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Abstract—High-frequency systems use beamforming to mit-
igate the increased path loss. As the resulting beams become
highly directional, Millimeter Wave (mmWave) radios conduct
a beam sweep to probe all possible angular directions to locate
each other and establish communication. In this paper, we
propose an adaptive beam management strategy that leverages
beam sweeping to avoid eavesdroppers and other potential
attackers. Our solution employs Deep Reinforcement Learning
(DRL) to dynamically select a subset of beams in the transmitter
codebook. We evaluate this solution through a proof-of-concept
implementation using a combination of Software-Defined Ra-
dios (SDRs) and commercial mmWave equipment, and show
the improvements in the secrecy capacity.

Index Terms—Beam Management, Beamforming, Millimeter-

Wave, Secrecy Capacity, Deep Reinforcement Learning.
I. INTRODUCTION

The broadcast nature of the medium makes wireless sys-
tems susceptible to over-the-air attacks. These attacks range
from eavesdropping intended to acquire system or user in-
formation, to jamming that introduces interference signals
and reduces the legitimate link’s availability, integrity, or
performance. The directionality of transmission in high-
frequency bands, such as in Millimeter Wave (mmWave), or
sub-Terahertz (THz) spectrum, reduces the link’s exposure
to attacks by limiting the angular emissions [1]. Corrobo-
rating that finding, numerous studies have shown improved
secrecy that scales with the directionality of transmission [2],
[3]. However, the Base Station (BS) and User Equipments
(UEs) must perform an initial access procedure to establish
and maintain the transmission link. During initial access,
BS and UEs probe, according to a pre-defined order, all
angular directions, a process referred to as beam sweeping,
to determine the best transmit-receive beam pair [4]. This
exhaustive probing of all angular directions reduces the se-
curity of otherwise highly directional links by exposing them
to adversarial attacks like eavesdropping or jamming [S]—[8].

A few recent works have focused on reducing the sus-
ceptibility of beam management to jamming attacks by
optimizing the transmit power [6], randomizing the probing
sequence [7], and tracking the anomalies in the power delay
profile [8]. However, a natural method to reduce the exposure
to jamming and eavesdropping attacks involves reducing
the probing opportunities. The vast literature on reducing
the probing opportunities, e.g., [9]-[16], is focused solely
on improving the efficiency of the beam sweeping process.
While intuitively reducing the sweeping opportunities should
result in increased secrecy of directional links, to date, there
has not been a proposal to quantify the secrecy during the

beam sweeping process and consequently adapt the beam
management to optimize security.

In our recent work [17], we developed a demonstration that
showcased Software-Defined Radio (SDR)-controlled beam
sweeping adaptability in the presence of user-defined sensor
nodes to improve the secrecy of mmWave communications.
In this article, we propose and study, leveraging the devel-
oped experimental setting, a novel adaptation strategy for
beam sweeping based on Double Deep Q-Network (DDQN).
The DDQN belongs to the class of Deep Reinforcement
Learning (DRL) strategies, which have been shown to per-
form well on different beam management tasks [15], [16],
[18], [19]. One advantage of DDQN over other DRL strate-
gies is that it provides for much-needed generalization in an
experimental setting [20], [21]. To optimize for security, our
proposed DDQN’s reward function uses the sweep secrecy
capacity, a new metric inspired by the secrecy pressure [22],
that we propose as a means to quantify the secrecy capacity
of beam sweeping-aided communication.

We validate our DDQN strategy in a real-world setting,
leveraging STAMINA [23], [24], an out-of-tree GNU Radio
module for experimentation in mmWave communications
with flexible beam training and alignment capabilities. Our
proposed implementation extends STAMINA with new build-
ing blocks required to run and implement our DDQN strategy
and a new experimental scenario involving different receiver
locations. Our experimental results validate our DDQN strat-
egy and illustrate the improvement in secrecy over static
beam sweeping while showing sustained beam alignment
accuracy.

To the best of our knowledge, this is the first work to apply
DDQNs to secure beam sweeping and quantify the secrecy
of mmWave systems conducting beam sweeping. Moreover,
this is one of the few works involving mmWave link with
beam management adaptation that showcases the developed
features in an experimental setting. The rest of this article
is organized as follows. Section II describes the proposed
solution. Section III details the architecture of the proof-of-
concept implementation. Section IV reports on experiments
and numerical results, and Section V concludes this article.

II. PROPOSED SOLUTION
In this section, we present our adaptive beam management
strategy. As our strategy leverages DRL, we describe it using
the Markov Decision Process (MDP) framework [21].



A. State and Action Space

We assume that at a discrete time ¢, the DRL agent
maintains a representation of the current state of the en-
vironment s; € S, where S is the set of possible states,
and selects an action a; € A(s;) to be performed on the
environment, where A(s;) is the action set available in state
s¢. Selecting a; in state sy, incurs reward 7,41 and moves
the environment to the new state s;4;. Here, a; is a beam
sweeping sequence, and A(s;) is the set of possible beam
sweeping sequences in state s;. Moreover, each element of
a; is itself a vector 1 € £ which represents a given beam
defined for a fixed analog beamforming codebook £, akin to
practical implementations specified by the 3GPP for the 5G
NR standard [25]. Accordingly, our state at time ¢ consists
of three features s; = (v;,a;—1,l;), where v; represents
the average Signal-to-Noise Ratio (SNR) of the legitimate
communication link at time ¢, a;_; € A represents the
sweeping sequence selected at time ¢ — 1 and 1; € £ denotes
the ID of the best beam at timestep t.

B. Reward Function

Our reward function uses what we refer to as the sweep
secrecy capacity, which we propose to quantify the secrecy
capacity of communication systems based on beam sweeping.
The secrecy capacity quantifies the difference in bits between
the capacities of the legitimate link and an eavesdropper link.
In [22], the secrecy pressure was proposed as a generaliza-
tion of secrecy capacity to multiple potential eavesdropper
locations or even entire areas to reflect that, in practical
settings, the eavesdropper location may not be known exactly.
Consequently, the secrecy pressure is an average secrecy
capacity where the average is taken over an entire area,
representing multiple potential locations of the eavesdropper.

Inspired by the secrecy pressure, our proposed reward
function re-casts the definition of secrecy capacity to sce-
narios where the legitimate link uses beam sweeping and a
discrete number of sensors take signal-level measurements.
We, thus, average the secrecy capacity over the possible
beam directions and eavesdropper locations. Formally, our
proposed reward function can be expressed as:
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where A&, is the set of the sensor (eavesdropper) locations
at time ¢, and C’B(l) denotes the rate of the legitimate
link for beam 1, and C(x,1) the rate of the eavesdropper
link for location € AX; when beam 1 is being used
at the transmitter. In our system, Cp(1) and Cg(z,1) are
rate estimates based on the measured SNR at the receiver
and sensor locations, respectively. The proposed reward is
expressed in bits per second, and higher values indicate
increased secrecy regarding the legitimate link.
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C. Action Selection Strategy

Our proposed solution relies on Q-Learning, where the
agent uses Q-values to determine a matching between the

particular state and action pair. The Q-value is updated as
follows:
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where Q:1(st,a:) represents the updated Q-value estimate,
and Q¢(s¢, a;) represents the current estimate of the Q-value
at the current state and action, « is the learning rate, and
is the future discount factor.

We assume that our agent follows an e-greedy strategy
in selecting its action at each time step. The value of the
e € (0,1) parameter, decided at the outset of the training,
determines the preference between exploration and exploita-
tion. The e-greedy strategy can be formally expressed as [26]:
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D. Q-Network and Training

To update the Q-values associated with state-action pairs,
we decided to employ a DDQN, as it can leverage context to
arrive at effective policies, while responding well to dynamic
environments [20]. We deploy the DDQN agent and its two
neural networks in the transmitter. The first network (the
evaluation network), whose weights at time ¢ are denoted
as 6, is updated every time a new batch of experiences
is stored, while the second one (the target network), whose
weights at time ¢ are denoted as 6, , is a copy of the original
network updated less frequently to evaluate the estimated
Q-values and prevent Q-value over-estimation. The DDQN
update function is as follows [20]:
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The target network is updated according to a soft update with
the weights of the evaluation network 6, <+ 760; + (1 —
7)0; , where T represents the target network update rate.
The proposed training algorithm is presented in Alg. 1.
Each training event contains up to N episodes, each com-
prising T steps. At each episode, the system is initialized to
follow the exhaustive sweep. The proposed training algorithm
uses a replay buffer D that stores experiences in the form of
{st,a¢,7t41, St41} for each time ¢. The evaluate network
weights are updated every time the replay buffer stores a
new batch of size dp, while the target network weights
are updated when the predetermined update period, whose
value is chosen so that it is updated less frequently than
the evaluation network, is reached. The training terminates
either after N episodes or when the temporal difference A,



the difference between the estimated and actual Q-value at a
particular state, drops below a certain threshold ¢, indicating
the agent has completed learning.

Algorithm 1 Proposed DDQN Training Algorithm

1: Initialize 6; and 6, with random weights

2: while (n < N)A (A; >¢€) do

3:  Initialize the system

4. forte{l,...,T} do

5 Choose action a; using e-greedy strategy in Eq. (3)
given the state s;.

6: Sweep the chosen sequence and observe reward
7¢41 and next state Syyi.

7 Store the experience {s;,as, 141, St+1} in replay
buffer D.

8: if new batch is available then

9: Collect a batch from the replay buffer.

10: Update the evaluation network 6,1 using Eq. (4).

11: end if

12: if network update period is reached then

13: Update the target network 6, ;.

14: end if

15 end for
16: end while

ITII. IMPLEMENTATION
To validate our adaptive beam management strategy for
avoiding eavesdroppers in mmWave communications, we
leveraged STAMINA, a software-defined mmWave frame-
work for experimentation on beam sweeping, developed in
our previous works [23], [24]. In this section, we detail
how we extended STAMINA to calculate the sweep secrecy
capacity, train DDQN models, and use them for optimizing
the beam-sweeping sequences in real time to minimize trans-
missions in the direction of eavesdroppers.

A. STAMINA and GNU Radio

STAMINA uses a combination of SDRs and commercial
mmWave front-ends to provide a flexible beam-sweep control
loop in software, while interacting with physical mmWave
hardware to perform experiments with directional transmis-
sions at high frequencies. STAMINA abstracts the interaction
with the mmWave front-ends and controls them to iterate over
arbitrary beam sequences, collect different Key Performance
Indicators (KPIs), and select the best beam pair for data
transmission. We developed STAMINA in GNU Radio, a
widely known SDK for prototyping on SDRs [27].

We implemented STAMINA as a collection of GNU Radio
blocks that perform different aspects of the beam-sweeping
control loop. While the reader can find more information
about STAMINA'’s operation and implementation in [23], we
briefly describe some of the blocks illustrated in this section:

KPI Aggregator: Aggregates the KPIs captured by other
blocks, e.g., Received Signal Strength (RSS) and SNR,
and labels them using the current beam pair.
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Fig. 1: STAMINA’s beam sweep control loop in GNU Radio,
including new blocks for training DRL models and perform-
ing adaptive beam management to avoid eavesdroppers.

Beam Selector: Parses the KPIs collected during the beam
sweep and uses an arbitrary decision method, KPI, or
combination of KPIs to select the best beam pair.

Sweep Sequence Iterator: Iterates over an arbitrary beam
sequence and, subsequently, issues the best beam pair
for data transmission.

GPIO Mapper: Converts the high-level information of a
certain beam pair into the low-level parameters to con-
figure the mmWave front-ends via their GPIO interface.

These blocks implement the control plane of the beam
sweeping. For the data plane, we use vanilla GNU Radio’s
OFDM blocks, which allow us to transmit/receive a 5G-like
PHY and USRP source/sink blocks to interface with SDRs.

B. Collecting SNR and Estimating the Sweep Secrecy

A key requirement to calculate the rates of the receiver
and sensors (as discussed in Section II-B) is to measure
their SNR, as per the Shannon-Hartley theorem. To do so,
we created a new SNR Calculator block in GNU Radio,
which first calculates the RSS of the received signal and then
divides it by thermal noise calculated using the Johnson—
Nyquist model as a function of the signal bandwidth and
noise figure, which gives us the received signal’s SNR. One
instance of the SNR Calculator is part of the legitimate
link’s beam sweeping control loop, as shown in Fig. 1, while
other instances are part of sensor nodes, which measure
and report the SNR at different locations via an out-of-band
channel (detailed later in Section IV).

The KPI Aggregator block labels the incoming SNR
measurements according to the current beam pair used dur-
ing the beam sweeping and forwards this information to:
(i) the beam selector to decide the beam with the best
beam for data transmission; and (i) a new block, called
the Sweep Secrecy Estimator. This new block uses
the legitimate link’s labeled SNR measurements and the
incoming information from sensor nodes to calculate their
rates and estimate the sweep secrecy capacity, using Eq. 1,
as the average secrecy capacity over the possible beam
directions and eavesdropper locations, which serves to train
the DRL agent responsible for adapting the beam sweeping
to maximize secrecy.
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Fig. 2: Experimental setup we used to develop and evaluate
our adaptive beam management strategy for avoiding eaves-
droppers using a proof-of-concept implementation.

C. Embedding DRL Models

To embed our DDQN agent inside GNU Radio, we created
a new block, the DRL Environment, which is responsible
for collecting data to create the current state, as defined in
Section II-A, and then feeding it to our DDQN agent.

The chosen action dictates the beam sequence for the next
sweeping opportunity. The beam sequence will consist of a
subset of unique beams out of the entire available codebook.
Sweep Sequence Optimizer receives the beam with
the strongest SNR from the Beam Selector and the beam
sequence information from the DRL Environment. Then,
it creates a sequence, i.e., a subset of the available beam
codebook, centered on the beam of the strongest SNR using
the sequence chosen by the DDQN agent. Finally, it out-
puts the sweep sequence to the Coodebook Iterator,
which will sequentially iterate over it during the next beam
sweeping procedure.

This extended version of STAMINA allows over-the-air
training and evaluation of different DRL solutions for man-
aging beams to improve communication performance and/or
secrecy, using a combination of low-cost SDRs and mmWave
front-ends.

IV. EVALUATION

In this section, we validate the use of our DDQN-based beam
management strategy for avoiding eavesdroppers in mmWave
communications. First, we detail our experimental setup and
the equipment used in our evaluations. Then, we examine the
behavior of the sweep secrecy capacity under different spatial
conditions. Then, we verify the learning and the decisions
taken by our DDQN agent, and assess how our adaptive beam
management strategy affects the beam sweeping accuracy.

A. Experimental Setup

To develop and evaluate our adaptive beam management
strategy in STAMINA, we leveraged the radio and compu-
tational resources available for experimentation in the Com-
monwealth Cyber Initiative (CCI) xG Testbed, in addition
to three mmWave front-ends and two mmWave controllers
provided by InterDigital, creating a platform illustrated in
Fig. 2. Our setup consists of a legitimate link and a sensor
node, detailed below:

e The legitimate link comprises two mmWave front-ends,
known as Mast Head Unit (MHU), serving as a transmitter
and receiver, a mmWave control unit for controlling the

TABLE I: Our proposed DNN with four linear layers con-
nected by three ReLU activation layers.

Layer | # Input Features | # Output Features
Linear 3 32
ReLU - -
Linear 32 32
ReLU - -
Linear 32 32
ReLU - -
Linear 32 3

front-ends, known as MHU to USRP (M2U), an USRP
X310 for transmitting and receiving in Intermediate Fre-
quency (IF), and a host PC running GNU Radio and
STAMINA for baseband processing and interfacing with
the mmWave equipment to perform beam sweeping.

o The sensor node comprises a single mmWave front-end,
serving as a receiver to probe the environment, a mmWave
control unit for controlling the front-end, a single USRP
X310 for receiving in IF, and a host PC (which we refer
to as sensor PC) running GNU Radio and STAMINA for
baseband processing and interfacing with the mmWave
equipment to collect SNR measurements to feed the host
PC for estimating the eavesdropper’s link capacity.

The MHUs up/down convert signals from/to an IF in the
n46 band (5.3 GHz) to/from the n257 band (28 GHz), and
possess an 8 x 8 phased array antenna that contains a prede-
fined codebook comprising 63 calibrated beams arranged in
a 9 x 7 grid, ranging from £45° in the azimuth and £35°
in the elevation plane. For more details about our hardware
components, we refer the reader to our demonstration pa-
per [17]. For additional details on how we interact and control
the mmWave front-ends, we refer the reader to [23]. More-
over, for accessing and downloading our software package,
we refer the reader to STAMINA’s open-source repository
(https://github.com/CCI-NextG-Testbed/gr_stamina).

For our DDQN agent, given the similarity of the problem,
we adopt the neural network architecture proposed in [15].
Our Deep Neural Network (DNN) consists of 4 linear layers,
with 32 neurons each, connected by three ReLU activation
layers. The Table I shows a breakdown of each layer in our
DNN and the associated neurons and input/output features.

To evaluate our solution, we placed mmWave front-ends
9 feet apart forming a semicircle, where we placed: (i) the
transmitter in the center of the semicircle, facing the center
of the arc; (ii) the receiver in different locations on the outer
arc of the semicircle, always facing the transmitter; and (iii)
the sensor node on the outer arc at a —45° angle to the left
of the transmitter, also facing the transmitter, as shown in
Fig. 3.

We configured our adaptive beam management strategy
to dynamically select between three sweeping sequences: i)
3 X 3 (9 beams) around the previously selected best beam,
ii) 5 x 5 (25 beams) centered previously selected best beam,
and iii) 9 x 7 (63 beams) spanning the entire codebook of
our MHU. We chose these beam sweeping configurations
for practical reasons. The action space for selecting beam
sweeping sequences is effectively a powerset of the codebook



Fig. 3: Scenario used in our measurements, showing the
+45° line of sight region in front of the transmitter (green),
the placement of the sensor node at —45° relative to the
transmitter, and the different receiver locations (blue circles).
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Fig. 4: Performance of the sweep secrecy capacity as we
move the receiver to different positions. We can observe how
the presence of the sensor node around —45° compromises
the security of the legitimate communication in that direction.

L. To ensure the convergence of our algorithm in a practical
setting, we must limit the available action space to sequences
that exhibit different alignment and secrecy capabilities while
still providing enough explanatory power.

We use this experimental setup and options of sweeping
sequences in all our evaluations.

B. Assessing the Sweep Secrecy Capacity

In this analysis, we are interested in assessing the sweep
secrecy capacity metric in the presence of an eavesdropper
for different legitimate link configurations. Our proposed
strategy is compared to three static beam sweeping se-
quences: i) 3 x 3 (9 beams) centered around the boresight,
ii) 5 x 5 (25 beams) centered around the boresight, and iii)
9 x 7 (63 beams) exhaustive sweep.

Fig. 4 shows the results of our measurements. First, we
observe how the sweep secrecy capacity behaves for the
exhaustive beam sweep (63 beams), resulting in low secrecy
essentially for all positions of the receiver with slightly
better secrecy where the boresight link can be established
(0°). Second, we observe that sweeping shorter sequences
centered around the boresight is highly beneficial to secrecy,
but quickly becomes inefficient as the receiver moves away
from the boresight.
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Fig. 5: The proportion of sweeping sequence lengths selected
by our DDQN agent’s decisions in each receiver location.
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Fig. 6: Initial Access accuracy of different beam sweeping
strategies for different receiver locations.

Now, our proposed DDQN strategy outperforms all the
static sweeping strategies, as it is able to adapt the beam
sweeping sequence relative to the orientation of the receiver
while also choosing a short enough sweeping sequence
to increase the secrecy of the communication. Finally, we
observe, on the left-hand side of the figure, the influence of
the eavesdropper sensor on the sweep secrecy capacity, as
it drops dramatically in the vicinity of the sensor, indicating
that in that direction, the secrecy must be optimized through
additional means.

In order to corroborate the finding that the sweep secrecy
capacity highly penalizes larger sweep sequences, in Fig. 5,
we plot the sweep decisions of our DDQN agent when the
receiver location moves on the semicircle in Fig. 2. This
is also fundamental to confirming the correct training of our
model and validating its operation in a dynamic environment.
For each different position of the mmWave receiver, we
record the length of the selected sweeping sequence for 100
beam sweeping episodes. We can observe that within the
range of £45° degrees for the relative orientation between
mmWave transmitter and receiver, our DDQN agent almost
uniquely selects shorter sweeping sequences which bear sub-
stantially lower penalty in terms of the loss of secrecy. While
the boresight of the receiver is still within the transmitter’s
codebook (see the green region in Fig. 2), the agent can
track the location of the receiver by picking the shorter (9
beam) sweeping sequence around the previously determined
best beam. Outside of the transmitter’s codebook span, the
agent can no longer track the receiver using the shorter



sequence and has to resort to exhaustive sweeps to establish
and maintain communication.

Finally, we want to ensure that our proposed DDQN agent
produces decisions that result in high alignment accuracy
on the initial access between mmWave radios. To do so,
we compared the best beam decision taken by each strategy
to the best beam decision that would be produced from an
exhaustive sweep. In Fig. 6, we first observe that our agent
outperforms two static sweeping sequences of 3 x 3 (9 beams)
and 5 x 5 (25 beams), both centered on boresight. However,
the overall accuracy never exceeds 90%, which is due to the
fact that in a real-life experiment, even the exhaustive sweep
may not always identify the correct beam that should be used
for communication. We can observe that for the region close
to boresight, the different static sweeping sequences and our
DDOQN agent perform similarly to each other. However, as
the receiver moves away from the boresight, we observe a
significant drop in accuracy of the static sweep sequences
which no longer allow us to track the receiver.. Conversely,
our DDQN strategy iteratively tracks the direction of the
highest sweep secrecy capacity (associated with high SNR)
and adapts to the receiver’s location.

V. CONCLUSION

In this paper, we proposed and experimentally validated
a DDQN-based beam management solution for secure
mmWave communication. We also proposed a real-life ex-
perimental implementation of the proposed solution that
extends our SDR-a platform for mmWave communications.
The results of experimental validation of the proposed
solution showcase that our strategy improves the secrecy
of the mmWave link in the presence of an eavesdropper
while maintaining the beam alignment. In future works,
we plan to investigate the scalability of the action space
such that our agent selects an action from a much larger
number of sweeping sequences while maintaining real-time
capabilities. Additionally, we plan to explore different DRL
design choices, such as reservoir computing, that will help us
reduce our agent’s training load while improving the system’s
generalizability.
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