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ABSTRACT

Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems
where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity
analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods
demand substantial computational resources, making them impractical for highly complex models. Here, we introduce SMoRe
GloS (Surrogate Modeling for Recapitulating Global Sensitivity), a novel, computationally efficient method for performing global
sensitivity analysis of ABMs. By leveraging explicitly formulated surrogate models, SMoRe GloS allows for comprehensive
parameter space exploration and uncertainty quantification without sacrificing accuracy. We demonstrate our method'’s flexibility
by applying it to two biological ABMs: a simple 2D cell proliferation assay and a complex 3D vascular tumor growth model.
Our results show that SMoRe GloS is compatible with simpler methods like the Morris one-at-a-time method, and more
computationally intensive variance-based methods like eFAST. SMoRe GloS accurately recovered global sensitivity indices in
each case while achieving substantial speedups, completing analyses in minutes. In contrast, direct implementation of eFAST
amounted to several days of CPU time for the complex ABM. Remarkably, our method also estimates sensitivities for ABM
parameters representing processes not explicitly included in the surrogate model, further enhancing its utility. By making global
sensitivity analysis feasible for computationally expensive models, SMoRe GloS opens up new opportunities for uncertainty
quantification in complex systems, allowing for more in depth exploration of model behavior, thereby increasing confidence in
model predictions.

1 Introduction

Scientists today are generating abundant data and information as they seek to improve our comprehension of the world around
us, revealing the inherent complexity characteristic of biological, biomedical, ecological, social, and other real-world systems.
Agent-based models (ABMs) have emerged as a significant tool for understanding such complex systems, being particularly
well-suited to capturing emergent phenomena'*. ABMs are stochastic computational models that describe populations as
individuals or agents, each with its own set of properties and behaviors that interact with their local environment to generate
global phenomena. Such a formulation allows ABMs to capture connectivity and heterogeneity across multiple time, spatial,
and structural scales™>.

However, the use of ABMs presents significant challenges and drawbacks. For instance, the computational costs of solving
ABMs escalate and become prohibitive when simulating millions of agents®°. Furthermore, there is an absence of closed-form
expressions linking ABM output with input parameters, making it hard to assess whether the results of ABMs are robust to
parameter perturbations’. Moreover, as ABMs are increasingly applied to model highly complex biological and environmental
systems, the number of input parameters grows, introducing greater uncertainty in parameter values. This uncertainty in model
inputs will necessarily propagate to model outputs, raising questions about model accuracy and reliability.

Parameter sensitivity analysis is a common practical technique used to quantify uncertainty in model outputs as a function
of uncertainty in the inputs, helping us better understand the limitations of the model®. This type of analysis identifies which


https://doi.org/10.1101/2024.09.18.613723
http://creativecommons.org/licenses/by-nc/4.0/

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.613723; this version posted September 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

input parameters — and, by extension, the biological, physical, or real-world processes they represent — are the most critical
determinants of an output of interest”. Sensitivity analysis can be either local, assessing the effect of individual input parameters,
or global, evaluating the combined influence of multiple parameters varied simultaneously across their full ranges'?. For highly
nonlinear models with a large number of estimated parameters, global sensitivity analysis is essential for drawing meaningful
conclusions. Several methods have been developed for sensitivity analysis in parametric models, including variance-based
methods, moment-independent techniques, Monte Carlo methods, and methods using spectral analysis (for recent reviews,
see!-12),

Simple global sensitivity analysis methods include one-at-a-time methods like the Morris method (MOAT), which is
computationally efficient, having a cost scaling as ~ 10x the number of parameters'>. However, MOAT provides only limited
information and is best suited for factor prioritization or preliminary screening of model parameters. Additionally, MOAT
cannot account for parameter interactions, which are often expected in nonlinear models, limiting its usefulness in more
complex systems’. For more robust insights, variance-based methods such as the extended Fourier Amplitude Sensitivity
Test (eFAST) or Sobol indices are generally preferred. These methods are capable of both factor prioritization and factor
fixing, where the goal is to reduce uncertainty by identifying and fixing unimportant parameters. Additionally, these methods
can account for interactions between parameters when computing model variance. However, these techniques come with a
much higher computational cost, scaling as ~ 10> x the number of parameters” %3, Regression-based methods, like Partial
Rank Correlation Coefficient (PRCC), may be employed for factor mapping, which aims to identify important inputs within
specific output domains. These methods also have high computational costs, lying somewhere between MOAT and eFAST!'! 10
Aside from MOAT, the computational expense of simulating complex models remains a major challenge when applying global
sensitivity methods to ABMs. Long run times often render any meaningful sensitivity analysis of such models impractical'”. As
a result, sensitivity analysis of complex, computationally expensive ABMs is frequently omitted or only partially performed”:'3.

One approach to addressing some of the aforementioned issues is to employ surrogate models, also known as metamodels
or response surfaces. These are computationally less expensive models designed to approximate the dominant features of a
complex model, here, the ABM'®. Widely applied across various domains, surrogate models facilitate the exploration of ABM
parameter spaces without incurring prohibitive computational costs’®23. Notably, surrogate model generation via Machine
Learning, where the surrogate model does not have a closed form, is becoming increasingly popular’*. However, such black box
models have limited applicability in scenarios with limited training datasets or when extrapolating across broad and uncertain
ABM parameter space where the a priori unknown ABM output could have high variability>>%°. To mitigate these issues, we
have proposed employing explicitly formulated surrogate models for approximating ABM behavior. Our approach has proven
effective in parameterizing computationally complex ABMs with multi-dimensional data>°. This work introduces a novel
application of this technique to address the acute shortage of fast and accurate computational techniques for performing global
sensitivity analysis of large-scale, complex ABMs.

Specifically, we develop a new, computationally efficient method, Surrogate Modeling for Recapitulating Global Sensitivity
(SMoRe GloS), that uses explicitly formulated surrogate models to infer the global sensitivity of input parameters in ABMs
describing complex real-world systems. Our method is agnostic to any specific method for global sensitivity analysis and
is easily adapted per user specification. To demonstrate our approach, we consider two spatio-temporally resolved ABMs
representing biological processes: (1) an easy-to-simulate ABM representing a cell proliferation assay on a two-dimensional
grid and (2) a more complex ABM of three-dimensional vascular tumor growth. SMoRe GloS computes the global sensitivity
indices of ABM parameter sets in both instances using two techniques, namely, the computationally efficient MOAT Method
and the computationally expensive but more versatile eFAST method. Remarkably, our method generates global sensitivity
indices even for those ABM parameters that represent biological processes not explicitly included in the surrogate model
formulation. We also compute sensitivity metrics directly in both instances and compare the results with our indirect method to
validate our approach. Finally, we demonstrate the significant computational efficiency of SMoRe GloS compared to directly
implementing methods like eFAST.

2 Methods

2.1 SMoRe GloS: Surrogate Modeling for Recapitulating Global Sensitivity
Our new method for global analysis of computationally complex models, SMoRe GloS, is implemented in five steps: (1)
Generate ABM output; (2) Formulate candidate surrogate models; (3) Select a surrogate model; (4) Infer relationship between
surrogate model and ABM parameters; and (5) Use relationship between surrogate model and ABM parameters to infer global
sensitivity of ABM parameters. These are described in further detail below.

We illustrate SMoRe GloS with two ABMs: one describing an in vitro cell proliferation assay that can be simulated easily
and quickly; and one describing vascular tumor growth in 3-dimensions that is computationally complex and more expensive to
simulate. These are described in further detail in subsections 2.3 and 2.4.
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For convenience, we introduce the following notation. We will refer to the input ABM parameters to be included in the global
sensitivity analysis as P apm = (PABM.1," " s PABM.m)- © C R™, together with a probability distribution p, will denote the mini-
mal sample space of these parameters. Parameters appearing in the surrogate model will be denoted Zsm = (psm.1,* , PSMn)-
Finally, we will refer to surrogate model as SM.

Step 1: Generate ABM output

Sample ABM parameter values over , making sure to include points along the boundary of Q, together with some interior
points. Aim for good coverage of Q, bearing in mind the increased computational expense as more parameter values are
selected. For this, choose any sampling method such as a regular grid, Latin Hypercube Sampling (LHS), random sampling,
etc., considering each has advantages and disadvantages®’-?8. Next, generate ABM output at each sampled parameter vector,
making sure to run multiple simulations in order to get meaningful averaged behavior.

In both our examples, we sampled ABM parameters on a regular grid, taking an average of N = 6 runs per sampled
parameter vector.

Step 2: Formulate candidate surrogate models

Formulate (several) candidate SMs informed by the complex system being studied, the mechanisms encoded within the
ABM, ABM output generated in Step 1, and most importantly, the output metric of interest in which we want to quantify the
relative influence of each ABM parameter. More details on formulating explicit SMs are available here:>°. Ideally, arrive at
several candidate SMs.

For the in vitro cell proliferation ABM, our output metric of interest was total cell number at the end of the simulation. We
therefore chose cell numbers in G1/S and G2/M phases of the cell cycle as the SM variables, and a system of two coupled
ordinary differential equations (ODEs) describing their temporal evolution as the SM itself (see® for more details). For the 3D
vascular tumor growth ABM, our output metrics of interest were: (1) final tumor volume; (2) area under the tumor volume
time-course; and (3) time to half-maximum tumor volume. These were chosen to illustrate various features and overall
robustness of our method. Since ABM output was being integrated over space in all three instances, we once again used
ODE:s to formulate the SM, taking total cell number as the SM variable. Three candidate SMs were formulated in this case,
namely, exponential growth, logistic growth and von Bertalanffy growth (see’ for more details). The SMs together with the
corresponding ABMs are listed in subsections 2.3 and 2.4.

Step 3: Select a surrogate model

Select the best candidate from the various SMs formulated in Step 2 as follows. Considering each SM in turn, begin by
fitting the SM to ABM output generated at each sampled ABM parameter vector (Step 1). In this process, make sure to collect
information on goodness-of-fit of, and uncertainty in, the fitted SM parameters (discussed below). For the given SM, aggregate
this information across all ABM output. Repeat this process for every candidate SM.

Goodness-of-fit criteria: Fit the SM to ABM output by maximum likelihood estimation (MLE)?°, weighted least squares
optimization®”, or other method of parameter estimation. Record the quality of the fit.
In both our examples, we used weighted Residual Sum of Squares (RSS) to quantify goodness-of-fit.

Uncertainty in SM parameters: Quantify the uncertainty in SM parameters by computing confidence bounds when fitting
the SM parameters to ABM output generated from each sampled ABM parameter vector. These confidence bounds will be used
later, in Step 4. Several methods may be employed for uncertainty quantification (see for instance'?).

Also quantify how well constrained SM parameters are by noting the span of their confidence bounds. For this, we
propose a metric we call the identifiability index, which is defined as follows. If both upper and lower confidence bounds
on an SM parameter are tightly-constrained when fitting to the ABM output generated at a sampled ABM parameter vector,
the identifiability index is assigned a value of 2. Here, tightly-constrained parameters should have confidence bounds well
within their physically or biologically relevant ranges. Parameters with one-sided confidence bounds, constrained only at
one end, receive an identifiability index value of 1, while a score of 0 indicates an unconstrained parameter that may assume
any value within its overall range. Thus, as the SM is fit in turn to all ABM output, a high frequency of 2’s will suggest an
overall well-constrained SM parameter, whereas mostly 0’s will suggest unidentifiability of that parameter, possibly due to an
over-parameterized SM.

In our examples, we used the profile likelihood approach®'=3? to generate 95% confidence bounds on SM parameters.
Identifiability indices were computed by graphing the likelihood curves obtained by profiling each fitted SM parameter. These
cross the 95% confidence bound threshold never (a flat curve), once (an L-shaped curve), or twice (a U-shaped curve) times in
the neighborhood of its best-fit value. The respective identifiability index values are 0, 1 or 2.
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SM Selection: Select the best SM by considering both the goodness-of-fit and the identifiability index. The goal is to
choose an SM that both minimizes RSS scores across ABM output, and has well-constrained SM parameters, as evidenced by a
high frequency of 2’s in their identifiability indices. If selecting between SMs with different numbers of free parameters, model
selection theory should be applied, for instance, by computing an Information Criterion>*.

For the in vitro cell proliferation ABM, we did not need to perform model selection since we started with a single SM. For
the 3D vascular tumor growth ABM, we reported the results of implementing SMoRe GloS with all three SMs, although a
single SM emerged as the best overall candidate, based on our selection criterion outlined above. The Akaike Information

Criterion (AIC) in Equation 1 below was used to aid in model selection.
AIC = 2 x (# parameters) + nln(RSS), (1)

where RSS is the average RSS taken over n data points. Models with higher AAIC scores are less likely to explain the data. To
compare between models, we computed a relative log-likelihood (RLL), defined as

1
RLL = E (AICmodell *AICmodeIZ) P (2)
where a positive value of RLL indicates that model 2 is preferable to model 1.

Step 4: Infer relationship between SM and ABM parameters

Quantify the functional relationship between ABM parameters and SM parameters as follows. View each SM parameter as
an unknown function — or hypersurface — of the ABM parameters. The (95%) confidence bounds on SM parameters inferred in
Step 3 then correspond to discrete points on upper and lower (95%) confidence hypersurfaces ‘above’ the given ABM parameter
vector, yielding a range of values for all SM parameters corresponding to each ABM parameter vector. These ranges are usually
an interval for each SM parameter. The Cartesian product of these intervals — a hyperrectangle — defines the region of SM
parameter space that best fits ABM output at that ABM parameter vector. These Cartesian products quantify the ‘stiff and
sloppy’ nature of SM parameters®, providing information about the directions of SM parameter space that produce small
(sloppy) or large (stiff) changes in model behavior. In particular, as the ABM parameter vector is varied, the deformations
of these hyperrectangles give rise to variations in ‘stiffness and sloppiness’, which are used to determine ABM parameter
sensitivities in Step 5. For more details on how to generate SM parameter hypersurfaces, refer to°.

Step 5: Use relationship between surrogate model and ABM parameters to infer global sensitivity of ABM parameters

Select an output metric of interest, say f, on the ABM and a method for computing the global sensitivity of f to changes in
ABM parameters. f is a real-valued function on ABM parameter space, that is, f : Q — R. The global sensitivity, GS, is then a
function of f and the probability distribution on ABM parameter space, p. Denote by GS(f(-);p) € R™ the sensitivity of f
to each of the m varied ABM parameters. The fundamental concept of SMoRe GloS is that an SM is used to estimate f in
computing GS. Specifically, the value of f at an ABM parameter vector, p Apm, is approximated by sampling uniformly over
the hyperrectangle in SM parameter space in Step 4 above. That is,

f (P aBm) QJ’/ F(Bsm)du (Bsm: P asm), 3)

Qsm (7 aBm)

where Qgsv (P aBm) is the hyperrectangle in SM parameter space corresponding to 7 apwm;, f is the functional on SM parameter
space to match f, and p(-, P apm) is the uniform probability distribution on Qsm( 7 apm). For notational simplicity, we will
use f for fand u for (-, papm) going forward. Putting this together with global sensitivity yields the following:

GS(f():p) ~ GS ( / f(?sm)du;p) . @)

sm(*)
In our illustrative examples, we employ two methods for global sensitivity: the Morris Method and eFAST (see next
section).

2.2 Global Sensitivity Analysis Methods

In this manuscript, we will illustrate how SMoRe GloS works using two global sensitivity methods: the Morris Method and
eFAST (extended Fourier amplitude sensitivity test). The Morris Method is a one-step-at-a-time method that uses elementary
effects (the effect of perturbing a single parameter) to compute a global sensitivity measure for each parameter'33°. This
method has a low computational cost and its output is in the same units as that of the metric, making the sensitivity indices
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Sample ABM Parameters Quantify Uncertainty in Surrogate Model Parameter
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A A

Figure 1. Schematic representation of the SMoRe GloS framework for sensitivity analysis of ABMs. For simplicity, two
ABM parameters, A; and A;, and one surrogate model (SM) parameter, S, are depicted. The first row shows Steps 1-4 of
SMoRe GloS, where S is constrained as a function of A; and A;. The black dots represent sampled ABM parameters, the gray
bars indicate uncertainty in S; and the blue planes represent the reconstructed parameter surfaces for S;. The salmon region
denotes the interior of the ABM parameter space, defined by the convex hull of the sampled points. The second row illustrates
Step 5, where any global sensitivity method can be applied. The white dots represent points in ABM parameter space sampled
for computing global sensitivity, and the dashed black lines show the corresponding ranges of Sj. The third row illustrates the
implementation of the MOAT method in this framework. Points po and p; are examples of white dots from the second row that
represent points in ABM parameter space used to compute an elementary effect in A;. These points correspond to regions Ry
and R; in SM parameter space. The time series curves are the trajectories sampled from these regions. The purple and yellow
distributions denote the output metric of interest calculated from each trajectory. The elementary effect is approximated by the
difference between the means of these distributions. The fourth row, with a dark background, illustrates the direct
implementation of MOAT. Here, multiple ABM trajectories are generated at both pg and pi, and the elementary effect of A is
computed as before, using the difference between the means of the ABM output distributions.
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readily interpretable. Its main limitations are its inability to capture higher order interactions between model parameters and
the fact that it does not yield a definitive boundary separating the important parameters from less influential ones. eFAST is a
variance decomposition method that can efficiently handle models with nonlinear responses and complex interactions, and is
model independent'#. eFAST estimates the variance of the chosen model output, and the contribution of input parameters as
well as their interactions to this variance. The algorithm then separates the output variance into the fraction of the variance that
can be explained by variation in each input parameter. The result of this analysis is the main effect and total effect sensitivity
indices.

2.3 Simple ABM of an In Vitro Cell Proliferation Assay
We consider the easy-to-simulate ABM presented in®37, which describes a 2-dimensional on lattice birth-death-migration
model of tumor cell proliferation. Briefly, cell division occurs as cell progress through four stages of the cell cycle in order:
G1, S, G2, and M with transition rates, pgi1—s, Ps—G2, PG2—M, PM—G1, tespectively. When a cell advances from M back to
G1, it can proliferate into an unoccupied neighboring lattice site, provided the strength of contact inhibition on it is below
a threshold T;,,. Otherwise, the cell returns to G1 without undergoing mitosis. Cells move to neighboring lattice sites at a
constant migration rate, s, provided a randomly selected neighboring lattice site is unoccupied. If not, cells remain stationary.
The growth culture is assumed to have a carrying capacity K4. For complete details on ABM formulation and simulation
method, see®’.

We infer global sensitivity of the seven ABM parameters mentioned above with respect to total cell number at the end of
the simulation. These parameters are summarized in Table 1, and were varied across three values each, for a total of 37 =2187
ABM parameter vectors. At each of these, six replicates were simulated.

Following®, an ODE formulation for the SM was chosen, with the numbers of cells in G1/S phase (N;s) and G2/M phase

(M2yr) as model variables. The following governing equations comprise the SM:

dN; N, N
- —AcNis + ac (2 - M) Now, )
t Kc
dN:
diM = AcNis— 0cNoy, (6)

where A¢ is the rate of transition from G1/S to G2/M, o is the maximum rate of proliferation of cells in G2/M and K¢ is the
growth culture’s carrying capacity. For more details on how this SM was derived, see®. These parameters are summarized in
Table 1.

Table 1. List of ABM and surrogate model (SM) parameters

Simple ABM Parameters SM Parameters (equations (5)-(6))
Parameter Meaning Parameter Meaning
Ku Carrying capacity Ac G1/S — G2/M transition rate
Teon Contact inhibition ac G2/M — G1/S transition rate
s Migration rate Kc Carrying capacity
PG1-s G1 — S transition
Ps—G2 S — G2 transition
PG2Mm G2 — M transition
PM—G1 M — G1 transition
Complex ABM Parameters SM Parameters (equations (7)-(9))
Parameter Meaning Parameter Meaning
Ddiv Progenitor cell proliferation rate A Exponential growth rate
Sdiv Stem cell proliferation rate Logistic growth rate
Fmig Tip cell migration rate Logistic carrying capacity
Dlim Progenitor cell division limit vB growth rate

vB death rate
vB exponent

< ™R XN~
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2.4 Complex ABM of Vascular Tumor Growth in 3D

We consider the computationally complex model of vascular tumor growth in 3 dimensions presented in®®. This on-lattice
ABM consists of two modules that communicate with each other: a cancer cell module; and a vascular module.

The cancer cell module comprises cancer progenitor cells, which make up the bulk of the tumor, and cancer stem cells.
The proliferation rate pg;, of progenitor cells is greater than the proliferation rate s ;, of cancer stem cells. Progenitor cells
can divide a limited number of times, py;,,, before they become senescent. On the other hand, cancer stem cells have limitless
replicative potential. Progenitor cells reproduce symmetrically to produce two daughter progenitor cells, whereas cancer stem
cells can reproduce asymmetrically or symmetrically, producing a progenitor daughter cell and a stem cell, or two stem cells.
Both types of cancer cells migrate or proliferate only if there is space in an adjacent lattice site (Moore’s neighborhood). Both
cell types are assumed to have a common migration rate, mig. A second factor governing the ability of a cancer cell to migrate
or divide is its oxygen status, which could be normoxic (maximum migration and proliferation rates) or hypoxic (minimum
migration and proliferation rates). This oxygen status is determined by the cell’s distance from a mature, blood-borne vessel.

The second module comprises endothelial cells and simulates angiogenesis: the formation of new blood vessels within
the tumor. The tumor initially starts with a mature vasculature along its boundaries. As the tumor grows past the diffusion
threshold of oxygen, the cancer cells become hypoxic. This triggers an ‘angiogenic-switch’ and cancer cells begin secreting
Vascular Endothelial Growth Factor (VEGF), initiating angiogenesis. In response to this chemical stimulus, mature vessels near
a hypoxic cancer cell can sprout, forming a new (non-mature) vessel. This sprout proliferates, extends, and migrates up the
gradient of VEGF towards the nearest hypoxic cells until it anatamoses (fuses with) another sprout or with a nearby mature
vessel. Once anastamosis occurs, the sprouts involved become blood-borne (mature) and nearby cancer cells become normoxic.
We refer the reader to’ for complete details on this ABM and how to simulate this ABM.

We infer global sensitivity of the four ABM parameters mentioned above with respect to: (1) final tumor volume; (2) area
under the tumor volume time-course; and (3) time to half-maximum tumor volume. These parameters are summarized in
Table 1, and were varied across three values each, for a total of 3* = 81 ABM parameter vectors. At each of these, six replicates
were simulated.

An ODE formulation for the SM was chosen, with the total number of tumor cells (N) as the model variable. Three possible

formulations were chosen for the SM, since each of these is a well-established model for tumor growth3%-40:
dN
Exponential Growth : ol AN, (7
dN N
Logistic Growth : — = rN|1-——= 8
ogistic Grow 7 r < K) , ®)
dN 1
von Bertalanffy Growth : o anN® — BN, 6=1- 7’ v>1, ©)]

where A is the exponential growth rate of tumor cells, r and K are the intrinsic growth rate and carrying capacity for the logistic
model, respectively, and a, 8 and v are the growth rate, death rate and exponent in the von Bertalanffy model, respectively.
These parameters are summarized in Table 1.

3 Results

In this section, we demonstrate the accuracy of SMoRe GloS in computing the global sensitivity indices for ABM parameter
sets through two distinct test cases. First, we explore an easy-to-simulate ABM that models an in vitro cell proliferation assay
in two dimensions. Then, we apply our method to compute the global sensitivity of parameters in a more complex ABM that
simulates three-dimensional vascular tumor growth.

3.1 Global Sensitivity of Parameters in ABM Representing Cell Proliferation Assay

We begin by generating output for the easy-to-run ABM of a two-dimensional cell proliferation assay, described in Section 2.3.
Figure 2A presents a storyboard depicting a typical simulation at various time points, illustrating the spatial distribution and
cell cycle phase distribution of cells from Day 0 to Day 3. Figure 2B shows time series data of cell numbers in G1/S and G2/M
phases of the cell cycle from a typical ABM simulation, highlighting the accumulation of cells in G1/S as the total number of
cells approaches the carrying capacity and the virtual cell culture exhausts available space. ABM parameters, together with the
biological processes they regulate, are illustrated in Figure 2C. Parameters that represent spatial processes are highlighted in
yellow and include the rate of cell movement, s, and the contact inhibition parameter, 7,,. We note that the surrogate model
chosen for this ABM, specified in equations (5) and (6), is independent of local spatial considerations and, therefore, does not
explicitly incorporate the processes represented by these parameters.
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Figure 2. SMoRe GloS recapitulates global sensitivity of cell culture ABM. A) ABM storyboard showing cells by location
and cell-cycle phase. B) Time series of the G1/S and G2/M cell-cycle phases. C) ABM parameters included in the sensitivity
analysis. The yellow box highlights local spatial parameters that are not explicitly captured by the surrogate model (SM). D)
RSS distribution of SM fits to all ABM parameter vectors. Orange line indicates the log-normal distribution that best fits this
distribution. E) Profile likelihoods of SM parameters at four randomly selected ABM parameter vectors. F) Identifiability
wheels of SM parameters where color indicates the identifiability index, and area the proportion of ABM parameter vectors for
which the given SM parameter had that index. G) MOAT sensitivity analysis results using the ABM (Direct, black bars) and
SMoRe GloS (Indirect, blue bars), ranked by decreasing sensitivity using the direct method. H) Normalized MOAT sensitivity
values for each ABM parameter using the direct (left) and indirect (right) methods. Spatial parameters not not explicitly
captured by the SM are highlighted in yellow.
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3.1.1 Surrogate Model Accurately Matches ABM Output with Minimal Uncertainty in Parameter Values
After selecting the best surrogate model, we fit it to the ABM output and calculate the residual sum of squares (RSS) to assess
the goodness-of-fit (Step 3 of SMoRe GloS). The resulting distribution of RSS values is summarized in Figure 2D. The RSS
values appear log-normally distributed with a very low mean (= 1), indicating an overall excellent fit quality. We also apply the
profile-likelihood method, as described in Step 3 of SMoRe GloS, to quantify the uncertainty in surrogate model parameter
estimates. Figure 2E shows sample profile likelihood curves for three surrogate parameters: Ac (G1/S to G2/M transition rate),
oc (G2/M to G1/S transition rate), and K¢ (carrying capacity), for four representative sets of ABM parameters. All likelihood
profiles for A¢c and o are U-shaped and intersect the 95% confidence interval thresholds (dashed lines) twice. Consequently,
their identifiability indices are 2 in each case. In contrast, the sample profile likelihoods for K¢ can be L-shaped, intersecting
the 95% confidence interval thresholds (dashed lines) only once. Thus, the identifiability index for K¢ is 2 in the top and bottom
cases shown, and 1 in the middle cases.

Aggregating across all ABM outputs, Ac and ¢ have consistently well-constrained upper and lower 95% bounds, with
100% of their identifiability indices having a value of 2 (Figure 2F, first two donuts). K¢ exhibits some profiles identifiable
from only one side, resulting in 73% of its indices being 2 and 27% being 1 (Figure 2F, bottom donut).

3.1.2 SMoRe GloS Accurately Computes Global Sensitivity of 2D Cell Culture ABM Parameters, Including Those Not
Explicitly Represented in the Surrogate Model
We next implement Steps 4 & 5 of SMoRe GloS to infer the global sensitivity of ABM parameters using two distinct methods:
the Morris method and eFAST. In each case we also infer the sensitivity of ABM parameters directly using these methods,
to evaluate the efficacy of SMoRe GloS. Fig 2G contrasts the global sensitivity of ABM parameters inferred directly (black
bars) and indirectly using SMoRe GloS (blue bars) with the Morris method. Both approaches yield similar rankings for the
importance of each parameter. The direct method suggests a higher sensitivity for carrying capacity compared to contact
inhibition, though both were deemed highly sensitive by the indirect method as well. The direct and indirect methods are in
excellent agreement on the insensitivity of transition rates between cell cycle phases and the intermediate sensitivity of cell
migration rates. Fig 2H normalizes and stacks these sensitivities for clearer comparative visualization, reaffirming the ability
of SMoRe GloS to accurately recapitulate the global sensitivity of ABM parameters using the Morris Method. Our method
performs similarly well when using the eFAST method to infer global sensitivity of ABM parameters (see SI Figure S1).
These results showcase the capability of our method to infer the sensitivity of ABM parameters. Remarkably, this includes
parameters representing local spatial processes (highlighted in yellow), such as cell movement and contact inhibition, which are
beyond the scope of the surrogate model. It also extends to processes not explicitly included in the surrogate model, such as the
transition rates from G1 to S and G2 to M.

3.2 Global Sensitivity of Parameters in ABM Representing 3-D Vascular Tumor Growth

Implementing Step 1 of SMoRe GloS for this case study, we generate output for a computationally complex ABM that models
three-dimensional vascular tumor growth, as described in Section 2.4. Figure 3A presents a storyboard depicting a typical
simulation at various time points, illustrating the growth of a tumor and its associated vasculature at various time points. ABM
parameters, together with the biological processes they regulate, are depicted in Figure 3B. The rate of tip cell migration
parameter ry;g represents a spatial process, and is highlighted in yellow. Following Step 2 of SMoRe GloS, three candidate
surrogate models, specified in equations (7), (8) and (9)), are chosen for this ABM. It is important to note that these surrogate
models are independent of spatial considerations and, therefore, do not explicitly incorporate the processes represented by riig.

3.2.1 Surrogate Model Selection for the Computationally Complex ABM is Guided by Goodness-of-fit and Identifiability
Indices

Figures 3C-E show average cell number time courses (dashed lines), together with standard deviation (gray shaded area), from
ABM simulations generated at three representative values of input parameters. Following Step 3 of SMoRe GloS, these figures
also include fits of the three candidate SMs to the ABM output: exponential growth (blue curves, equation (7)); logistic growth
(red curves, equation (8)); and von Bertalanffy growth (yellow curves, equation (9)). Visually, the von Bertalanffy model aligns
more closely with the ABM output than the other two, while the exponential model performs the poorest. This observation is
confirmed by the RSS distributions for the three models, shown in Figure 3F. The von Bertalanffy model provides a superior
fit to the ABM output compared to the logistic and exponential models, as evidenced by a high frequency of low RSS values
coupled with low variance. The exponential model yields the least accurate fits.

The above results are not surprising, given that the exponential model has one free parameter, the logistic model has two
and the von Bertalanffy model has three. To facilitate model selection, the Akaike Information Criterion (AIC) is used to
meaningfully compare the fits of the three surrogate models to ABM output, with results summarized in Figure 3G. This figure
plots the relative log-likelihood of the von Bertalanffy model compared to the exponential (x-axis) and logistic (y-axis) models.
The right half of the figure indicates when von Bertalanffy outperforms the exponential model, while the top half indicates
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Figure 3. Surrogate Model (SM) selection for the 3D vascular tumor growth ABM. A) ABM storyboard showing vascular
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not explicitly captured by the SMs. C-E) Fits of the SMs to ABM output at three representative ABM parameter vectors. ABM
parameter vectors were chosen based on the best fit to the exponential SM (C), logistic SM (D), and von Bertalanffy SM (E). F)
Histograms of log10(RSS) values for each SM across all sampled ABM parameter vectors. G) Comparison of Akaike
Information Criterion (AIC)-based relative log-likelihoods between the three SMs. Individual ABM parameter vectors are
represented as darker colored dots. The x-axis shows the relative log-likelihood of the exponential model, and the y-axis shows
the relative log-likelihood of the logistic model, both compared to the von Bertalanffy model. Positive (resp. negative) values
indicate that von Bertalanffy is more (resp. less) likely than the alternative SM. The background is color-coded by the SM
selected by AIC: yellow indicates preference for von Bertalanffy, red for logistic, and blue for exponential. The ABM
parameter vectors corresponding to panels C), D), and E) are highlighted with black circles. Dashed lines indicate where the
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Figure 4. Comparison of the identifiability properties of the three surrogate models (SMs) for approximating the 3D vascular
tumor growth ABM. A-C) Profile likelihoods for three representative ABM parameter vectors (rows) for each SM parameter
(columns). D-F) Identifiability wheels of SM parameters where color indicates the identifiability index, and area the proportion
of ABM parameter vectors for which the given SM parameter had that index. Each wheel is matched with the corresponding
SM (columns A-C).

when von Bertalanffy outperforms the logistic model. In particular, the yellow square represents all cases where von Bertalanffy
is superior to both the exponential and logistic models (84% of cases). The red square and triangle represent all cases where
logistic is superior to both von Bertalanffy and exponential models (16% of cases). In no instance is the exponential model
superior to both von Bertalanffy and logistic models (blue square and triangle). The labeled dots correspond to the ABM
parameters whose trajectories are shown in panels C-E.

Continuing to implement Step 3 of SMoRe GloS, we employ the profile-likelihood method to quantify uncertainty in the
parameter values of all three surrogate models. Figures 4A, 4B, and 4C display representative profile likelihood curves for the
exponential model (single parameter A, blue curves), the logistic model (two parameters r and K, red curves), and the von
Bertalanffy model (three parameters @, v, and 3, yellow curves), respectively. Figures 4D, 4E, and 4F show the corresponding
identifiability index donut charts for these surrogate model parameters, aggregated over all ABM output. As can be seen,
parameters in the exponential model (Figures 4A and 4D) and the logistic model (Figures 4B and 4E) have identifiability indices
of 2 in almost all cases, suggesting these parameters are well constrained by the ABM output. In contrast, the identifiability
indices for the von Bertalanffy model parameters 8 and v are almost evenly distributed between 0’s and 1’s, and almost
exclusively 1’s for ¢. This indicates that the von Bertalanffy model parameters are poorly constrained by the ABM output.
Thus, even though the von Bertalanffy model provides the best quality of fit, as evidenced by low RSS values, the uncertainty in
its parameter values is greatest.

Considering these results, we expect the logistic model to perform best in the final step of SMoRe GloS due to its consistently
good fits to ABM output and low uncertainty in parameter values. The exponential and von Bertalanffy only meet one of these
criteria and are, therefore, not expected to yield optimal results.

3.2.2 SMoRe GloS Accurately Computes the Global Sensitivity of ABM Parameters, with One Surrogate Model Emerging
as the Best Choice

We now proceed to implement Steps 4 and 5 of SMoRe GloS to infer the global sensitivity of ABM parameters, employing two

distinct methods: the Morris method and eFAST. We present below the results for MOAT. The results for eFAST are similar and

can be found in SI Figure S2. To evaluate the efficacy of SMoRe GloS, we also directly infer the sensitivity of ABM parameters

using these methods. For the global sensitivity analysis, we employ three distinct metrics to underscore the critical role of

surrogate model selection in Step 3 of SMoRe GloS:

¢ final tumor size,
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Figure 5. SMoRe GloS recapitulates global sensitivity of multiple output ABM metrics using the logistic surrogate model
(SM). Each row uses a different output metric (left column) and shows the resulting sensitivity values (middle column) and
their normalizations (right column). Colors in left and middle columns correspond to the SM as shown in the legend in A.
Colors in the right column correspond to the ABM parameter as shown in the legend in F. A-C) Using final tumor size as the
output metric. D-F) Using area under the curve as the output metric. G-I) Using time to half the maximum tumor volume as the
output metric. Note the break in the y-axis scale in B and E.
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¢ area under the tumor volume time-course curve, and
e time to half-maximum tumor volume.

We selected these metrics based on their ability to capture different aspects of the data simulated by the ABM. Specifically, the
final tumor size is independent of the dynamic properties of the tumor volume time-course, such as its shape and curvature.
In contrast, both the area under the curve and the time to half-maximum volume are influenced to different degrees by these
properties. These distinctions are illustrated in Figures 5A, 5D, and 5G. It is important to note that our choice of output
metrics primarily aims to highlight the importance of surrogate model selection and does not necessarily reflect their biological
relevance.

Figures 5B, 5E, and 5SH compare the global sensitivity of ABM parameters as inferred directly (black bars) and indirectly
using SMoRe GloS with the Morris method across the three surrogate models (blue bars for the exponential model, red bars
for the logistic model, and yellow bars for the von Bertalanffy model). Figures 5C, SF, and 51 show the predicted relative
importance of the ABM parameters for each metric by normalizing and stacking their sensitivities. The von Bertalanffy results
are omitted from the normalization panels due poor unnormalized values.

Selecting a surrogate model solely based on goodness-of-fit to ABM output is insufficient for capturing global sensitivity:
For all three global sensitivity metrics, the von Bertalanffy model — despite its superior fit to the ABM output — fails to
adequately capture the sensitivity of the ABM parameters (Figures 5B and 5E, yellow bars). Notably, the time-to-half-maximum
tumor volume results were so poor that they were not graphed (Figure SH). This highlights the limitations of selecting a
surrogate model based solely on goodness-of-fit fit to ABM output, without considering potential over-parameterization. Such
an approach can severely compromise the effectiveness of the method.

Selecting a surrogate model solely based on minimizing uncertainty in its parameters is insufficient for capturing global
sensitivity: The exponential and logistic models effectively predict the global sensitivities of ABM parameters with respect to
final tumor size, as shown in Figure 5B (blue and red bars, respectively). The exponential model marginally outperforms the
logistic model in capturing the sensitivity of the most significant parameter, while the logistic model excels in predicting the
relative sensitivities of ABM parameters (Figure 5C).

Notably, the exponential model, which has the best identifiability indices, exhibits declining accuracy in calculating global
sensitivity as the output metric becomes more reliant on the dynamic aspects of tumor growth. While it can accurately predict
the order of importance of ABM parameters for the area under the tumor volume time-course curve (Figure SE, blue bars), it
fails to capture the true sensitivities of these parameters and completely fails when assessing the time to half maximum tumor
volume (Figure 5H, blue bars). This is further evidenced by observing the predicted relative importance of ABM parameters
(Figures 5C and SF, second column versus first column).

Capturing global sensitivity accurately requires balancing good fits to ABM output with minimizing uncertainty in surrogate
model Parameters: The logistic model consistently reproduces the sensitivities of ABM parameters across all evaluated metrics
(Figures 5B, 5E and 5H, red bars, and Figures 5C, 5F and 51, third column versus first column). These findings highlight the
critical need to balance maximized goodness-of-fit with minimizing surrogate model parameter uncertainty when performing
model selection in Step 3 of SMoRe GloS.

3.3 Computational efficiency of SMoRe GloS for Computing Global Sensitivity

The primary advantage of SMoRe GloS over directly computing global sensitivity with a complex model lies in its significant
computational efficiency. Implementing the MOAT method directly with d parameters using a Latin Hypercube Sampling
(LHS) of k points and n, replicates at each point requires (d 4 1) x k x n, ABM simulations. The d + 1 factor accounts for
perturbing each LHS sample vector across all d parameter components. Typically, k values are recommended to range between
10 and 50*'. For the 3D vascular tumor growth ABM, we varied d = 4 parameters using k = 15 LHS points, with n, = 6
replicates, requiring 450 ABM simulations. Each simulation lasted, on average, 10 minutes, resulting in a total wall time of
approximately 75 hours when run serially. In contrast, with SMoRe GloS, we started with the same (d + 1) x k =75 ABM
parameter points, but we drew 100 samples from the corresponding surrogate model (SM) parameter subspaces for each. This
produced a total of 7,500 SM simulations. Since solving the SM has a negligible cost compared to interpolating the subspace
and drawing samples, SMoRe GloS completed this task in under one minute (Figure 6A, blue line).

For the more computationally intensive eFAST method, even more ABM simulations are required, further emphasizing
the value of SMoRe GloS in improving computational efficiency. In our case, we applied eFAST to d = 4 parameters, with
N, =2 replicates per parameter (corresponding to random phase shifts), and Ny = 65 samples per curve. The value Ny = 65 is
the minimum recommended'#. As with the MOAT method, we ran n, = 6 replicates at each point to estimate the average ABM
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behavior. This led to a total of d X N, X Ny X n, = 3,120 ABM simulations, which, if run serially, would require nearly 22
days of wall time. In contrast, SMoRe GloS once again demonstrated its computational superiority by completing the eFAST
analysis in under 5 minutes (Figure 6A, orange line).

SMoRe GloS does require an initial investment of computational resources for generating ABM output at sampled points
in the ABM parameter space and profiling the SM against this output. For the vascular tumor growth ABM, we sampled
g = 3 points in each of the d = 4 dimensions of parameter space, with n, = 6 replicates at each point, resulting in a total
of g x n, = 486 ABM simulations. While this number is comparable to the simulations required for directly computing
MOAT sensitivities, it is significantly lower than what would be required for directly implementing eFAST. With just these 486
simulations, we were able to successfully recapitulate both MOAT and eFAST global sensitivity results. These are summarized
in Figure 6B.

4 Discussion

In this paper, we introduce a novel method for inferring the global sensitivity of parameters in agent-based models (ABMs):
Surrogate Modeling for Recapitulating Global Sensitivity (SMoRe GloS). This first-of-its-kind approach leverages explicitly
formulated surrogate models to approximate ABM outputs, enabling a comprehensive exploration of parameter space that
would otherwise be computationally prohibitive. Our findings demonstrate the potential of SMoRe GloS to significantly
enhance the efficiency of global sensitivity analysis for ABMs, without compromising accuracy when applied judiciously.

One of the key strengths of SMoRe GloS is its combination of flexibility and adaptability. We demonstrated that our method
performs consistently well with both eFAST and the Morris Method. By being agnostic to specific global sensitivity analysis
techniques, SMoRe GloS offers greater compatibility across various sensitivity methods, with differing objectives like factor
fixing, factor mapping and factor prioritization. This adaptability allows users to tailor the approach to their specific needs
and preferences, which is particularly valuable given the wide range of applications for ABMs. Our successful application of
SMoRe GloS to both, a two-dimensional cell proliferation assay, and a more complex three-dimensional vascular tumor growth
model, highlights its broad utility.

SMoRe GloS offers significant computational efficiency compared to traditional approaches. For example, directly
implementing the MOAT method for the 3D vascular tumor growth model required 450 ABM simulations, corresponding to
~75 hours of CPU time, whereas SMoRe GloS achieved the same MOAT implementation in under 1 minute. The speedup
was even more dramatic with eFAST, where direct implementation demanded 3,120 ABM simulations and 22 days of CPU
time, while SMoRe GloS completed the task in under 5 minutes. Our results demonstrate that, even after accounting for the
initial cost of setting up the surrogate model, SMoRe GloS provides substantial advantages in both speed and flexibility. This is
particularly advantageous for more complex global sensitivity analysis tasks like factor mapping and prioritization, which are
typically orders of magnitude more computationally expensive than simpler methods like MOAT, used for factor fixing.

We implemented SMoRe GloS with an on-grid parameter sampling, which scales exponentially with the dimensionality of
the parameter space; this could be further optimized by employing Latin Hypercube Sampling (LHS), which scales linearly
with parameter space dimensions. This would further reduce the computational cost of setting up the surrogate model. It is
important to note that many complex models require hours per simulation, making direct global sensitivity analysis using
methods like eFAST computationally prohibitive. However, SMoRe GloS makes such analyses feasible.

Another notable feature of SMoRe GloS is its ability to produce global sensitivity indices for ABM parameters that are not
explicitly included in the surrogate model formulation. This feature enhances our method’s utility for complex models where
certain biological or real-world processes are difficult to capture with computationally less expensive surrogate models. The
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implications are significant: we demonstrated that SMoRe GloS can accurately compute the sensitivity of spatial parameters
that appear in an ABM, even when they are absent from a spatially-independent surrogate model.

One caveat of our approach is that the effectiveness of SMoRe GloS in accurately recovering the correct sensitivity indices
of ABM parameters hinges on the choice of surrogate model. Ideally, one would aim to find a surrogate model that fits all
ABM outputs near perfectly, with parameters that are fully identifiable — that is, determined with minimal uncertainty — across
all outputs. However, this may be unattainable in practice because improvements in the fit quality frequently come at the
cost of introducing additional parameters that may diminish their identifiability properties. To address this, we advocate
for a balanced approach to surrogate model selection, guided by both goodness-of-fit to ABM output and the identifiability
properties of surrogate model parameters. Specifically, the focus during surrogate model selection should be on ensuring it
faithfully reproduces the ABM output with minimal uncertainty. Developing a mechanistic surrogate model that aligns with the
underlying mechanisms coded in the ABM could be a promising strategy. The particular output metrics of interest, for which
we wish to determine the sensitivities of ABM parameters, should be considered after selecting a robust surrogate model. Since
a well-constrained surrogate model will be broadly applicable, it can effectively assess a variety of output metrics, making our
approach particularly valuable given the unpredictable nature of exploratory modeling.

There are several promising avenues for further developing and extending SMoRe GloS. One potential direction under active
consideration is to establish a ranking system for ABM parameters based on their influence on surrogate model parameters. This
information could then be integrated with a sensitivity analysis of the surrogate model parameters to produce a global sensitivity
ranking for the ABM parameters. Such an approach might eliminate the need to reconstruct surrogate model parameter
hypersurfaces, thereby increasing our method’s efficiency. Additionally, as previously discussed, obtaining a well-constrained
surrogate model that faithfully reproduces the ABM outputs of interest is crucial. To this end, we are currently exploring the
use of machine learning and equation learning algorithms to further enhance our results. These approaches could lead to more
robust and accurate surrogate models, ultimately broadening the applicability and efficiency of SMoRe GloS in various complex
biological and real-world systems.
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