2.5. Proof of Lemma 2.4. The argument is taken from [15, Proof of Theorem 5.1], where
the statement is shown in a step in the proof of the theorem. Observe that, by definition,
we have

E(To,r,Bg, /) > €3
for all r €]¢;,, sj,-1[. Pick a sequence r; €]}, sj,-1[ with the property that -+ — 1. Uptoex-

traction of a subsequence, not relabeled, we can assume that Tj, t, converges to a tangent
cone S to T at 0. Note that Ty ,, converge to the same cone. Moreover, by the area minimiz-

ing property, we have that || Tp , | i IC|l and || To'tji I X ICI. Since || C||(0B;) = 0 for every r,

it follows immediately that || To,,, |l Bg, /7 — ICIlL Bg 73 and || To,; I Bg /7 = ICIIL Bg 5.
These convergences can be easily seen to imply

. . 2
limE(To,q;,, B, ) = E(C, B, ) = i E(To,r;, Bg /) > €5

2.6. Comparison of this article with [22]. Let us compare in more detail the present ar-
ticle with its analogue [22] in the program implemented by Krummel & Wickramasekera
discussed in the introduction. In both [22] and this paper an almost monotone quantity
plays a pivotal role. Here, this is Almgren’s frequency function as defined in [14]. Instead in
[22] the authors introduce a new “planar frequency function”. Rather than capturing the
degree of singularity of the current at a flat singular point, the planar frequency function
identifies the order of contact of the current with the flat tangent cone. Let us consider
Example 1.2 for an intuition: our singularity degree there is the number p/Q, while the
planar frequency function at scale 0 (with respect to the tangent plane {w = 0}) coincides
with p/Q if the latter is smaller than the degree of the first nontrivial homogeneous poly-
nomial in the Taylor expansion of # at the origin. Otherwise, it coincides with the latter
degree.

In fact, given that §¢,>1(T) identifies the set of flat singular points at which there is a
unique tangent cone to which the current decays with a power law rate, the latter coincides
with those singular points where there is one plane for which the Krummel-Wickramasekera
planar frequency function converges to a number larger than 1, as the radius goes to 0.

As pointed out in the introduction, one significant difference of the approach in [22] is
that they avoid the requirement of introducing changing center manifolds at appropriate
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scales around those flat singular points where the decay to the cone is slow. As mentioned
in [22, 23], this in addition avoids the need for quite a few technical issues even to prove
Almgren’s original dimension bound. Indeed, here we a posteriori conclude that blowing
up relative to center manifolds is not necessary for points with singularity degree between
1 and 2 - 26, (see Corollary 4.3, [10, Proposition 2.2]), but nevertheless for us the use of
center manifolds is unavoidable to deduce this.

In the current work we instead establish a BV estimate on the frequency function (rela-
tive to varying center manifolds) which keeps the errors due to the change of center mani-
folds under control. In doing this, we capture the homogeneity of the first singular order in
the expansion of the current. This way, we may use the same frequency function (relative
to the center manifolds) in all of our arguments. We expect that, to conclude the recti-
fiability of those flat singular points which have a high order of contact with the tangent
plane, in their forthcoming work [24] Krummel & Wickramasekera will need to resort to
the frequency function with respect to the center manifold also, albeit only in the simpler
setting. Common to both approaches is that a suitable closeness of the current to a suit-
able reference plane is needed to get an almost monotonicity estimate for both frequency
functions.

The planar frequency function in [22] depends only on the current and the reference
plane, while the ones used here (and in the works [14, 15]) depend on the current, the
center manifold, and the normal approximation. Taking inspiration from [22], we believe
that it is possible to eliminate the dependence on the latter approximation. If we denote
by p the orthogonal projection on .4, we can substitute rDy(x, ) with the “curvilinear

excess”
d(p(z),x)
r

r / 72 —ﬂ’(p(zm%( )dIITII(Z)
By (x)

and the height Hy (x, r) with a suitable squared L2 distance of the current from .4

V.,d , X)|?
/ IZ—p(Z)|2| yd(p(2),x)| ,(d(p(z),x))
By, (x) d(p(z), x) r

The ratio of these two quantities differs from Iy (x, r) only by errors which can be bounded
with suitable powers of the planar excess, as follows from the estimates in [14, 15]. In
particular this implies the almost monotonicity of the “intrinsic ratio” through the almost
monotonicity of Iy(x, r). But in fact it is highly likely that appropriate variants of the com-
putations in [14, 15] prove directly the monotonicity of the “intrinsic ratio”.

This also suggests the possibility of introducing a general frequency function, where
 is replaced by any sufficiently regular surface with the same dimension as the current
T. In view of the Taylor expansion of the area functional (see e.g. [12]), it is tempting to
speculate that a suitable almost monotonicity will hold if one has a multi-valued map on
the normal bundle of .# which approximates the current with a sufficiently high degree of
accuracy and if one of the following two properties (or a suitable combination of the two)
holds:

allTl(z).
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(i) The mean curvature of .# vanishes, or it is asymptotically small as we approach
the central point x;

(ii) The average of the multi-valued approximation is asymptotically small as we ap-
proach the central point x.

3. THE HARDT-SIMON INEQUALITY AND COARSE BLOW-UPS

3.1. Coarse blow-ups. Consider a blow-up sequence {ry} at the flat singular point 0 and
let:

e To,r, be the corresponding rescaled currents;
e X r, be the corresponding rescaled manifolds.

Without loss of generality we can assume that Tj ,, converges to Q[mo] with 7y =R x {0}.
For ry := %, where [s;x), tjx)] is the interval of flattening containing ry, let M > 0 be
large enough such that B;  C4ys7, forany L € # 1 ® with Ln E;k (0, 7g) # @ (cf. [14] for the
definitions). Consider further a sequence of planes 7 with the property that 7; optimizes

the excess of Ty ;, in Bgys and observe that for k sufficiently large,
3.1 E(To,r, Capm (i), ) < CE(To 1, Bsm) =1 Ex — 0,

and define Ay := As,, - Clearly we must have n; — m. By applying a rotation which is
infinitesimally close to the identity we can map 7 to my. We then push forward the cur-
rent Tp . under this rotation so that we can assume 7 = 7, while, with a slight abuse of
notation, we keep using Ty », and Z , for the rotated objects.

If kp € N is large enough, we can ensure that

1
(3.2) Ey +A?C <min{£1,§} for every k = ko,

where ¢ is the threshold in [13, Theorem 2.4]. We can therefore let fi : B1(0,79) — /g (nOL)
be the strong Lipschitz approximation of [13, Theorem 2.4] for Ty ;, and define the rescaled
maps

= fx
3.3) fi:= PR
k
We will make the additional assumption that
(3.4) A2 <Cri=o0(Ep).

Note that this does not need to hold in general, but we will verify that it holds whenever
the sequence of blowup scales r; remain comparable to the stopping scales in their re-
spective intervals of flattening; see Proposition 4.1. It then follows from [13] that, up to
subsequences,

(i) fk converges strongly in L*n W, (B1 (0, 70)) to a Dir-minimizing map f : B (0, o) —
Ao(my),
(ii) f takes values in the orthogonal complement to 7y in TpZ,

(i) £(0) = QIo].
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The first two conclusions follow from [13, Theorem 2.4, Theorem 2.6], while the last con-
clusion is a consequence of the Hardt-Simon inequality [30, (1.7)] for Ty ;,, passed to the
graphical approximation fj (see [29, Lemma 5.14] for analogous reasoning for the nor-
mal approximation). Note that there is no guarantee that the blow-up is nontrivial: the
nontriviality of f is in fact equivalent (cf. [13]) to

E(Ty,.,C,, o)
3.5) liminf——% 227 5 25
k—o0 E;
for some p € (0,1) and some ¢.

Definition 3.1. A Dir-minimizing map f as above will be called a coarse blow-up (at0). Its
average free part is given by the map

(3.6) v(x):=Y [fi(x) —mo f(X].
i

We say that f is nontrivial if it does not vanish identically.

Obviously, if we focus our attention on some other flat singular point g, an obvious
modification of the above procedure defines a notion of coarse blow-up at g. Our main
claim for coarse blow-ups, which (as already pointed out) is a consequence of the Hardt-
Simon inequality, is the following.

Theorem 3.2. Let T be as in Assumption 2.3, f be a nontrivial coarse blow-up, and v be its
average-free part. Then I 70 =1 and, if v does not vanish identically, I1,,(0) = 1.

In this section we prove Theorem 3.2.

3.2. Closure under rescalings. Before coming to the proof of Theorem 3.2 we need the
following elementary observation, which verifies that the property of being a coarse blow-
up is closed under normalized L? limits.

Lemma 3.3. Let T be as in Assumption 2.3 and f be a nontrivial coarse blow-up. Let p jlo
be any vanishing sequence, let

D(j):= / IDfP?,
By,
and define the rescaled maps fj(x) = (p?‘mD(j))_l/zf(pjx). If fxo is the L? limit of any
subsequence of { fj} on By, then f., is (up to a nonzero multiplicative factor) also a nontrivial
coarse blow-up.

Proof. Let ri be a blow-up sequence with the property that the maps fi defined in the
previous section converge to f and fix constants p and ¢ so that (3.5) holds. We consider a
sequence r} := pjri(j) and we will show that, for an appropriate choice of k(j), the follow-
ing holds:

(@) r} is a blow-up sequence, i.e. T rj CONVeTges to Q[mol;

(b) Ej:= E(TO,,},C4,710) converges to 0;

(c) The conditions (3.4) and (3.5) hold for this new blow-up sequence;
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(d) If f; are the approximating maps given by [13, Theorem 2.4], then E}Tl/ 2 fj con-
verges (up to subsequences) to A f, for some nonzero scalar A.

The argument is a classical diagonal one and in order to deal efficiently will all the con-
ditions, it is useful to decouple the two indices and introduce the radii rj ; := pjry. We
introduce then the corresponding excess Ej i := E(T 0,7 10 Cy, 7o) and A . := Azo.rj,k' Com-
bining the estimates of [13, Theorem 2.4] with (3.4) we immediately see that there are two
positive constants ¢* and ¢~ such that

Ejrp? Ejrp}’

(3.7 ¢~ <liminf — <limsup —<cC
j—oo ErD(]) j—o0 EiD(j)

+
)

where E is as in (3.1). Note that (3.4) is required to control the A; ;. terms in the estimates
of [13, Theorem 2.4]. Moreover, obvious scaling arguments show that A; ; < Cp?Ak. It
is then pretty obvious that the conditions corresponding to (a), (b), and (c) above hold
for any sequence {r;x}; once we keep k fixed. Observe also that for (c) we can choose
constants which are independent of k: the radius p can in fact be taken equal to 3, while
the constant ¢ will depend only upon ¢”. In particular, for any sequence {k(j)}; which
converges to infinity sufficiently fast, (a), (b), and (c) will hold.
We consider the rescaled maps

fix0) = p; " felpjx)
and let instead f; x : B1(0,70) — g (n(J)') be the Lipschitz approximations which are given
by [13, Theorem 2.4] applied to To,rj,k- Observe that, by the estimates in [13, Theorem 2.4],
lim B /219 (fj,, fj,0)ll 2 = 0.
jmoo T

On the other hand, for every fixed k, the limit of E,;b ﬁk is clearly a scalar multiple A(k)

of fk, and it is easy to see that this scalar multiple has a fixed range [A~, 1] for positive
constants A* depending upon ¢* and upon the constant ¢ in condition (3.5) for r¢. It
follows therefore that (d) holds for any k(j) which diverges sufficiently fast. ]

3.3. Proof of Theorem 3.2. Recalling [11, Theorem 3.19], the frequency value a at 0 of
any non-trivial Dir-minimizer f with f(0) = Q[O] is a strictly positive number and by [11,
Corollary 3.18], we have that

(3.8) limpz_Zd_m/ IDfP=c0 Va>a,
p—0 B
0

(3.9) limp?2% ™ [ IDf?=0 Va<a.
p—0 B
0

On the other hand, since

IDfI? = Dv|*+QID@o fII?,
where v is the average free part of f, for any coarse blow-up f we conclude that I 7(0) =
min{l,(0), I, 7(0)} if go f is not identically vanishing, otherwise f = v and so I 7(0)=1,(0).
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Recall that 570 f is a classical harmonic function with 5o £(0) = 0 and hence I,7(0)isa

positive integer if o f # 0. Thus, in order to prove that I,,(0) = 1, it suffices to show that
I 7 (0) = 1. Introduce now

mz2  f(rx)

=r 7 —.
Jr /Dir(f, B,)

and apply Lemma 3.3 to conclude that, if there is a coarse blow-up f with a = I 7(0), then
there is a coarse blow-up which is a-homogeneous.

We will now prove that, if f is an a-homogeneous coarse blow-up, then necessarily a >
1. This is in fact the same argument used in [1, Proposition 3.10] and we report it for the
reader’s convenience. Consider thus such a coarse blow-up and fix a blow-up sequence ry
leading to it, according to the procedure explained above. In order to simplify our notation
we denote by T} the current Tg , .

First of all, recall that since ©(T%,0) = Q, the error from the monotonicity formula for
mass ratios gives the estimate

1
(3.10) /—
B, g™ |14

See, for example, [30] for a derivation of this. The only subtlety compared to the classical
literature (cf. for instance [28]) is that the usual derivation of the above estimate is reduced
to the one for varifolds with bounded mean curvature. The latter is not good enough for
us because it would give a linear dependence on Ay, rather than a quadratic one. The
quadratic improvement, which is possible using the stronger information that our current
induces a stationary varifold in a Riemannian submanifold, is remarked in [13, Appendix
Al.

As described in the procedure leading to coarse blow-ups we rotate the currents suitably
so that 7y = my. We next pass the inequality (3.10) to the Lipschitz approximations f; given
by [13, Theorem 2.4]. We let Y ;[(fi);] be a (measurable) selection for the f; as in [11,
Theorem 0.4]. We then write

/ (x+ (f)i ()12
K

7 x4 (fi)i (0|2

where Ky c B) c 7y is the (closed) domain over which the graph of the Lipschitz approx-
imation fj coincides with the current Ty (cf. [13, Theorem 0.4]. Note that, for the point
q=x+(fr)i(x) € Ky x ni, qL denotes the orthogonal projection of g to (Tquk)l, where Gy,
(the current induced by the graph of the multivalued function f) is defined as in [12, Def-
inition 1.10].

However, since f is Lipschitz and thus differentiable almost everywhere by Rademacher’s
Theorem [11, Theorem 1.3], we can formally compute

i((fk)i(x))_ 0 (x+(fk)i(x)):5r (x+ (i) x+ (i)

or\ x| | x| | x| | x|?

2

qJ_
dll Ty (q) < CEg + CA7.

3.11) dx < C(Ex +A%) < CEy,

(3.12)

- or
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Since the first term on the left-hand side belongs to T;G at g = x + (f);(x), we have

[5(%57)

| x|

142

([x+(fk),-(x)]l)2

| x|

2
dx < CE;.

L

Combining this with (3.11), we have
i ( (fi)i(x) )

|x|*
3.13
(319 /I<k;|x+(fk)i(x)|m+2 or\ x|

We next wish to estimate the tangential component of the right-hand side of (3.12) as fol-
lows:

Ik 2

2
<CEP

2
< IP,() — Pro| /

’

3 ((fk)i(x))

or | x|

0 ((fk)i(x))

or\ x|

3 ((fk)ioc))

or | x|

where we have used that, at the point g = x+ (fi); (x) of interest, the tangent to the current
coincides with the tangent to G¢, and the distance of the latter to 7y can be estimated with
the Lipschitz constant of fi (cf. [13, Theorem 2.4]). Writing

2
g((fk),-m) ZZHQ((fk)i(x)) YL [g((fk)i(x)) "
or\ x| or\ x| or\ x|

we immediately conclude

g(mc),-(x)) 2<2Hg((fk)i(x)) L
or | x| h or | x|
as soon as Ey is sufficiently small. Hence, by (3.13), we conclude
|x[* 0 (i)
(3.14) / —( ) dx < CE.
Kk;|x+(fk)i(X)|’”+2 or\ Ix| ¢
Next, consider fk = E,;” 2 fx and infer, from (3.14) the estimate
4 0 £y, 2
/ 1/le_l a _((fk)z(x))‘ dx<C,
Nk K\By 71X+ E2(fi(om+2 [or \ x|

for any k = kp and p > 0. Recall that:

« fi converges strongly in W"?(By2) to f;
e The height bound of [30] implies that || fx o is uniformly bounded.
We can thus pass into the limit in k to conclude

2
dx<C.

0 ((f),-(x))
or | x|

/
X m-—2
(BI/Z\BP) j?ko K] l | |

By choosing a fast converging subsequence, we can assume that the series " [B; \ K| is
summable. Therefore, let ky 1 oo and p | 0 we get

0 ((f‘)i(x))

or\ x|

2

1
dx<C

|x|m—2

(3.15)

B2 i



20 C. De Lellis & A. Skorobogatova

Since f is a-homogeneous we have

(0 = 1xI°F; (l—;)

;—r(ﬁ(x))z(a—l)|x|“‘2ﬁ(%)-

| x|
Inserting in (3.15) and passing to polar coordinates we conclude

1/2
(a— 1)2/ |]z|2/ sT12-d ds<C.
0B; 0

The latter inequality implies immediately a = 1, and thus completes the proof.

and so

4. COMPARISON OF COARSE AND FINE BLOW-UPS

In this section we compare fine and coarse blow-ups at scales which are comparable to
the left endpoints of a sequence of intervals of flattening. The main conclusion is that the
average-free parts of coarse blow-ups are scalar multiples of fine blow-ups. More precisely
we have the following proposition.

Proposition 4.1. Let T be as in Assumption 2.3. Let ry € (Sjx), tjx) [ be a blow-up sequence
at the origin and assume that

S .
(4.1) liminf-"% > 0.
k—oo T
Then (3.4) holds and we can consider a coarse blow-up f generated by a (subsequence) ac-
cording to Section 3.1 and a fine blow-up u (generated by a further subsequence) according
to the procedure detailed in Section 2.1. If we denote by v the average-free part of f, then

there is a real number A > 0 such that v = Au.

Remark 4.2. In general, without assumption (4.1) it might be that (3.4) does not hold and
that we cannot, therefore, define a coarse blow-up. Even if we were to assume (3.4), but not
(4.1), we could at best infer that v = Au for some A = 0, but not that A is necessarily positive.
Easy examples for the latter behavior can be constructed using holomorphic curves of C? of
the form {(z, w) : (w — h(2))? = zP}, for a nontrivial holomorphic h with h(0) = h'(0) =0
and a fraction % which is noninteger and larger than the order of vanishing of h at 0.

An obvious corollary of the latter proposition is that, under the above assumptions, v is
necessarily nontrivial and that I, (0) = I,,(0).

4.1. Nontriviality and homogeneity of coarse blow-ups. If we combine it with Theorem
2.10(i),(vi), Proposition 4.1 has the following further consequence, which will be useful in
[10].

Corollary 4.3. Let T be as in Assumption 2.1, let 6, > 0 be the parameter in [14, Assump-
tion 1.8] and assume the singularity degree 1(T,0) is strictly smaller than 2 — 6,. Then any
coarse blow-up f at0 is nontrivial, I(T,0) -homogeneous, and has average0 (so in particular
f = v for the average-free part v).
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Moreover, for everyy > 2(I(T,0) — 1), we have

E(T,B
(4.2) liminf u >
rlo rY

0
and there exists a radius ro (which depends on the current T) such that

Y
(4.3) E(T,B;) = S_?’E(T’ B;) Vr<s<ry.

Proof. Itfollows directly from Proposition 4.1 and from Theorem 2.10(i), (vi) that the average-
free part of any coarse blow-up at 0 is nontrivial and is I(7,0)-homogeneous. We therefore
just need to show that the average vanishes.

First of all observe that, if { fk} is any family of coarse blow-ups, then || f kllwz2p,) is uni-
formly bounded and any limit f,, of any subsequence is also a coarse blow-up. Since ev-
ery such foo must have an average-free part which is nontrivial and I(7,0)-homogeneous,
it follows immediately that for any coarse blow-up f there is a positive number w > 0 (in-
dependent of f ) such that

|Dal?=w>0
B
whenever i is the average-free part of f. In particular, since the coarse blow-up f is itself
nontrivial, we also conclude the existence of some constant Q > 0 (again not depending
on f) such that

(4.4) IDmo I’ <Q [ |Daf
B B,
for every coarse blow-up f, its average free part i, and its average 5o f.
Consider now the sequence ry | 0 which generates any coarse blow-up f and recall that
we are assuming 7 to be an optimal plane so that

E(T,Bgyr, o) = E(T,Bgpr,) =t Ef — 0,

as explained in Section 3.1. The Taylor expansion of the area functional and (3.4) com-
bined with the fact that any coarse blow-up along the sequence 8 My is I(T,0)-homogeneous
and satisfies the nontriviality property (4.4) implies that for k sufficiently large we have

E(T,Bgwir,) < CE(T,By).

Indeed, this is a consequence of a uniform lower bound on the corresponding ratio of nor-
malized Dirichlet energies over B; and By ,gp; of any such coarse blow-up. From the above,
if 77 is an optimal plane such that E(T,B,,, ;) = E(T,B,,), then |7 — 74| < CE(T,B,,) and
thus
E(T,Bgrr,, 1) < CE(T,By,).

However, observe as well that for any constant C fixed, the sequence Cry also generates
(up to possibly extract a subsequence) a coarse blow-up: in fact the excess must go to 0
(because the currents Ty c,, converges to the same tangent cone as Ty r,, which thus must
be flat) and E(T,Bgcmr,) = C™"E(T, Bgasy,), so that (3.4) holds for the sequence Cry as well.
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For any j € N, letting 71y ; be a plane with
Ek,j = E(T,B2j+3Mrk) = E(T,B2j+3M,.k,JTkyj),

we have
7o — 7k, j1 = 0((Eg, j) %)
and
C(j) < liminfﬂ < limsupﬂ <C(j),
k E k,j k E k,j
so for k sufficiently large we can apply [13, Theorem 2.4] to Tp ;, in B,js,, relative to the
plane 7y to get a Lipschitz approximation g, j : Byj+2,,(0,70) — dQ((no)J') in the cylinder
C,j+2),(0,70), as in the algorithm detailed in Section 3.1. This new Lipschitz approxima-
tion g, ; coincides with f; on By (0, 7o), except for a set whose """ -measure is estimated
by o(Eg,;). In particular, for each j, as k — oo the rescaled functions gy, ; = (Ex, j)‘%gk, j
converge to a Dir-minimizing function g; over B,j+2,,(0,7) which coincides with f on
B (0, 7).
Next, we observe that

i} 1 i}
D(nof)(O):—/ D(nof) =
B1(0,710)

m wmzjm

/ D(mogj)=D(nog;)0),
sz(O,JI())

by the harmonicity of the two functions o f and 5o gj. But we then must have D(no
£)0) =Dmo g;)(0) = 0, otherwise we can use the Taylor expansion of [12] to contradict
the optimality of the plane 7.

In summary, by rescaling the domain of the functions gi, ; above to be Bgys (0, 7¢) (with-
out relabeling), if ry | 0 is a sequence which generates a coarse blow-up f, then as k — oo,
a subsequence of the sequence of scales 2/ r;. generates a coarse blow-up g j with the prop-
erty that f(x) = A i&j (277 x) for some positive nonzero number A i

Next, denote by i the average-free part of f and by v j the average-free part of g;. Ob-
serve that Diz and D7; are (I(T,0) — 1)-homogeneous, while D(n o f) and D(go gj) are
classical harmonic functions with D(570 f)(0) = D(0 §;)(0) = 0 and 0 §;(0) = g f(0) =0,
in particular I, g (0) = 2. Therefore, we observe that

= =32
Jo, IP@e PP _Js, ;1D )
J DA [y 1D
—j2Inog . (0)—2 _
2—j(2I(T,0-2) fB |D17]-|2
1
2j(1(T,0)-2 =2
3 22j0(T,0) )fBllD(nOg])l
fBl |D’7]|2

On the other hand the bound (4.4) is valid also for §; and 7; in place of f and i1, because g;
is a coarse blow-up and v; is its average-free part. In particular, recalling that I(7, 0) < 2—0>
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we conclude _
5, 1D@o ) _
Jp \DaR
Since Q is a fixed positive constant, j an arbitrary integer, and 9§, a positive number, we
immediately conclude that D(no f) = 0 and go f is a constant. On the other hand recall
that, since ©(T,0) = Q, f (0) = Q[0], and in particular no f (0) = 0. We thus have proved that
nof=0.

2720270y

Next observe that the arguments detailed so far have also the following outcome. If
It | 0is a sequence such that E(T,B,,) — 0, then

lim E(T,B;/2) _ 2_(1(7",0)_1) '

rio E(T,B;)
Fix now any y < I(7,0) — 1. The above implies the following: there is 7 > 0 and E > 0 such
that:

e If r <7and E(T,B,) < E, then
E(T,B;/2) S
E(T,B;)
We next distinguish two cases. We consider the following set

R:={0<r<7:E(T,r)<2 'E},

277,

which can be easily checked to be open if 7 is sufficiently small. We then argue differently
depending on whether # contains a neighborhood of the origin or not (and notice that,
when I(7,0) > 1, we are certainly in the first case). If it contains a neighborhood of the
origin, then there is 7 > 0 such that

ELB2) ooy yrer,
E(T,B,)

In particular, if we let ¢ := inf{E(T,B;) : % < r < 7} > 0, iterating the inequality above at all
dyadic scales we achieve

(Y
E(T,Br)zc(f) .
27
If it does not contain the origin then let 22 = U] T r]j [ where r]j 1 <T¢ and both are
infinite sequences of infinitesimal numbers. Then, E(T, Br;) = g and, up to subsequences,

Ty, r¢ converges to a cone C which is nonplanar and such that E(C,B,) = g for every p. It
follows in particular that there exists ky such that

E _ +
—<ETBY<E  vre U |% ¢
4 k>ko

In particular, arguing as above we conclude

Ef r ) .
E(T,B) > —|— vre o, il

+
4 2r,C k> ko
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while
E(T,B,) = E Vr<r]'€*0 st.rg Jlre il
k=kg
The combination of these two facts give that
E(T,B
liminf ( r) >0
rlo rY
and thus concludes the proof of (4.2). Ll

4.2. Reparametrization. An important tool for proving the Proposition 4.1 is the follow-
ing lemma, where we follow the notation and techniques introduced in [12].

Lemma 4.4. There are constants x(m, n, Q) >0 and C(m, n, Q) with the following property.
Consider:

o AlLipschitzmap g :R" > B, — o4o(R") with || gl co +Lip (g) <k;

o« AC? function ¢ : B, — R" with ¢(0) =0 and | Dl o1 < k;

e The function f(x) =) ;lp(x) + gi(x)] and the manifold 4 := {(x, p(x))};

e Themaps N, F : M4 NCgjo — LoR™") given by [12, Theorem 5.1], satisfying F(p) =

Yilp+ Ni(p)l, Ni(p) L Ty M, and Tg!_Cs/4 = Gyl Csy4.
If we denote by § the multivalued map x — §(x) = ¥.;1(0, g;(x))] € Ao(R™™™), then
(4.5) G (N(p(x),§(x) < ClID@llcoligllco + 1 Depll co) VxeB.
Proof. We fix a point x € By, denote by p € ./ the point p = (x,¢(x)) and let N(x) = _;[g;l
and g(x) = X ;[p;:l. We fix a measurable selection for the function g, so that we can write
g =Y ;lgil and a corresponding measurable selection for f, where f; = ¢ + g;. According
to [12, Lemma 5.4], the set of points {g;} can be determined as follows. If we let x be the
orthogonal complement of T,,./, then {g;} is given by the intersection of p + x with the
support of the current Gy (i.e. the set-theoretic graph of f). This means that there are
points xi,..., xg such that
qi = (xi, fij) (X)) = (x;, @(x3) + gy (%)),
where j:{1,...,Q} —{1,...,Q} is some unknown function. Observe that
lxi — x| < Clgi = pllx =Kol
where x( denotes the vertical plane {0} x R". We therefore easily conclude the estimate
|x; — x| < ClINllcoll Depllo -

Since however | Nllco < C(lIgllco + l@llco) < Clgllco + 1Dl o), clearly
(4.6) |x; — x| < ClID@l co (gl co + llpll co) -

Given the Lipschitz bound on g we conclude that there is a 7(i) such that

(4.7) 18y (xi) = &n(iy ()| < Cll@llco(l gllco + I Depllco) -

Ifrm:{1,...,Q} —{1,...,Q} were injective, we would immediately conclude (4.5). While this
might generally not be the case, it certainly is when Q = 1, hence establishing the estimate
in this particular case.
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For the general case we argue by induction. Assume therefore to have fixed Q and to
have proved the estimate valid for maps which are Q’-valued for every Q' < Q. Consider
now the following alternatives:

(a) the diameter of the set {g;(x)} is smaller than || Dl o (llgllco + | Dl -0);
(b) the diameter of the set {g;(x)} is larger.

In the first case we have

18 (xi) — &i ()| < 1&gy (Xi) — &r (i) (O + 18y (X) — gi (X)| < (C+ D) D@l co (I gll co + 1 Depll o) -

In the second case we set d := [ D@llco(lgllco + l@llc0) and recall [11, Proposition 1.6]: if
the Lipschitz constant of g is smaller than a constant depending only on C, Q, and n, the
map g decomposes, in the ball B, ;(x) into two Lipschitz Q;-valued maps with Q; +Q2 = Q.
In particular we can use the inductive assumption to get (4.5). 0

4.3. Comparison estimates. In order to prove Proposition 4.1, (4.5) will be combined with
two important estimates comparing the Lipschitz approximation and the normal approx-
imation over the relevant center manifold.

The first estimate is the following control on the L? height of a normal approximation in
terms of the excess.

Lemma 4.5. Under the assumptions of Proposition 4.1, the estimate (3.4) holds. Moreover,
the following holds.
(i) Lethy be as in Section 2.1 for the scales ry.. Then we have
h? h?
4.8) 0 < liminf—* < limsup —* < co.
k—oo LEf k—oo k
(ii) Let fx beasin Section 3.1 and consider the map @,;. on By = B»(0, o) whose graph co-
incides with the center manifold (Mj))o,ri1;, over the cylinder C3;, = Cg/2(0, o).
Then we have

(4.9) / I('pk—TIOkaZ:O(Ek)-
Bs/2

Proof. We fix ri as in the statement and, upon extraction of a further subsequence, we
assume the existence of

. Ik ~
lim —— :=¢e[1,+ool.
k—o0 Sj(k)

It is convenient to introduce the rescaled radii 7y := % €]0,1] and §j() := % Recalling
the stopping condition which defines s in [15, Section 2.1], there is a cube L € w1k
with L NBs;,, # @ and ¢(Ly) = ¢S for the specific geometric constant ¢s = m. Ob-
serve that, since ©(T,0) = Q, [14, Proposition 3.1] implies that L; cannot belong to Whj ®
If Ly € V/n] ® we may apply [14, Corollary 3.2] to find a nearby cube L} € %j ® of compa-

rable size. Thus, we may assume that Ly € Wej ®We can thus apply [14, Proposition 3.4]
to conclude
mo,j € (Li)* 2% < CE(Ty,¢,,,,BL,)



26 C. De Lellis & A. Skorobogatova

for some geometric constant C, where my j, is as in (2.1) with index j (k). Recalling how-
ever that the cylinder C4)7, as in Section 3.1 contains By, , as well as our amended defini-
tion of my j(r), we immediately conclude that

Ek = E(To,rkyC4M77[0) = E(To,l’j(k)rBLk) = C_lmo,](k)g(Lk)z_zaz

2-20,
-1.2-2.,2-25, Jjk) -1 222 2-26;
> _— =
=C c€ i) 2-20 C c¢ Siw
t:
jk)

In light of the comparability of s k) and ry, it thus follows immediately that

(4.10) liminf
k—'OO r

k
2-26, >0,
k

which in turn immediately implies (3.4). In addition, rescaling by 7;) and again using the
definition of my (1), we have

(4.11) E;.= C—lmo’j(k),:i—zﬁ,

where C is independent of k (it is not, however, a geometric constant, namely it might
depend on the blow-up sequence that we fixed at the beginning).
Next, observe that

) ~

h? < H (2?)(2<5 Cr.™Dy.. (2F)
kS Njg\eTk) s LTy Njy \&Tk)»

—m+1
Tk

where C is independent of k. Note that the first inequality is a simple consequence of
the scaling of Ny and the fact that hy < CH Ny (2). On the other hand we recall (see for
instance [15, Remark 3.4]) that D Niw 27) <Cmy ) f,i” *+2-202 We thus conclude that

2 -2-20
hkSCmo,]‘(k)rk 2

and we achieve the right-hand inequality of (4.8) when combining the above with (4.11).
As for the left-hand inequality of (4.8), first recall that, by [14, Proposition 3.4] we also
have the opposite inequality

A=1lz-m— ~— k) =2-26
(4.12) hi=C 7" Z/Z INjwl*=C lmé)rk 2
k

where £} is the Whitney region corresponding to Li. On the other hand recall that we
are assuming 7o optimizes the excess of Ty ,, in Bgys, which implies that it optimizes the
excess of To,;,,, in Bgumy,. Because of the condition sk < rr < Csj(k), we can find a cube
He #1® ywi® with the property that Bspprs, © By © Bgprr,. Due to [14, Proposition
1.11], we thus must have

E(TO,l'j(k)rBBMfk}EO) < E(TO,l‘j(k))BBMfk)nH) < CE(TO,l‘j(k)rBH)”H)

2_9 -2-20
< Cmy,jo 0 (H)* 272 < Cmg j 7y %2
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Combining this with the height bound [14, Theorem A.1] on To,tj[k], we can write
_2-26
(4.13) Ex = E(To,1;4y, Camr) < CE(To, 15 Banr,, o) < Crg jiiy e -7

2
It thus follows immediately from (4.12) and (4.13) that liminfy IEI—’; > 0.

We now address the last part of the lemma, namely statement (ii). First of all we apply a
homothetic rescaling of center 0 and ratio 7y to the graphs of ¢, and of f;. We denote by
P = f,;l("pk(fk-) and f = flzlfk(fk‘) the corresponding maps and note that the desired
estimate is equivalent to

——m-2 - 2
e / |} —mo fi|”=0(Ep,
Bsj,.12(0,70)

and given the estimate (4.11), it suffices to show
(4.14) / |(i,lrC _ 11°fkr|2 — Ellc/zo(m(l)/jz(k) flzn+3—52),
Bsj;.12(0,70) ’

where we are keeping a factor of E }C’ 2 on the right-hand side for the purpose of conve-
nience, since it will appear naturally in the estimates we will proceed to obtain. Con-
sider now the plane 7((j(k)) which served as reference to construct the center manifold
M j ). Itis easy to see that |7o(j (k) — 7ol < Cm(l)'/].z(k) < C¢ for some geometric constant (see
[14, Proposition 4.1]). Since nothing else will be used about 7 (j(k)), except that it serves
as reference to construct the center manifold .4, in order to simplify our notation we
will simply denote it by 77y, even though the plane does depend on k.

We now consider all the cubes H € # /%) which intersect B,7, and denote such collec-
tions by ). For each H € ¥¥) we consider a cylinder Cacy(z) (g1, ), where C is a geo-
metric constant (which will be specified later) and gy is the center of the cube H. We then
consider the cylinder Cc¢ () (g1, o) and, given that the height of T , over 7y converges to
0, conclude that the set (gr (('pZ) ugr (fkr)) NCcen (qH, 7o) is contained in Cocy ) (G, TH).
Further, let ® ) (I'jx)) be the contact set of the current To;;,, and the center manifold
M), as defined in [14, Definition 1.18], and denote by I'; its projection onto the plane
mo. Finally, it will also be convenient to define the point g; as the orthogonal projection
onto g of gr.

If C is a geometric constant sufficiently large (e.g. 10y/m suffices, provided ¢ is small
enough), then the set I'y and the disks Bcy(m) (G, o) cover the disk Bz, /2(0, o). It will be
convenient to devise a slightly delicate cover, made of pairwise disjoint Borel sets, with the
following algorithm. We enumerate the disks By (GH, o) as Bi,ie€{1,2,...}=N\{0} and
set Fo :=Tx N B3y, /2 and define inductively Fj,; := B/*\U;<; F;.

Next, for each H we recall the approximating Lipschitz map fp of [14, Definition 1.13
& Lemma 1.15] and let fz be the reparametrization of gr (fg) N Ccep (G, o) as a graph
over the disk Bcym (GH, 0), according to [12, Proposition 5.2]. We are now going to define
a good set G < Bz, /2(mo) as follows

» GNF consists of those points g € Fy where [/ (q) = Ql@.1;
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» Foreach j >0, GNF; consists of those points g € Fj where f/” coincides with fi for
the corresponding H such that Bey (Gg, o) = B/

Observe that
Bs7,.12(10) \ G <Py (Pt (To,14,) \ 8T () N C37,12(0, 700))

[11 4

1
k

Up]‘[(] (Spt(TO,tj(k) \TF-(k)) ﬂCsfk/z(O,ﬂ()))) .

[1] <

2
k
On the other hand, recalling that A?C = 0(Ey), we can use [13, Theorem 2.4] to estimate
=41 < A7 (spt(To, 1) \ 81 (1)) N Ca7,12(0,70))
< P A" (spt(To,r) \ 81 (fi)) N Car(0, 70)) = FPO(E, ™).
As for Ei, we instead use the analogous estimates for each f; to get
> A" pt((To, g \&r (fm)) N Cern (G, o))

Heg®

Y. A" ((To,t \ & (f)) N Cacoimn (Gr, Tr))
Heg®

> O(H) ™ (my ja C(H)?202)1 7 < m}f{,i) prE
Let' ) o
(we recall here that the constant y; is fixed in [13], while §, is chosen later in [14, Assump-
tion 1.8] and satifies (2 —202)(1+7y1) < 1+7y1/2).
On the other hand,

Il il cogs; DS Ch(To,14 C37,.(0,70)) = CFh(To,r,, C3(0, 70)) < CrlcEl/2

where in the latter inequality we have used the information that 0 is a point of density Q
point of T and the height bound [30]. Moreover, recalling that
2 4-26
”Nj(k)“LZ(Brf) \Cm()](k)g(L)WH— 2
we infer in particular the existence of at least one point x € p;,(£) and y € nol such that
(x,y) € spt (To,tj(k)) and

=7 /2 52-0,
93 (X) = yI < Cmg gy T

which in turn leads to the bound |@} (x)| < C(m}'2 E}C/z)fk <C E”2 7r. Note that @} is

0,j(k)
Lipschitz, with a constant uniformly controlled in k. We thus conclude that
(4.15) ||fkr||c0(33;k) + ||¢2||C0(33r CEk .

In particular, combining the latter estimate with |Bzs, /2 \ G| < CEj f,i”, we conclude that

(4.16) / |(pk nofk| <CE2 m+2.
Bsj12\G
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Considering that on Gn Fy the functions ¢; and 5o f; coincide, we are left to estimate

" —mo 712 < F1/2F p" —no ful.
(.17 ]; GNF;j |(pk K fk | Ek rkj; Bce (GH,70) ltpk ne /il
We now wish to estimate each integral in the above summation by changing coordinates
to the reference plane 7y for each H € €®. Denote by ¢, the function whose graph over
Bacewy(qm, wH) coincides with () (which, we recall, is the graph of @} over an appro-
priate subset of 7y). We likewise introduce fy which is the function over Bocy ) (Gu, TH)
whose graph coincides with the graph of 5o fy. Applying [14, Lemma B.1(b)] we can then

estimate
/ |¢,Z—n°fH|<C/ lpy —frl.
Bcey (GH,m0) Boceomny (qu,mH)

Let us now estimate

(4.18) |‘PH_fH|</ |(PH_77°fH|+/ Imo fa—ful.
Bocen (qH, T H) Bocemn (qu, T H) Bocen (qH, T H)

In order to handle the second integral we wish to estimate |7y — 7 |, since we will be using
CC-estimates on fu here. First of all we compare the tilt between 7y and 7 for the ances-
tor H' of H with the smallest side length such that By > Bgy7,. Observe that ¢(H') < Cfy.
Since 7y optimizes the excess of To,tj(k] in By, while 7y optimizes the excess of the same
current over Bgy,, a simple comparison argument (cf. for instance [14, Proof of (4.5)]),
implies

-1-0»

1/2 1/2 1/2 1/2
1m0 = 71| < CB(To, 14, Boa) /> + E(To, 0, BY) "2 < CEL + Cmy/% 7y

On the other hand, by [14, Proposition 4.1] we have

_ 1/2  -1-62
|7t 5 7TH’|<Cm0,j(k)rk
and we thus reach
1/2 1/2 -1-6, 1/2
(4.19) Iﬂo—nHlsCEk +Cm0,j(k)rk SCE,C .

We can now employ [14, Lemma 5.6] to estimate
/ 1m0 fr = £l < CUL il coyepm (g + Ex ) DIr (f) + €D Ey).
Bycemn (GH T H)

Recall that ”fH”CO(BZCZ(H)(qH.ﬂH) < m(l)(f(r]gg(H)l+ﬁ2, while Dir (fy) < mO,j(k)g(H)m+2_262 <

¢(H)™E}. We thus easily conclude that

/ o fr —ful < COCH)™E ™,
Bocomy (qu,mh)

We now come to the first integral in the right hand side of (4.18). First of all we recall the
tilted interpolating function Ky of [14, Definition 1.16] and observe that, by construction,
@ and hy coincide in a neighborhood of gy. Now recall that, by [14, Proposition 4.4]

|Dhyll < Cmé’ ]?( o- Since moveover | D?@ | is controlled by the second fundamental form
1/2

. . . . . 2
of /), which in turn is bounded by my' <y We easily see that the estimate | D¢yl <
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C m(l)/]?(k) holds as well. In particular, using a second order Taylor expansion on a point

where @, — hy and its derivative both vanish (to gain an extra factor of ¢(H)?) we can
estimate

/ @ =10 ful < Cmy/ 7 (D™ + / \hgr =m0 ful.
Bocoumn (qu,mH) Bocemn (qH, T H)

Finally we can use [14, Proposition 5.2] to estimate

/ IhH—UOfHISCmo,j(k)f(H)m+3+ﬁ2-
Bocomny(qu,mH)

In summary, we have reached the estimate

/ @) —no ful < Cmy7 0 (H)™2.
Beey (GH,T0)
Inserting this into (4.17) and decomposing into cubes H, we then get
-7 Zr 2 = 1/2,1/2 m+2 1/2,..1/2 =m+3
/G|¢pk—1]ofk| < CrE, my 5ok H%(k)f(H) < CE; myuote -
€

The latter, together with (4.16), gives finally (4.14) and completes the proof of the lemma.
O

Proof of Proposition 4.1. We wish to compare

_ N o
Ny = k°oP

)

_ Xil(fdi—me fil
he and vpi== Elllc/z

in particular we wish to show that they have the same L? limit, up to a scalar constant.
Since both sequences are converging to respective Dir-minimizing maps, it suffices to
compare the maps N; and v; on some nonempty open set; we will do it on Bj (1) for
simplicity.
First of all we replace no fi with the parameterizing map ¢;. for .4} in vy to give a map
Dy given by
Ll — il

Ipy=——7—>
1/2
Ey
since Lemma 4.5 implies that
lim (g(l)k, ﬁk)z =0.
k100 ./ By (o)

Recalling [13],

[Pk ((spt(To,r,) \ gr (fi) U g fic \'spt(To,r,) N Cs/2)| = 0(E).

Next, introduce the map F(p) :=)_; [(INg) i (p) + pl on 4} and let fk1 : By (0,70) — g (né) be
the map whose graph coincides with the current Tz N C2(0,77¢). By [14, Theorem 2.4] and
[15, Section 4.2 & Corollary 5.3],

P, (8 () \spt (To,r,) Uspt(To,r) \ g1 (fi)) N Cay2l = 0(Ex).
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In particular, if we consider the map

o SilUDi— el
vk - E]1C/2

we have that |~{17,1C # Ui}l — 0, and using that both have a uniform bound on the Dirichlet
energy, we conclude that

lim [ 9, 00)°=0.

k=00 /By,
We also take advantage of Lemma 4.5 to assume, up to extraction of a subsequence (not
relabeled), that Ej/ hi converges to some finite constant A > 0. We are therefore left to
show that the maps Nj and
B Ziﬂ(fkl)i — @l

hk/ 2

have the same limit. We now wish to apply Lemma 4.4 to the maps Ny. We observe that
the map g in Lemma 4.4 can be taken to be the map gy defined by

gr= 1(f)i— @il

Moreover, observe that [ D[l co converges to 0. If we had a uniform bound on || gi|lco in
terms of hy we could then apply Lemma 4.4 to complete the proof. Given that we only
have the bound || gll;2 < Chy we need to overcome this issue. We use the following simple
argument. We fix a truncation parameter M and introduce the truncation

gl =Y 1gnM
i

where the maps (gk)ﬁ.w are defined by replacing each component (¢;) j(x) of the vector
(gx)i (x) with max{— M, min{(¢;) j (x), M}}. By the Sobolev embedding and the uniform W2
bound on gy it is easy to see that

lim suphzz/@(gk,g;ff)zzo.
M—oo [

Likewise, after defining the maps N ]]CVI as those corresponding to gljc‘_/[ in the same way as Nj

corresponds to gi, we see as well

lim suphgz/g(Nk,N;f’)Z:O.
M—oo [

We can now apply Lemma 4.4 to conclude that the limit (in k) of h;lN IICVI o, and the limit
of g,]CVI coincides on B;. Letting M — oo we then reach the desired conclusion. U

5. FREQUENCY BOUND FOR FINE BLOW-UPS

In this section we prove the lower bound for the frequency values, which we equivalently
restate as follows for the reader’s convenience.
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Theorem 5.1. Suppose that T and Z are as in Assumption 2.3 and let u be a fine blow-up.
Then I,(0) = 1.

In order to show the theorem, we fix a blow-up sequence {ri} which generates the fine
blow-up u through the procedure described in Section 2.1 and for each k sufficiently large
we choose the interval of flattening |s;), #jx)] which contains the radius r;. We can then
reduce the proof, up to extraction of a subsequence, to three different cases. In the first
case we assume that there are finitely many intervals of flattening and hence (up to sub-
sequence), there is a positive integer J such that:

(5.1) s;=0 and {rite <10, 4].

In the remaining two cases we assume that there are infinitely many intervals of flattening
and that (up to subsequence) one of the following mutually exclusive conditions hold:

s .
(5.2) lim 2% 5 o
k Ik
. Sjk)
(5.3) lim——=0.
k Ik

The proof will take advantage of a first coarse lower bound proved recently by the sec-
ond author, cf. [29, Theorem 7.8], which in turn can be combined with the monotonicity
computations in [15] to give a suitable almost-monotonicity formula for Iy, cf. [29, Theo-
rem 7.4] as well. We summarize these conclusions in the following theorem.

Theorem 5.2. Let T, X be as in Assumption 2.3 and consider any center manifold .4 ; and
any normal approximation N; for a given interval of flattening]s;, t;] at0. Then,

S.
J3
t

(5.4) IN].(T) = Cy Vre
J

M

Cb® Sj
(5.5) INj(a) <e IN].(b) Yla,b] c t_’3 ,
J
where a = a(Q, m, n) > 0, while ¢y and C are positive numbers which depend on T (but not
on j).

5.1. Proof of Theorem 5.1 under assumption (5.1). We let .4 be the center manifold
related to the interval of flattening ]0, #;], with corresponding normal approximation N.
Since we are in the case with a single center manifold, we omit the dependency on N for I
and related quantities. Observe that, by Theorem 5.2,

cm, Q) <I(a)<e’"Ib) VOo<a<hb<3
and in particular we immediately see that

¢o < limsupI(r) <liminfI(r) < +oo.
1‘10 I’lO

So the limit I := lim,|oI(r) exists and it is positive and finite. It follows from the strong

convergence of u; from the definition of u being a fine blowup, that I,,(r) is identically

equal to Iy, and thus Iy = I;,(0). Therefore it just suffices to show that Iy = 1. On the other
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hand, by [15, Proposition 3.5], we readily see that
d H(r) 2I(r) - CI(r)
dr °rm-1 g | rlv’
for suitable constants C and y > 0. In particular, for every € > 0, the inequalities
210—£< dl H(r)<210+£

s —10 =<
r dr C8rm-1 r
hold as soon as r is smaller than a suitable scale r(¢) > 0. Integrating the latter differential
inequality, we immediately conclude that

. H(r)
lll’}'ll(l)nfm >0

for every € > 0. Combined with the inequality rHD((rr)) =1(r) = ¢y, we also conclude that
D(r
liminf __b >0.

o rm+2(10—1)+6
On the other hand, due to the estimate [15, (3.4)] and the fact that s; = 0, we must have
D(r) < Cr™m*2-20

where 6, is the small positive constant of [14, Assumption 1.8]. Comparing this with the
previous asymptotic estimate, we conclude in particular that

2(lh—1)=2-26,,

and since 26, < ﬁ, we immediately get that Iy > 1 (in fact it turns out that I is rather

close to 2, in this case).

5.2. Proof of Theorem 5.1 under assumption (5.2). In this case we can apply Proposition
4.1 to a suitable subsequence of {ry}x, not relabeled, and find a coarse blow-up f whose
average-free part v has the property that v = Au for some positive number A. In particular
I,,(0) = I,(0) and from Theorem 3.2 we conclude I,,(0) = 1.

5.3. Proof of Theorem 5.1 under assumption (5.3). We fix a blow-up sequence {r¢}; and
a corresponding fine blow-up u. One crucial property that we will use is that, because of
the convergence of the maps uj from Section 2.1 to the fine blow-up u, for every positive
p <1 we have

. PTk
(5.6) I,(p) = lim Iy, (—)
k—00 jk) t](k)
Observe that under our assumption we know as well that ?_E:; is infinitesimal. In particular,
]
since
2-25,
B Sjk)
E(T) BSj(k)) — E(TO,Tj(k))BSj(k)/[j(k)) < CmO,](k) 2-25, )
Jk)

we conclude that E(T,B;,,,) — 0. So s;) is itself a blow-up sequence, and we can apply
the previous section to infer that, for any u’ coarse blow-up generated by a subsequence,
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we have I,,(0) = 1. In particular, since along this subsequence of {s )} we have compara-
bility of the coarse and fine blow-ups due to Proposition 4.1, we can use the corresponding
convergence (5.6) to infer that

.. Sjk

liminfly, (ﬁ) =>1.

k—o0 J t k)
Fix now an arbitrary small parameter 6 > 0. Our goal is to show that there is p > 0 such
that

(5.7) liminfly,, (ﬂ) >1-25 Vpe

—00 tj(k)

Knowing (5.7) and (5.6), we would then infer that I,,(p) = 1 — 26 for every positive p < p,
which in turn would imply 1 - 26 < I,,(0). The arbitrariness of § then tells us that I,,(0) =0
In order to achieve (5.7), choose first kj large enough so that

S.
k) _
_’p

I (L’“) >1-6  Vk>k.
Lj(ky
Next, because of (5.5) we can choose o > 0 small enough (independent of k) with the prop-

erty that

k
L31-25  vre|2® a} vk > k.
Lj(ky
Since however ry < £ (), while hmk_,Oo U = 0, for any fixed positive p < o and for every k
large enough we may conclude that £% must belong to the interval [ ,a] This implies

]
(5.7) with p = o and thus completes the proof.

6. FREQUENCY BV ESTIMATE

This section is dedicated to establishing a (quantitative) control on the radial variations
of the frequency, which is crucial for proving Theorem 2.10.

We begin by defining the universal frequency function, which makes sense of the fre-
quency continuously along all blow-up scales where it is possible to construct a center
manifold for T.

Definition 6.1 (Universal frequency function). Suppose that T is as in Assumption 2.1 and
let {] sy, ti]}. o be a sequence of intervals of flattening with coinciding endpoints (i.e. such
that sy = ty41 fork = jo,...,J—1), with corresponding center manifolds / and 4(-normal
approximations Ni. Forr €]s;, tj)], define

r
I(r) = INk (_) X]Sk,[k] (r)y
I
r
D(r) = DNk (t_k) X]Sk,[k] (r))

H(r) = Hy, (tlk) Vst (1):
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Note that there may be gaps between intervals of flattening in general, but the universal
frequency function only makes sense over uninterrupted strings of intervals of flattening.
Unfortunately, unlike for the linearized problem, we do not have monotonicity of the
frequency but merely almost monotonicity. Nevertheless, we can hope to control the vari-
ation of the negative part of the radial derivative for the frequency function. The main
result of this section is the following proposition. We will use the convention that, given

a BV function f of one variable, %] . will denote the positive and negative parts of its

distribiutional derivatives, while ||| 71 denotes the total variation of a measure u on its
domain of definition.

Proposition 6.2. There existsys =y4(m,n,Q) >0 and C = C(m, n, Q) such that the follow-
ing holds. Suppose that T satisfies Assumption 2.3. Let {] sy, t]} i be intervals of flattening

for T around 0 with coinciding endpoints. Then we havelog(I+ 1) € BV(sy, t;,]), with the
quantitative estimate

dlog+1)

o [ st

—"TV(]SJ.IJ'O]) k=jo

Moreover, for any la, b] which is contained in a single interval of flattening sy, ty| we have
the improved estimate
Ya
<C (2) m!"

tr 0,k"

dlog(I+1)

6 [ st

- HTV(]a,b])

Remark 6.3. In our subsequent work [9] we will need the BV estimate of Proposition 6.2 for a
different definition of the universal frequency function, for which the intervals of flattening
Isj, tj] are chosen differently. We point out that, the crucial ingredients needed in proving

the above estimates are the following:
(@) The estimate in each open interval holds because for each r 6]%, 1] the side length
¢(L) of any cube L € #'© which intersects B, (0,7,) is no larger than csr for a fixed

constant cs = 64\1%.

(b) The estimate at the jumps holds because there is one cube L € W' which intersects
Bs;/1;(0,70) and has side length ¢ (L) = csj—j.

While in (a) we cannot afford a similar control with a constant larger than cs, in (b) we can
afford a constant ¢s smaller than cs, at the price that the constant C in the estimate (6.1)
will then depend on how small C; is.

In order to prove this, we will require a number of preliminary results, the proofs of
which we will defer until later.

6.1. Auxiliary results for Proposition 6.2. First of all, we recall some key variational iden-
tities and estimates from [15] for any normal approximation of T, which are a nonlinear
analogue of the identities in [11, Section 3.4].
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Let |s, t] be an interval of flattening for T around 0 with corresponding center manifold
A and .4 -normal approximation N. We define the quantities

1 d
En(r)i=—— /M ¢’ (%) 2_Ni(y)- DNi(y)Vd(y) dy,

1 ,@) d(y) . 2
Gn ()= -3 //p( | vamE d(y”z;mz\n(y) vd(y)l*dy,

In(r)= / ¢ (@) IN()I* dy.
4 r
We thus have the following.
Lemma 6.4. There exist ys(m,n,Q) > 0 and C(m,n,Q) > 0 such that the following holds.
Suppose that T, X satisfy Assumption 2.3 and let |s, t] be an interval of flattening for T
around 0 with corresponding center manifold 4 and . -normal approximation N. Let
mg be as in (2.1) forls, t]. Then Dy and Hy are absolutely continouous on3,3] and for a.e.
r we have

d d
6.3) 9, D (r) = / ¢’(ﬂ)¥|mv(y)|2 dy
Y r r
-1
6.4) 3, Hy(r) - mTHN(r) — O(mo)Hy (r) + 2En (1),
5
(6.5) IDy(r)—En(r)l < Y |Er?| < Cm' Dy (r)*74 + CmgZn (r),

j=1

5 .
(6.6) |0, Dy (1) = (m=2)r"'Dy(r) =2Gn ()| <2 ) |Brr} |+ CmgDy (1)
j=1

<Cr 'ml'Dn()'* + Cm}* Dy ()48, Dn(r) + CmoDy(r),
where Err;? and Errj. are as in [8, Proposition 9.8, Proposition 9.9].

We omit the proof of Lemma 6.4 here, since it involves a mere repetition of the argu-
ments in the proofs of [15, Proposition 3.5] (see also [8, Proposition 9.5, Proposition 9.10]),
combined with the observation that the constants may be optimized to depend on ap-
propriate powers of my. This is crucial in order to obtain the quantitative BV estimate
of Proposition 6.2. Without such an improvement of the variational estimates one would
merely obtain a constant bound on the total variation on each interval of flattening, which
is insufficient to obtain a convergent series when summing over a string of uninterrupted
intervals of flattening. As a consequence of the estimates in Lemma 6.4, we have the fol-
lowing quantitative almost-monotonicity for the frequency in each interval of flattening.

Corollary 6.5. There existys(m, n,Q) >0 and C(m, n,Q) > 0 such that the following holds.
Suppose that T, Z, 1s,t], 4, N, and my are as in Lemma 6.4. Then 1y is absolutely contin-
uous on | %, r] and for a.e. r we have

Dy ()"

0, In(r) = —C(L+In(r)m}* |1+ +Dn(1)"* 10, Dy(r) |



Singularity degree at flat singular points 37

In addition to the above control on the frequency variations within each interval of flat-
tening, we will also need to control the jumps of the frequency between successive in-
tervals of flattening. In order to establish this, we will require the following intermediate
results.

Lemma 6.6 (Expansion of excess). There exists a dimensional constant C = C(m, n,Q) >0
such that the following holds. Let T, Z be as in Assumption 2.3 and let 4 be a center man-
ifold for T with «( -normal approximation N. Let r €]0,1] and let f : B, (0,7) — <o (1) be
a Lipschitz map with Lip(f) < c. Let ¢, be a parameterizing map for 4 over n. Then we
have

/ Gy~ Mo |</>('p”( )')ducfu(z)—/ %(Df,QIDg,1)* dy
C(0,m) B, (0,1)

< c/ (IDfI*+Dep, | )cp('y')
B, (0,m)

+ C/
C,(0,m)

An important consequence of Lemma 6.6 is the following comparability between the
Dirichlet energy of N at a given scale, with that of Lipschitz approximations over suitable
planes. We will henceforth take y, > 0 to be as in [14]. Note that we may ensure that

YasYo2.

M (p(2) - A (p,(Pr(2))| G/ (2).

Corollary 6.7. There exists a dimensional constant C = C(m, n,Q) > 0 such that the fol-
lowing holds. Let T, X satisfy Assumption 2.3. Let s, t] be an interval of flattening for T
around 0 with corresponding center manifold 4 and ./ -normal approximation N, let
my be as in (2.1) for 1s,t] and let m be the plane used to define ¢ in the center manifold
algorithm of [14]. Let f : B;(0,7) — dQ(nl) be a n-approximation for Ty ; in C4(0,7) ac-
cording to [13] and for 7 = %, let f1 : Bgr, (pr, 1) — ,szfQ(ni) be a 1 -approximation for
To,: corresponding to a Whitney cube L as in [15, Section 2.1 (Stop)]. Let n; be such that
E(To,1,Bg /7m7) = E(To,1, B /7> 07) and let B := By, (pr,mp). Let fr : B#(0,77) — 4 (n;) be
the map reparameterizing gr (f1) as a graph over n; and let ¢, @; be the maps reparame-
terizing gr(¢) as graphs over nz, w1 respectively. Then we have

(6.7) / G(Df,QID@)*¢ (Iyl) dy - / IDNI*¢(d (1)) dy‘
B, (0,7) Bin.#«
sc/ (IDfI*+ Dl dy+Cm(1)+Y2+c/ (IA«|?INI> + | DN|*
B, (0,7) Bin.«
+C / M (p(2)) - («p(pn(z)))\ dlIGyli(2),
C:(0,m)
and
(6.8) / 4 (D fr QIDg:]) </>(|y|) —/ |IDN| </)( (y)) y‘
B (0,77) | e W4
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<C/ (IDf:* +1De;h dy+C/ (IDfil*+|Deg; 1" dy
B;(0,77) BL
+ Cmy VR +c/ (A4 > INI? +|DN|%)
@L

+C / e ~ Al (90, ()| G 1 2.
Cr(0,m7)

We will in addition require the following comparison between the gradients of the pa-
rameterizing maps of consecutive center manifolds in the procedure [15, Section 2.1].

Lemma 6.8. There exists a constant C = C(m, n, Q) > 0 such that the following holds. Sup-
pose that T, Z satisfy Assumption 2.3. Let My._, M be successive center manifolds for T
with respective normal approximations Ni_1, N, associated to the respective intervals of
flattening 1ty tx—11 and 1ti11, til, as defined in Section 2. Assume that E(T,Bg Vit k) =
E(T,Bg /7,,) for some plane n and let @;_, be the map reparametrizing gr(@;._,) as a

graph over . Letting @, == @;_; (%), we have

(6.9) /B |Dg; — D@, * < Cmy)?.
1

and

(6.10) @ —@il* <Cmy .
B

Finally, we will need the following control on the difference between the projection p(z)
to a center manifold .4 of a point z in the multigraph of a given Lipschitz approximation,
and the image under ¢ of the planar projection py, (2):

Lemma 6.9. There exists a constant C = C(m, n, Q) > 0 such that the following holds. Sup-
posethatT, H, my, T, f, f7, m, w7, @; areas in Corollary 6.7. Then we have

6.11) / Vi(p(z» — M (@7 (P, (z)))\ dIGy,lI(2) < CF™ tmy "2,
C7(0,77)

(6.12) /
C,(0,m)

6.2. Proof of Proposition 6.2. We now have all of the relevant tools to prove the frequency
variation estimate (6.1). We start with the preliminary observation that I is absolutely con-
tinuous on each interval ]sg, x[, while it might have jump discontinuities at the points
Sk = lk+1-

First, we control the jumps of I at these points. Letting Dy := Dy, Hi := Hy,, and letting
Di(r) == r~"2D(r), Hp(r) :== r~""VH(r) denote the corresponding scale-invariant
quantities, we claim that we have the estimate

A D2) - M (pPr(2))| dIGs1(2) < Cry' ™.

D () A
(6.13) 1) - 1) = |- l(t’;‘l)—]_)’“(l)
Hk—l(_k) Hy (1)

k-1

<Cm)’ (1+1(1)).
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Rearranging and using the triangle inequality, it suffices to demonstrate that

C a0«
D1 (7] - Di1) ;
(6.14) = <sCmg,
Hj (1) ’
] t 1 1 t
(6.15) Dk_l( k ) - - = sCmo,klk_l(—k)-
fr—1 Hi (%) H; (1) lk-1

Before we proceed, given my such that E(T,Bg vt = E(T,Bg o k) let us introduce the
Lipschitz approximation fj : B3 € 7 — /g (ni) of [13, Theorem 2.4] for Ty, L Bg, 7 and
the map fk_1 =it By, 0,mK) — MQ(JI%) from Corollary 6.7 with 7 = % We
let @,_;, ¢, be as in Lemma 6.8 and let fj := fi_1 (% -). We additionally introduce the
measures duj_;(y) = (pk(t’;—;ld(y)) dy and du(y) := ¢(d(y)) dy, where dy is the m-
dimensional Lebesgue measure on ;. We also define the balls BF1 = By, N M-,
Bk-1.= By, /1., (0,7) and the cylinder ck-1.= Crite(0,7p).

We begin with the estimate (6.14). Comparing both terms with the corresponding lin-
earized quantity (cf. Corollary 6.7) and rescaling appropriately we have

_ ¢ )
Dy (—k) _Dk(l)‘
lk—1

t —(m—2)
tk_

/ IDNj_11* dpsge—1 — / 9G(D fr-1, QIDP;_1)* dpti
ggk—l Bk—l

+

£ \"m=2) _ )
/ IDN|* dp - (—k) / G (D fr-1,QID@;_ * dug—1
BN} 13 Bk-1

k-1
e
l-1

/ IDNg | dp - / %(ka,owmﬂ)zdu’.
BNy B1(0,7g)

Now we may use Lemma 6.8 to replace ¢, with ¢;, yielding

/ IDNy_11* dpg—1 — / G (D fr-1,QID@_* dug-1
%k—l Bk—l

+

_ Ik _
Buc )10
lk-1
te —-(m-2) 5 _ ) )
s(—) / IDNi_ 2 dptge_y — / G(Dfi-1, QD@11 dutgy
Ire—1 Bk-1 Bk-1
2 7 2 I+y2
+/ | D Ny | du—/ G (Dfi, QD@ )" du|+Cmy '~
By .4 By (0,7) '

We are now in a position to make use of Corollary 6.7, combined with the observation
that fi is still a valid 7rx-approximation for Tp ;, in C4(0,7%) as in [13], since fi_jisamr_1-
approximation for Ty ;, , and we have the estimates [14, Proposition 4.1] on the tilting of
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my relative to my_;. This gives

193

—(m=-2)
—) (/ (D fi1l*+ D@1 1M) dy
lk-1 Bk-1

<C

_ t _
Dy_s (—k) ~D(1)
Ik—1

+ / (IDfrl* + 1Dy 1M dy
BLk
+ / (A, I*INk—11* +|DN_1 1Y
BLk
+/k 1)ﬁk_l(p(z))—J?k_l(tp(pnk(zn)) dlIGy, , II(Z))
oh-

+C

Ly B \MT? =4 4
m, 1 + (IDfi!* + |Del™) dy
’ le-1 By (0,7

+ / (1A s *IN|* + DN |
BNy

n / |2 (p(2) - 4 (pa(2)) | dIG/ (2 +m3,+,32).
Cl(O,TEk)

Lemma 6.9 thus yields
_ tk _ tk _(m_z) 4 5 4
Dk—l(_)_Dk(l) SC(—) ( (D fe-11" + ID@j_, ") dy
lk—1 Tk Bk-1

+ / (IDfi "+ Dy ) dy
BLk

+ / (|Aﬂk1|2|Nk_1|2+|DNk_1|4))
BLi

3

t s

+C@%Xitli)+/m (IDfl* + D" dy
’ le-1 B1(0,7p)

+/‘ (mﬂﬂNFHDNm+mﬁﬁ)
BNy '

We may now control the initial excess my —; of Ty ;,_, in terms of the excess E(To ;,_,,Br,),
which is in turn controlled by the initial excess m i of Tg ;, :
t )2—252

(6.16) my -1 (_
lk—1

This, in combination with the estimates [13, Theorem 2.4] and [14, Theorem 1.17, Theo-
rem 2.4, Corollary 2.5] allows us to conclude that

< Cmoyk.

_ t _
Dy, (—’“) —Di(1)
I

1+)/2

sCmOk .

Since the comparison of center manifolds [14, Proposition 3.7] gives Hi(1) = cmy  for
some dimensional constant ¢ > 0, the estimate (6.14) follows.
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Let us now prove (6.15). First of all, observe that
1 1

_ Ix _ T (%)
D’H(rk_l) A () He(D
e (7]

- H(D)
To estimate the difference between the L?-heights, we may one again compare both with
the height of the corresponding Lipschitz approximations over the averages of their sheets:

_ Ik
Hy (1) —Hg—q (m) .

_ t _
‘Hk_l (—’“) ~H(1)
lk-1

-(m-1)
t
T—1

, fe \~0mD i ,
/ | N d,u—(—) / G (fr-1, Ql@j_1 D" dug-1
BN ) Bk-1

k-1
)
Tk—1

/ | N l? du—/ Y (fr, QL) du'-
Blﬂ./ﬂk B,

Now let &;_1, & be as in Lemma 4.4 for ¢,._;, fi_1 and ¢, fx respectively and let AF~1 :=
B*1\1B*1, A¥:= Bi(0,m) \ By/2(0, 7). The reverse triangle inequality and the esti-
mate (4.5) (combined with an appropriate rescaling) then allow us to deduce that

/ | N1 1P d,uk—l—/ G (fi-1, QP i1 D* dpg—1
Bk-1 Bk-1

+

/ | Ng-1l? dﬂk—l_/ G (fi—1, QIpy_11D* dpte
Bk-1 Bk-1

+

¢ —(m-1)
< C(_k) / G(Ne-1 (@1 (1), 81 (1) dy
tk—l Ak-1

_ t _
‘Hk_l (—k) —H (1)
Ire—1

+ / kee(Nk(wk(y)),gk(y))z dy
A
e

[e-1
The estimates in [14, Theorem 1.17, Proposition 3.4] then give

5
<C( ) (ID@y_1 126 + 1 Dy 126 mo k1) + CI Dl

_ Ik _
‘Hk—l (t_) —Hi (1)

2
< Cmo,k-
k-1

Again using that Hy(1) = cmy k., we further have
o (%)
H (1)

The desired estimate follows immediately, and thus we are able to conclude that (6.13)
holds.

_ t
<Cmy I (t_k)
k-1

From (6.13) we immediately conclude

(6.17) Y (og(5;) +1) —log(ty) +1)-<CY m]".
k k
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Indeed, ifI(t;Cr) >1(t;), then (log(I(t;) +1) —log(I(z;) + 1)) = 0, otherwise we have
1(60) - 1)

(log(£]) +1) —log((£;) + 1)) =log(I(s;) + 1) —log(X(£;) +1) < ——
1(6f) +1

and we can just sum (6.13) recalling that y, = y4 and m < 1.

dlog(I+1)
dar

ploit the almost-monotonicity in Corollary 6.5. We argue on each interval | sy, ;[ and will
henceforth let 0, denote differentiation in the variable t—tk Note that 0, = £;.0;. Due to
Corollary 6.5, for almost-every ¢ €] s, ;] we have

1+I’“(t1))_1

C AR AYE e\t (e

>——m' 1+( Dk( ) +Dk(—) DQC(—) :
Ik lk Ik Ik Ik

We are now ready to introduce a monotone function Q which will help us close the esti-

mate. First of all we let v (1) == t—img“kl] sp,1;1 (D) and let the absolutely continuous part of

the derivative of Q be
AL e\l
1+ Dy | — +Dy|— Dk —1|-
I Ik Iy Ik

Next we consider the “jump measure”

J
p=c) mz)/fk&k.
k= jo
Hence we set Q(s;) = 0 and define Q by integration, setting its distributional deritative to
be i/ + Q' £'. Observe that Q is monotone: u/ is obviously a nonnegative measure, while
Q' is a nonnegative function since both Dy and D). are nonnegative (recall the explicit
formula for the latter). On the other hand the estimates proved so far obviously show that
log(I+1) + Q is nondecreasing. In particular it immediately follows that

We next wish to control the absolutely continuous part of . Here, we ex-

, 1 A
(log(+ 1)) (r) = —0,I% (—
Ik I

Ok

Q'(1):= Zwk(r)
k=jo

“ dlog(l+1) ' [dQ Q) - O(s))
dar - Jo J
173
<C Z mg4k+ Q) (1) dr
k=jo k=jo Sk

J 1
<C) mpi+C Z m) / (14771 1+ 6,(Dy(5)") +5) ds

k= jo k= jo T
J J- 1 J
7a 7s Yam Y4 74
sCZmoyk+CZmo'k(s+s +Dy()7) SkSCZmOyk.
k=jo k=jo $=70 k=jo

6.3. Proofs of auxiliary results from Section 6.1.
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Proof of Lemma 6.6. We will argue asin [12, Section 3.1], making use of the multiple-valued

area formula. Consider
- 1pr(2)]
E::/ |Gf_-/% p! (l)( Prl2 )dllell(Z)
C,(0,m)

=2/ ¢(p”(”)')dncf||(p) / (G,
C,(0,7) r C,(0,m)

By the Q-valued area formula [12, Corollary 1.11], we have
(z
2/ cp('p” )')dnG I(2)=2Q ¢>(m)d
C,(0,m) r B.om \T
%)
¥ / (|Df|¢('p”y ') O(IDf|4)) dy.
B, (0,m)

is the unitary simple m-frame orienting .4, we have E=(e1+

Meanwhile, for g’ such that i
D@lp,.y,f.p€1) A (em + Dly. 1) €m) and 1/,’c = ex+Dfilyer, w,lC = ex+D@lp. .1, €k

ﬂopw('p”f”) dIGsl(2).

we have

C,(0,m)
:2/ (Gf(2), M (ppr(z )))>¢(
C,(0,7)

+2 / (Gr(2), (ﬂ(p(z))— L(p(pr(z ))))>¢(
C(0,m)

>¢>('p”( )') dIG/ (2

|pn(p)|) 416412

IPx(z )|) 216,12

_ 2 (
<1 J B, 0,1

m)Z(vl/\---/\vm,wl/\---/\ W) dy
+2 / (G(2), (A (p(2) - A (92 ))))><p(
C,(0,m)

;
IPx(z )|) 4164162

2 (Iyl)
=— det B’ dy
<1 JB,0m \ T Z

(2)
+2/ (Gf(Z) (/%(p(z))— (‘P(Pn(z))))W(lp” l) dlIGrli(2),
C;(0,m)
where Bi = 5]k +(Dfilyej, D@lp. .1y ex)- Expanding out the first term, we have

|_<$| detB’ = (1 - l|qu|2 + O(ID(p|4)) (1+Df;: Dp+O(DfI*IDel?).

Thus, we have

g= [ ipreo( %) ayre [ 1efe(%) ay-2% [ w:peio( %) ay

+o(/ (|Df|4+|D<p|4+|Df|2|D<p|2)
B, (0,7)

|yl
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+0 ( /
C,(0,m)

=/ %(Df,QHD(Pﬂ)ZCP(lyl) dy+ O(/ (IDfI*+ |D(P|4)
B (0,7) By (0,m)

-
+0 ( /
C-(0,7)

Proof of Corollary 6.7. 1t suffices to prove (6.8), since the argument for (6.7) is analogous
(in fact it is easier since one does not need to reparameterize the graphical approximation
from the cube L to the plane 7). Let us begin with the corresponding estimate for f;.
Letting F be as in [12, Assumption 3.1] for the normal approximation N and letting cl.=
Cszr, (pr, 1) and RBL .= Bear, (pr) N, we have

(6@, (A @) - A (pmai2)))) dntu(z))

M D(2) - M (9 (2)) d||Gf||(z)).

O

/L|éfL_-//i°P|2d||GfL||g/L|T—./%ZOP|2d||T||+C||T—Gf||(CL)
C C

s/ Tp— 4 opl* dITpl +CIT -Gy, lI(CH
p~ (%Y

+CIT-Trll(p (B \ ),

where £ < ./ is the set over which T (in fact the slices (T, p, p)) coincides with T (i.e. the
corresponding slices (Tg, p, p), which in fact are the currents }_; [F;(p)] =X ;[p + Ni(p)]).
Applying (a localized version of) [12, Proposition 3.4], we have

/L|éfL—%’op|2d||Gan s/L|DN|2dy+C||T—GfL||(CL)+C||T—TF||(p‘1(%L\J))
C B

+c/ (A4 *INI*+|DNI%).
%L

Let us now control | T -Gy, [l and || T —Tr|. To do this, we make use of the estimates in [13,
Theorem 2.4] and [14], combined with a Vitali covering of 2" \ .# by Whitney regions
(L)) and the height bound in [14, Proposition 4.1], to deduce that

/ Gy, — A opl” dlIGy, |l < / IDN*dy + Cm(l)+Y1£(L)m+2+y1
CL BLF‘I./%

+ (Jin(l)mf(L)”“z+72 +C/ L(IA,%|2|N|2 +|DN|Y.
B

It remains to replace f; with f7 inside B7(0,77), but this is trivial since Gy, = G, L
C7(0,77). Combining this with the fact that sptG £, NC7(0,77) < sptGf. N Cl and Lemma 6.6,
the result follows. O

Proof of Lemma 6.8. Letn € C°(By; [0,1]) be a cutoff with n = 1 on B;. Integrating by parts
and using the estimates in [14, Theorem 1.17], we have

D@, —D@.I>< | |D@.—D@.I*n
Bl BZ
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(@ —PINA(@— @) —/ Dn- (@i — @)D — @)
B, B>\B,;

1
<C(m0k+ m(l)/,f 1)/ @) — Pl

In particular, taking into account (6.16), it suffices to prove (6.10). To that end, consider
a Lipschitz approximation fi : B3(0, ) — «o(R") as in [13, Theorem 2.4] for the current
To,1, in the cylinder C12(0, ), where the excess is bounded by Cm ;.. We claim that

(6.18) lp—mo fil <Cmy,
By

(6.19) P —no fil <Cmgy,
B

and obviously (6.10) will follow from the latter.
First of all we observe that, since the tilt between the planes 7} and 7j_; is controlled by
m(l)/ ]f due to [14, Proposition 4.1], all the estimates of [13, Theorem 2.4] apply to the map

fk : Bs5/2(0,7mk—1) which parametrizes graphically Gy, in the cylinder Cs/»(0, ;). Setting
Pri=@;_, (%-), (6.19) will actually follow from

(6.20) / @) — Mo frl <Cmyg
B>(0,7x-1)

combined with [14, Lemma 5.6, Lemma B.1].
The argument leading to (6.20) is entirely analogous to the one leading to (6.18), with
the only difference that instead of a control with my, ;. it leads to a control with

2-26>
k
B

k-1
However the latter is once again controlled by Cmy, ; because of (6.16).

We now come to the proof of (6.18). We recall the algorithm leading to the construction
of . In particular, B; is covered by the union of contact set I' and the Whitney cubes
Le W described in [14, Section 1]. We discard the cubes which are not intersecting B, and
denote the family of remaining ones by #'. Since the sidelength of each such cube is at
most 27N we can assume that each cube L € # is fully contained within B3(0, 7), where
fx is defined. We can then estimate

(6.21) |‘Pk_71°fk|</ lpr—mo fil + ) /|(Pk_7lofk|-
B I'nB, Lew'JL

mo'k+(

Before coming to the estimates of each integrand in the above sums, we record the follow-
ing important consequence of [13, Theorem 2.4] and [14, Theorem 1.17]:

(6.22) =m0 fillco < Cmy .,

fory = min{ﬁ,yl}, where y; > 0 is as in [13, Theorem 2.4]. We moreover let K  B3(0, )
be the set of [13, Theorem 2.4] for fi, namely the set over which, loosely speaking, the
graph of f}. coincides with the current Tg ;, .
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In order to estimate the first integrand in the sum on the right-hand side of (6.21), ob-
serve that the identity

To,;,L(T x 713) = QIGg, |
follows from [14, Corollary 2.2]. In particular ¢; = no f; onI'n K and so we can estimate

(6.23) / lp—mo fil <IBs\ K|l —no fillco < Cm(l),fy-
l“nt

As for the remaining summands in the right hand side of (6.21), we introduce the plane
of reference n; of [14, Definition 1.14], the n;-approximation f; of Lemma [14, Lemma
1.15], and the tilted interpolating function h; and the interpolating function g; of [14,
Definition 1.16]. We start by appealing to [14, Proposition 4.4(v)& Theorem 1.17(ii)] to
estimate

(6.24) / Qi — 8Ll < Cmg  L(L)"3F213
L

Next, let f; and (go f;)' be the functions defined on L and taking values, respectively, on
ol (n7) and 7y, whose graphs coincide with the graphs of f; and fo f on L x ;.. We first
use [14, Lemma B.1(b)] to estimate

(6.25) /|gL—(17°fL)/|<C/ lhr — 7o fil,
L Bz\/m[(L)(pLy”L)
where py is the center of L, while by [14, Proposition 5.2], we have
(6.26) / |y — 1o fil < Cmg (1) 34P2,
Bz\/ﬁ[[]_) (pL,7r)
In addition, [14, Lemma 5.6] gives us the estimate
6.27) / (Mo fr) =mo (fI < Cmg (L) 3F212,
L
Putting (6.24), (6.25), (6.26), and (6.27) together we then reach
(6.28) /Itpk—no (fDI < Cmg (L) 347,
L

for some y > 0. Next, observe that by [14, Lemma 1.15] there is a set K i c L such that in
K; x ni, the current T coincides with the graph of f; and such that

(6.29) IL\K}| < Cm, " e(n)™
It thus turns out that f] and fi coincide over K; N K. In particular we can estimate
(6.30) /lnofL’—nofkl < CUL\K|+|L\K}hm]' < Cmy 2" o)™,

. ) )

which combined with (6.28) gives

(6.31) /L @1 =10 fil < Cmo k(L) + Cm 7 0 ()™
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Since the collection # consists of disjoint cubes contained in B3, we can sum (6.31) over
Le ¥ toreach

(6.32) ) / @i =m0 fil < Cmg+Cmy 2" < Cmg .
Lew'J L ’
Clearly, (6.21), (6.23), and (6.32) imply (6.18) and thus complete the proof. O

Proof of Lemma 6.9. We begin with the estimate (6.11). Due to the fact that [|@;llc <

Cm{/? and the estimates in [13, Theorem 2.4], we have

/Cf(O,ﬂf)

M (p(2)) —Jzﬁ?((pf(pnf(z)))\ dIG/l(z) < Cmy'® / Ip—@;opg, | dIGyl
C7(0,77)

< Cm(l)/z/ | IP—@;opx | dITI
K

an
-m+1 1+}/1
+Cr" " my
Now by the definition of the scale 7, we may use the height bound [14, Corollary 2.2], the
estimates in [14, Proposition 4.1] and to deduce that

/ Ip—@;opx|dlT] s/ Ip(2) — z| Al Tll(2)
Kxnjf- Kanf'

+/ |z—@;opy; (2)|dITI(2)
Kxmt

< Cfm+1+’62 m(1)/2+1/2m'

This gives the claimed estimate (6.11). The estimate (6.12) follows analogously, only at
unit scale and via the cover of B; with Whitney cubes of " and the coincidence region T,
asin [15, Section 4]. O

6.4. Frequency jumps. While this completes the proof of the desired BV bound, we wish
to isolate one more general version of the estimates on the “jumps” of the frequency func-
tion at the endpoint scales 7;, only this time, we want to compare the frequency functions
at comparable scales, relative to two center manifolds with different centers. This will
prove crucial in our subsequent work [9]. It follows directly from the above arguments,
after observing that we are just using the presence of a “stopping cube” in one of the two
center manifolds construction, at the desired scale, which is not “too small”, together with
the fact that at all larger scales there are no stopping cubes which are too large. We are in
addition using the fact that all constants in the estimates on the center manifold and the
associated normal approximation are independent of the center point of the construction
(cf. [29]).

Lemma 6.10. Consider T and Z as in Assumption 2.1, let z and w be such that (T, z) =
O(T, w) = Q and let r < ro, 11 be three positive numbers such that:
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@) Ty, falls under the Assumptions of [14, Theorem 1.17] and ¢ : [-4,4]" > mp — JI’(J)‘
is the graphical map describing the center manifold ./ constructed in that theorem
applied to Ty .

(b) Ty,r, falls under the Assumptions of [14, Theorem 1.17] and ¢, : [-4,4]" > 11 — nf
is the graphical map describing the center manifold ./, constructed in that theorem
applied to T, .

(c) For the families of Whitney cubes #y and %, of (14, Definition 1.10] used in the
construction of the respective center manifolds, we have

(6.33) ((D<csp  Vpe

r
_’4
o

VLe Wy s.t. LN B, (0,7m9) # @

(6.34) l(L)<csp Vpe

r
—,4
n

VLE W s.t. LN B,(0,711) £ B,

where c; is the geometric constant of [15, Section 2].
Define
Cs:=max{l(L): Le #y and LN By, (0,70) # @}
and let Ny and Ny be the graphical approximations of T, ;, on My and T, ,, on 4 respec-

tively. Consider the points x1 = (0,1 (0)) € 4y and xo = (p,,,(r; ' (w = 2)), ¢, (ry (W - 2))) €
M. Then we have (cf. (6.13)) the estimate

TNy (X0, 7o ' 1)) = Iy, Cey, 7y P ) < Cmml? (1 + Iy, (30, 19 1)),

where the constant C depends on m, n, i, Q, and c;.

7. PROOF OF THEOREM 2.9: THE CASE I(7,0) > 1

The goal of this section is to prove that the singular frequency value is unique when
I(T,0) > 1. The proof will also show that the tangent cone is then a unique flat plane and
that the rescaled currents converge polynomially fast to it. In particular this section will
settle Theorem 2.10(iv), but also Theorem 2.10(i), (ii) & (iii) when I(7,0) > 1.

Proposition 7.1. Let T be as in Theorem 2.9. Then the conclusions (i) -(iv) of Theorem 2.10
hold whenever1(T,0) > 1.

In fact, since it will be useful in our further studies in the papers [9] and [10] we record
a consequence of our analysis which is more quantitative.

Proposition 7.2. Let T be as in Theorem 2.9. For every Iy > 1 there are positive constants
C(m,n,Q) and a(ly, m,n,Q) with the following property. If 0 is a flat singular point at
which I(T,0) = Iy, then there is a radius ry = ro(T) > 0 (which also implicitly depends on
the center point, which we are here assuming is the origin) such that

r\® -2 2-20,
(7.1) E(T,B,) <C|—| max{E(T,B,)),& T } Vr<ry.

To
Moreover, we can choose « to be any number which satisfies the inequalities a < 2—26, and
a < 2(I(T,0) — 1), at the price of a constant C which depends also upon a.
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Before coming to the proof of the proposition we state the following technical fact which
will prove to be very useful.

Lemma 7.3. Let T be as in Theorem 2.9. If there are infinitely many intervals of flattening,
then
H,?_‘,gle(T’BG\/ﬁtk) =0

and hence
liminfmg =0
k—o0

Proof. The second conclusion is an obvious consequence of the first. In order to prove the
first take a sequence r; such that r; — 0 and E(7, Bg \/ﬁr,’) — 0. Then r; belongs to some
interval of flattening ] sg(j), fx(j)]. We claim that

(7.2) lim E(7, Bg ;) = 0,

j—oo
which clearly would imply sij) = tx(j)+1 and hence the conclusion of the lemma.
Up to extraction of a further subsequence, we distinguish two cases:

. Sk(i .
i If % — 0, since
J

2-26
Sk(j) )
mO,k(j) SC(_T" €3,

E(T,Bg, /sy ;) < C(_]
J

k()
we conclude immediately that (7.2) holds.
(ii) If inf; S';—(]” =0 > 0, we then estimate
E(T»Bs\/ﬁsk(ﬁ) <o "E(T, Bﬁm,j)

and again (7.2) follows immediately.
O

We will also need the following two facts about Dir-minimizing functions. For the first
one we refer to [11], while the second is a well-known fact about classical harmonic func-
tions and can be proved, for instance, using the expansion into spherical harmonics.

Lemma 7.4. Ifu:R" > B; — #(R") is a Dir-minimizing function with I,,(0) = Iy, then

(7.3) |Dul? < p™*2h=2 [ |Dul* Vp<]l.

B, By
Lemma7.5. Ifw:R" > B; — R" is a classical harmonic function, then
(7.4) |IDw-Dw(0)*<p™? | |Dw?® Vp<l.

B, B

In other words, after subtracting an optimal affine map, the frequency (at zero scale) of
a classical harmonic map must be at least two. In particular, we can draw the following
simple corollary.
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Corollary 7.6. Let u:R"™ > By — o/o(R") be Dir-minimizing. Then

B, By
Proof of Proposition 7.1 and Proposition 7.2. From now on we assume that I(7,0) > 1. The
main point will be to show the following decay property:

(Dec) There are € = ¢(T) €]0, &3], @ = a(ly, m, n,Q) >0 and x € N such that, if
E(T,Bg /) <€

and k = «, then:
(a) The intervals of flattening sk, txl,18k+1, Tk+1], - -5 ISk Tiax] satisfy sgij1 =
frejfor j=1,...,x.

a
N
(b) mo ke < (%) mo.

Before coming to the proof of (Dec), observe that thanks to Lemma 7.3, there is at least
one integer ky € N such that

2
E(T’BG\/WtkO) <&,
and since it can be iterated, we may use (Dec) to conclude that

Tko+ jx a ko + jx
0+] M i, < Eg 0+J
Tk Ik,

On the other hand, when we have intervals of flattening with coinciding endpoints s; =
tr+1, We can iterate the estimate

a
mo'k0+]’K<( ) VjEN.

lk+1 2720,
Mg ji1 < C( . ) mo < Cmyg,
for C = C(m, n,Q) > 0, to conclude that indeed
I a
(7.6) moykﬁc — Vk=ky.
Tk
We then also recall
r 2-205
E(TyBr)SC(t_) mo,k VrE[tk+1, tk]
k

Combined with (7.6), we infer the conclusion of Proposition 7.2 with ry = f,, which im-
plies immediately the uniqueness of the tangent cone and the polynomial convergence of
the rescalings (i.e. point (iv) of Theorem 2.10).

Note moreover that, from (7.6), the fact that #; | 0 at least geometrically fast and the
frequency BV estimate of the previous section, we conclude the existence of the limit

Iy =limI(r),
rlo

where Iis the universal frequency function. This immediately implies that every fine blow-
up is Ip-homogeneous, which in turn gives all the other conclusions of the proposition.

It therefore remains to show (Dec). First of all we choose a < min2{I(7,0) — 1,1 — 6>}.
The choice of x will be more complicated, while those of ky and ¢ are subordinate to x. We
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therefore fix x at the moment, without specifying its choice, and treat it as a constant in
order to obtain the choice of ky and €. We start by showing that the first point (a) of (Dec)
holds and to this effect we impose that ky is sufficiently large so that

(7.7) B P < e,
Next we recall that

=2 .2-28- 2

s 2-20,
) my . < Cmy . = Cmax{¢ I €2} < Ce?,

E(T, B /7,,) < C(t_k
k

for each k = ky, where C is a geometric constant, independent of €. In particular, if we
choose ¢ sufficiently small, we conclude that E(T, Bg_ /7, ) < €2, which in turn forces t;4; =
sx. Observe also that my 1 < Cmy , where the latter is the same constant of the previous
estimate. In particular, as long as fy4i+1 = Sk+; for i € {0,..., j}, we get E(T, B /s, ;) <
C/my . Since this must be repeated x times, under the assumption that CX0e? < £§, we
get by induction that #y j11 = Sg4j and myy j41 < Cmyyj < Cj“moyk.

We next show the second point (b) of (Dec). First of all we observe that it suffices to
show
(7.8) E(T, Bs. /s, ) < (s’“;‘l

a
) m()yk.

-28,

In fact, if my ;. = g2 ti , since 2 — 265 > a, we then have

a
= 22 2-262 Sk+x-1| -2 ,2-26,
o = MAX(ECT, By, )1E5122%) | L2 6]

a
| Sk+x-1
=7 myy-

Ik
But if mo i = E(T,Bg, /74, ), then E(T, Bg, /7,,) = £ ti_z’sz and hence again

a a
=2 2-28, Sk+x—1 Sk+x—1
E°Si S (t—k E(T,Bg, /1) < ~ My -

Towards (7.8), we first argue as for the proof of point (i) of Theorem 2.10 to estimate
Sk+1<—1)2_262
Ik

Since x and C are fixed and 2 — 24, > a, then clearly (7.8) follows if s";—z*l is sufficiently
small. We are thus left to prove (7.8) under the addititional assumption that

my .

’

(7.9) E(T, By s, ) < c"(

Sk+x—1
Ik
where py is a fixed constant which depends on x. Next, recall that i—’; < 27° by [15, Propo-

(7.10)

=pr>0,

sition 2.2]. We therefore infer that si,,_1 < 27°%#;. In fact x will be chosen large enough

so that the ratio S’“;—Z‘l is sufficiently small, a condition which we specify here by

S _
(7.11) el <o
Ik
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The claim is now that, for an appropriate choice of p, (which in turn fixes the choice of ¥
and of py), once € and k, Lare sufficiently small, then (7.8) holds. Towards this we argue by
contradiction and assume that, no matter how small we choose € and how large we choose
ko (satisfying (7.7)), there is always a choice of k = ky for which (7.8) fails. This implies the
existence of a sequence f; | 0 with the property that

S _ a
(7.12) morl0  and E(T,BGMSM_lp(%) m i,
k
while
S _
(7.13) pr < ’C:“ L <pou
k

We now choose the radius ry so that 8Mry = 6/mt;, where M is the constant of (3.1). We
will assume that « is large enough so that ry = si.x—1. Observe that we can now apply
Proposition 4.1 and generate the coarse blow-up f : By, — A along the scales ry, which is
Dir-minimizing. In light of the comparability of the scales r; and si.«-1, the average-free
part v of f is, up to a positive scalar multiple, a fine blow-up u, and we thus infer that
I,(0) = I,(0) = I(T,0). We can then apply Corollary 7.6 to infer that

1 = z 2 02 1 212
U—m/Bacg(Df,QuD(nof(O))) sc(ﬁ) W/BMlDf' .

We can now use the Taylor expansion of the excess in [12] to infer that, for all o € [py, py],
E(T,Bg, /mo1r,) < 8" o> E(T, Bg /) + CE(T, Bg /iy, + tl%Az)lﬂ’_

Since At,zC is controlled by m, i, we easily conclude that, once we choose p, small enough
so that 8™ p2% < % py and choose k large enough so that

1y 1
C(B(T, By, + 1;AD) " < Cmy [ < 5,o;‘mo,k,
we achieve

-a
max o "E(T,B )< myg
[p[SU’Spu] 6vmoty y

for all k sufficiently large. However this is in contradiction with (7.12) and (7.11).

Observe that the threshold € in (Dec) may be made independent of T (and the cen-
ter point, which it also implicitly depends on). This may be done by replacing the above
contradiction compactness argument with one in which a sequence of currents Ty and
varying centers xj are taken. However, in order to do this one must also verify that the
conclusion of Proposition 4.1 holds for “diagonal” coarse and fine blow-ups taken along
such a varying sequence of currents and centers. This is indeed true, but we omit the
details here, since this is unnecessary for the remainder of our arguments. U

8. PROOF OF THEOREM 2.9: THE CASE I(7,0) =1

In this section we complete the proof of Theorem 2.9 by handling the case I(7,0) = 1.
We will moreover complete the proof of the points (i), (i), and (iii) in Theorem 2.10.
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Proposition 8.1. Let T be as in Theorem 2.9. Then the conclusions (i), (ii) &(iii) of Theorem
2.10 hold whenever1(T,0) = 1.

A key ingredient in the proof is a decay lemma which is a refinement of the one used in
the proof of Proposition 7.1:

Lemma 8.2. Let T be as in Theorem 2.9. For everyy > 0 and everyn > 0 there are € >0 and
p > 0 with the following property. Assume]a, b] is an interval of radii such that

(@ 0<a<b<p;
(b) E(T,Bemr) Se¢foralla<r<b;
(© I(r)y=1+yforalla<r<b.

Consider the intervals of flattening 1sg., 5, i, ;U1 Sp, 5, tpy 511U . Ulsg, Iz] covering]a, b]
with the property that t,—cﬂr = Spajorr e Ity = S; are contained in]a, b]. Then

J
Ya
(8.1) l-zzl’"ofm <n.

Proof. Observe that my +; < €2 for i > 1 just by assumption. Since by assumption we know
that m ;. < &2, it suffices to prove the decay of (Dec) as long as k +x < k+ j — L where L
is a fixed natural number. In the argument by contradiction leading to the proof of (Dec)
we are thus also allowed to assume that L gets arbitrarily large, which in turn means that
;—’; tends to infinity (where ]ay, by] are corresponding intervals as above). In particular,
notice that in the argument given for (Dec) the key point was to infer that the average-free
part of the coarse blow-up v has I,(0) = I,,(0) for some fine blow-up u while 7,,(0) > 1. In
our situation the bound I,(0) = I(T,0) just gives I,,(0) = 1. On the other hand, using the
fact that ‘;—,’: — 0 and our assumption that I(r) = 1 +y for all r €]ay, tx], we can use the
convergence of the frequency function to conclude

I,(p)= lim I(pry) =1+7y
k—o0

for an arbitrary positive p. This in turn gives I,,(0) =1+ 7. U

Proof of Proposition 8.1. As we have already argued at the start of the proof of Proposition
7.1, the key is in fact to prove the second part of Theorem 2.10(iii). We thus assume that
there is some other blow-up sequence r; — 0 with the property that I(rx) — 1+ 2y for
some y > 0. Our aim is then to show that this leads to a contradiction. We apply Lemma
8.2 from the previous section with some parameter 1 > 0 which will be chosen later. Fix
the corresponding € > 0 and p > 0 given by Lemma 8.2 and consider the set

R :={r€l0,pl: E(T,Bg /) <& and I'(r)=1+y},

(since the universal frequency function has jumps, at the jump points we let I (r) be the
right-hand limit). We might later need to choose ¢ even smaller than that prescribed by
Lemma 8.2; the only property needed is that the conclusion of the Lemma still applies.
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Observe that Z cannot contain a neighborhood of the origin, otherwise we would have
I(r) = 1+ for all r sufficiently small, which in turn would imply that, if « is any fine blow-
up, then

ILp)=1+y Vp>0.
This shows that I,,(0) = 1+ for every fine blow-up, in turn implying that I(7,0) = 1+7. On
the other hand £ must have 0 as an accumulation point, namely £ consists of countably
many disjoint intervals, which might or might not include any of their endpoints. We
enumerate these intervals in order of decreasing scales, and for each one we consider its
interior |ay, bi[. Note that ry €]ay), b for all ¢ sufficiently large, due to the nature of
our chosen sequence of blow-up scales.

Now notice that the intervals ] ag, by [ are contained within the full collection of intervals
offlattening s, ¢;] (with the excess threshold ). Thus, we can find a sequence of radii g >
by approaching by asymptotically, with 1bg, px]NZ = @, such that one of the following two
possibilities holds:

(a) there are pi €]by, pr] with E(T,Bg Jp k) > £2 for infinitely many k;
(b) for infinitely many k the inequalities E(T, Bg \/ﬁr) <eandIl(r) <1+ Y hold for all r
in the interval | by, px].

We first argue that, if € is chosen sufficiently small, (a) cannot happen. We argue by con-
tradiction; if this is not true, a subsequence of Ty 5, (and thus of Tp 5, ), not relabeled, must
be converging to a cone which is not flat. We denote it by C. Repeat now the procedure
above for each € = % and assume that for each we find a corresponding sequence by, j, with
the property that Ty, ; is converging to a non-flat cone C;. Letting sy, j), te(k,j)] denote
the interval of flattening containing by, ;, clearly we first have

Se(k,j)

lim

=c(j)>0 VjeN,
k—oo tg(k,j)

for some constant c(j) which depends only on C, and 6§, of the excess stopping condition
in the center manifold construction (cf. [14]) and on € = %, just using that

=2

r 2-20>
) £ Vr E]Sk,j,tk)j[

E(T,B,) < CC, (—
k,j

while by, ; €]si, j, I, ;] and
E(T,By, ) > g? .
On the other hand because of the convergence of To,4 ; to the cone C; we have
. E(T,By )
lim ———— =
k—co E(T, By, )
In turn this implies, again because of the excess stopping condition in the center manifold
construction, that

Se(k, j)

liminf =c>0

k—oo l'g(k,j)
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for a constant ¢ which this time is independent of j. In particular for any sequence k(j) 1
oo which explodes sufficiently fast we have

lim LD = LS 0.
j=oo k() 2
We can therefore apply Proposition 4.1 to any such by, ; and infer that the corresponding
fine and average-free part of the coarse blow-ups coincide.
We now argue that at least one such coarse blow-up has to be 1-homogeneous. First of

all, for each k and j we denote by f ; the Lipschitz approximation of the current To p, ;
_ 1
given by [13, Theorem 2.4] and by f}, ; its normalization fi, ;/E; I where

E,j = E(To,p ;»Be,/m)

as in Section 3.1.
Observe next that by our definition of the endpoints by, j, for each fixed j we have

k—
Eyj — E(Cj,Bg /m) = €.

For every fixed j we then conclude that the sequence of maps {f. jlk are equi-Lipschitz
and we can assume they converge uniformly to some map fj, up to subsequence (not re-
labeled). Moreover, this map is actually the limit of f;. i=ifej= 6‘]_.1 f«,j- Recall however
that fi, j has a uniform W2 bound, which is independent of both k and j (unlike f;. J»
where it clearly depends on j). This bound is thus valid for f] too and we can assume it
converges, up to subsequences, strongly in L? to some W2 map f. By taking a suitable
diagonal sequence, and noting that C'E k,j < E(T, bk‘j,Bg M) < CEy j, the latter can be as-
sumed to be (up to a scalar multiple A > 0) the coarse blow-up generated by the sequence
bij,j-

Now [13, Theorem 2.4] guarantees the existence of a compact set Kj, j € By over which
the graph of fi, ; coincides with the current T, ; and enjoying the estimate | By \ K, j| <
Cj_z(”ﬁ) for some constants C and f. Recall that in Ky, j x noi the supports of To,bk,j |_§5\/m
converge in Hausdorff distance to the support of C;LBs /.

Denote by A;‘ the “anisotropic rescaling map” which maps (x, y) € mo x né into (x, jy)),
where we assume that 7 is the plane over which we are considering the graphical approxi-
mations f, ; of Tp, b, (up to arotation we can indeed assume that the plane is a given fixed
one). Now, Gfk'jLKk,j X n(J)' = (A?)ﬁTo,bkijKk,j X JT(J)‘. On the other hand, for each fixed j,
the currents ()L;?)ﬁ To, by, ; converge to the current (A?)ﬂC ; (the convergence is in the sense of
currents, but it also implies the local Hausdorff convergence of the supports in Ky, ; x né,
given that j is fixed). Let K; be the Hausdorff limit as k — oo of the compact sets K, ;. By
the uniform convergence of the functions f, jto f] (as k — oo, with j fixed) it is easy to see
that ijLKj X JI(J)‘ = (A?)quLKj X T[(J)‘.

Next, observe that (}L;‘)ﬁC j is still a cone. Thus f] coincides with a 1-homogeneous func-
tion over K. Observe also that |K;| = limsup; |Ky ;| and therefore |B; \ Kj| < Cj~20%P),
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Since |B; \ Kj| | 0 it is easy to conclude that f , which is the L? limit of fj, must in fact be
1-homogeneous.

Having concluded that the coarse blow up f is 1-homogeneous, we immediately infer
that the average-free part is 1-homogeneous as well, which means that the fine blow-up is
too. This however would be incompatible with the fact that I” (byj),;) =1 +7.

We thus fix now a choice of ¢ sufficiently small which forces the alternative (b). Recall
that the frequency BV bound gives that [I” (b;) —I* (by)| < Ce”*, which, combined with the
fact that I* (bg) < 1+ in turn implies that

_ 3
(8.2) I'(bp) <1+ z)/,

once we take € small enough. We now wish to show that H [%] can be made

- ”TV(] ar,biD
arbitrarily small, by choosing 1 and € correspondingly small and k sufficiently large. This

would imply that I has to be below 1 + %y on all lay, br[ with k sufficiently large, thereby
concluding the proof (since all but finitely many elements of the initial blow-up sequence
rt, on which I(rg) — 1 + 2y, must in fact be contained in #, while we just showed that in
a neighborhood of 0 relative to Z the value of the universal frequency function is strictly
below 1 +2y). Let]sx), £jx)] be the interval of flattening containing by. Using Lemma 8.2
and the BV estimate of Proposition 6.2, we already have that the desired estimate

dl :
[— 7 lij(k) > ay.,

ar | -lltvaag,s;D
provided that ¢ is again chosen sufficiently small. Note that, even though the estimate
is for log(I + 1), we know apriori that I is bounded, so we can invert the log and get a an

estimate for ” [%] as in (6.1). The only caveat is that the constant C in the

- ”TV(]a'k,bk[)
right hand side of (6.1) will now depend upon ||I|| if we replace the left hand side with

” [%] B 0TV However, we only need a constant C which is independent of the radii, though
it might depend on 7.

e ereirore set a, = max\ayj, Sijk)s and we wis 0 Snow tha 5 can be
We theref tal {ag, S} and h to show that || | 4! b
k j arl-litvgal,beb

assumed arbitrarily small, provided € is chosen wisely and k is sufficiently large. We ob-
serve that now ]a;, bi[ is contained in a single interval of flattening, and that the almost
monotonicity estimate on the absolutely continuous part of frequency (6.2) gives
r\74
k
H < C( ) mo,]-(k) .
~lTv(al,byD Ljtk)

k=
dr

Now, my, j (k) is at most &2, and thus, if the ratio % is sufficiently small we reach the desired
]

a

threshold. We can therefore assume that
!
a
—k =c>0
Lj(k)
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for some constant ¢. With the latter lower bound at disposal it is simple to see that mg ;)
can be made arbitrarily small choosing € small and k large. In fact, if we choose € = %
and k(i) 1 oo, we find that Ty p,, converges to a flat plane, which in turn shows that

E(T,Bg,/mt;,,) Must converge to 0. O

9. PROOF OF THEOREM 2.10(V) &(vi)

In this last section of the paper we will prove the last two statements of Theorem 2.10.

9.1. ThecaseI(T,0) <2—-05. Choose a €]1(T,0)—1,1—6>[. Since all coarse and fine blow-
ups are I(T,0)-homogeneous, a simple compactness argument yields the following corol-
lary.

(ND) There are € >0 and p > 0 such that, if r < p and E(T, Bem,o) < g, then

9.1) / IDN;|? > 27 Um+2a=2) / |DN;?
Bp/zﬁ./ﬂj Bpﬂ./ﬂj

where ]sj, £;] 3 p.
From (9.1) we immediately infer that the intervals of flattening cannot be finite. Indeed
suppose this is not the case and let J be such that s; = 0. Observe that under this assump-
tion there is a unique flat tangent cone to T: indeed the center manifold .4 contains the
origin and Q[To.#] is the unique tangent cone to T. We thus conclude E(T,Bg_ /,) — 0
as r | 0. In particular (9.1) must hold for all p < p for some positive p and we immediately
conclude that there is a positive constant C such that

/ |DN]|2>C_1pm+2a_2 Vp<ﬁu
./ﬂ]ﬂBp
On the other hand, in light of [15, Remark 3.4] we also have

/ |DN]|2<Cm0,,(—
jnB, Lj

This however forces the condition a — 1 = 1 — §,, which gives a contradiction. There are
therefore infinitely many intervals of flattening | s;, ¢;].
Now assume for a contradiction that, up to subsequence (not relabelled), we have

)m+2—252

.S
lim = =0.
j—oo t b
If E(T,Bg \/ﬁtj) does not converge to 0 as j — oo, then, up to subsequence, we can as-
sume that Ty, converges to a cone C. Clearly, by definition, my,; = E(T,Bg \/ﬁtj) for j
large enough, and moreover my,; — E(C,Bg /7). On the other hand, for every fixed p >0
sufficiently small, we can pass into the limit in the inequality

E(To,1;,Bp) < CPZ_zazmo,j,

which is valid for those infinitely many j’s such that j—j < p, and conclude

E(C,B,) < Cp* *E(C,Bg ),
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which is impossible because the radial invariance of C guarantees that E(C, B,) is constant
in p.

We have thus concluded that E(T,Bg \/mtj) converges to 0. In particular, so does my,;.
We thus conclude that, for every j sufficiently large, the inequality E(T, Bg, /7,,,) < €2 must
be valid for all p € [s}, #;]. This however can be combined with (9.1) to deduce that

s\ m+2a=2
/ IDN;?=C™! (—’) / IDN;I?.
Mjﬂst tj Jt-mB,j

]
On the other hand using [14, Proposition 3.4] we immediately get
/ IDN;|*=C 'my,;.
In particular we conclude

L\ m+2a-2
) n’Eoyj.

N
/ IDN;j|?=C™! (—’
./ﬂjﬁst t]

But, as for the case already discussed above, this is at odds with the reverse inequality

S m+2—252

/ IDN;? < c(—f
Mj0By Lj

when i—j is allowed to become too small.

9.2. ThecaseI(T,0) >2—0,. In this case we fix @ €]1 —,,1(T,0) — 1[. Note that in this case
we know that the intervals of flattening cover a neighborhood of 0 and thus we can infer,
again using the compactness and the fact that fine blow-ups are all I(7,0)-homogeneous,
the following decay lemma:

(D) There is p > 0 such that, if r < p, then

9.2) / IDN;|? < 27 (m+2a=2) / IDN;?
Bp/gﬂ./ﬂ| Bpﬁ./ﬂj

when [s;, ;] 3 p.

This immediately implies that, if the intervals of flattening are infinitely many, then they
must satisfy
liminf il >0.
it
To see this, we in fact argue by contradiction as above, using this time [14, Proposition 3.4],
to infer that

. ) m+2-26,

9.3) / IDN;|? > C™! (—’ mo,;,
Mj0B Lj



Singularity degree at flat singular points 59

while iterating (D) we instead would get
S ) m+2a—-2

/ IDN;|? < C(—]
JGHBW 6

which this time is a contradiction because it would force ¢ —1 <1 -9, if i—’ is allowed to
J

my,;j,

become too small, which does not hold.
We can now argue as in the proof of Proposition 7.1 to obtain, for every fixed x large
enough and every k sufficiently large (depending on «), a decay of type

S’”“)ME(T,BW—t )+ CE2.
tk miy k

E(T,Bg /ms,..) < C(

It is not difficult to see that, if x is chosen large enough, an iteration of this inequality
(combined with the information that liminf i—’ > 0) gives a decay of type
]

9.4) E(T,Bg /) < Cr2P

for every f < a. In particular we can choose f§ > 2 — 85, and therefore conclude that, for a

sufficiently large j, we must have my,; = &2 t]2._252. But then (9.4) would imply

2-265
) nlaj.

2p—(2—265) [ 51 )° 202 p+8, (S
- - 2 —_— . 2 —_—
9.5) E(T,Bg ) < Cs; (tj) my < Cs (tj
But of course the latter is at odds with (9.3) when s; is sufficiently small. This reaches a
contradiction and thus shows that there could not be infinitely many intervals of flatten-
ing.

We record here the following more quantitative consequence of our analysis, since it
will be useful for the further study of flat singular points in our papers [9] and [10].

Proposition 9.1. Let T be as in Theorem 2.9. For every u > 0 there is a positive constant
C(u, m, n,Q), with the following property. IfI(T,0) >2 -0, + g at the flat singular point 0,
then there is rog > 0 such that

)2—262+u

(9.6) E(T,B;) < C(—

max{E(T,B,,),&82r272%2)  Vr<r.
To
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