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The real-oriented cohomology of infinite stunted projective spaces

WILLIAM BALDERRAMA

Let ER be an even-periodic real Landweber exact C2–spectrum, and ER be its spectrum of fixed points.

We compute the ER–cohomology of the infinite stunted real projective spectra Pj . These cohomology

groups combine to form the RO.C2/–graded coefficient ring of the C2–spectrum

b.ER/D F.EC2C; i!ER/;

which we show is related to ER by a cofiber sequence †! b.ER/! b.ER/! ER. We illustrate our

description of !?b.ER/ with the computation of some ER–based Mahowald invariants.

55N20, 55N22, 55N91, 55Q51

1 Introduction

The spectrum MU of complex cobordism plays a central role in both our conceptual and computational

understanding of stable homotopy theory. Landweber [1968] introduced what is now known as the C2–

equivariant spectrum M R of real bordism, with underlying spectrum MU and fixed points MRDMU hC2

the homotopy fixed points for the action of C2 on MU by complex conjugation. Work of Araki [1979],

Hu and Kriz [2001], and others, has shown that essentially all of the theory of complex-oriented homotopy

theory may be carried out in the C2–equivariant setting with M R in place of MU , leading to the rich

subject of real-oriented homotopy theory. This subject has seen extensive study over the past two decades,

with a notable increase in interest following the use of M R by Hill, Hopkins and Ravenel [Hill et al.

2016] to resolve the Kervaire invariant one problem.

There are real analogues of most familiar complex-oriented cohomology theories. An important family

of examples is given by the real Johnson–Wilson theories ER.n/, refining the usual Johnson–Wilson

theories E.n/. These theories are Landweber flat over M R, in the sense that they are M R–modules and

satisfy

ER.n/?X ! ER.n/? ˝MR?
M R?X

for any C2–spectrum X . The fixed points ER.n/D ER.n/C2 D E.n/hC2 are nonequivariant cohomology

theories that are interesting in their own right; for example, ER.1/' KO.2/, and ER.2/ is a variant of

TMF0.3/.2/. One may regard the descent from E.n/ to ER.n/ as encoding a portion of the E.n/–based

Adams–Novikov spectral sequence, and accordingly each ER.n/ detects infinite families in !!S .
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There is in general a tradeoff between the richness of a homology theory and the ease with which it may

be computed. Kitchloo, Lorman, and Wilson have carried out extensive computations with ER.n/–theory

[Kitchloo and Wilson 2007b; 2015; Lorman 2016; Kitchloo et al. 2017; 2018a], and their program has

shown that these theories strike a very pleasant balance between richness and computability. Computations

of ER.2/!RPn in particular have been applied to the nonimmersion problem for real projective spaces,

with computations for n D 2k in [Kitchloo and Wilson 2008a], n D 16k C 1 in [Kitchloo and Wilson

2008b], and n D 16k C 9 by Banerjee [2010].

This paper contributes to the above story. Let ER be a real Landweber exact C2–spectrum in the sense

of Hill and Meier [2017, Section 3.2]; we take this to include the assumption that ER is strongly even.

Write E for the underlying spectrum of ER and ER D ERC2 D EhC2 for its fixed points. Suppose

moreover that ER is even-periodic, in the sense that !1C!ER contains a unit. This is equivalent to

asking that the M R–orientation of ER extends to an MPR–orientation, where

MPR '
M

n2Z

†n.1C!/M R

is the real analogue of 2–periodic complex cobordism.

The primary goal of this paper is to compute the ER–cohomology of the infinite stunted projective

spectra Pj . When j > 0, these are the spaces

Pj D RP1=RP j"1I

in general, Pj is the Thom spectrum of j" , where " is the sign representation of C2 regarded as a vector

bundle over BC2 D RP1. The cohomology ER!P! is of interest for at least a few reasons: first, it is

one long exact sequence away from the groups ER!RP j , which have so far only been studied at heights

" 2; second, there are C2–equivariant Hurewicz maps !cCw!SC2
! ER"cPw, which are at least as

nontrivial as the nonequivariant Hurewicz maps for ER; third, there is an interesting interplay between

the C2 appearing in ER ' EhC2 and the C2 appearing in ER!.Pw/' ER!.Sw!
hC2
/ which sheds some

light on the nature of the C2–spectrum ER.

We record the basic properties of ER in Section 3. In particular, !0ER ! !0E, the torsion in !!ER

is supported on a single class x 2 !1ER, there is a cofiber sequence †ER x#! ER ! E, and the x–

Bockstein spectral sequence for ER–cohomology agrees with the homotopy fixed point spectral sequence

(HFPSS) from the E2–page on.

Write b.ER/D F.EC2C; i!ER/ for the Borel C2–spectrum on ER with trivial C2–action. This satisfies

!cCw!b.ER/D ER"cPw, and we shall compute ER!P! using the x–Bockstein spectral sequence

!?b.E/Œx#) !?b.ER/:

This concludes an investigation we began in [Balderrama 2021]. There, we computed the HFPSS

H !.C2I!?b.KU ^
2 //)!?b.KO^

2 / as a step in our description of the C2–equivariant K.1/–local sphere.

At the time, we were able to put the E2–page into a more general context by computing H !.C2I!?b.E//

Algebraic & Geometric Topology, Volume 24 (2024)
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for more general even-periodic Landweber exact spectra E, but had no information about possible higher

differentials. In this paper, we carry out the rest of the computation for real-oriented E. The results are

summarized in Section 2 below.

1.1 Remark The reader may observe that by restricting to even-periodic spectra, we have ruled out the

real Johnson–Wilson theories ER.n/ for n $ 2. However, any real Landweber exact C2–spectrum ER

is a summand of the even-periodic theory
L

n2Z†
n.1C!/ER, so no real information has been lost. A

more subtle point is that implicit in the definition of real Landweber exactness is the assumption that

ER is a ring up to homotopy, and it is not known whether ER.n/ always satisfies this. However, the

partial multiplicative structure given in [Kitchloo et al. 2018b] is sufficient for our computation to apply

to 2–periodic ER.n/–theory.

Acknowledgements We thank Hood Chatham for an enlightening conversation highlighting the role of

Borel completeness in Theorem 2.1. This work was supported by NSF RTG grant DMS-1839968.

2 Summary

We now describe our results. We start with the following, which serves as the linchpin for our computation

of !?b.ER/. Write $ 2 !"!SC2
for the Euler class of the sign representation and %"2 2 !2!"2b.E/ for

the Thom class of 2" D C ˝" . These classes are sometimes denoted by a! and u"2
! , but we will reserve

those symbols for ER and C2C ˝ i!ER. Write u 2 !2E for the chosen unit, and set

& D $%"2u 2 !!b.E/:

2.1 Theorem (Section 4) The class & is a permanent cycle in the x–Bockstein spectral sequence ,

detecting a lift of x. Moreover , there is a cofiber sequence

(1) †!b.ER/
"

#! b.ER/! ER

of C2–spectra.

This cofiber sequence is a twisted form of the standard cofiber sequence

(2) †"!b.ER/
#

#! b.ER/! C2C ˝ i!ER:

2.2 Example When E D KU , one can identify b.ER/ D F.EC2C;KOC2
/ and ER D KR, and

& D ˙'C2
is the C2–equivariant Hopf map. In this case, Theorem 2.1 recovers the real Wood cofibering

KOC2
=.'C2

/' KR (cf [Guillou et al. 2020, Proposition 10.13]).

To show that & is a permanent cycle detecting a lift of x, we first reduce to the universal case E D MP ,

then show that this is the only possibility compatible with norms on b.MPR/. Given this, the cofiber

sequence of (1) is a mostly formal consequence of (2) and the fact that & differs from $ by a unit in

!?b.E/.

Algebraic & Geometric Topology, Volume 24 (2024)
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We now describe !?b.ER/. We start by fixing some notation for !?b.E/. Write Œ2#.z/ 2 E0ŒŒz## for

the 2–series of the formal group law of E, and write un 2 E0 for the elements corresponding to the

usual vn 2 !2.2n"1/E by un D u".2n"1/vn. We may find series hn.z/ 2 E0ŒŒz## for n $ 0, of the form

hn.z/D un C O.z/ and satisfying

Œ2#.z/D zh0.z/; hn.z/% un C z2n

hnC1.z/ .mod u0; : : : ;un"1/:

Note in particular

Œ2#.z/% z2n

hn.z/ .mod u0; : : : ;un"1/:

We now specialize to !?b.E/. Set

z D $& D $2%"2u; hn D hn.z/; wn D $2nC1

hnC1 % %2nC1

u"2n

.hn # un/;

the last congruence being modulo .u0; : : : ;un"1/. We abbreviate h D h0. This is the transfer element in

!0b.E/D E0BC2, and we have

!0b.E/D
E0ŒŒz##

.Œ2#.z//
; !?b.E/D

E0Œ$; %
˙2;u˙1#^#

.$ & h/
I

see for instance [Balderrama 2021, Section 2.1].

2.3 Theorem (Section 5) Define the subring Z ' !?b.E/ by

Z D E0.$; &; %
2nC2lu2nC1kun; %

2nC1.2lC1/u2nC1khn W n $ 0I k; l 2 Z/^.#;"/ ' !?b.E/;

and let B ' ZŒx# be the ideal generated by the elements

%2nC2lu2nC1kun & x2nC1"1; %2nC1.2lC1/u2nC1khn & x2nC1"1; %2nC2lu2nC1kwn & x2nC1"1

for n $ 0 and k; l 2 Z. Then ZŒx#=B is the x–adic associated graded of !?b.ER/.

2.4 Remark In integer degrees, !!b.ER/ is very simply described:

!!b.ER/! ER!ŒŒz##=.Œ2#.z//I

see Corollary 4.3. This does not require the full computation of !?b.ER/, and follows as soon as one

knows that & is a permanent cycle. In particular, !0b.ER/ ! E0BC2. To get a feeling for !?b.ER/

outside integer degrees, the reader may wish to peruse Tables 1 and 2, described in Remark 5.5, which

list !0b.ER/–module generators for the groups !cCw!b.ER/ in a range.

2.5 Remark Implicit in Theorem 2.3 is the fact that %2nC2lu2nC1kwn 2 Z for n $ 0 and k; l 2 Z. In

particular,

%2nC2.2lC1/u2nC2kwn D $2nC1

& %2nC2.2lC1/u2nC2khnC1;

%2nC3lu2nC1.2kC1/wn D &2nC1

& %2nC2.2lC1/u2nC2khnC1;

%2nC3lu2nC2kwn % $2nC1

& %2nC3lu2nC2kunC1 C &2nC1

& %2nC3lu2nC2kwnC1;

%2nC2.2l"1/u2nC1.2kC1/wn % &2nC1

& %2nC3lu2nC2kunC1 C $2nC1

& %2nC3.l"1/u2nC2.kC1/wnC1;

where the last two formulas hold mod u0; : : : ;un.

Algebraic & Geometric Topology, Volume 24 (2024)
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The ring ZŒx#=B is the E1–page of the x–Bockstein spectral sequence for !?b.ER/, obtained after

running differentials which are generated by

d2nC1"1.u
2n

/D unx2nC1"1; d2nC1"1.%
2nC1

/D #wnx2nC1"1:

The differentials on u2n

appear in the x–Bockstein spectral sequence for !!ER, and are consequences

of the computation of !?M R by Hu and Kriz [2001], as we review in Section 3. The differentials on

%2nC1

are the core of our computation. These differentials turn out to be forced by the permanent cycle

& D $%"2u, by a Leibniz rule argument based on d2nC1"1.&
2n

/D 0. This argument would not be possible

if one tried to compute each ER!Pj individually, and illustrates the strength of using the C2–spectrum

b.ER/ as a tool for packaging information about the cohomology of all stunted projective spectra into

one object.

One might also try to understand !?b.ER/ through the $–Bockstein or the &–Bockstein spectral sequences.

Using the cofiber sequences (2) and (1), these are of signature

!?.C2C ˝ i!ER/Œ$#) !?b.ER/; !?ERŒ&#) !?b.ER/:

Here, !?.C2C ˝ i!ER/ ! !!ERŒu˙1
! # with ju! j D 1 # " , and in degrees ( C w" the $–Bockstein

spectral sequence is exactly the Atiyah–Hirzebruch spectral sequence for ER!Pw based on the standard

cell structure of Pw. By construction, the differentials in these spectral sequences are controlled by the

boundary maps

tr.u"1
! & #/ W !?C1"! .C2C ˝ i!ER/! !?b.ER/; @ W !?C1C!ER ! !?b.ER/

for the cofiber sequences (2) and (1). This first boundary map is exactly the transfer for the C2–spectrum

b.ER/. Although we do not know whether it is feasible to compute either the $–Bockstein or &–Bockstein

spectral sequence directly, we can use our computation of !?b.ER/ to deduce the following.

Write Nu 2 !1C!ER for the invertible element guaranteed by the MPR–orientation of ER.

2.6 Theorem (Section 6) The above transfer and boundary maps satisfy

tr.u"1
! & u2n.2kC1/

! /D $2n"1%2nC1khnx2n"1 C O.x2n

/;

@. Nu2n.2kC1//D &2n"1%"2nC1ku2nC1khnx2n"1 C O.x2n

/

for n $ 0 and k 2 Z.

The error terms here are necessary as the classes %2nC1khn and %"2nC1ku2nC1khn have only been defined

mod x. It is amusing to observe that Theorem 2.6 produces elements of arbitrarily high x–adic filtration

in the C2–equivariant Hurewicz image of b.MPR/; as far as we know, such families have not yet been

constructed in the nonequivariant Hurewicz image of MPR.

Theorem 2.3 does not quite describe the ring !?b.ER/, but only its x–adic associated graded ZŒx#=B.

The latter is a good approximation to the former, particularly when compared to the $–adic and &–adic

associated graded rings, where the classes $ and & appear as simple 2–torsion classes. Still, taking the

Algebraic & Geometric Topology, Volume 24 (2024)
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x–adic associated graded does kill some information, and it seems to be a subtle problem to completely

reconstruct the ring !?b.ER/. Although we shall not completely resolve this, we do discuss where to

find hidden $ and &–extensions. The importance of $–extensions is clear: as

!cCw! .b.ER/=.$m//D ER"c.Pw"1
w"m/;

one must understand the action of $ if one wishes to extract information about the ER–cohomology of

finite projective spaces. The importance of &–extensions is clear from the perspective of C2–equivariant

homotopy theory: just as important classes in the Hurewicz image of ER are supported on x, important

classes in the C2–equivariant Hurewicz image of b.ER/ are supported on & , such as the equivariant Hopf

fibrations 'C2
, (C2

, and "C2
detected in !?b.ER/ by h1&, h2&

2x, and h3&
4x3 respectively, and so the

action of & gives information about the behavior of these elements. The cofiber sequences (1) and (2)

give information about $ and &–extensions, leading to the following.

2.7 Theorem (Section 7) There are extensions

$ & %2.2nC1k"r/u2nC1.2lC1/h D
!

%2nC2ku2nC2lhnC1&
2r"1 C O.$/

"

x2nC2"2r C O.x2nC2"2rC1/;

& & %2.2nC1kCr/u2.2n.2lC1/"r/h D
!

%2nC2ku2nC2lhnC1$
2r"1 C O.&/

"

x2nC2"2r C O.x2nC2"2rC1/

for k; l 2 Z, n $ 0, and 1 " r " 2nC1 # 1.

As with Theorem 2.3, implicit in this theorem is the fact that the terms on the left and right do in fact live

in !?b.ER/, for example %4h D 2%4 C $& & %4h1. The error terms are present to remind the reader that

these are extensions and not products: to resolve them would require describing how to lift classes from

Z to !?b.ER/, and we shall not pursue this. In particular, if k is even then the hnC1 terms on the right

may be replaced with unC1 without affecting the theorem statement.

This concludes our description of !?b.ER/. Although !?b.ER/ is complicated, it is not impossible to

work with. We illustrate this in Section 8 by computing some MPR–based Mahowald invariants. Li, Shi,

Wang and Xu [Li et al. 2019] have shown that real bordism detects the Hopf elements, Kervaire classes,

and N) family. These are the elements in !!S detected in the classical Adams spectral sequence by the

Sq0–families generated by h0, h2
0, and g1. We compute the iterated MPR–based Mahowald invariants

of 2, 4, and N), showing that they line up with these Sq0–families exactly.

3 Even-periodic real Landweber exact spectra

We begin by recording some properties of ER and ER. The material of this section is essentially a

translation to the even-periodic setting of familiar facts about the real Johnson–Wilson theories. We would

like to avoid confusion between elements of !?b.ER/ and !?ER, so in this section we write a! instead

of $ for the Euler class of the sign representation, and use the symbol u! for what would previously have

been written % . In particular, these symbols have degrees

ja! j D #"; ju! j D 1 # ":

Algebraic & Geometric Topology, Volume 24 (2024)
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Before considering ER, we consider the C2–HFPSS in general. There is a cofiber sequence

(3) S"! a!#! S0 ! C2C:

Let X be a C2–spectrum. Then we may identify

!?.C2C ˝ X /! !e
!X Œu˙1

! #;

and so the a! –Bockstein spectral sequence for X is of signature

E1 D !e
!X Œu˙1

! ; a! #) !?X;

where !e
!X are the homotopy groups of the underlying spectrum of X . This spectral sequence converges

conditionally to the homotopy groups of the a! –completion of X , which may be identified as its Borel

completion F.EC2C;X /. Moreover we have the following fact; see for instance [Hill and Meier 2017,

Lemma 4.8].

3.1 Lemma For any C2–spectrum X , the a! –Bockstein spectral sequence for X agrees with the HFPSS

for X from the E2–page on.

The proof amounts to identifying the a! –Bockstein spectral sequence with the Borel cohomology spectral

sequence induced by the standard cellular filtration of EC2C. This identification leads to the following.

3.2 Lemma Let X be a C2–spectrum , and write  "1 for the involution on !e
!X . Then the d1–

differential in the a! –Bockstein spectral sequence for X is given by

d1.˛un
!am

! /D .˛# .#1/n "1.˛//un"1
! amC1

!

for ˛ 2 !e
!X . In particular , if X carries a product , then the differentials satisfy the Leibniz rule

dr .˛ˇ/D dr .˛/ˇC "1.˛/dr .ˇ/

for r $ 1, where the  "1 may be omitted for r $ 2.

Now let ER be as in the introduction: a strongly even and even-periodic and real Landweber exact

C2–spectrum in the sense of [Hill and Meier 2017, Section 3.2], with underlying spectrum E. This set of

assumptions means three things. First, ER is a homotopy commutative C2–ring spectrum equipped with a

multiplicative orientation MPR ! ER. In particular, there is an invertible element Nu 2!1C!ER coming

from the generator of the n D 1 summand of MPR '
L

n2Z†
n.1C!/M R. Second, !0ER ! !0E, and

in general

ER?X ! E0 ˝MP0
MPR?X

for any C2–spectrum X . Third, !"1ER D 0. Implicit in these is the fact that MPR itself satisfies these

conditions. This is nontrivial, and follows from work of Hu and Kriz [2001] on real cobordism. We recall

the key calculation.

Algebraic & Geometric Topology, Volume 24 (2024)
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3.3 Lemma The C2–spectrum ER is Borel complete , with a! –Bockstein spectral sequence

E1 D E0Œ Nu
˙1;u˙1

! ; a! #) !?ER;

where

j Nuj D 1 C "; ju! j D 1 # "; ja! j D #":

The differentials are E0Œ Nu
˙1; a! #–linear , and are generated by

d2nC1"1.u
2n

! /D un Nu2n"1a2nC1"1
! ;

where un D u".2n"1/vn 2 E0. In particular , !0ER D !0E.

Proof We first verify the given description of the a! –Bockstein spectral sequence. The E1–page of the

a! –Bockstein spectral sequence is given by E!Œu
˙1
! ; a! #. To put this in the desired form, we set Nu D u"1

! u

with u2!2E the unit; when E DMP , this generates the nD1 summand of MPR'
L

n2Z†
n.1C!/M R.

As ER is Landweber exact over MPR, the a! –Bockstein spectral sequence for ER is tensored down

from the a! –Bockstein spectral sequence for MPR, and here the computation is known by work of Hu

and Kriz [2001].

The C2–spectrum M R is shown to be Borel complete in [Hu and Kriz 2001, Theorem 4.1], and Landweber

exactness extends the proof to ER. By the Tate fracture square, ER is Borel complete if and only if

the map ˆC2ER ! ERtC2 is an equivalence, where ˆC2 denotes the functor of geometric fixed points.

Landweber exactness implies

!!ˆ
C2ER ! E0 ˝MP0

!!ˆ
C2MPR ! E0=.u0;u1; : : :/Œx

˙1#;

where x D a! Nu 2 !1ER, the last identification coming from the equivalence ˆC2M R ' MO . This

is exactly what one obtains computing !!ERtC2 by the Tate spectral sequence, which may itself be

obtained from the above description of the a! –Bockstein spectral sequence by inverting a! . Thus ER is

Borel complete as claimed.

We now pass to the nonequivariant spectrum ER D ERC2 ' EhC2 . Note that !!ER is the portion of

!?ER located in integer degrees, and write x D a! Nu 2 !1ER. We then have the following analogue of

[Kitchloo and Wilson 2007a] and [Kitchloo and Wilson 2008a, Theorem 4.2].

3.4 Proposition There is a cofiber sequence

†ER x#! ER ! E;

and thus for any spectrum X an x–Bockstein spectral sequence

E1 D .E!X /Œx#) ER!X;

and this agrees with the HFPSS

E2 D H !.C2I E!X /) ER!X

Algebraic & Geometric Topology, Volume 24 (2024)
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u2u8 starting in filtration 3. The solid circles in positive filtration indicate degrees where !!ER has

nontrivial Hurewicz image, with some notable elements labeled (see Section 8).

Similar charts appear in [Hahn and Shi 2020, Section 6].

4 Comparing b.ER/ and ER

We are now in a position to consider Theorem 2.1. The first order of business is to identify & D $%"2u in

!!b.E/ as a permanent cycle in the x–Bockstein spectral sequence for !?b.ER/. As

$ W !!b.ER/! !0b.ER/D ER0
RP1

is the inclusion of a summand, the fact that & is a permanent cycle in the x–Bockstein spectral sequence for

!?b.ER/ is predicted by the computation of ER.n/!RP1 by Kitchloo and Wilson [2008a, Theorem 1.2];

see also [Kitchloo et al. 2017]. However, we take a different approach that sheds light on additional

aspects of & .

Because the x–Bockstein spectral sequence for !?b.ER/ agrees with the HFPSS

E2 D H !.C2I!?b.E//) !?b.ER/

from the E2–page on, we can just as well work with the HFPSS in this section.

4.1 Lemma We have

!?b.E/D
E0Œ$; %

˙2;u˙1#^#

.$ & h/
;

and C2 acts on !?b.E/ by the E0–linear multiplicative involution  "1 satisfying

 "1.$/D $;  "1.u/D #u;  "1.%2/D %2.h # 1/:

In particular , & is fixed under the action of  "1.

Proof The structure of !?b.E/ is as described in [Balderrama 2021, Section 2.1]. That  "1 fixes &

follows immediately.

4.2 Proposition The class & is a permanent cycle in the HFPSS for !?b.ER/, detecting a lift of x.

Proof By assumption, ER is MPR–oriented. As & D $%"2u lifts to !!b.MP / and x lifts to !1MPR,

it suffices to prove the proposition with ER replaced by MPR.

As MP is an E1 ring, and complex conjugation acts on MP by E1 automorphisms, there is a C2–

equivariant external squaring operation

Sq W !nMP ! !n.1C!/b.MP /:

As Sq is additive modulo transfers and $ annihilates the transfer ideal, the composite $ & Sq is additive

and so induces a map

Q W H 1.C2I!nC1MP /! H 1.C2I!n.1C!/C1b.MP //

Algebraic & Geometric Topology, Volume 24 (2024)
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in group cohomology. By [Balderrama 2024, Theorem 1.0.1], if a 2 H 1.C2I!nC1MP / is a permanent

cycle detecting ˛ 2!nMPR, then Q.a/ is a permanent cycle weakly detecting Sq.˛/2!n.1C!/b.MPR/.

Now recall that x represents the generator of H 1.C2I Zfug/ ! Z=.2/ ' H 1.C2I!2MP /. The E1

structure on periodic cobordism is such that Sq.u/D %"2u2; see for instance the paragraph after [Ando

et al. 2004, Lemma 4.3], noting that u and %"2u2 are the periodic Thom classes for C and CŒC2#

respectively. Thus Q.x/ D &x, and it follows that &x detects Sq.x/. As Sq.x/ lifts x2, this is only

possible if & is a permanent cycle detecting a lift of x as claimed.

The following corollary is not needed for Theorem 2.1, but will be useful later on in understanding the

structure of !?b.ER/. It is a direct analogue of [Kitchloo and Wilson 2008a, Theorem 1.2].

4.3 Corollary In integer degrees , we have

!!b.ER/! ER!ŒŒz##=.Œ2#.z//;

where z D $& . In particular , !?b.ER/ is a module over !0b.ER/! E0BC2 ! E0ŒŒz##=.Œ2#.z//.

Proof The x–Bockstein spectral sequence for !!b.ER/ takes the form

E1 D !!b.E/Œx#) !!b.ER/:

Recall that

!!b.E/! E!ŒŒz##=.Œ2#.z//; z D $&:

As $ and & are permanent cycles, so is z. Thus the differentials in the x–Bockstein spectral sequence for

!!b.ER/ are induced by those for !!ER, leading to the given description of !!b.ER/.

We now relate b.ER/ and ER. These live in the full subcategory SpBC2 ' SpC2 of Borel complete

C2–spectra, equivalent to the category of spectra with C2–action. The functor

b W Sp ! SpBC2 ; b.X /D F.EC2C; i!X /

is the diagonal, endowing a spectrum with the trivial C2–action. In particular, it is left adjoint to the

functor of homotopy fixed points, and if X 2 SpBC2 then the counit of this adjunction gives a canonical

map

b.X hC2/! X:

Specializing to X D ER, we have the following.

4.4 Theorem The canonical map b.ER/! ER fits into a cofiber sequence

(4) †!b.ER/
"

#! b.ER/! ER

of C2–spectra.

Proof As ER is strongly even, we have !!ER D 0. As the maps in (4) are b.ER/–linear, their

composite must be null. As b.ER/ and ER are x–complete, it then suffices to show that (4) is a cofiber
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sequence after coning off x. As b.ER/=.x/' b.E/ and ER=.x/' C2C ˝ i!E, (4) with x coned off

takes the form

†!b.E/
"

#! b.E/! C2C ˝ i!E;

which is a cofiber sequence as now & D $ & %"2u differs from $ by a unit.

Theorem 2.1 follows by combining Proposition 4.2 and Theorem 4.4.

5 The Bockstein spectral sequence

We now compute the x–Bockstein spectral sequence

!?b.E/Œx#) !?b.ER/:

We maintain notation from the introduction. In particular, recall that hn and wn are defined in terms of

the 2–series of E by specializing

Œ2#.z/D zh0.z/; hn.z/% un C z2n

hnC1.z/ .mod u0; : : : ;un"1/;

wn D $2nC1

hnC1 % %2nC1

u"2n

.hn # un/ .mod u0; : : : ;un"1/

to z D $& D $2%"2u. As with un, these classes are well defined modulo .u0; : : : ;un"1/. We begin by

describing what will be the cycles and boundaries of the x–Bockstein spectral sequence for !?b.ER/.

Let Z2nC1"1 ' !?b.E/ be the subring

E0

!

$; &;u˙2nC1

; %2˙nC2

; %2iC2lu2iC1kui ; %
2iC1.2lC1/u2iC1khi W 0 " i " nI k; l 2 Z

"^

.#;"/
;

and let B2nC1"1 ' Z2nC1"1Œx# be the ideal generated by

%2iC2lu2iC1kui & x2iC1"1; %2iC1.2lC1/u2iC1khi & x2iC1"1; %2iC2lu2iC1kwi & x2iC1"1

for 0 " i " n and k; l 2 Z. We also declare Z0 D!?b.E/ and B0 D .0/, and for 2nC1 #1 " r < 2nC2 #1

we write Zr D Z2nC1"1 and Br D Z2nC1"1. Thus there are inclusions

0 D B0 ' B1 ' B2 ' & & & ' Z2Œx#' Z1Œx#' Z0Œx#D !?b.E/Œx#:

5.1 Theorem The x–Bockstein spectral sequence for !?b.ER/ supports differentials

d2nC1"1.u
2n

/D unx2nC1"1; d2nC1"1.%
2nC1

/D #wnx2nC1"1;

and we may identify Zr Œx# and Br as its r–cycles and r–boundaries.

Proof We proceed by induction, treating the inductive step first.

Let n $ 1, and suppose we have verified E2n ! Z2n"1Œx#=B2n"1. In particular, E2n is generated by the

permanent cycles $ and & , the classes %2iC2lu2iC1kui and %2iC1.2lC1/u2iC1khi for i < n, and the classes

u˙2n

and %˙2nC1

. As the classes %2iC2lu2iC1kui and %2iC1.2lC1/u2iC1khi are x2n"1–torsion for i < n,

Algebraic & Geometric Topology, Volume 24 (2024)



The real-oriented cohomology of infinite stunted projective spaces 4073

having survived to the E2n–page they must be permanent cycles. It follows that the next differentials are

determined by their effect on u2n

and %2nC1

.

The differential d2nC1"1.u
2n

/D unx2nC1"1 follows from Proposition 3.4. Now write

d2nC1"1.%
2nC1

/D ˛ & x2nC1"1:

As & is a permanent cycle, the Leibniz rule implies

0 D d2nC1"1.&
2n

/D d2nC1"1.$
2n

%"2nC1

u2n

/D $2n

.%"2nC2

˛u2n

C %"2nC1

un/x
2nC1"1:

This is on the E2nC1"1 D E2n–page, and so combines with our inductive hypothesis to imply

z2n!1

.un C %"2nC1

u2n

˛/% 0 .mod u0; : : : ;un"1; z
2n!1

hn/:

As ˛ % 0 .mod $/, this is only possible if

un C %"2nC1

u2n

˛ % hn .mod u0; : : : ;un"1/;

and thus

d2nC1"1.%
2nC1

/D ˛x2nC1"1 D %2nC1

u"2n

.hn # un/x
2nC1"1 D wnx2nC1"1

as claimed.

To identify boundaries and cycles, observe that as a general property of the x–Bockstein spectral sequence,

if we write Z0
r Œx# for its r–cycles then

Z0
r D Ker.dr W Zr"1 ! Er /D Ker.dr W Zr"1 ! Er Œx

"1#/;

ie to compute cycles it suffices to work in the x–inverted x–Bockstein spectral sequence, or equivalently

the x–Bockstein spectral sequence with x set to 1. Our inductive hypothesis implies

E2n

.x # 1/
!

.E0=.u0; : : : ;un"1//Œ$; &;u
˙2n

; %˙2nC1

#^
.#;"/

.&2n
# $2n

%"2nC1
u2n

; $2n
.un%2nC1

C $2nC1
hnC1u2n

//
;

and we have just produced the differentials

d.u2n

/D un; d.%2nC1

/D $2nC1

hnC1:

Thus Ker.d/ is generated over E0.$; &;u
˙2nC1

; %˙2nC2

/^
.#;"/

by un%
2nC1

C $2nC1

hnC1u2n

D %2nC1

hn,

and this leads to Z0
2nC1"1

D Z2nC1"1 as claimed. The identification of boundaries follows immediately.

The base case, concerning the d1–differential and identification of the E2–page, can be handled by

considering 0 D d1.&/ just like the above, only taking into account the twist in the Leibniz rule for d1

given in Proposition 3.4. Alternately, one may just use the formula d1.a/D .a # "1.a//x given there,

where the action of  "1 is given in Lemma 4.1.

The ring Z and ideal B ' ZŒx# of the introduction may be identified as Z D
T

r Zr and B D
S

r Br .

Thus Theorem 2.3 follows from Theorem 5.1 by letting r ! 1.
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5.2 Remark Although we have relied on the known computation of !!MPR in computing !?b.MPR/,

this was not actually necessary: the proof of Theorem 5.1 gives an independent computation, as we now

explain.

Note that no computation was needed to produce x 2 !1MPR or prove MPR=.x/ ' C2C ˝ i!MP ,

as x D a! Nu where Nu generates the n D 1 summand of MPR '
L

n2Z†
n.1C!/M R. Thus it suffices

to describe the x–Bockstein spectral sequence MP0Œu
˙1;x# ) MPR!. This is MP0–linear by [Hu

and Kriz 2001, Proposition 2.27], which uses the theory of real orientations but not the computation

of !?M R. Thus it suffices to produce the differentials d2nC1"1.u
2n

/ D unx2nC1"1. The differential

d1.u/D 2x follows from the involution  "1.u/D #u, so suppose inductively that we have computed

d2nC1"1.u
2n

/D unx2nC1"1.

Next note that no computation was needed in Proposition 4.2 to prove & is a permanent cycle. The

argument in Theorem 5.1 now applies to show d2nC1"1.%
2nC1

/D #$2nC1

hnC1x2nC1"1.

As in Section 4, there is a canonical map q W b.MP hC2/! F.EC2C;MPR/. Here, we write MP hC2

and F.EC2C;MPR/ instead of MPR and MPR as the proof that MPR is Borel complete relies on

knowledge of its x–Bockstein spectral sequence. The map q fits into a diagram of cofiber sequences:

†b.MP hC2/ b.MP hC2/ b.MP / †2b.MP hC2/

†F.EC2C;MPR/ F.EC2C;MPR/ C2C ˝ i!MP †2F.EC2C;MPR/

q

x

q p

@

q

x @0

The x–Bockstein differential d2nC1"1.%
2nC1

/D #$2nC1

hnC1x2nC1"1 implies

@.%2nC1

/D #$2nC1

hnC1x2nC1"2

mod higher filtration, and as p.%2/D u2
! and q.$/D a! it follows that

@0.u2nC1

/D @0. Nu2nC1

u2nC1

! /D Nu2nC1

q.@.%2nC1

//

D Nu2nC1

q.#$2nC1

hnC1x2nC1"2/

D Nu2nC1

a2nC1

! unC1x2nC1"2 D unC1x2nC2"2

mod higher filtration. This gives the next x–Bockstein differential

d2nC2"1.u
2nC1

/D unC1x2nC2"1;

completing the induction.

We end this subsection with some observations about the structure of !?b.ER/.

5.3 Proposition The C2–spectrum b.ER/ has the gap

!!!"1b.ER/D 0:
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u0;u1 &u1; &h2 &2u1; &
2h2 &3u1; &

3h2 u0; &
4h2 $3u1; &

5h2 $2u1; &
6h2 $u1; &

7h2 u0;u1

$8x8; h2 $7x8 $6x8 $5x8 $4x8 $3x8 $2x8 $x8 x8

$7x7 $6x7 $5x7 $4x7 $3x7 $2x7 $x7 x7 &x7

h h1x2 &h1x2 h h

$6x6 $5x6 $4x6 $3x6 $2x6 $x6 x6 &x6 &2x6

h1x &h1x $h1x

$5x5 $4x5 $3x5 $2x5 $x5 x5 &x5 &2x5 &3x5

u0; h1 &h1 &2h1 &3h1 u0 $3h1 $2h1 $h1 u0; h1

$4x4 $3x4 $2x4 $x4 x4 &x4 &2x4 &3x4 &4x4

$3x3 $2x3 $x3 x3 &x3 &2x3 &3x3 &4x3 &5x3

h h h

$2x2 $x2 x2 &x2 &2x2 &3x2 &4x2 &5x2 &6x2

$u1x

$x x &x &2x &3x &4x &5x &6x &7x

u0 $3u1 $2u1 $u1 u0;u1

1 & &2 &3 &4 &5 &6 &7 &8

Table 1

Proof Declare the coweight of a degree c Cw" to be the quantity c, so that we are claiming !?b.ER/

vanishes in coweight #1. By Theorem 5.1, !?b.ER/ is generated over the coweight 0 classes E0.$; &/
^
.#;"/

by the class x in coweight 1 and the classes

%2nC2lu2nC1kun; %2nC1.2lC1/u2nC1khn

in coweights of the form 2nC1t . These classes are killed by x2nC1"1, and therefore cannot support long

enough x–towers to reach coweight #1.

5.4 Proposition If E is Ld –local , then b.ER/ is u˙2dC1

and %˙2dC1

–periodic. Moreover ,

x2dC1"1 D 0; $2d

x2d "1 D 0; &2d

x2d "1 D 0

in ZŒx#=B.

Proof Recall that E is Ld –local provided ud is invertible in E0=.u0; : : : ;ud"1/, or equivalently if the

ideal .u0; : : : ;ud /' E0 generates the entire ring. Thus as uiu
˙2dC1

is a permanent cycle for i " d , it

follows that u˙2dC1

is also a permanent cycle. Likewise, as uix
2dC1"1 D 0 for i " d , it follows that

x2dC1"1 D 0.

Algebraic & Geometric Topology, Volume 24 (2024)



4076 William Balderrama

&u1; $
7h2 &2u1; $

6h2 &3u1; $
5h2 u0; $

4h2 $3u1; $
3h2 $2u1; $

2h2 $u1; $h2 u0;u1

&x8 &2x7 &3x7 &4x8 &5x7 &6x8 &7x8 &8x8; h2

&2x7 &3x7 &4x7 &5x7 &6x7 &7x7 &8x7 &9x7

$h1x2 x2h1 x2&h1 h h

&3x6 &4x6 &5x6 &6x6 &7x6 &8x6 &9x6 &10x6

h1x x&h1 x$h1

&4x5 &5x5 &6x5 &7x5 &8x5 &9x5 &10x5 &11x5

&h1 &2h1 &3h1 u0 $3h1 $2h1 $h1 u0; h1

&5x4 &6x4 &7x4 &8x4 &9x4 &10x4 &11x4 &12x4

x3$3u2

&6x3 &7x3 &8x3 &9x3 &10x3 &11x3 &12x3 &13x3k

$u1x2 x2u1 x2&u1 x2&2u1/x2$6u2 x2$5u2 x2$4u2 x2$3u2 h;x2$2u2

&7x2 &8x2 &9x2 h; &10x2 &11x2 &12x2 &13x2 &14x2

u1x x&u1 x&2u1/x$6u2 x$5u2 x$4u2 x$3u2 x$2u2 x$u1;x$u2

&8x &9x &10x &11x &12x &13x &14x &15x

&u1; $
7u2 &2u1; $

6u2 &3u1; $
5u2 u0; $

4u2 $3u1; $
3u2 $2u1; $

2u2 $u1; $u2 u0;u1

&9 &10 &11 &12 &13 &14 &15 &16;u2

Table 2

Next, as hd .z/D ud C O.z/, it follows by Weierstrass preparation that

.u0; : : : ;ud"1; hd /' !0b.ER/! E0BC2

(see Corollary 4.3) generates the entire ring. As ui%
˙2dC1

for i < d and hd%
˙2dC1

are permanent cycles,

it follows that %˙2dC1

is a permanent cycle. Next, note that

wd"1 D $2d

hd ; %2dC1

u2d

wd"1 D &2d

hd :

As uix
2d "1 D 0 for i < d , the identities wd"1x2d "1 D 0 and %2dC1

u2d

wd"1x2d "1 D 0 then imply

$2d

x2d "1 D 0 and &2d

x2d "1 D 0.

5.5 Remark Tables 1 and 2 may be helpful in getting acquainted with the general shape of !?b.ER/,

and especially for visualizing the arguments in Sections 6 and 7.

These describe generators of !cCw!b.ER/ as a module over !0b.ER/! E0BC2 in coweight 0 " c " 8

and stem 0 " c Cw " 16, the first table containing stems 0 " c Cw " 8 and second 9 " c Cw " 16.

It is arranged by stem and coweight: the box at coordinate .s; c/ contains a list of generators for

!cC.s"c/!b.ER/. For space reasons, we have omitted any %2iuj terms. These may recovered by
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comparing degrees: for example, the box in coordinate .8; 5/ has entries $h1x and &3x5, and this means

that !5C3!b.ER/ is generated over !0b.ER/ by $ & %"4u4h1 & x and &3x5.

The entry x&2u1=x$
6u2 indicates that either x&2u1 or x$6u2 may be chosen as a generator, and likewise

for x2&2u1=x
2$6u2. This sort of choice also appears on the 0–line: for example, in box .5; 0/ one could

replace $3u1 with &u0.

These tables assume that E has sufficiently large height, say E D MP .

6 Transfers

Recall that there are cofiber sequences

(5) †"!b.ER/
#

#! b.ER/! C2C ˝ i!ER; †!b.ER/
"

#! b.ER/! ER

of C2–spectra. The first is a general cofiber sequence that exists for any C2–spectrum, given that

C2C ˝ b.ER/' C2C ˝ i!ER, and the second was shown in Theorem 4.4. Here,

!?.C2C ˝ i!ER/! !!ERŒu˙1
! #; ju! j D 1 # ";

and !?ER was described in Section 3.

Associated to the cofiber sequences of (5) are boundary maps

tr.u"1
! & #/ W !?C1"! .C2C ˝ i!ER/! !?b.ER/; @ W !?C1C!ER ! !?b.ER/:

The first of these is the transfer for the C2–spectrum b.ER/. Both are !?b.ER/–linear.

6.1 Proposition The above transfer and boundary maps satisfy

tr.u"1
! & u2n.2kC1/

! /D $2n"1%2nC1khnx2n"1 C O.x2n

/;

@. Nu2n.2kC1//D &2n"1%"2nC1ku2nC1khnx2n"1 C O.x2n

/

for n $ 0 and k 2 Z.

Proof The error terms are present just because %2nC1khn and %"2nC1ku2nC1khn have only been defined

mod x, so we omit them in the proof.

First consider the case n D 0. These claimed values are not hidden in the x–Bockstein spectral sequence,

so it suffices to show that they hold after coning off x. After coning off x, the cofiber sequences (5) take

the form

(6) †"!b.E/
#

#! b.E/! C2C ˝ i!E; †!b.E/
#$!2u
###! b.E/! C2C ˝ i!E:

In particular, @. Nu˛/D tr.˛/. By [Hopkins et al. 2000, Remark 6.15], the transfer

tr W !0E ! E0BC2 ! !0b.E/
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satisfies tr.1/D h. The proof is to observe that h is the unique class which satisfies

$ & h D 0; h % 2 .mod $/:

As tr and @ are !?b.E/–linear, we deduce

tr.u"1
! & u2nC1

! /D %2n tr.1/D %2nh; @. Nu2nC1/D %"2nu2n@. Nu/D %"2nu2nh

as claimed. The argument is essentially the same for n $ 1. Observe that

$2n

%2nC1khn D %2nC1kwn"1; &2n

%"2nC1khn D %"2nC1.kC1/u2n

wn"1:

In particular $2n"1%2nC1khnx2n"1 and &2n"1%"2nC1ku2nC1khnx2n"1 generate the kernels of $ and &

in their respective degrees. As the kernels of $ and & are generated by the images of tr and @, this gives

the claimed values of tr and @ up to multiplication by a unit, which may then be ruled out by working in

the universal case E D MP .

7 Hidden extensions

We now turn our attention to hidden extensions. We begin with a general discussion. Write ZŒx#=B for

the x–adic associated graded of !?b.ER/, as computed in Section 5. In general, hidden extensions in

the x–Bockstein spectral sequence arise from the failure of !?b.ER/ to be isomorphic to ZŒx#=B, and

especially for relations to fail to lift through the map

(7) !?b.ER/! .!?b.ER//=.x/! Z ' !?b.E/:

Recall that

!?b.E/D
E0Œ$; %

˙2;u˙1#^#

.$ & h/
:

This indicates that the simple indecomposable hidden extensions will be those $ and &–extensions lifting

relations of the form

(8) $ & %2iuj h D 0; & & %2iuj h D 0;

where i and j are such that %2iuj h 2 Z.

If a relation of this sort lifts to !?b.ER/, then necessarily the corresponding %2iuj h is in the image of

the transfer or boundary studied in the previous section. These classes are generally not in the image

of the transfer or boundary, and so one knows from the start that the relations in (8) generally lift to

nontrivial hidden extensions in !?b.ER/.

One can use Proposition 6.1 to compute some of these directly:

& & %2nC1.2kC1/h D & & tr.u2nC1.2kC1/
! /D tr.xu"1

! & u2nC1.2kC1/
! /D $2nC1"1%2nC1khnC1x2nC1

by Frobenius reciprocity, and likewise

$ & %"2nC1.2kC1/u2nC1.2kC1/h D $ & @. Nu2nC1.2kC1/C1/D &2nC1"1%2nC2ku2nC2khnC1x2nC1

:
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In general however, a more indirect approach is necessary. Consider the cofiber sequences

(9) †"!b.ER/
#

#! b.ER/
p

#! C2C ˝ i!ER; †!b.ER/
"

#! b.ER/
q

#! ER:

The long exact sequences associated to these imply that the image of $ is equal to the kernel of the

forgetful map p W !?b.ER/! !j?jER, and that the image of & is equal to the kernel of the canonical

map q W !?b.ER/! !?ER. To find elements of these kernels, one looks for elements in !?b.ER/ that

lift the relations unx2nC1"1 D 0. This relation already holds in !?b.ER/, so we need only consider lifts

involving the filtration-shifting identities p.&/D x and q.$/D a! . In this way we focus our attention on

those classes of the form

(10) %2nC2ku2nC2lhnC1&
r xs; %2nC2ku2nC2lhnC1$

r xs;

where r C s $ 2nC1 # 1 and r $ 1 and s < 2nC2 # 1. By the preceding discussion, the former must be in

the image of $ and the latter in the image of & , and when this is not the case in ZŒx#=B there must be a

hidden extension making it so. If r C s > 2nC2 # 1, then the witness to the classes in (10) being in the

image of $ or & may be obtained by multiplying a smaller witness with some suitable power of $ or &

and x. Thus we are led to focus on the case where r C s D 2nC2 # 1. We will show that when s is even,

the necessary hidden extensions are exactly those lifting the relations in (8). First, a couple observations.

7.1 Lemma Fix positive integers r C s D 2nC2 # 1 with s even. Then the classes

%2nC2ku2nC2lhnC1&
r xs; %2nC2ku2nC2lhnC1$

r xs

are not in the image of $ or & respectively in ZŒx#=B, at least when E D MP .

Proof Consider the first case. Suppose towards contradiction that

%2nC2ku2nC2lhnC1&
r xs D $˛xs

for some ˛ 2 Z. As the x–Bockstein spectral sequence has only odd differentials and s is even, necessarily

we can divide out by x to obtain

(11) .%2nC2ku2nC2lhnC1&
r # $˛/xs"1 D 0:

This means that %2nC2ku2nC2lhnC1&
r # $˛ detects some class * 2 !?b.MPR/ satisfying * & xs"1 D 0.

Write p W !?b.MPR/ ! !j?jMPR for the restriction. As p.&/ D x, necessarily p.*/ is detected by

u2nC2lunC1xr . Thus

0 D p.* & xs"1/% u2nC2lunC1xrCs"1 .mod xrCs/

in !!MPR. As r C s # 1 < 2nC2 # 1, this is incompatible with the structure of the x–Bockstein

spectral sequence for !!MPR, a contradiction. The second case is identical, only instead using the map

b.MPR/! MPR in place of the restriction.

7.2 Lemma Suppose that i and j are such that %2iuj h 2 Z. Then %2iuj h generates the kernels of $

and & in its degree of ZŒx#=B as a module over !0b.ER/.
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Proof The class %2iuj h generates the kernels of $ and & in Z, as this is the case in !?b.E/. Thus the

lemma follows from the following observation: ZŒx#=B contains no x–divisible elements in the kernel

of $ or & in even degrees, that is in degrees of the form c Cw" with both c and w even. Indeed, any

x–divisible element in even degree and in a given filtration must be of the form ˛x2r D 0 with ˛ 2 Z

in even degree. As ˛ is in even degree and B is generated by classes of the form w & x? with w in even

degree, relations $˛x2r D 0 or &˛x2r D 0 are only possible if ˛x2r D 0 already, proving the lemma.

We may now give the main theorem of this subsection.

7.3 Theorem There are extensions

$ & %2.2nC1k"r/u2nC1.2lC1/h D
!

%2nC2ku2nC2lhnC1&
2r"1 C O.$/

"

x2nC2"2r C O.x2nC2"2rC1/;

& & %2.2nC1kCr/u2.2n.2lC1/"r/h D
!

%2nC2ku2nC2lhnC1$
2r"1 C O.&/

"

x2nC2"2r C O.x2nC2"2rC1/

for k; l 2 Z, n $ 0, and 1 " r " 2nC1 # 1.

Proof It suffices to produce these extensions in the universal case E D MP . This ensures that the terms

on the right are nonzero, so that these are nontrivial extensions. As discussed above, the cofiber sequences

of (9) show that the terms

%2nC2ku2nC2lhnC1&
2r"1x2nC2"2r ; %2nC2ku2nC2lhnC1$

2r"1x2nC2"2r

must be in the image of $ and & respectively. By Lemma 7.1, this is not the case in ZŒx#=B, so there

must be hidden extensions making it so. In other words, there must be hidden extensions of the form

$ &˛ D
!

%2nC2ku2nC2lhnC1&
2r"1 C O.$/

"

x2nC2"2r C O.x2nC2"2rC1/;

& &ˇ D
!

%2nC2ku2nC2lhnC1$
2r"1 C O.&/

"

x2nC2"2r C O.x2nC2"2rC1/;

where ˛ and ˇ are detected by classes in ZŒx#=B killed by $ and & respectively. The error terms ensure

that we do not need to pin down ˛ and ˇ precisely, but only the !0b.MPR/–submodule of ZŒx#=B that

they generate. By Lemma 7.2, the extensions given in the theorem statement are the only possibilities in

these degrees.

7.4 Remark This leaves open the problem of finding witnesses to the classes of (10) being in the image

of $ or & in the case where r Cs D 2nC2 #1 and r is even. In some cases no hidden extension is necessary,

for example

$2nC1

hnC1x2nC1"1 D wnx2nC1"1 D 0;

&2nC1

hnC1x2nC1"1 D %"2nC2

u2nC1

wnx2nC1"1 D 0:

However, the general situation seems to be rather subtle. For example, for h2&
2x5 to be in the image

of $, the only possibility is that $%"4u4h1x detects a class satisfying

$ & $%"4u4h1x D h2&
2x5 C O.$/:
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On the other hand,

$2%"4u4h1 D %"4u4w0; %"4u4w0 & x D 0

in ZŒx#=B. This indicates the existence of a mixed extension along the lines of

$2%"4u4h1 D %"4u4w0 C h1&
2x4 C O.$/:

Note that if * 2 !?b.ER/ is detected by %"4u4w0, then so is *C h1&
2x4. Thus for such an extension to

even be defined, one must specify some information about how one lifts elements from Z to !?b.ER/,

and these considerations are outside the scope of our investigation.

8 Some Mahowald invariants

We end by giving some examples of computations within the ring !?b.ER/. Our examples will center

around the following definition.

8.1 Definition Given a spectrum A, the A–based Mahowald invariant is a multivalued function

RA W !!A* !!A;

ie a relation on !!A, defined as follows: given y 2 !nA and z 2 !nCkA, we say z 2 RA.y/ if z lifts to a

class + 2 !?b.A/ such that $N y D $N Ck+ for N ) 0, and moreover k is as large as possible.

8.2 Remark There are natural maps !nA ! !nAtC2 and !cCw!b.A/! !cAtC2 , and the condition

$N y D $N Ck+ for N ) 0 amounts to asking that y D + in !!AtC2. When A D S , this construction

recovers the classical Mahowald invariant, commonly called the root invariant. See [Mahowald and

Ravenel 1993] for additional background, [Bruner and Greenlees 1995] for the relation to C2–equivariant

homotopy theory, which connects Definition 8.1 to other definitions, [Behrens 2007] for the state of the

art in S–based Mahowald invariants at the prime 2, [Quigley 2022] for further discussion of A–based

Mahowald invariants with A ¤ S , and [Li et al. 2022] for more information about spectra related to ERtC2.

Li, Shi, Wang and Xu [Li et al. 2019] prove that the Hurewicz image of real bordism detects the Hopf

elements, Kervaire classes, and N) family. These are the elements in !!S detected on the E2–page of the

Adams spectral sequence by the classes hi , h2
j , and gkC1 respectively; note there is no claimed relation

between hi here and the elements hi in !?b.E/. These classes arrange into Sq0 families, ie

(12) Sq0.hi/D hiC1; Sq0.h2
j /D h2

jC1; Sq0.gkC1/D gkC2:

Informally, this means that they arise as iterated Mahowald invariants at the level of Ext. Of course this

cannot lift to the level of homotopy, as not all of these classes are permanent cycles; still, it is known

that ' 2 RS .2/, ( 2 RS .'/, and " 2 RS .(/, and it is conjectured that *jC1 2 RS .*j / for j $ 3 provided

*jC1 exists, see [Mahowald and Ravenel 1993, Proposition 2.4].
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We can compute the iterated MPR–based Mahowald invariants of the classes 2, *0 D 4, and N), yielding

an analogue of (12). Our computation works just as well for ER in a range depending on the height of E.

First we need to know how N) sits inside !?MPR.

8.3 Lemma The class N) is detected by MPR, with Hurewicz image u4
2u8x4.

Proof If N) is detected by MPR, then it is detected by MR. As !20MR D Z=.2/fu4
2u8x4g ' !20MPR,

it suffices just to show that N) is detected by MR, which was shown in [Li et al. 2019]. Alternately, as

there is a ring map MR ! TMF0.3/ [Hill and Meier 2017], it suffices to show that N) is detected in the

latter, and here one may appeal to [Mahowald and Rezk 2009].

We now abbreviate R D RMPR .

8.4 Theorem Define elements

an D unx2n"1 2 !2n"1MPR; bm D u4
mC1u2mC2

x2mC2"4 2 !4.3#2m"1/MPR

for n $ 0 and m $ 1, so that for example a0 D 2 and b1 D N). Then there are MPR–based Mahowald

invariants

anC1 2 R.an/; a2
nC1 2 R.a2

n/; bmC1 2 R.bm/:

Proof First consider an. As

hn % un C $2n

&2n

hnC1 .mod u0; : : : ;un"1/;

the relation $2n

hn & x2n"1 D 0 implies

(13) $2n

& unx2n"1 D #$2nC1

& hnC1&
2n

x2n"1:

There are no further relations and hnC1&
2n

x2n"1 lifts unC1x2nC1"1 D anC1, yielding anC1 2 R.an/.

The case of a2
n is identical, only we must apply (13) twice:

$2n

& u2
nx2.2n"1/ D #$2nC1

& hnC1&
2n

unx2.2n"1/ D $3#2n

& h2
nC1&

2nC1

x2.2n"1/:

Now consider bm. As 2mC2 # 4 $ 2mC1 # 1 for m $ 1, we may apply (13) thrice to obtain

(14) $2mC1

& u4
mC1u2mC2

x2mC2"4 D $2mC3

& umC1u2mC2

& &3#2mC1

h3
mC2x2mC2"4:

At this point additional care is needed: we cannot apply (13) again, as despite appearances umC1u2mC2

is indecomposable. Instead, the relation $ & h D 0 gives

0 % umC1$
2mC2"1%"2mC2C2u2mC1"1 C hmC2$

2mC3"1%"2mC3C2u2mC2"1 .mod u0; : : : ;um/

in !?b.MP /, and thus

umC1u2mC2

& &2mC2"1 D umC1u2mC2

& $2mC2"1%"2mC3"2u2mC2"1

% %"2mC3

u2mC3

hmC3 & $3#2mC1

&2mC1"1 .mod u0; : : : ;um/:
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Substituting this into (14) yields

$2mC1

& u4
mC1u2mC2

x2mC2"4 D $7#2mC1

& %"2mC3

u2mC3

h4
mC2 & &2mC2

x2mC2"4:

We cannot pull this class back any further. Thus, as %"2mC3

u2mC3

h4
mC2 & &2mC2

x2mC2"4 lifts

u4
mC2u2mC3

x2mC3"4 D bmC1;

we obtain bmC1 2 R.bm/.
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