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The real-oriented cohomology of infinite stunted projective spaces

WILLIAM BALDERRAMA

Let ER be an even-periodic real Landweber exact Cy—spectrum, and ER be its spectrum of fixed points.
We compute the £R—cohomology of the infinite stunted real projective spectra P;. These cohomology
groups combine to form the RO(C,)—graded coefficient ring of the C,—spectrum

b(ER) = F(ECs,ixER),

which we show is related to ER by a cofiber sequence ¥X°bh(ER) — b(ER) — ER. We illustrate our
description of 7, b(ER) with the computation of some ER-based Mahowald invariants.

55N20, 55N22, 55N91, 55Q51

1 Introduction

The spectrum MU of complex cobordism plays a central role in both our conceptual and computational
understanding of stable homotopy theory. Landweber [1968] introduced what is now known as the Cp—
equivariant spectrum M R of real bordism, with underlying spectrum MU and fixed points MR = MUM2
the homotopy fixed points for the action of C; on MU by complex conjugation. Work of Araki [1979],
Hu and Kriz [2001], and others, has shown that essentially all of the theory of complex-oriented homotopy
theory may be carried out in the C,—equivariant setting with MR in place of MU, leading to the rich
subject of real-oriented homotopy theory. This subject has seen extensive study over the past two decades,
with a notable increase in interest following the use of MR by Hill, Hopkins and Ravenel [Hill et al.
2016] to resolve the Kervaire invariant one problem.

There are real analogues of most familiar complex-oriented cohomology theories. An important family
of examples is given by the real Johnson—Wilson theories ER (n), refining the usual Johnson—Wilson
theories E(n). These theories are Landweber flat over M R, in the sense that they are M R—modules and
satisfy

ER(n).X = ER(n)« Qur, MR, X

for any Cp—spectrum X . The fixed points ER(n) = ER(1n)¢2 = E(n)"“2 are nonequivariant cohomology
theories that are interesting in their own right; for example, ER(1) >~ KO(y), and ER(2) is a variant of
TMF((3)(2). One may regard the descent from E(n) to ER(n) as encoding a portion of the £ (n)-based
Adams-Novikov spectral sequence, and accordingly each ER(n) detects infinite families in .S
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There is in general a tradeoff between the richness of a homology theory and the ease with which it may
be computed. Kitchloo, Lorman, and Wilson have carried out extensive computations with ER(n)-theory
[Kitchloo and Wilson 2007b; 2015; Lorman 2016; Kitchloo et al. 2017; 2018a], and their program has
shown that these theories strike a very pleasant balance between richness and computability. Computations
of ER(2)*R P" in particular have been applied to the nonimmersion problem for real projective spaces,
with computations for n = 2k in [Kitchloo and Wilson 2008a], n = 16k + 1 in [Kitchloo and Wilson
2008b], and n = 16k + 9 by Banerjee [2010].

This paper contributes to the above story. Let ER be a real Landweber exact Cy—spectrum in the sense
of Hill and Meier [2017, Section 3.2]; we take this to include the assumption that ER is strongly even.
Write E for the underlying spectrum of ER and ER = ER2 = EM for its fixed points. Suppose
moreover that ER is even-periodic, in the sense that 74+, ER contains a unit. This is equivalent to
asking that the M R-orientation of ER extends to an M PR-orientation, where

MPR ~ @ w1+ prR
nez

is the real analogue of 2—periodic complex cobordism.

The primary goal of this paper is to compute the £R—cohomology of the infinite stunted projective
spectra Pj. When j > 0, these are the spaces

P =RP>®°/RP/7;

in general, P; is the Thom spectrum of jo, where o is the sign representation of C; regarded as a vector
bundle over BC, = R P°. The cohomology ER* Py is of interest for at least a few reasons: first, it is
one long exact sequence away from the groups ER*R P/, which have so far only been studied at heights
< 2; second, there are C—equivariant Hurewicz maps ¢4 woSc, — ER™¢ Py, which are at least as
nontrivial as the nonequivariant Hurewicz maps for ER; third, there is an interesting interplay between
the C, appearing in ER ~ E"C2 and the C, appearing in ER*(Py) ~ ER*(S}?)CZ) which sheds some
light on the nature of the C,—spectrum ER.

We record the basic properties of ER in Section 3. In particular, 79 ER = my E, the torsion in w4« ER
is supported on a single class x € 7y ER, there is a cofiber sequence SER > ER — E, and the x—

Bockstein spectral sequence for £R—cohomology agrees with the homotopy fixed point spectral sequence
(HFPSS) from the E,—page on.

Write b(ER) = F(ECy4,ix ER) for the Borel C,—spectrum on ER with trivial Cp—action. This satisfies
Tetwob(ER) = ER™€ Py, and we shall compute ER* P, using the x—Bockstein spectral sequence

7+b(E)[x] = m.b(ER).

This concludes an investigation we began in [Balderrama 2021]. There, we computed the HFPSS
H*(Cy; 4b(KUJY)) = m.b(KO3) as a step in our description of the C,—equivariant K(1)-local sphere.
At the time, we were able to put the E,—page into a more general context by computing H*(Cy; w.b(E))
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for more general even-periodic Landweber exact spectra E, but had no information about possible higher
differentials. In this paper, we carry out the rest of the computation for real-oriented E. The results are
summarized in Section 2 below.

1.1 Remark The reader may observe that by restricting to even-periodic spectra, we have ruled out the
real Johnson—Wilson theories ER(n) for n > 2. However, any real Landweber exact C,—spectrum ER
is a summand of the even-periodic theory @, .z X" T9) ER, so no real information has been lost. A
more subtle point is that implicit in the definition of real Landweber exactness is the assumption that
ER is a ring up to homotopy, and it is not known whether ER(n) always satisfies this. However, the
partial multiplicative structure given in [Kitchloo et al. 2018b] is sufficient for our computation to apply
to 2—periodic ER(n)-theory.

Acknowledgements We thank Hood Chatham for an enlightening conversation highlighting the role of
Borel completeness in Theorem 2.1. This work was supported by NSF RTG grant DMS-1839968.

2 Summary

We now describe our results. We start with the following, which serves as the linchpin for our computation
of m.b(ER). Write p € m_sSc, for the Euler class of the sign representation and 2 € my5_2b(E) for
the Thom class of 20 = C ® 0. These classes are sometimes denoted by @, and u 2, but we will reserve
those symbols for ER and Cy4 ® ix ER. Write u € 7, E for the chosen unit, and set

£ = pt2u € ngb(E).
2.1 Theorem (Section 4) The class & is a permanent cycle in the x—Bockstein spectral sequence,
detecting a lift of x. Moreover, there is a cofiber sequence
(1) S°b(ER) <> b(ER) — ER
of Cy—spectra.
This cofiber sequence is a twisted form of the standard cofiber sequence
) Y °bh(ER) 25 b(ER) = C,4 Qi+ ER.
2.2 Example When E = KU, one can identify b(ER) = F(EC,4, KOc,) and ER = KR, and

& = £, is the C,—equivariant Hopf map. In this case, Theorem 2.1 recovers the real Wood cofibering
KOc,/(nc,) = KR (cf [Guillou et al. 2020, Proposition 10.13]).

To show that £ is a permanent cycle detecting a lift of x, we first reduce to the universal case £ = M P,
then show that this is the only possibility compatible with norms on b(M PR). Given this, the cofiber
sequence of (1) is a mostly formal consequence of (2) and the fact that ¢ differs from p by a unit in
w+b(E).

Algebraic & Geometric Topology, Volume 24 (2024)
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We now describe m,.b(ER). We start by fixing some notation for 7,b(E). Write [2](z) € Ey[z] for
the 2—series of the formal group law of E, and write u, € E for the elements corresponding to the
usual v, € myn_1)E by up = u~@" =Dy, We may find series 1, (z) € Eo[z] for n > 0, of the form
hu(z) = uy + O(z) and satisfying

21(z) = zho(2),  hn(2) = ttn + 2% hyy1(2) (mod g, .. ., 1)

Note in particular
21(z) = 2*"a(z) (mod u, ..., tn—1).

We now specialize to w.b(E). Set

n+1 n+1 _
2 2 u

z=pE=p*t%u, hp=hp(z), wp=p hpyp1=7 2n(h,, —Up),

the last congruence being modulo (ug, ..., u,—1). We abbreviate i = hg. This is the transfer element in
nob(E) = E°BC,, and we have

21 B Eolp. t*2, u®!])

7T0b (E) = ’ )
(2](2)) (o-h)
see for instance [Balderrama 2021, Section 2.1].

2.3 Theorem (Section 5) Define the subring Z C w.b(E) by
Z = Eo(p.&. 02" 1 oy T CIED 2 oy > 00k 1 € 2), ) C mab(E),

and let B C Z|x] be the ideal generated by the elements
427 ontl +1_ +1 +1 +i_ +27 ontl +1_
T e B e € B T AR AT A Sy

forn > 0andk,! € Z. Then Z[x]/B is the x—adic associated graded of w.b(ER).

2.4 Remark In integer degrees, w«b(ER) is very simply described:
mxb(ER) = ER[z]/(12](2)):

see Corollary 4.3. This does not require the full computation of w,b(ER), and follows as soon as one
knows that £ is a permanent cycle. In particular, moh(ER) = E°BC,. To get a feeling for m,b(ER)
outside integer degrees, the reader may wish to peruse Tables 1 and 2, described in Remark 5.5, which
list wob( ER)-module generators for the groups m.4+ywob(ER) in a range.

2.5 Remark Implicit in Theorem 2.3 is the fact that r2"+2lu2"+lkwn eZforn=0andk,/ €Z. In
particular,
(2RI 2 ey, 2 2Rl 2 Ry,
t2"+3lu2"+1(2k+1)wn _ gz'”rl -r2”+2(21+1)u2n+2kh,,+1,
12n+3lu2n+2kwn _ p2n+l -t2”+slu2n+2kun+1 +%_2n+1 -r2n+3lu2n+2kwn+1,

r2"+2(21_1)u2n+1(2k+1)wn — 52"+1 L2, 2k, 2l 2nt3(-1), 2" T2 (k1)

n+l1 TP Wy,

where the last two formulas hold mod uy, ..., uy.
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The ring Z[x]/B is the E—page of the x—Bockstein spectral sequence for 7,b(ER), obtained after

running differentials which are generated by

n n+1_ n+1 n+1_
d2n+l_1(U2 ) = unx2 1, d2n+l_1('[2 ) = —wnX2 1.

2

The differentials on 12" appear in the x—Bockstein spectral sequence for w4« ER, and are consequences

of the computation of 7, MR by Hu and Kriz [2001], as we review in Section 3. The differentials on
2" are the core of our computation. These differentials turn out to be forced by the permanent cycle
£ = pt~2u, by a Leibniz rule argument based on dyn+1_ (£ 2n) = 0. This argument would not be possible
if one tried to compute each ER* P; individually, and illustrates the strength of using the C,—spectrum
b(ER) as a tool for packaging information about the cohomology of all stunted projective spectra into

one object.

One might also try to understand 7, b (E R) through the p—Bockstein or the £-Bockstein spectral sequences.
Using the cofiber sequences (2) and (1), these are of signature

7:(Cos ®ix ER)[p] = m«b(ER), m.ER[E]= m.b(ER).

Here, m,(Co+ Q@ ix ER) = m4 ER[uéEl] with |uys| = 1 — 0, and in degrees * + wo the p—Bockstein
spectral sequence is exactly the Atiyah—Hirzebruch spectral sequence for ER* Py, based on the standard
cell structure of Py,. By construction, the differentials in these spectral sequences are controlled by the
boundary maps

tr(uy ' - =) Tet1-6(Cog ® ix ER) — web(ER), 9: Tayi+0 ER — 7w b(ER)

for the cofiber sequences (2) and (1). This first boundary map is exactly the transfer for the C,—spectrum
b(ER). Although we do not know whether it is feasible to compute either the p—Bockstein or £&-Bockstein
spectral sequence directly, we can use our computation of 7.5 (ER) to deduce the following.

Write # € w44 ER for the invertible element guaranteed by the M PR—orientation of ER.

2.6 Theorem (Section 6) The above transter and boundary maps satisty
tr(u;I .ug"(zkﬂ)) _ p2"—112"+1khnx2"—1 + O(xzn)’
8([12”(2]‘""1)) _ 52"—1T—2"+1ku2"+1khnx2”—1 + O(x2")
forn>0and k € Z.
The error terms here are necessary as the classes 2"k hy and =2y 2k hy, have only been defined
mod x. It is amusing to observe that Theorem 2.6 produces elements of arbitrarily high x—adic filtration

in the Cy—equivariant Hurewicz image of b(M PR); as far as we know, such families have not yet been
constructed in the nonequivariant Hurewicz image of M PR.

Theorem 2.3 does not quite describe the ring 7,.b(ER), but only its x—adic associated graded Z[x]/B.
The latter is a good approximation to the former, particularly when compared to the p—adic and £-adic
associated graded rings, where the classes p and & appear as simple 2—torsion classes. Still, taking the
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x—adic associated graded does kill some information, and it seems to be a subtle problem to completely
reconstruct the ring 7, b(ER). Although we shall not completely resolve this, we do discuss where to
find hidden p and £é—extensions. The importance of p—extensions is clear: as

e+wo (B(ER)/(p™)) = ER™(PYL).

one must understand the action of p if one wishes to extract information about the £R—cohomology of
finite projective spaces. The importance of £—extensions is clear from the perspective of C,—equivariant
homotopy theory: just as important classes in the Hurewicz image of ER are supported on x, important
classes in the Cy—equivariant Hurewicz image of b ( ER) are supported on &, such as the equivariant Hopf
fibrations n¢,, vc,, and o¢, detected in 7w b(ER) by h1&, hp£2x, and h3E*x3 respectively, and so the
action of & gives information about the behavior of these elements. The cofiber sequences (1) and (2)
give information about p and £—extensions, leading to the following.

2.7 Theorem (Section 7) There are extensions
p..52(2"+1k—r)u2”+1(2l+1)h — (r2"+2ku2"+2’h,,+1§2"1 + O(p))x2”+2—2r + O(x2”+2—2r+1)’

é_.__L,2(2"+1k+r)u2(2”(2H—1)—r)h — (r2"+2ku2"+2’hn+1p2'_1 + 0(5))x2"+2_2’ + 0(x2”+2—2r+1)
fork,l €Z,n>0,and 1 <r <2"tl_1,

As with Theorem 2.3, implicit in this theorem is the fact that the terms on the left and right do in fact live
in w.b(ER), for example t4h = 2t* + p& - v*h. The error terms are present to remind the reader that
these are extensions and not products: to resolve them would require describing how to lift classes from
Z to m.b(ER), and we shall not pursue this. In particular, if & is even then the £, terms on the right
may be replaced with u, without affecting the theorem statement.

This concludes our description of 7,b(ER). Although 7,b(ER) is complicated, it is not impossible to
work with. We illustrate this in Section 8 by computing some M PR-based Mahowald invariants. Li, Shi,
Wang and Xu [Li et al. 2019] have shown that real bordism detects the Hopf elements, Kervaire classes,
and k family. These are the elements in 745 detected in the classical Adams spectral sequence by the
Sq°—families generated by A, h(z), and g;. We compute the iterated M PR-based Mahowald invariants
of 2, 4, and &, showing that they line up with these Sq°—families exactly.

3 Even-periodic real Landweber exact spectra

We begin by recording some properties of ER and ER. The material of this section is essentially a
translation to the even-periodic setting of familiar facts about the real Johnson—Wilson theories. We would
like to avoid confusion between elements of 7.b(ER) and 7. ER, so in this section we write ¢, instead
of p for the Euler class of the sign representation, and use the symbol u, for what would previously have
been written t. In particular, these symbols have degrees

lag| = —0, |ug|=1-—o0.
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Before considering ER, we consider the C,—HFPSS in general. There is a cofiber sequence
3) §70 42, 80 5 ¢,y
Let X be a Cy—spectrum. Then we may identify
Te(Cop ® X) = wl X[uz"],
and so the a,—Bockstein spectral sequence for X is of signature
E| = n:X[u;H,ag] = 1. X,

where ¢ X are the homotopy groups of the underlying spectrum of X . This spectral sequence converges
conditionally to the homotopy groups of the as—completion of X, which may be identified as its Borel
completion F(EC;4, X). Moreover we have the following fact; see for instance [Hill and Meier 2017,
Lemma 4.8].

3.1 Lemma For any C—spectrum X, the as—Bockstein spectral sequence for X agrees with the HFPSS
for X from the E,—page on. a

The proof amounts to identifying the as—Bockstein spectral sequence with the Borel cohomology spectral
sequence induced by the standard cellular filtration of EC,. This identification leads to the following.

3.2 Lemma Let X be a Co—spectrum, and write y~! for the involution on 7¢X. Then the d;—
differential in the as—Bockstein spectral sequence for X is given by

di(eugag) = (e~ (=1)"y " @)y ag ™!
for @ € w¢ X . In particular, if X carries a product, then the differentials satisty the Leibniz rule

dr (@) = dr(@)B + ¥~ (@)dr(B)

for r > 1, where the ¥ ~! may be omitted for r > 2. ]

Now let ER be as in the introduction: a strongly even and even-periodic and real Landweber exact
C,—spectrum in the sense of [Hill and Meier 2017, Section 3.2], with underlying spectrum E. This set of
assumptions means three things. First, ER is a homotopy commutative C,-ring spectrum equipped with a
multiplicative orientation M PR — ER. In particular, there is an invertible element & € ;5 ER coming
from the generator of the n = 1 summand of MPR ~ ), »(1+0) MR, Second, 7o ER = 7o E, and
in general

ER,X = Eo ®up, MPR, X

for any Cp—spectrum X. Third, 7_; ER = 0. Implicit in these is the fact that M PR itself satisfies these
conditions. This is nontrivial, and follows from work of Hu and Kriz [2001] on real cobordism. We recall
the key calculation.

Algebraic & Geometric Topology, Volume 24 (2024)
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3.3 Lemma The Cy—spectrum ER is Borel complete, with as—Bockstein spectral sequence
Ey = Eola*!, uf! ap] = n. ER,
where
lu| =140, |ug|=1—0, las|=—0.
The differentials are Eq[ii*!, as]-linear, and are generated by

2" Zan—1 2ntl—g
dynt1_1(uy ) = upt™ ~ag

’

where u, = u~ " "Dy, € Ey. In particular, mg ER = ng E.

Proof We first verify the given description of the a,—Bockstein spectral sequence. The E;—page of the
as—Bockstein spectral sequence is given by £ *[ufl ,dg]. To put this in the desired form, we set it = u;l u
with u € , E the unit; when £ = M P, this generates the n = 1 summand of M PR ~ @HGZ »n(1+0) R,
As ER is Landweber exact over M PR, the a;—Bockstein spectral sequence for ER is tensored down
from the as—Bockstein spectral sequence for M PR, and here the computation is known by work of Hu

and Kriz [2001].

The Cy—spectrum M R is shown to be Borel complete in [Hu and Kriz 2001, Theorem 4.1], and Landweber
exactness extends the proof to ER. By the Tate fracture square, ER is Borel complete if and only if
the map ®2 ER — ER’C2 is an equivalence, where ®€2 denotes the functor of geometric fixed points.
Landweber exactness implies

1 ®CER = Eg ®arp, mx @2 MPR = Eo/(ug, uy,...)[xE"],

where X = aqii € 1 ER, the last identification coming from the equivalence ®2 MR ~ M O. This
is exactly what one obtains computing 74 ER/C2 by the Tate spectral sequence, which may itself be
obtained from the above description of the as—Bockstein spectral sequence by inverting a,. Thus ER is
Borel complete as claimed. a

We now pass to the nonequivariant spectrum ER = ER¢2 ~ EPC2 Note that 74 ER is the portion of
7+ ER located in integer degrees, and write x = a,u € 71 ER. We then have the following analogue of
[Kitchloo and Wilson 2007a] and [Kitchloo and Wilson 2008a, Theorem 4.2].

3.4 Proposition There is a cofiber sequence
SER > ER— E,
and thus for any spectrum X an x—Bockstein spectral sequence
E{=(E*X)[x]= ER*X,
and this agrees with the HFPSS
E,=H*(Cy; E*X) = ER*X

Algebraic & Geometric Topology, Volume 24 (2024)
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from the E,—page on. Write ¥~ for the involution on E* X . Then the d—differential in the x—Bockstein
spectral sequence is given by

dy(@) = (@ =y~ (@)u'x

for « € E* X, and the differentials satisfy the Leibniz rule

dy(af) = dr(@)B + ¥ He)d, (B)

for r > 1, where the w_l may be omitted for v > 2. All x—Bockstein differentials are Ey—lincar, and
when X = SO they are generated by
d2n+1_1 (l/lzn) = Z/lnxszrl_] .

Proof As x =asu and u is invertible in E'R, (3) implies that there is a cofiber sequence
SER 5 ER - (4 ® ER

of Cy—spectra. Passing to fixed points yields the corresponding cofiber sequence for ER. The remaining
facts follow from the previous lemmas. O

3.5 Remark Figure 1 depicts the E page of the x—Bockstein spectral sequence for ER.

The lines of slope 1 depict x—towers. Everything in filtration > 2" —1 is a module over E¢/(ug, ..., Up—1),
and these regions are separated by dashed lines. The terms on the bottom describe the O-line (774« ER)/(x).
For example, (716 ER)/(x) C mi6E = Eo{u®} is the Eg—submodule generated by (2u8, uqu®, usu®);
as 2u8-x = 0 and u;ud - x3 = 0, the x—tower out of this is supported on uu8 and u,u8, and on just

04 = M4X3O

_ Eo
(2,u1,u2,u3)

_Eo
(2,uy,u2)

1 2% 2, uput 2,0y, u2)ub (2, u1, 12, u3)u'®

Figure 1
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u,u8 starting in filtration 3. The solid circles in positive filtration indicate degrees where 74« ER has
nontrivial Hurewicz image, with some notable elements labeled (see Section 8).

Similar charts appear in [Hahn and Shi 2020, Section 6].

4 Comparing b(ER) and ER

We are now in a position to consider Theorem 2.1. The first order of business is to identify £ = pt~2u in

nsb(E) as a permanent cycle in the x—Bockstein spectral sequence for w,.b(ER). As
0: teb(ER) — mob(ER) = ER°R P>

is the inclusion of a summand, the fact that £ is a permanent cycle in the x—Bockstein spectral sequence for
«b(ER) is predicted by the computation of ER(n)*R P by Kitchloo and Wilson [2008a, Theorem 1.2];
see also [Kitchloo et al. 2017]. However, we take a different approach that sheds light on additional
aspects of &.

Because the x—Bockstein spectral sequence for w,bh(ER) agrees with the HFPSS
Ey = H*(Cy; nub(E)) = m.b(ER)
from the E,—page on, we can just as well work with the HFPSS in this section.

4.1 Lemma We have
Eolp, I:I:Z’u:I:l]:J\
w.b(E) = ,
(p-h)

and C, acts on wb(E) by the Ey—linear multiplicative involution v~ satisfying

v i) =p. v'W=—-u, y'@H=7*h-1).

In particular, £ is fixed under the action of !,

Proof The structure of m,b(E) is as described in [Balderrama 2021, Section 2.1]. That ¥~ ! fixes £
follows immediately. a

4.2 Proposition The class & is a permanent cycle in the HFPSS for w,.b(ER), detecting a lift of x.

Proof By assumption, ER is M PR-oriented. As & = pt—2u lifts to wyb(MP) and x lifts to 7 M PR,
it suffices to prove the proposition with £ R replaced by M PR.

As MP is an E, ring, and complex conjugation acts on M P by [E, automorphisms, there is a Cy—
equivariant external squaring operation

Sq: tyMP — 7y(146)b(MP).

As Sq is additive modulo transfers and p annihilates the transfer ideal, the composite p - Sq is additive
and so induces a map

Q: H'(Cy: mpy1 MP) — H' (Ca: (1 40)+1b(MP))

Algebraic & Geometric Topology, Volume 24 (2024)
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in group cohomology. By [Balderrama 2024, Theorem 1.0.1], if a € H'(C5; 7,1 MP) is a permanent
cycle detecting a € r, M PR, then Q(a) is a permanent cycle weakly detecting Sq(a) € 7,(1+)0 (M PR).

Now recall that x represents the generator of H'(C,;Z{u}) = Z/(2) C H'(Cy; m; MP). The Eq

structure on periodic cobordism is such that Sq(u) = t~2u?; see for instance the paragraph after [Ando

et al. 2004, Lemma 4.3], noting that # and t~2u? are the periodic Thom classes for C and C[C,]
respectively. Thus Q(x) = £x, and it follows that £x detects Sq(x). As Sq(x) lifts x2, this is only
possible if £ is a permanent cycle detecting a lift of x as claimed. a

The following corollary is not needed for Theorem 2.1, but will be useful later on in understanding the
structure of m,b(ER). It is a direct analogue of [Kitchloo and Wilson 2008a, Theorem 1.2].

4.3 Corollary In integer degrees, we have
mxb(ER) = ER«[z]/([2](2)),
where z = pé&. In particular, ,b(ER) is a module over mob(ER) = E°BC, = E,[z]/([2](2)).

Proof The x—Bockstein spectral sequence for w«b(ER) takes the form

E{ = n.b(E)[x] = n+«b(ER).
Recall that
mxb(E) = Ex[2]/(21(2)), =z = pé.

As p and £ are permanent cycles, so is z. Thus the differentials in the x—Bockstein spectral sequence for
b (ER) are induced by those for w4« ER, leading to the given description of w«b(ER). |

We now relate b(ER) and ER. These live in the full subcategory Sp2€2 ¢ Sp©? of Borel complete
C,—spectra, equivalent to the category of spectra with C,—action. The functor

b:Sp— SpBC2, b(X)= F(ECy1.ixX)

is the diagonal, endowing a spectrum with the trivial C,—action. In particular, it is left adjoint to the
functor of homotopy fixed points, and if X € SpB €2 then the counit of this adjunction gives a canonical

map
bh(X"2) - x.

Specializing to X = ER, we have the following.

4.4 Theorem The canonical map b(ER) — ER fits into a cofiber sequence
@) S°h(ER) 45 b(ER) — ER

of Cy—spectra.

Proof As ER is strongly even, we have 7o ER = 0. As the maps in (4) are b(ER)-linear, their
composite must be null. As h(ER) and ER are x—complete, it then suffices to show that (4) is a cofiber
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sequence after coning off x. As b(ER)/(x) ~ b(E) and ER/(x) >~ Cr4+ Q i+ E, (4) with x coned off
takes the form
SOb(E) 45 b(E) — Cyy ®ixE,

which is a cofiber sequence as now & = p - t—2u differs from p by a unit. a

Theorem 2.1 follows by combining Proposition 4.2 and Theorem 4.4.

S The Bockstein spectral sequence

We now compute the x—Bockstein spectral sequence
b (E)[x] = m.b(ER).

We maintain notation from the introduction. In particular, recall that /4, and w, are defined in terms of
the 2—series of E by specializing
20(z) = zho(2),  n(z) = tn + 2% hys1(2) (Mod o, ..., tn—1),
n+1 n+1 _»n
Wa=p>" hpp1=7° 4% (hn—un) (moduo, ... up_1)

to z = p& = p?>t2u. As with u,, these classes are well defined modulo (ug, ..., t,—;). We begin by
describing what will be the cycles and boundaries of the x—Bockstein spectral sequence for w.b(ER).
Let Z,nt+1_; C wub(E) be the subring

Tzin+2

i+27 Hit1 i+1 i+1 . A
2T 2T ey 2@l 2 khi:OSZSn;k,IEZ)

:|:2n+l
Eo(p. & u : (0,6)’

’

and let Byn+1_; C Z,n+1_1[x] be the ideal generated by

i+2 i+1 i+1_ i+1 i+1 i+1_ i+2 i+1 i+1_
22 2 Lo 2D 2 k2 I g 1

) 1

for0<i <mandk,[ € Z. We also declare Zy = n.b(E) and By = (0), and for 2" 1 —1 <r <2"*t2 1
we write Z, = Zyn+1_1 and By = Z,n+1_;. Thus there are inclusions

0=ByC By CByC--CZyx]C Z[x] C Zo[x] = mb(E)[x].

5.1 Theorem The x—Bockstein spectral sequence for w.b(ER) supports differentials

2l

n n+1
d2n+1_1 (1/[2 ) - unx 5 d2n+1_1 (T2

n+1_
)= _wnx2 17

and we may identify Z,[x] and B, as its r—cycles and r—boundaries.

Proof We proceed by induction, treating the inductive step first.

Let n > 1, and suppose we have verified Eyn =~ Zn_1[x]/Ban—1. In particular, E,» is generated by the
i+2] i+l i+1 i+1 .
permanent cycles p and &, the classes 2 T2k and <2 @UED 2k for i < n, and the classes
+1 i +2 i+1 i+1 i+1 _ . .
ut?" and 2", As the classes 2 Tu? kui and 2" @l+1),2 khi are x2"~1_torsion for i < n,
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having survived to the E,»—page they must be permanent cycles. It follows that the next differentials are
determined by their effect on u?" and 12"

. . +1_ . .
The differential dyn+1_, u*") = uyx?"" 7 follows from Proposition 3.4. Now write
n+1 n+1_
d2n+l_1('f2 )=(x-x2 1.

As £ is a permanent cycle, the Leibniz rule implies

_2n+2 + T_zn-‘rlu )x2n+1_1
n .

n n _sn+1 n n n
0:d2”+1—1(§2 )=d2n+1—1(/02 T )=,02 ( ou®

This is on the E,n+1_; = En—page, and so combines with our inductive hypothesis to imply

n—1

_on+l
2" uzna)EO(moduo,...,un_1,22 hy).

—1
2" (un+1

As @ =0 (mod p), this is only possible if

—_n+l o

Up+T u?' o = hy, (mod ug, ..., up—1),

and thus
n+1 n+1_ n+1 _»~n n+1_ n+1_
d2n+1_1(12 ) =ax? V= 22 w2 (hy — up)x? U= w,x? !
as claimed.

To identify boundaries and cycles, observe that as a general property of the x—Bockstein spectral sequence,
if we write Z/.[x] for its r—cycles then

Z! =Ker(dy: Z,_ — E,) =Ker(d,: Z,_| — E,[x7']),

ie to compute cycles it suffices to work in the x—inverted x—Bockstein spectral sequence, or equivalently
the x—Bockstein spectral sequence with x set to 1. Our inductive hypothesis implies

n n+1
Ew _ (Eo/(uo.....tn-1)p.&u™" 7*2"]0
(X _ 1) - (ézn _ ,02” _[_211-1—1 uzn , ,02’1 (unT2n+l + p2n+1 hn+1 Mzn)) ’
and we have just produced the differentials
n n+1 n+1
d(“2 ) = un, d(fz ):,02 hnt1.

Thus Ker(d) is generated over Eg(p, &, ut2"t , 22 ?p,é) by u,t n+1U
and this leads to Z ;n +1_y = Zyn+1_y as claimed. The identification of boundaries follows immediately.

n+1 n+1 n n+1
2 +,02 h 2" .[2 h

n»

The base case, concerning the d;—differential and identification of the E,—page, can be handled by
considering 0 = d (£) just like the above, only taking into account the twist in the Leibniz rule for d;
given in Proposition 3.4. Alternately, one may just use the formula d; (a) = (¢ — ¥~ (a))x given there,
where the action of 1! is given in Lemma 4.1. O

The ring Z and ideal B C Z[x] of the introduction may be identified as Z = (1), Z, and B = | J, B;.
Thus Theorem 2.3 follows from Theorem 5.1 by letting r — oo.
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5.2 Remark Although we have relied on the known computation of 7« M PR in computing 7.b(M PR),
this was not actually necessary: the proof of Theorem 5.1 gives an independent computation, as we now
explain.

Note that no computation was needed to produce x € 7; MPR or prove MPR/(x) >~ Co+ ® ix MP,
as X = aqii where ii generates the n = 1 summand of MPR ~ @, 5 £"+9) MR. Thus it suffices
to describe the x—Bockstein spectral sequence MPylu™!, x] = MPR,. This is M Py—linear by [Hu
and Kriz 2001, Proposition 2.27], which uses the theory of real orientations but not the computation
of m. MR. Thus it suffices to produce the differentials dyn+1_, (u2n) = unx2n+1_1. The differential
dy () = 2x follows from the involution ¥ ~! (1) = —u, so suppose inductively that we have computed

n n+1_
dynt1_1 ") = upx? L

Next note that no computation was needed in Proposition 4.2 to prove £ is a permanent cycle. The

. . +1 +1 +1_
argument in Theorem 5.1 now applies to show dyn+1_4 @) = =p2" hy x®T L

As in Section 4, there is a canonical map ¢ : b(MP"2) — F(EC,,, MPR). Here, we write M P"C2
and F(ECy4+, MPR) instead of M PR and M PR as the proof that M PR is Borel complete relies on
knowledge of its x—Bockstein spectral sequence. The map ¢ fits into a diagram of cofiber sequences:

Sh(MPC2) — X p(MPhC2) — 5 p(MP) —2 5 2p(MPHC2)

! ! ! !

/

YF(ECy., MPR) =% F(ECy+, MPR) — Coy ® ix MP -2 $2F(EC,4, MPR)

The x—Bockstein differential dyn+1_, (r2"+1) = —p2n+lhn+1x2n+1_l implies

2n+1

n+1 n+1_
) = hpy1x® 72

mod higher filtration, and as p(t2) = u2 and ¢(p) = a, it follows that

2n+1 2n+1 2n+1 2n+1

— _~an—+1
Y =@ w2y =" g )
_2n+1 2n+l 2n+l_2
=u”  q(=p°  hpt1x )
_on—+1 n+1 n+1__ n+2_
=i? ag un+1x2 2= u,,+1x2 2

mod higher filtration. This gives the next x—Bockstein differential
+1 +2_
d2n+2_1(7/l2” ) — Mn+1)€2n 1,

completing the induction.
We end this subsection with some observations about the structure of w,.b(ER).

5.3 Proposition The Cy—spectrum b(ER) has the gap
Txo—1b(ER) = 0.
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wo uy | Eur,Ehy | E2ur, E2hy | Eur . 8hy | uo, E%hy | pPur, E2hy | pPur, E%hy | pur,E7hy | o, uy
oSx8 | pTx 68 p5x8 oty p3x8 P2y 8 A8
o7x7 67 o5x7 phx P37 o2x7 px” 7 £x7
h hyx? Ehyx? h h
66 56 46 p3x6 26 P 6 £x6 £2x6
hyix Ehyx phix
25y oty Py 2% x5 5 £x £2x5 g3
ug, hy Ehy £2h, £3n, Ug p3hy p2hy phy uog, Ny
ot Pt P2t pxct 4 £ £2x4 £3xh | gy
P33 o2 px3 3 £x3 £2x3 £33 g3 £5x3
h h h
o2x? px2 2 Ex? £2x2 £3x2 £x2 £5x2 £6x2
pULX
X X £x £2x £3x £4x £3x £0x £7x
Uo /03M1 /02”1 pul Uo, Uy
1 3 £ £ g4 £ £° £ g8
Table 1

Proof Declare the coweight of a degree ¢ + wo to be the quantity ¢, so that we are claiming w,b(ER)
vanishes in coweight —1. By Theorem 5.1, . b (ER) is generated over the coweight 0 classes Eq(p, & )z\p £)
by the class x in coweight 1 and the classes

n+2 n+1
_L,Z lu2 ku

n»

—+1 +1
ey 2y

in coweights of the form 2" %1z, These classes are killed by ¥ ~1 and therefore cannot support long
enough x—towers to reach coweight —1. O

5.4 Proposition If E is L —local, then b(ER) is w2 and rizdﬂ—periodic. Moreover,

d—+1_ d d__ d d__
x2 =0, pzxz Y szz 1_)

in Z[x]/B.
Proof Recall that E is L -local provided u, is invertible in Eqo/(ug,...,uq—1), or equivalently if the
ideal (ug,...,uq) C E generates the entire ring. Thus as uiuizd+1 is a permanent cycle fori <d, it

d+1 , S d+1_ . .

follows that u*2 is also a permanent cycle. Likewise, as u;x?2 I'= 0 fori <d, it follows that
2441

X =0.
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Euy, p hy |E2uy, pPhy | &uy, p’hy ug, p*hy p ur, pPha | p*uy, p*ha | puy, pha | uo,uy
£x8 £2x7 £3x7 g8 £5x7 £6x8 £7x8 88y
£2x7 £3x7 g4y £5x7 £6x7 £7x7 £8x7 £9x7
phix? x2h, x2Eh, h h
£3x6 £ix6 £5x6 £6x6 £7x6 £8x6 £9x6 £10x6
hyix xEhy xph
£4xS £5xS £6xS £7xS £8xS £9xS £10,S g1 S
Ehy £2h, £3n, Ug p3hy p2hy phy Uuo, M
£5 x4 £6 x4 £7x4 g8 x4 £9 x4 £10 4 g1 x4 £124

3 pdus
£6x3 £7x3 £8x3 £9x3 £10,3 g1 £12y3 E133)
pu x> x2u, x2Eu, X2E82u/x2pOuy | x%pus x2p*uy | x2pduy | h.x%ptu,
£7x2 £8x2 £9x2 h, £10x2 g1152 £12,2 £1352 gl4x2
urx xEuy | xE2uy/xpu, xpiuy xptuy xp3uy xp2uy | xpuy,xpy
£8x £9x g10x gl £12x g3y Elix g5y

Euy, pluz |E2uy, pPuy | Euy, pluy uo, ptus pruy, pPuy | pruy, puy | puy, puz | u.uy
£9 £10 gl g12 £13 g14 g1s £16 4,

Table 2

Next, as hgz(z) = ug + O(z), it follows by Weierstrass preparation that

(ug, ..., ug—1.hg) C mob(ER) =~ E°BC,

+

. . d+ . d—+
(see Corollary 4.3) generates the entire ring. As u;7+2 "fori < d and hgt*? " are permanent cycles,

. d+1 .
it follows that 722" isa permanent cycle. Next, note that

2d 2d+l 2d 2d
wg—1=p" hg, T U wg_1=£& hy.

d_ . . .. d_ d+1 nd d_ .
As u; x> 71 =0 for i < d, the identities wy_;x%" ~! =0 and > u?" wy_1x2" ~! = 0 then imply

d d d d
P2 x2 "1 =0and £2°x2° "1 = 0. |

5.5 Remark Tables 1 and 2 may be helpful in getting acquainted with the general shape of 7.b(ER),
and especially for visualizing the arguments in Sections 6 and 7.

These describe generators of ¢4 o (ER) as a module over 7oh(ER) = E°BC, in coweight 0 < ¢ < 8
and stem 0 < ¢ 4+ w < 16, the first table containing stems 0 < ¢+ w < 8 and second 9 <c¢ 4+ w =< 16.
It is arranged by stem and coweight: the box at coordinate (s,c) contains a list of generators for
Tet(s—c)oD(ER). For space reasons, we have omitted any t2/y/ terms. These may recovered by
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comparing degrees: for example, the box in coordinate (8, 5) has entries p/;x and £3x°, and this means
that 775, 3,6 (ER) is generated over mob(ER) by p-t%u*hy -x and £3x7.

The entry x£2u/xp%u, indicates that either x£2u or xp®u, may be chosen as a generator, and likewise
for x2£%uy /x? p®u,. This sort of choice also appears on the 0-line: for example, in box (5, 0) one could
replace p3u; with Euy.

These tables assume that E has sufficiently large height, say £ = MP.

6 Transfers

Recall that there are cofiber sequences
(5) SCh(ER) L5 b(ER) — Cay ® ixER, X°H(ER) > b(ER) — ER

of Cp—spectra. The first is a general cofiber sequence that exists for any C,—spectrum, given that
Cr+ ® b(ER) ~ (4 ®ix ER, and the second was shown in Theorem 4.4. Here,

74(Cay ®ixER) = 4« ER[uE"], |us|=1-o0,
and . ER was described in Section 3.
Associated to the cofiber sequences of (5) are boundary maps
tr(u;1 - =) Ty41-0(Coqy ®ix ER) —»> myb(ER), 0:7Tyt1+0ER — m.b(ER).

The first of these is the transfer for the C,—spectrum b( ER). Both are 7, b(ER)-linear.

6.1 Proposition The above transfer and boundary maps satisfy
tr(u;I .ug"(zkﬂ)) _ p2"—112"+1khnx2"—1 + 0(x2")’
8(&2”(2]‘""1)) _ 52"—1T—2"+1ku2"+1khnx2”—1 + 0(x2")
forn>0and k € Z.
Proof The error terms are present just because 2"k hy and =2y 2k hy have only been defined
mod x, so we omit them in the proof.

First consider the case n = 0. These claimed values are not hidden in the x—Bockstein spectral sequence,
so it suffices to show that they hold after coning off x. After coning off x, the cofiber sequences (5) take
the form

-2
(6) YOb(E) L5 b(E) > Coy QisE, S°h(E)Z% b(E) > Cry QIixE.
In particular, d(iza) = tr(ce). By [Hopkins et al. 2000, Remark 6.15], the transfer
tr: 1o E — E°BC, =~ mob(E)
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satisfies tr(1) = /. The proof is to observe that / is the unique class which satisfies
p-h=0, h=2 (modp).
As tr and 0 are m.b(E)-linear, we deduce
tr(u;1 -ui"“) — 2 (1) = 22, A"y = e (i) = 2

as claimed. The argument is essentially the same for n > 1. Observe that

n n+1 n+1 n _~n+1 _~n—+1 n
p2 2 khn=r2 k ‘32 2 khnzr 2 (k+1)u2

Wp—1, Wp—1.

_q o+l _ 1 _pntl +1 -
=1 2"k x2" 1 and 2112k 2"k, x2" =1 generate the kernels of p and &

In particular p
in their respective degrees. As the kernels of p and & are generated by the images of tr and 9, this gives
the claimed values of tr and 0 up to multiplication by a unit, which may then be ruled out by working in

the universal case £ = MP. O

7 Hidden extensions

We now turn our attention to hidden extensions. We begin with a general discussion. Write Z[x]/B for
the x—adic associated graded of 7.b(ER), as computed in Section 5. In general, hidden extensions in
the x—Bockstein spectral sequence arise from the failure of 7,b(ER) to be isomorphic to Z[x]|/B, and
especially for relations to fail to lift through the map

(7 7xb(ER) — (mxb(ER))/(x) = Z C m.b(E).
Recall that . Eolp. riz, uil]/’o\
Tk = .
(po-h)

This indicates that the simple indecomposable hidden extensions will be those p and £—extensions lifting
relations of the form

(8) p-tPuh=0, &-¥u/h=0,
where i and j are such that t?'u/h € Z.

If a relation of this sort lifts to 7,5 (ER), then necessarily the corresponding 2/« / is in the image of
the transfer or boundary studied in the previous section. These classes are generally not in the image
of the transfer or boundary, and so one knows from the start that the relations in (8) generally lift to
nontrivial hidden extensions in 7.b(ER).

One can use Proposition 6.1 to compute some of these directly:

+1 +1 _ +1 +1_ +1 +1
S.TZH (2k+1)h zg.tr(utzy" (2k+1)) =tr(xu01 .uczyn (2k+1)) — pz" 1,[2" khn+1x2”
by Frobenius reciprocity, and likewise

_ontl1 +1 _on1 +1_ +2 +2 +1
0T 2" (2k+1) 2" (2k+1)h:p-8(u2n (2k+1)+1)252“ 1,22k on kh,,+1x2n '
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In general however, a more indirect approach is necessary. Consider the cofiber sequences
) S 9b(ER) 25 b(ER) 2> Coy ® ixER, X°bh(ER) 2> h(ER) L5 ER.

The long exact sequences associated to these imply that the image of p is equal to the kernel of the
forgetful map p: w.b(ER) — m|, ER, and that the image of £ is equal to the kernel of the canonical
map ¢: 1+b(ER) — m« ER. To find elements of these kernels, one looks for elements in 7.5 ( ER) that

2"*1=1 — (. This relation already holds in m,b(ER), so we need only consider lifts

lift the relations u,x
involving the filtration-shifting identities p(£) = x and ¢(p) = a,. In this way we focus our attention on

those classes of the form
—+2 +2 +2 +2
(10) 2R 2 XS TR T X,

where r +s5 > 2"T!1 _1and r > 1 and s < 272 — 1. By the preceding discussion, the former must be in
the image of p and the latter in the image of £, and when this is not the case in Z[x]/B there must be a
hidden extension making it so. If r 4+ s > 2772 — 1, then the witness to the classes in (10) being in the
image of p or £ may be obtained by multiplying a smaller witness with some suitable power of p or &
and x. Thus we are led to focus on the case where r + s = 2”12 — 1. We will show that when s is even,
the necessary hidden extensions are exactly those lifting the relations in (8). First, a couple observations.

7.1 Lemma Fix positive integers r + s = 2"+t2 — | with s even. Then the classes

n+2 n—+2 n+2 n+2
,L,Z kuZ lhn_’_l&-rxé" _[2 ku2 lhn+1,0rxs

are not in the image of p or & respectively in Z[x]/ B, at least when E = M P.

Proof Consider the first case. Suppose towards contradiction that

n+2 n+2
72 ku2 lhn+1$rxs=paxs

for some « € Z. As the x—Bockstein spectral sequence has only odd differentials and s is even, necessarily

we can divide out by x to obtain

(11) (_[2”+2ku2n+21hn+1%-r —,OO[)XS_I =0.

This means that f2n+2ku2n+21hn+1§’ — pa detects some class 0 € . b(MPR) satisfying 6 - x*~1 = 0.

Write p: mxb(MPR) — ),/ M PR for the restriction. As p(§) = x, necessarily p(0) is detected by

n—+2
u? lun+1x’. Thus

_ +2 _
0=p0 -x*"Y=u?""Tupp x5! (mod x"*%)

in 7« MPR. Asr +s—1 <22 _ 1 this is incompatible with the structure of the x—Bockstein
spectral sequence for w4« M PR, a contradiction. The second case is identical, only instead using the map
b(MPR) — MPR in place of the restriction. a

7.2 Lemma Suppose that i and j are such that t?*u’/h € Z. Then t*u’ h generates the kernels of p
and & in its degree of Z|[x]/B as a module over wgb(ER).
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Proof The class t2/u/ h generates the kernels of p and £ in Z, as this is the case in 7.b(E). Thus the
lemma follows from the following observation: Z[x]/B contains no x—divisible elements in the kernel
of p or £ in even degrees, that is in degrees of the form ¢ + wo with both ¢ and w even. Indeed, any
x—divisible element in even degree and in a given filtration must be of the form ax?” = 0 witha € Z
in even degree. As « is in even degree and B is generated by classes of the form w - x? with w in even
degree, relations pax?” = 0 or £ax?" = 0 are only possible if «x?” = 0 already, proving the lemma. O

We may now give the main theorem of this subsection.

7.3 Theorem There are extensions
n+1g_ n+1 n+2 n+2 _ n+2__ n+2__
p-r2(2 k r)uz (2l+1)h — (r2 kuz lhn+1$2’ 1 + 0(,0))x2 2r + 0(x2 2r+1)’

é_.._[2(2”“k+r)u2(2”(21+1)—r)h _ (T2"+2ku2”+zlhn+1p2r—1 + 0(5))x2"+2_2’ + 0(x2”+2—2r+1)

fork,l€Z,n>0,and 1 <p <2+l _1,

Proof It suffices to produce these extensions in the universal case £ = M P. This ensures that the terms
on the right are nonzero, so that these are nontrivial extensions. As discussed above, the cofiber sequences
of (9) show that the terms

n+2 n+2 _ n+2__ n+2 n+2 _ n+2__
,[2 ku2 lhn+1€2r 1x2 2r 1_2 ku2 lhn+1,02r 1x2 2r

’

must be in the image of p and & respectively. By Lemma 7.1, this is not the case in Z[x]/B, so there
must be hidden extensions making it so. In other words, there must be hidden extensions of the form

P = (T2n+2ku2n+zlhn+1§2’_1 + 0(p))x2n+2_2r + 0(x2"+2—2r+1),
£-B= (12"+2ku2"+21hn+1p2r—1 + O(S))x2n+2_2’ + 0(x2"+2—2r+1)’

where o and B are detected by classes in Z[x]/ B killed by p and & respectively. The error terms ensure
that we do not need to pin down « and B precisely, but only the 7ob (M PR)—submodule of Z[x]/B that
they generate. By Lemma 7.2, the extensions given in the theorem statement are the only possibilities in
these degrees. |

7.4 Remark This leaves open the problem of finding witnesses to the classes of (10) being in the image
of p or £ in the case where r 45 = 2”72 —1 and r is even. In some cases no hidden extension is necessary,
for example

,OZHJrl hn+1

n+1 n+1_ _Hyn+2 n+1 n+1_
52 hn+1x2 U= 2727752 X =9,

n+1_ n+1_
X2 1 _ w X2 1 _ 0,

n

However, the general situation seems to be rather subtle. For example, for /,£%x7 to be in the image
of p, the only possibility is that pt~*u*h x detects a class satisfying

p-pt *uthyx = hyE2x5 + O(p).
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On the other hand,

o2t uthy = vt utwy, T utwy - x =0

in Z[x]/B. This indicates the existence of a mixed extension along the lines of
o2ttt hy = vt wo + 1 E2x 4+ O(p).

Note that if 6 € m,b(ER) is detected by t~*u*wy, then so is 6 + 1 £2x*. Thus for such an extension to
even be defined, one must specify some information about how one lifts elements from Z to w,b(ER),
and these considerations are outside the scope of our investigation.

8 Some Mahowald invariants

We end by giving some examples of computations within the ring 7.5 (ER). Our examples will center
around the following definition.

8.1 Definition Given a spectrum A, the A-based Mahowald invariant is a multivalued function
Ry:meA — i A,

ie a relation on 74 A4, defined as follows: given y € m, A and z € 7, A, we say z € R4(y) if z lifts to a
class ¢ € ,b(A) such that pN y = pNtk¢ for N > 0, and moreover k is as large as possible.

8.2 Remark There are natural maps 7,4 — 7, A’ €2 and Tetwob(A) = m Al €2 and the condition
oNy = pN*k¢ for N > 0 amounts to asking that y = ¢ in 744’2 When A = S, this construction
recovers the classical Mahowald invariant, commonly called the root invariant. See [Mahowald and
Ravenel 1993] for additional background, [Bruner and Greenlees 1995] for the relation to Cp—equivariant
homotopy theory, which connects Definition 8.1 to other definitions, [Behrens 2007] for the state of the
art in S—based Mahowald invariants at the prime 2, [Quigley 2022] for further discussion of A—based
Mahowald invariants with 4 # S, and [Li et al. 2022] for more information about spectra related to ER?C2.

Li, Shi, Wang and Xu [Li et al. 2019] prove that the Hurewicz image of real bordism detects the Hopf
elements, Kervaire classes, and k family. These are the elements in 74.S detected on the E,—page of the
Adams spectral sequence by the classes /;, hjz., and gy respectively; note there is no claimed relation
between /; here and the elements /; in ,b(E). These classes arrange into Sq° families, ie

(12) Sq°(hi) = hity,  SQ°(h) =h3y . SA°(gk+1) = gk+a-

Informally, this means that they arise as iterated Mahowald invariants at the level of Ext. Of course this
cannot lift to the level of homotopy, as not all of these classes are permanent cycles; still, it is known
that n € Rg(2), v € Rg(n), and 0 € Rg(v), and it is conjectured that 6; 1| € Rg(6;) for j > 3 provided
61 exists, see [Mahowald and Ravenel 1993, Proposition 2.4].
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We can compute the iterated M PR-based Mahowald invariants of the classes 2, 6y = 4, and i, yielding
an analogue of (12). Our computation works just as well for ER in a range depending on the height of E.
First we need to know how &« sits inside 7, M PR.

8.3 Lemma The class i is detected by M PR, with Hurewicz image ugugx“.

Proof If i is detected by M PR, then it is detected by MR. As myg MR = Z/(2){ugu8x4} C myoM PR,
it suffices just to show that « is detected by M R, which was shown in [Li et al. 2019]. Alternately, as
there is a ring map MR — TMF(3) [Hill and Meier 2017], it suffices to show that i is detected in the
latter, and here one may appeal to [Mahowald and Rezk 2009]. O

We now abbreviate R = Rjspr.

8.4 Theorem Define elements

m—+2 m—+2__
4 2 X2

m+1u 4 €7T4(3.2m_1)MPR

n_
dp :unx2 ! E]Tzn_lMPR, bm:u

for n > 0 and m > 1, so that for example ay = 2 and by = k. Then there are M PR—based Mahowald
invariants
dnt1 € Ran), ah. € R(@y), bui1 € R(bm).

Proof First consider a;. As

hn =+ p> £ hptr (mod ug, ... up—1),

21—

the relation p2" i, - x2"~1 = 0 implies

n n__ n+1 n n__
(13) p* ux® T = —p?" by £ T

2ntl—g

There are no further relations and hn+1§2nx2n_1 lifts ;41 x = da,+1, yielding a,+1 € R(ay).

The case of a,21 is identical, only we must apply (13) twice:

2n 2 2(2"—1 an+l 2n 2(2"—1 321 42 a2n+l 2(2n—1
P cUpX ( ):_/0 hn1§” unx ¢ ):,0 g€ X2 ).

Now consider b,,. As 2"t2 —4 > 2"+l _1 for m > 1, we may apply (13) thrice to obtain

2m+1 4 2m+2 2m+2_4 . 2m+3 2m+2 3,2m+1 3 2m+2_4
(14) o Upy U X =p “Upp1U -& hpynX
L .. . . . +2
At this point additional care is needed: we cannot apply (13) again, as despite appearances i, u?"
is indecomposable. Instead, the relation p- 4 = 0 gives
m—+2__ _am+2 m—+1__ m+3_ _~am+3 m+2_
0=typ1p> L2770 +2y2 Y hpga p? L2777 +2y2 U (mod ug, ..., um)

in 7,b(MP), and thus

m+2 m+2_ m+2 m—+2_ _am+3_ m+2_
U2 1 22 1,2 2,2 1

—om+3 ym+3

_ 3.2m+l
=1 u hm+3 - p

+1_
2Tl (mod ug, ..., uUm).

§
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Substituting this into (14) yields

m+1 m—+2 m—+2_ Am+1 _~am+3 m—+3
amtl 4 om0 4 Tl 2 2

2m+2 2m+2_4
m+1 m+2 € X .

_am—+3 m—+3
2 u2 h4

2 gmt2_y .
m+2-$2m x4 ifts

We cannot pull this class back any further. Thus, as ©

4 2m+3 2!11-‘1-3_4
UpyoU X =bm+1,

we obtain by, 41 € R(by). O
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