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Generalizing quasicategories via model structures on simplicial sets

MATT FELLER

We use Cisinski’s machinery to construct and study model structures on the category of simplicial sets
whose classes of fibrant objects generalize quasicategories. We identify a lifting condition that captures
the homotopical behavior of quasicategories without the algebraic aspects and show that there is a model
structure whose fibrant objects are precisely those that satisfy this condition. We also identify a localization
of this model structure whose fibrant objects satisfy a “special horn lifting” property similar to the one
satisfied by quasicategories. This special horn model structure leads to a conjectural characterization of
the bijective-on-0-simplices trivial cofibrations of the Joyal model structure. We also discuss how these
model structures all relate to one another and to the minimal model structure.
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1 Introduction

The theory of quasicategories has proven to be a powerful tool across many areas of mathematics, including
algebraic geometry, topology, and beyond. The basic idea of a quasicategory is that it is a simplicial
set that behaves like a category “up to homotopy”. This paper explores how one can generalize this
idea, where we have simplicial sets modeling up-to-homotopy versions of structures that are weaker than
categories. Our motivating example of such a structure weaker than categories is the 2-Segal sets of
Dyckerhoff and Kapranov [5] and Gálvez-Carrillo, Kock and Tonks [8]. In a follow-up paper, we define
“quasi-2-Segal sets” that are up-to-homotopy versions of 2-Segal sets, building on the groundwork laid
here.
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358 Matt Feller

A foundational result of quasicategory theory is the existence of a corresponding model structure on the
category of simplicial sets, called the Joyal model structure [14]. A desirable quality of any generalization
of quasicategories is therefore the existence of a similar associated model structure. Taking this idea to
heart, one could say that within simplicial sets the search for robust generalizations of quasicategories
is equivalent to the search for model structures. Hence, the aim of this paper is to dive into the sea of
possible model structures and retrieve a few with properties that should prove useful for further study.

1.1 Model structures on simplicial sets

The two most prominent model structures on sSet, the category of simplicial sets, are the Kan–Quillen
model structure [15] and the Joyal model structure [14]. In both model structures, all objects are cofibrant,
so the well-behaved objects are precisely the fibrant objects. In the Kan–Quillen model structure, the
fibrant objects are the Kan complexes which provide a model of spaces/1-groupoids, and the fibrant
objects of the Joyal model structure are the quasicategories which give us a model of .1; 1/-categories.
These model structures are both examples of Cisinski model structures on sSet, meaning that they are
cofibrantly generated and their cofibrations are precisely the monomorphisms. The Kan–Quillen model
structure is a localization of the Joyal model structure in the sense that it has the same cofibrations and its
class of fibrant objects (Kan complexes) is contained in the class of Joyal fibrant objects (quasicategories).
In general, the process of localizing a model structure to another with the same cofibrations and fewer
fibrant objects is well understood; see Hirschhorn [10]. There are other localizations of the Joyal model
structure in the literature; see for example Campbell and Lanari [2] and Cisinski [3, Chapter 9].

By starting with the Joyal model structure and localizing, one ends up with fibrant objects that are
quasicategories with extra structure. If we instead want to do the opposite and generalize the notion
of quasicategory, then we want to “delocalize”. The goal of this paper is to lay the groundwork for
constructing such delocalizations of the Joyal model structure. Our approach is to focus on the homotopical
aspects of quasicategories, constructing various model structures that maintain those aspects but lack
a notion of composition. In particular, for morphisms f and g in a quasicategory Q, we consider a
homotopy from f to g to be given by a 2-simplex

x y

x
s0x

f

g

with degenerate edge 0! 1 as indicated. We say that Q is homotopically behaved, in the sense that
all of the higher invertibility and compositionality we would expect from a good notion of homotopy
are satisfied by the 2-simplices of this form, as well as by higher n-simplices whose edge i ! i C 1 for
some 0� i � n� 1 is degenerate. The purpose of this paper is to study Cisinski model structures on sSet
whose fibrant objects are homotopically behaved, which we call homotopically behaved model structures.
Our main result is to construct and describe the homotopically behaved model structure with the smallest
possible class of weak equivalences.
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Theorem A There exists a minimal homotopically behaved model structure on sSet. The fibrant objects
in this model structure are the simplicial sets with lifts of certain modified horn inclusions , which we call
J -augmented horn inclusions.

We state this theorem in more detail as Theorem 4.33. The terms homotopically behaved and J -augmented
horn inclusion are defined explicitly in Section 1.4.

1.2 2-Segal motivation

Our motivation for considering delocalizations of the Joyal model structure is to construct a “quasi-2-
Segal set” model structure, where the fibrant objects satisfy an up-to-homotopy version of the 2-Segal
condition introduced in [5] and [8]. Recall that the (strict) Segal (or “1-Segal”) condition encodes unique
composition; the simplicial sets satisfying this condition (the “1-Segal sets”) are equivalent to categories.
The simplicial sets satisfying a weakened, up-to-homotopy version of the 1-Segal condition are the
quasicategories. The 2-Segal condition is generalization of the 1-Segal condition that encodes partially
defined, not necessarily unique composition which is still associative in a particular sense. It is therefore
natural to try to extend this generalization from 1-Segal to 2-Segal to the up-to-homotopy setting, ie to look
for a robust definition of “quasi-2-Segal sets”. A compelling justification for a particular definition would
be the existence of a model structure analogous to the Joyal model structure. Since the quasi-2-Segal sets
should generalize quasicategories, such a model structure should be a delocalization of the Joyal model
structure. In follow-up work [7] we construct such a quasi-2-Segal model structure by localizing our
minimal homotopically behaved model structure with respect to maps that encode the 2-Segal condition.

1.3 Cisinski’s theory and the minimal model structure

Proving the existence of a model structure from scratch is generally cumbersome and highly technical,
but fortunately for our particular situation Cisinski’s theory provides a powerful framework for building
model structures that requires checking a much more manageable set of conditions. One aspect of this
theory is the existence of a minimal model structure, whose class of fibrant objects contains the fibrant
objects of every other Cisinski model structure.1 Therefore, one approach to delocalizing the Joyal model
structure is to delocalize all the way back to the minimal model structure, and then localize from there.

As we see in a companion paper [6], we lose a lot by delocalizing all the way down to the minimal
model structure. In particular, the main result of that paper is a new characterization of the fibrant
objects in the minimal model structure. What we find is that the notion of “homotopy” familiar from
quasicategories does not behave well in the fibrant objects of this model structure. In particular, the
existence of a homotopy from f to g given by a 2-simplex with degenerate edge need not imply the

1One could also call this “maximal”, but we prefer “minimal” since the class of weak equivalences is as small as possible, and
the fibrant objects have the least structure.
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existence a homotopy from g to f . Homotopies of this form also need not compose. One can devise
an alternative notion of homotopy which behaves well in the minimal model structure, essentially by
demanding that all higher invertibility data be present from the start, but then one sacrifices the simplicity
that comes from a homotopy being embodied by a single simplex.

1.4 Homotopically behaved model structures and augmented horns

We denote by �Œn��i!iC1 the standard n-simplex with the edge i ! .i C 1/ collapsed to a degeneracy.
The idea that an n-simplex with degenerate i ! .i C 1/ edge is a homotopy of .n�1/-simplices can be
expressed by the surjective map�Œn��i!iC1!�Œn�1� being a weak equivalence. Thus, we introduce the
terminology homotopically behaved for Cisinski model structures on sSet where each of these surjective
maps �Œn��i!iC1!�Œn�1� is a weak equivalence. In Section 4 we construct the minimal homotopically
behaved model structure, whose fibrant objects have the least possible structure while maintaining the
desirable homotopical aspects of quasicategories. Localizing this model structure with respect to the
maps from the 2-Segal condition yields a “quasi-2-Segal set” model structure whose fibrant objects must
then also have the desirable homotopical aspects of quasicategories.

At the same time, we construct a nontrivial localization of this model structure at K!�, where K is the
simplicial set one gets by gluing in a left and right inverse to �Œ1�; see Example 4.5. Although this model
structure does not appear to be directly useful for defining quasi-2-Segal sets, it may be of independent
interest in understanding the broader picture of model structures on simplicial sets.

The key inspiration for our approach comes from the special outer horn extension property of quasicate-
gories. Recall that a horn ƒi Œn� is the union of all of the faces of the n-simplex �Œn� except for di�Œn�,
which we say is inner if 0 < i < n and is outer if i D 0 or i D n. We refer to these horns as ordinary
horns to distinguish them from the augmented horns we introduce below. A quasicategory is a simplicial
set Q such that every inner horn ƒi Œn�!Q extends to an n-simplex �Œn�!Q. A quasicategory need
not have extensions of an outer horn such as ƒ0Œn�!Q. However, if the edge 0! 1 is sent to an edge
in Q that is invertible in a certain sense, then we say ƒ0Œn�!Q is an example of a special outer horn,
and it turns out that quasicategories do have extensions of all special outer horns.

In a general homotopically behaved model structure, the fibrant objects need not have extensions of
ordinary horns. However, the central idea of our approach is to create augmented horns, where we glue
a simplicial set onto a particular edge to “invert” it. In Section 3, we see how certain augmented horn
inclusions are forced to be weak equivalences in a homotopically behaved model structure. Furthermore,
we can characterize the fibrant objects in the minimal homotopically behaved model structure in terms
of lifts of J -augmented horn inclusions, as we stated in Theorem A. We denote by J the nerve of the
free-living isomorphism, so and define J -augmented horn inclusions to be ordinary horn inclusions
ƒj Œn� ,!�Œn� with a copy of J glued in along either the .j � 1/! j edge or the j ! .j C 1/ edge.
We see in Corollary 4.28 that the minimal homotopically behaved model structure localizes to the Joyal
model structure.
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1.5 Special horns

The notion of invertibility in Section 3 comes from attaching a simplicial set I that is contractible in the
sense that the map I !� is a weak equivalence, with our main examples being I D J and I DK. In
Section 5, we see that this notion does not account for all of the edges we want to consider invertible in
the context of quasicategories, and identify a separate class of augmented horn inclusions which we call
the special horn inclusions. We show that there is a model structure whose fibrant objects are precisely
the simplicial sets with special horn inclusions.

Recall that we deemed the localization of the minimal homotopically behaved model structure at K!�
to be unsuitable for our ultimate purposes in defining quasi-2-Segal sets. This special horn model structure
is a further localization, and hence is also not suitable. However, this model structure may be of interest
with regards to studying the Joyal model structure. In particular, we conjecture that the special horn
inclusions, together with the inner horn inclusions, generate the class of bijective-on-0-simplices trivial
cofibrations in the Joyal model structure; see Conjecture 5.24.

1.6 Pointwise cylinders

A central element of Cisinski’s theory is the exact cylinder, which is a functorial choice of simplicial set
E˝X for each simplicial set X , satisfying certain axioms. Many applications of Cisinski’s work use an
exact cylinder given by the Cartesian product E ˝X D I �X for some simplicial set I with distinct
vertices f0g ,! I and f1g ,! I . For our purposes, the necessary proofs are greatly simplified by instead
using an alternative kind of exact cylinder, which we call a pointwise cylinder. We introduce pointwise
cylinders in Section 4.1. In Section 4.2, we see that the minimal homotopically behaved model structure
is also minimal with respect to pointwise cylinders, in the sense that we construct it using a pointwise
cylinder in Cisinski’s machinery and any other such constructed model structure is a localization of it.

1.7 Organization

In Section 2, we cover basic definitions and notation, and then summarize Cisinski’s theory. In Section 3,
we define homotopically behaved model structures and augmented horn inclusions. In Section 4 we
show that there is a minimal homotopically behaved model structure and that its fibrant objects are the
simplicial sets with extensions of certain augmented horns. In Section 5, we define special horns as a
separate kind of augmented horn, and use Cisinski’s machinery to show that there exists a model structure
whose fibrant objects are simplicial sets with special horn extensions. In Section 6 we summarize and
compare the various model structures constructed in this work.
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2 Background

We recall some basic notions, as well as the necessary aspects of Cisinski’s theory.

2.1 Basics of simplicial sets and model structures

Let � denote the category whose objects are the finite nonempty ordered sets Œn�D f0� 1� � � � � ng for
n� 0 and whose morphisms are order-preserving maps. We write d i W Œn�! ŒnC1� and si W ŒnC1�! Œn�

for the coface and codegeneracy maps, respectively, which generate the morphisms of �. A simplicial set
is a functor �op! Set. We denote the category of simplicial sets by sSet and the representable simplicial
sets by �Œn�, except that we often denote �Œ0� instead by � since it is the terminal object in sSet. Our
notation for the i th horn of �Œn� is ƒi Œn�. For more background on simplicial sets, see [9].

We write f � g if g has the right lifting property with respect to f . The class of morphisms with the
right lifting property with respect to a set of maps A is denoted by A�, and the class of morphisms f
such that f � B is denoted by �B. Given a set S of morphisms, the class �.S�/ is the closure of S
under taking pushouts, transfinite compositions, and retracts. For this reason, we sometimes say that S
generates the class �.S�/.

We restrict our focus to Cisinski model structures on sSet, which are cofibrantly generated model structures
whose cofibrations are precisely the monomorphisms. A model structure is cofibrantly generated if there
are sets I and J such that I generates the cofibrations and J generates the trivial cofibrations. For more
background on model categories, see [10] or [11].

2.2 Cisinski’s theory

The main result we use from Cisinski is Theorem 2.10, which says that if a set of monomorphisms ƒ
satisfies certain properties, then ƒ characterizes the fibrant objects of some model category via a lifting
property. The purpose of this subsection is to recall the background necessary to state this result precisely.

We begin by recalling the notion of a cylinder.

Definition 2.1 [4, Definition 2.4.6] A cylinder of a simplicial set X is a factorization

X tX
.@0;@1/,����! I ˝X !X

of the canonical fold map .idX ; idX /, where the first map is a monomorphism. The maps @" for "D 0; 1
pick out copies of X that do not intersect inside of I ˝X .

Beware that the notation I ˝X in the above definition is purely formal. The simplicial set I ˝X need
not be a monoidal product or tensor of any kind.

Remark 2.2 In an arbitrary model category, we define cylinders similarly, where the first map is required
to be a cofibration. In the context of Cisinski’s theory, all of the model structures we consider have as
cofibrations precisely the class of monomorphisms, justifying this definition.
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A functorial cylinder is a compatible choice of cylinder for every simplicial set. To make this definition
rigorous, we first notice that X 7! X tX and X 7! X are endofunctors of sSet, which we denote by
1t 1 and 1, respectively. There is a natural transformation .id; id/ W 1t 1) 1 whose component at each
X is the canonical fold map .idX ; idX /.

Definition 2.3 [4, Definition 2.4.8] A functorial cylinder is a factorization

1t 1
.@0;@1/
HHHH) I ˝�) 1

of the natural transformation .id; id/, where each component of the natural transformation

.@0; @1/ W 1t 1) I ˝�

is a monomorphism.

The motivation behind these definitions is to generalize the idea (from the Kan–Quillen model structure
on sSet) of �Œ1��X being a cylinder of a simplicial set X , in the sense that a map X ��Œ1�! Y gives
a homotopy of maps X ! Y . Imposing some further conditions helps maintain the spirit of the original
setting, where we imagine I ˝X as something like a stretched out copy of X .

Definition 2.4 [4, Definition 2.4.8] An exact cylinder2 is a functorial cylinder satisfying the following
axioms.

(DH1) The functor I ˝� commutes with small colimits and preserves monomorphisms.

(DH2) For any monomorphism of simplicial sets j W A ,! B , the square

A B

I ˝A I ˝B

j

.@"/A .@"/B

I˝j

is a pullback for each "D 0; 1.

Remark 2.5 Assuming I ˝� preserves monomorphisms (as (DH1) calls for), all of the morphisms in
the square in (DH2) are monomorphisms. We can interpret the condition that the square be a pullback as
saying that the intersection of I ˝A� I ˝B with B � I ˝B is precisely A.

Example 2.6 Let I be a cylinder of the terminal simplicial set �Œ0�. In other words, choose a monomor-
phism of simplicial sets �Œ0�t�Œ0� ,! I . The functor defined by I ˝X D I �X determines an exact
cylinder. In particular, when I D�Œ1�, we recover the familiar notion of cylinder from the Kan–Quillen
model structure.

Many applications of this theory involve cylinders defined by Cartesian product, but our approach uses a
new kind of exact cylinder which we introduce in Section 4.1.

2The origin of this definition is [3], where the term is “donnée homotopique élémentaire”, hence “DH”.
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Let us follow [4, Remark 2.4.9] and establish some more notation. Given an exact cylinder I ˝�, by
taking the pushout of the left and top maps in the square for axiom (DH2), we get the inclusion map

.I ˝A/[B ,! I ˝B:

To emphasize the dependence of this inclusion on whether "D 0 or 1 in the inclusion @" W�Œ0� ,! I , we
rewrite this map as

.I ˝A/[ .f"g˝B/ ,! I ˝B;

thinking of f0g and f1g as endpoints of I D I ˝�Œ0�.

In this spirit, we also write @I for the union of f0g and f1g inside of I , and we write @I ˝X as the union
of f0g˝X and f1g˝X in I ˝X . Then we have a canonical inclusion

.I ˝A/[ .@I ˝B/ ,! I ˝B;

arising from a diagram akin to the square in axiom (DH2).

We are now ready for one of the key definitions we need from Cisinski.

Definition 2.7 [4, Definition 2.4.11] Given an exact cylinder I ˝�, we say that a class of morphisms
�.ƒ�/ generated by a set ƒ of monomorphisms is an .I ˝�/-anodyne class if the following conditions
hold.

(An1) For each monomorphism of simplicial sets X ,! Y and "D 0; 1, the induced map

.I ˝X/[ .f"g˝Y / ,! I ˝Y

is in �.ƒ�/.

(An2) For each A ,! B in �.ƒ�/, the induced map .I ˝A/[ .@I ˝B/! I ˝B is also in �.ƒ�/.

We can restate each of axioms (An1) and (An2) in a form that is easier to check.

Lemma 2.8 Let I ˝� be an exact cylinder and let ƒ be a set of monomorphisms. Then axiom (An1) is
equivalent to (An10) below and axiom (An2) is equivalent to (An20) below:

(An10) For each n � 0 and " D 0; 1, the map .I ˝ @�Œn�/ [ .f"g ˝�Œn�/ ,! I ˝�Œn� induced by
@�Œn� ,!�Œn� is in �.ƒ�/.

(An20) For each A ,! B in ƒ, the induced map .I ˝A/[ .@I ˝B/! I ˝B is in �.ƒ�/.

Proof The equivalence (An10)() (An1) follows from the equality of classes

f.I ˝ @�Œn�/[ .f"g˝�Œn�/ ,! I ˝�Œn� j n� 0; "D 0; 1g�

D f.I ˝X/[ .f"g˝Y / ,! I ˝Y jX ,! Y in sSet; "D 0; 1g�;
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which is a consequence of correspondence (2.4.13.4) of Example 2.4.13 in [4], which ultimately relies on
the fact that the boundary inclusions generate the class of monomorphisms. The equivalence of (An20)
and (An2) follows from a similar argument, replacing f"g with @I and arbitrary monomorphisms X ,! Y

with maps in �.ƒ�/.

Definition 2.9 Given an exact cylinder I ˝� and a morphism of simplicial sets f0; f1 WA!X , we say
that an I -homotopy from f0 to f1 is a map h W I˝A!X such that precomposing h with f"g˝A,! I˝A

yields f" for "D 0; 1. We say that f; g WA!X are I -homotopic if there is a finite zigzag of I -homotopies
from f to g. Suppressing the dependence on I , we let ŒA;X� denote the quotient of the set Hom.A;X/
by identifying maps that are I -homotopic.

Theorem 2.10 [4, Theorem 2.4.19] Given an exact cylinder I ˝� and a set of monomorphisms ƒ such
that �.ƒ�/ is an .I ˝�/-anodyne class , there is a cofibrantly generated model structure on sSet whose
cofibrations are the monomorphisms and whose fibrant objects are the simplicial sets with the right lifting
property with respect to ƒ. The weak equivalences in this model structure are maps X ! Y such that for
every fibrant W the induced map ŒY;W �! ŒX;W � is a bijection.

Remark 2.11 It is a theorem of Joyal that if two model structures share the same cofibrations and
fibrant objects, then they are the same model structure; see [14, Proposition E.1.10]. Therefore, the
weak equivalences described in the above theorem are determined once we know our cofibrations are
the monomorphisms and our fibrant objects are those with lifts against ƒ. Throughout this paper, we
shall implicitly use this fact from Joyal to conclude that when the class of fibrant objects of a Cisinski
model structure is contained in the class of fibrant objects in another, the class of weak equivalences of
the former model contains the class of weak equivalences of the latter.

3 Homotopically behaved model structures and augmented horns

In this section, we define homotopically behaved model structures to be Cisinski model structures where
the retract map from an n-simplex with i! .iC1/ edge collapsed to a degeneracy onto the .n�1/-simplex
is a weak equivalence. This condition captures the idea that a map out of an n-simplex with degenerate
i ! .i C 1/ edge is a homotopy of .n�1/-simplices. We show that this condition is equivalent to the
condition that certain modified horn inclusions are weak equivalences.

3.1 Augmented horn extensions

In a quasicategory, we can view higher homotopies as simplices with a degenerate edge i ! i C 1. More
precisely, for n� 1, a homotopy between n-simplices x; y consists of an .nC1/-simplex H with some
0� i � n such that the edge i ! .i C 1/ is degenerate and fdiH;diC1H g D fx; yg.

Before continuing this discussion, let us fix some notation.
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Definition 3.1 Given n � 2, 0 � i � n� 1, a subcomplex A � �Œn� containing the i ! .i C 1/ edge
of �Œn�, and a map �Œ1�!X , let AXi!iC1 be the pushout

�Œ1� X

A AXi!iC1

i!iC1

Example 3.2 To get ƒ1Œ2�X1!2, we attach �Œ1�!X along the edge 1! 2, as in the following diagram:

1

0 2

X

Our main use for these AXi!iC1 is to discuss modified versions of the ordinary horn inclusions. Given a
horn inclusionƒj Œn� ,!�Œn�, the hornƒj Œn� contains the edges .j �1/! j and j ! .jC1/ (excluding
the cases �1! 0 and n! nC1 as there are no such edges). For each �Œ1�!X and i D j �1; j , we get
an induced inclusion ƒj Œn�Xi!iC1 ,!�Œn�Xi!iC1. The modified horn inclusions we study are two special
cases of this situation. The first case is when X D�, so the induced inclusion ƒj Œn��i!iC1 ,!�Œn��i!iC1
is the ordinary horn inclusion with the i ! i C 1 edge collapsed to a degeneracy. The second case is
when �Œ1�!X is an inclusion, so that the induced map is the ordinary horn inclusion with a copy of X
glued in along the i ! i C 1 edge. Let us set some terminology for these special cases.

Definition 3.3 Fix n� 2 and 0� i � n� 1.

(1) When X D�, the terminal simplicial set, we say thatƒj Œn��i!iC1 is a pinched horn for j D i; iC1,
that �Œn��i!iC1 is a pinched n-simplex, and that the inclusion ƒj Œn��i!iC1 ,! �Œn��i!iC1 for
j D i; i C 1 is a pinched horn inclusion.

(2) When �Œ1�!X is an inclusion, we say that ƒj Œn�Xi!iC1 is an X -augmented horn for j D i; iC1,
that �Œn�Xi!iC1 is an X -augmented n-simplex, and that the inclusion ƒj Œn�Xi!iC1 ,!�Œn�Xi!iC1
for j D i; i C 1 is an X -augmented horn inclusion.

Remark 3.4 The notation AXi!iC1 and terminology “X -augmented” are technically ambiguous because
they depend on the map �Œ1�!X , but the choice of map should be clear from context in all instances in
this paper.

Since we think of maps out of a pinched .nC1/-simplex �ŒnC 1��i!iC1 as homotopies of n-simplices,
we can interpret this situation as saying that maps out of a pinched .nC1/-simplex �ŒnC 1��i!iC1 are
equivalent to maps out of the standard n simplex �Œn� up to homotopy. This interpretation is encoded
more precisely by the surjective map �ŒnC 1��i!iC1 ! �Œn� being a weak equivalence in the Joyal
model structure. As our goal is to construct model structures with fibrant objects that have the same
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homotopical behavior as quasicategories, a natural starting place is to declare each of these surjective
maps �ŒnC 1��i!iC1!�Œn� for n� 1 and 0� i � n to be weak equivalences in our model structure.
The aim of this subsection is to use 2-out-of-3 arguments to identify other maps that are forced to be
weak equivalences in this situation.

Definition 3.5 We say that a Cisinski model structure on the category of simplicial sets is a homotopically
behaved model structure if the surjective maps �ŒmC 1��

k!kC1
!�Œm� are weak equivalences for all

m� 1 and 0� k �m.

Our first step is to notice that these maps have sections, which must also be weak equivalences by the
2-out-of-3 property.

Lemma 3.6 The surjective maps �ŒmC 1��
k!kC1

! �Œm� are weak equivalences for all m � 1 and
0� k �m if and only if the sections dk; dkC1 W�Œm� ,!�ŒmC 1��

k!kC1
are as well.

Our next step is to show that pinched horn inclusions are forced to be weak equivalences. Our proof
requires first defining generalized pinched horns. Given n� 2, 0� i � n�1, and a subset S � f0; : : : ; ng
such that jS j � 2 and exactly one of i; i C 1 is in S , the generalized horn ƒS Œn���Œn� is the union of
all dj faces of �Œn� for j in S . There exists an ` 2 S not equal to i or i C 1 and so the d` face of �Œn�
contains the i! .iC1/ edge, and therefore ƒS Œn� contains the i! .iC1/ edge of �Œn�, allowing us to
apply Definition 3.3.

Definition 3.7 Given n�2, 0� i �n�1, and a subset S �f0; : : : ; ng such that jS j�2 and exactly one of
i; iC1 is in S , we say thatƒS Œn��i!iC1 is a generalized pinched horn and thatƒS Œn��i!iC1 ,!�Œn��i!iC1
is a generalized pinched horn inclusion. Similarly, given X and an inclusion �Œ1� ,! X , we say that
ƒS Œn�Xi!iC1 is a generalized X-augmented horn and that ƒS Œn�Xi!iC1 ,!�Œn��i!iC1 is a generalized
X -augmented horn inclusion.

In addition to using the 2-out-of-3 property, the proofs of the upcoming propositions rely on the fact that
every Cisinski model structure is left proper by [10, Proposition 13.1.2]. We state this standard fact as a
lemma.

Lemma 3.8 In a Cisinski model structure , pushouts along inclusions preserve weak equivalences.

Proposition 3.9 A Cisinski model structure is homotopically behaved if and only if every generalized
pinched horn inclusion is a weak equivalence.

Proof We first prove the forward implication. By Lemma 3.6, we know that the composite of

�Œn� 1� ,!ƒS Œn��i!iC1 ,!�Œn��i!iC1

is a weak equivalence, so it suffices to show that the map on the left is a weak equivalence by the 2-out-of-3
property. This map on the left is the inclusion of either the d i or d iC1 face, whichever is in S .
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For nD 2, the map on the left is actually an isomorphism since ƒS Œ2� is the union of two 1-simplices,
one of which gets collapsed to a point to create ƒS Œ2��i!iC1.

For n�3, we proceed by induction on jS j. For the base case jS jD2, the inclusion�Œn�1� ,!ƒS Œn��i!iC1
amounts to gluing in a copy of �Œn� 1��i 0!i 0C1 along one of the faces of �Œn� 1�. In other words, it
is a pushout of the weak equivalence �Œn� 2� ,!�Œn� 1��i 0!i 0C1 along an inclusion, and so is a weak
equivalence.

Now if jS j � 3, we pick some j 2 S not equal to i or i C 1 and let S 0 D S Xfj g. By induction we know
that the inclusion�Œn� ,!ƒS

0

ŒnC1��i!iC1 is a weak equivalence, so it suffices to show that the inclusion
ƒS

0

ŒnC 1��i!iC1 ,!ƒS ŒnC 1��i!iC1 is as well. But this latter inclusion is itself a pushout of a pinched
generalized horn whose subset of indices is of size one less than jS j, and so is a weak equivalence.

We now turn to the reverse implication, so let us assume that every generalized pinched horn inclusion is
a weak equivalence. In particular, we can pick S such that jS j D 2, and consider the composite

�Œn� 1� ,!ƒS Œn��i!iC1 ,!�Œn��i!iC1:

By Lemma 3.6, it suffices to show that every such composite map is a weak equivalence, and therefore (by
the 2-out-of-3 property) to show that the map on the left is a weak equivalence. We proceed by induction
on n. As we saw in the proof of the forward implication, in the base case nD 2 the map on the left is an
isomorphism. For n� 3, the map on the left is a pushout of �Œn� 2� ,!�Œn� 1��i!iC1.

We can now go one step further and show that certain generalized augmented horn inclusions must also
be weak equivalences in a homotopically behaved model structure.

Proposition 3.10 Given a simplicial set I and an inclusion �Œ1� ,! I , if the map I ! � is a weak
equivalence in a given Cisinski model structure , then the model structure is homotopically behaved if and
only if every generalized I -augmented horn inclusion is a weak equivalence in that model structure.

Proof In the diagram
I �

ƒS Œn�Ii!iC1 ƒS Œn��i!iC1

�Œn�Ii!iC1 �Œn��i!iC1

�

�

�

the horizontal maps are all weak equivalences by Lemma 3.8. The bottom-left vertical map is a weak
equivalence if and only if the bottom-right vertical map is by the 2-out-of-3 property, which is a weak
equivalence if and only if the model structure is homotopically behaved by Proposition 3.9.

Let us recall the definition of J , the key example of a simplicial set that is weakly equivalent to � in
every Cisinski model structure on sSet.
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Definition 3.11 Let I be the category with two objects and precisely one morphism in every hom-set,
sometimes called the free-living isomorphism. We denote the nerve of the free-living isomorphism by
J DN.I/.

Corollary 3.12 A Cisinski model structure is homotopically behaved if and only if every generalized
J -augmented horn inclusion is a weak equivalence.

Proof Observe that J ! � has the right lifting property with respect to all monomorphisms, and so
is weak equivalence in every Cisinski model structure. Therefore the hypothesis of Proposition 3.10 is
satisfied for �Œ1� ,! J .

We can further strengthen this statement once we prove the following lemma.

Proposition 3.13 Given a simplicial set I and�Œ1� ,! I , every generalized I -augmented horn inclusion
can be realized as a sequence of pushouts of I -augmented horn inclusions.

Proof We emulate Joyal’s proof for generalized inner horns, [14, Proposition 2.12(iv)]. To show that
every generalized I -augmented horn inclusion ƒS Œn�Xi!iC1 ,!�Œn��i!iC1 is a pushout of I -augmented
horn inclusions, we proceed by induction on k D n� jS j. The base case, k D 0, is immediate because
then jS j D n so ƒS Œn�Xi!iC1 ,!�Œn��i!iC1 is itself an I -augmented horn inclusion. For k � 1, we pick
` in f0; : : : ; ng X .S [fi; i C 1g/ and let T D S [f`g. Then we have

ƒS Œn�Xi!iC1 ,!ƒT Œn�Xi!iC1 ,!�Œn��i!iC1:

The right map has n� jT j< n� jS j D k. The left map is a pushout of a generalized I -augmented horn
inclusion with indexing set S 0 with the same size as S , so that n� 1� jS 0j D n� 1� jS j< k. Therefore,
both of these maps are sequences of pushouts of I -augmented horn inclusions by the inductive hypothesis,
meaning the composite is as well.

Corollary 3.14 Let M be a Cisinski model structure on sSet. Given a simplicial set I and an inclusion
�Œ1� ,! I , if the map I !� is a weak equivalence in the model structure M, then M is homotopically
behaved if and only if every I -augmented horn inclusion is a weak equivalence in M. In particular , the
model structure M is homotopically behaved if and only if every J -augmented horn inclusion is a weak
equivalence in M.

Proof By Proposition 3.13, generalized I -augmented horn inclusions are weak equivalences if and only
if I -augmented horn inclusions are. Apply this observation to Proposition 3.10 and Corollary 3.12.

We conclude this subsection by comparing the lifting properties of fibrant objects in a homotopically
behaved model structure to those of quasicategories.

Definition 3.15 Let h W sSet!Cat be the left adjoint of the nerve functor. We say an edge in a simplicial
set X is a categorical preisomorphism if it becomes an isomorphism in the category h.X/.
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Remark 3.16 The functor h freely builds a category out of a simplicial set X where the set of objects of
hX is the set of 0-simplices X0, and the set of morphisms is generated by the 1-simplices with 2-simplices
witnessing composition. We discuss h in more detail in Section 5. The key takeaway at the moment is that
the universal property of the unit X ! hX implies that an edge e of X is a categorical preisomorphism
precisely if every map from X to the nerve of a category sends e to an isomorphism.

An intuitive justification for why augmented horn inclusions are weak equivalences in a homotopically
behaved model structure comes from recalling the special outer horn lifting property of quasicategories.

Proposition 3.17 [12, Theorem 1.3] If Q is a quasicategory , then for every n�2 and every u Wƒ0Œn�!Q

such that the edge 0! 1 in ƒ0Œn� is sent to a categorical preisomorphism by u, we have a lift

ƒ0Œn� X

�Œn�

u

Similarly, for every n � 2 and every v WƒnŒn�!Q such that the edge n� 1! n in ƒnŒn� is sent to a
categorical preisomorphism by v, we have an extension of v along ƒnŒn� ,!�Œn�.

We can interpret this result is as follows: even though quasicategories do not necessarily have lifts of all
outer horns, if we know that the 0! 1 edge of the horn ƒ0Œn�!X or the .n� 1/! n edge of the horn
ƒnŒn�!X horn is “invertible” in X in a certain sense, then we do get a lift.

This same intuition applies to I -augmented horn inclusions in homotopically behaved model structures
where I ! � is a weak equivalence. Since I is weakly equivalent to a point, it makes sense to think
of all of the edges of I as invertible. Therefore, a map ƒj Œn�Ii!iC1! X (where j D i or i C 1) is a
horn in X where we view the i ! .i C 1/ edge as invertible. The I -augmented horn inclusions being
weak equivalences in this model structure implies that if X is fibrant, then we get a lift �Œn�Ii!iC1!X

extending that horn.

3.2 Augmented triangulations

The goal of this subsection is to address a complication arising from the discussion above. To explain, let
us first make the following definition.

Definition 3.18 Given Z and an inclusion � W�Œ1� ,!Z, we say that an edge e W�Œ1�!X in an arbitrary
simplicial set X is an Z-edge if e factors through �.

Given a simplicial set I and �Œ1� ,! I and a homotopically behaved model structure with I ! � a
weak equivalence, we have seen above how it makes sense to view I -edges in arbitrary simplicial sets as
invertible. But then any good notion of “invertible edges” should satisfy a simplicial 2-out-of-3 property:
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if two edges of a 2-simplex �Œ2�!X are invertible, then so is the third edge. The complication is that in
an arbitrary simplicial set, the set of I -edges do not necessarily satisfy the simplicial 2-out-of-3 property
(unless I D �Œ1�). As a minimal counterexample, one can simply take �Œ2� itself and glue in a copy
of I along two of its nondegenerate edges. The takeaway is that no single I can be used to identify
which edges we want to view as invertible in an arbitrary simplicial set (except for the special case when
I D�Œ1�).

To address this concern, let us characterize the edges that we want to be invertible even if they are not
I -edges themselves. We begin by defining unordered triangulations.

Definition 3.19 Given n� 2 and a regular .nC1/-gon with vertices labeled 0 through n (in no particular
order), we say an unordered triangulation T is a decomposition of this .nC1/-gon into 2-simplices such
that every 0-simplex corresponds to a unique vertex of the .nC1/-gon and such that the 1-simplices point
from lower numbers to higher numbers.

Figure 1 shows an example of an unordered triangulation of the octagon.

Example 3.20 For nD 2, there is only one unordered triangulation of the triangle, the standard 2-simplex
itself. For nD 3, there are precisely six unordered triangulations of the square:

3 2 3 2

0 1 0 1

2 3 2 3 3 1 3 1

0 1 0 1 0 2 0 2

Remark 3.21 For those familiar with 2-Segal objects, we note that these unordered triangulations are
similar to the triangulations used to define the 2-Segal condition, except that in the 2-Segal definition one
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requires the vertices of the .nC1/-gon be cyclically ordered with the exception of the 0! n edge. The
first two triangulations in Example 3.20 are the triangulations of the square used in the 2-Segal condition.

We now define augmented unordered triangulations that characterize edges that we want to view as
invertible.

Definition 3.22 Given a simplicial set I and �Œ1� ,! I , an I -augmented unordered triangulation TI is
an unordered triangulation T with a copy of I glued in along all but one of the outer edges. We say that
TI has size n if there are nC 1 outer edges (and so n copies of I glued in). We consider I itself to be an
I -augmented unordered triangulation of size 1. We say that an edge �Œ1�!X in an arbitrary simplicial
set is an almost-I -edge if it is a TI -edge for some TI.

In the above definition, all but one of the outer edges being invertible (since they are I -edges) means that
we should consider the remaining outer edge to be invertible as well by iterated simplicial 2-out-of-3
arguments. The idea is that if we consider I -edges invertible, then an edge e W�Œ1�!X in an arbitrary
simplicial set is forced to be invertible by iterated application of the simplicial 2-out-of-3 property precisely
if it is an almost-I -edge. Figure 2 indicates the inductive argument affirming this intuition, which we
spell out in the following propositions.

Proposition 3.23 Almost-I -edges satisfy the simplicial 2-out-of-3 property. More precisely, if�Œ2�!X

is a 2-simplex in an arbitrary simplicial set where two of the faces are almost-I -edges , then so is the third.

Proof Let UI and VI be I -augmented unordered triangulations that the given edges factor through.
Call the remaining edge e. Then we can define TI by gluing UI and VI to the appropriate faces of �Œ2�
as in Figure 2, making the remaining edge a TI -edge.

Proposition 3.24 If the map I ! � is a weak equivalence in a given homotopically behaved model
structure , then so is every TI !� and every generalized TI -augmented horn inclusion.

Proof We proceed by induction on the size of TI . The base case of size 1, where TI D I , is covered by
Proposition 3.10.

For TI of size bigger than 1, denote by x e
�! y the outer edge of TI without a copy of I . Then we can

break down TI into the 2-simplex of which e is a face plus UI and VI of smaller size, as in Figure 2.
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By the inductive hypothesis, we know that UI !� and VI !� are weak equivalences, so the inclusion
of the point z into UI and VI is as well, and so taking the pushout we see that � ,!UI [VI is as well.
But then UI [VI ,! TI is a pushout of a UI -augmented 2-horn inclusion (or a VI -augmented 2-horn
inclusion). Thus we see that �! TI is a weak equivalence and hence TI !� is also by the 2-out-of-3
property. By applying Proposition 3.10 to TI , we see that all generalized TI -augmented horn inclusions
are weak equivalences.

Definition 3.25 We say that a (generalized) TI -augmented horn inclusion is a (generalized) almost-I -
augmented horn inclusion.

Remark 3.26 Given a simplicial set I and �Œ1� ,! I , there are countably many I -augmented unordered
triangulations TI, up to isomorphism. Thus, there are countably many almost-I -augmented horn inclusions
up to isomorphism. More generally, given any countable set of inclusions f�Œ1� ,! Irgr�1, the set of all
almost-Ir -augmented horn inclusions for varying r � 1 is still countable.

We have thus shown that these almost-I -augmented horn inclusions are forced to be weak equivalences in
a homotopically behaved model structure where I !� is a weak equivalence. Our next task is to show
that we can apply Cisinski’s machinery to this class of maps to get a model structure for certain I .

4 Minimal homotopically behaved model structures

In this section we apply Cisinski’s machinery to produce model structures whose fibrant objects are those
with lifts of particular augmented horns. We do so using the new concept of a pointwise exact cylinder.
We then show that these model structures are “minimal” in a certain sense, both with respect to being
homotopically behaved and with respect to the chosen exact cylinders.

4.1 Pointwise cylinders

Our only example of an exact cylinder given above was of the form X 7! I �X for some simplicial set I .
In this subsection, we describe a slightly more complex kind of exact cylinder which we use to construct
our model structure.

Let sk0 denote the endofunctor of sSet that sends a simplicial set X to its 0-skeleton (the simplicial set
that has the same 0-simplices as X but no nondegenerate higher simplices). Given a monomorphism
� W�Œ1� ,! I , we let �ˇX be the pushout

�Œ1�� sk0X �Œ1��X

I � sk0X �ˇX

��sk0X

In other words, the simplicial set �ˇX is �Œ1��X with a copy of I glued in along �Œ1�� fxg for each
0-simplex x of X .
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Example 4.1 When X D�Œ2�, we glue in a copy of I along the three red edges of �Œ1���Œ2� depicted
in Figure 3.

Proposition 4.2 The above description of �ˇ� defines an exact cylinder.

Proof Functoriality follows from �ˇ� being a pushout of the functors I � sk0.�/, �Œ1�� sk0.�/, and
�Œ1���. These three functors preserve monomorphisms and small colimits, so their pushout does as
well, meaning that �ˇ� satisfies axiom (DH1) from Definition 2.4. By Remark 2.5, to check axiom
(DH2) we simply observe that for any inclusion of simplicial sets A ,!B , the simplices of �ˇB that are
in both �ˇA and f"gˇB are precisely those in f"gˇA.

Definition 4.3 We call the exact cylinder �ˇ� the pointwise cylinder for the inclusion � W�Œ1� ,! I .

Example 4.4 The functor .id�Œ1�/ˇ� is simply the functor �Œ1���, since we do not glue anything
extra onto the vertical edges in this case.

Example 4.5 Let P be the pushout on the left below

�Œ1� �Œ0� �Œ1� �Œ2� P

�Œ2�

�Œ2� P P K

d1

p

s0

p

p

d2

d0

i2

i0

and then let K be the pushout on the right, with � W�Œ1� ,!K being the diagonal composite of the right
square. We can view the simplicial set K as

b b

a a

f g
�

where the dotted arrows indicate degenerate edges. We can think of K as the edge � with a left inverse g
and a right inverse f glued in. We will use the pointwise cylinder �ˇ� in later sections.

Example 4.6 Recall that J is the nerve of the free-living isomorphism I. Through a slight abuse of
notation, we use J ˇ� to denote the pointwise cylinder for the inclusion �Œ1� ,! J .
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4.2 Constructing the model structures

The rest of this section is devoted to proving the existence of two homotopically behaved model structures.
One is the minimal homotopically behaved model structure, whose fibrant objects are precisely the
simplicial sets with lifts of J -augmented horn inclusions. The other is a localization of this model
structure at K!� (where K is the simplicial set from Example 4.5), whose fibrant objects are precisely
the simplicial sets with lifts of K-augmented horn inclusions. The key to this result is the following
proposition; the existence of our desired model structures then follows from Cisinski’s Theorem 2.10.

Proposition 4.7 (1) The almost-J -augmented horn inclusions together with the map f0g ,!J generate
a .Jˇ�/-anodyne class.

(2) The almost-K-augmented horn inclusions together with the maps f"g ,!K for "D 0; 1 generate a
.�ˇ�/-anodyne class.

Recall that we defined a .I ˝�/-anodyne class in Definition 2.7, but in Lemma 2.8 we reformulated
the axioms to be easier to check. Thus, proving this proposition amounts to verifying the axioms from
Lemma 2.8. It turns out that (An10) and all but one case of (An20) can be proved just as easily for arbitrary
�Œ1� ,! I in the place of �Œ1� ,! J or � W�Œ1� ,!K. Let us give a name to the �Œ1� ,! I such that the
remaining case of (An20) is satisfied.

Definition 4.8 We say that an inclusion �Œ1� ,! I is anodyne-ready if the maps

.@I ˇ I /[ .I ˇf"g/ ,! I ˇ I

for "D 0; 1 are a sequence of pushouts of almost-I -augmented horn inclusions.

We can thus break down the proof of Proposition 4.7 into the following two pieces.

Proposition 4.9 If � W�Œ1� ,! I is anodyne-ready, then the almost-I -augmented horn inclusions together
with the maps f"g ,! I for "D 0; 1 generate an .�ˇ�/-anodyne class.

Proposition 4.10 The inclusions �Œ1� ,! J and � W�Œ1� ,!K are anodyne-ready.

We prove Proposition 4.9 in Section 4.3 and prove Proposition 4.10 in Section 4.4. We discuss the
resulting model structures we get from Cisinski’s theory in Section 4.5.

Remark 4.11 In our arguments below, we view the simplicial set �Œ1���Œn� as the nerve of the poset
Œ1�� Œn�

.0; 0/ .0; 1/ � � � .0; n� 1/ .0; n/

.1; 0/ .1; 1/ � � � .1; n� 1/ .1; n/

and so we view simplices of �Œ1���Œn� as paths in this poset. We depict the first coordinate vertically.
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4.3 Proving Proposition 4.9

Given I and �Œ1� ,! I , let A.I / denote the set of I -augmented horn inclusions plus the maps f"g ,! I .
The inclusion �Œ1� ,! I is anodyne-ready precisely if A.I / partially satisfies axiom (An20). In this
subsection, we justify this terminology by showing that A.I / satisfies axiom (An10) and the rest of (An20)
for arbitrary I and �Œ1� ,! I , making �Œ1� ,! I being anodyne ready precisely the missing piece for
A.I / to generate an .Iˇ�/-anodyne class.

We begin by checking that our set of maps A.I / satisfies axiom (An10).

Lemma 4.12 Given a simplicial set I and �Œ1� ,! I , the maps .f"gˇ�Œn�/[ .I ˇ@�Œn�/ ,! I ˇ�Œn�

for n� 1 and "D 0; 1 can be realized as a sequence of pushouts of I -augmented horn inclusions.

Proof We prove the case " D 0; the argument for " D 1 is similar. We begin by identifying which
simplices of I ˇ�Œn� are neither in f0gˇ�Œn� nor in I ˇ @�Œn�. Because n� 1, the extra copies of I
glued in along �Œ1�� sk0.�Œn�/ are already present in I ˇ @�Œn�, and so all of the simplices not in the
domain of our inclusion must be contained in �Œ1���Œn�� I ˇ�Œn�.

For 0� j � n, let Pj be the .nC1/-simplex corresponding to the path

.0; 0/ � � � .0; j � 1/ .0; j /

.1; j / .1; j C 1/ � � � .1; n/

and for 0� j � n� 1, let QjjC1 be the n-simplex corresponding to the path

.0; 0/ � � � .0; j � 1/ .0; j /

.1; j C 1/ � � � .1; n/

Let Q0 denote the n-simplex .1; 0/ ! � � � ! .1; n/. These simplices are precisely the simplices of
�Œ1� ��Œn� that are not contained in f0g ��Œn� or in �Œ1� � @�Œn�, since any other simplex either
avoids both vertices .0; j / and .1; j / for some 0� j � n and so is in �Œ1�� @�Œn�, or is the n-simplex
.0; 0/! � � � ! .0; n/ that is contained in f0g��Œn�. The diagram in Figure 4 shows how these simplices
fit together, with an arrow indicating that one simplex is a face of another. It remains to describe the
process by which we glue in each of these simplices via an I -augmented horn pushout. The red arrows
indicate which pairs of simplices are attached at the same step of this process, and conversely a black
arrow indicates that the simplices are glued in at different steps.

Let us spell out this process explicitly. To attach these simplices via I -augmented horn pushouts, we
begin with Pn, whose only missing face is its dn face, the n-simplex Qn�1n . This horn pushout can
be realized as an I -augmented horn pushout because the n! nC 1 edge of Pn is the vertical edge
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.0; n/! .1; n/, which is an I -edge. We continue inductively, gluing in each Pj together with its dj face
for j D n�1; n�2; : : : ; 2; 1; 0. The red arrows in the diagram highlight the inclusion of the dj face into
each .nC1/-simplex Pj .

We record a consequence of this lemma for later use.

Corollary 4.13 Given a simplicial set I and �Œ1� ,! I and any bijective-on-0-simplices inclusion
A ,! B , the maps .f"gˇB/[ .I ˇA/ ,! I ˇB for "D 0; 1 can be realized as a sequence of pushouts
of I -augmented horn inclusions.

Proof Since A ,! B is bijective on 0-simplices, it can be witnessed as a sequence of pushouts of
boundary inclusions @�Œn� ,!�Œn� for n� 1, and so .f"gˇB/[ .I ˇA/ ,! I ˇB can be witnessed as
a sequence of pushouts of the maps .f"gˇ�Œn�/[ .I ˇ @�Œn�/ ,! I ˇ�Œn� for n� 1.

Having shown that A.I / satisfies (An10), we turn to proving that part of (An20) is satisfied, which follows
from the following more general lemma (by setting I 0 D TI ).

Lemma 4.14 Fix �Œ1� ,! I 0. For all n� 2 and 0� i � n, if A ,! B is a pushout along�
.f0g t f1g/��Œn�

�
[
�
�Œ1��ƒi Œn�

�
,!�Œ1���Œn�

such that either the ."; i � 1/! ."; i/ edges or the ."; i/! ."; i C 1/ edges (for " D 0; 1) are sent to
I 0-edges in A, then A ,! B is a finite composite of pushouts of I 0-augmented horn inclusions.

Proof We begin by identifying which simplices of�Œ1���Œn� are not in�Œ1��ƒi Œn� or .f0gtf1g/��Œn�.

A simplex is in �Œ1��ƒi Œn� if there is some 0� j � n with j ¤ i such that the simplex avoids both of
the vertices .0; j / and .1; j /. A simplex is in .f0gt f1g/��Œn� if its vertices are all 0 or all 1 in the first
coordinate.

Let us fix notation for each of the simplices that avoid satisfying both of these criteria. First, we let Pj
and QjjC1 be defined as in the proof of Lemma 4.12. For 0� i; j � n such that j ¤ i , let R.i/j be the
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n-face of Pj that skips the ."; i/ vertex (where " D 0 if j > i and " D 1 if j < i). For 0 � i � n and
0� j � n� 1 such that j ¤ i � 1; i , let S.i/jjC1 be the .n�1/-face of QjjC1 that skips the ."; i/ vertex
(where "D 0 if j > i and "D 1 if j < i � 1). Let S.i/i�1iC1 be the .n�1/-simplex corresponding to the
path

.0; 0/ � � � .0; i � 1/

.1; i C 1/ � � � .1; n/

Figure 5 shows how these simplices fit together, with an arrow indicating that one simplex is a face of
another. As in Figure 4 from the proof of Lemma 4.12, the different-colored arrows indicate which pairs
of simplices are attached at the same step of the process below, while black arrows indicate that the
simplices are glued in at different steps.

To describe A ,! B as a sequence of pushouts of I 0-augmented horn inclusions, we consider the case
where the ."; i/! ."; iC1/ edges are sent to I 0-edges in A. (The other case is similar.) For 0� j � i�1
and i C 1 � j � n� 1, the only face of QjjC1 that is not already in A is its di face S.i/jjC1. When
0� j � i �1, the .1; i/! .1; iC1/ edge is in QjjC1, and when iC1� j � n�1, the .0; i/! .0; iC1/

edge is in QjjC1, in both cases corresponding to the i ! .i C 1/ edge of the n-simplex QjjC1. We also
have S.i/i�1iC1 as the di face of Qi�1i , where the edge .1; i/! .1; iC1/ is the i! .iC1/ edge of Qi�1i .
We can therefore glue in every Q simplex (along with its di face) except for QiiC1 as the first steps in our
sequence of I 0-augmented horn pushouts. The pairs of simplices glued in at this step are indicated by the
blue arrows in the diagram. Then for 0� j � i � 1 the diC1 face of Pj is R.i/j and the i C 1! i C 2

edge is .1; i/! .1; iC1/, and for iC1� j � n�1 the di face of Pj is R.i/j and the i! .iC1/ edge
is .0; i/! .0; i C 1/, so we can now glue in every P simplex (along with its missing di or diC1 face)
except for Pi as the next steps in our sequence of pushouts. These steps are indicated by the red arrows.
All that is left is Pi and its diC1 face QiiC1, and since the iC1! iC2 edge of Pi is .1; i/! .1; iC1/,
these remaining simplices are glued in via an I 0-augmented horn pushout as well, indicated by the green
arrow.

By applying Lemma 4.14 when I 0 DTI, we get the following corollary which says that A.I / satisfies
part of (An20).

Corollary 4.15 Given a simplicial set I and �Œ1� ,! I , for every almost-I -augmented horn inclusion

ƒj Œn�T
I

i!iC1 ,!�Œn�T
I

i!iC1

(where j D i or i C 1), the map

.@J ˇ�Œn�T
I

i!iC1/[ .I ˇƒ
j Œn�T

I

i!iC1/ ,! I ˇ�Œn�T
I

i!iC1

is a finite composite of pushouts of almost-I -augmented horn inclusions.

Proof This map satisfies the hypotheses of Lemma 4.14 when I 0 D TI.
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P0 R.i/0

Q0
1 S.i/01

P1 R.i/1

:::
:::

:::
:::

Pi�2 R.i/i�2

Qi�2
i�1 S.i/i�2i�1

Pi�1 R.i/i�1

Qi�1
i

Pi S.i/i�1iC1

Qi
iC1

PiC1 R.i/iC1

QiC1
iC2 S.i/iC1iC2

PiC2 R.i/iC2

:::
:::

:::
:::

Pn�1 R.i/n�1

Qn�1
n S.i/n�1n

Pn R.i/n

Figure 5

We have now assembled the necessary ingredients to prove Proposition 4.9, which says that �Œ1� ,! I

being anodyne-ready is indeed the missing piece for the set of maps A.I / to generate an anodyne class.

Proof of Proposition 4.9 To check that axiom (An10) is satisfied, we note that the map

.f"gˇ�Œ0�/[ .I ˇ @�Œ0�/ ,! I ˇ�Œ0�

for "D 0; 1 is isomorphic to f"g ,! I , which takes care of the nD 0 case. For n� 1 we apply Lemma 4.12.

To check that axiom (An20) is satisfied, we use Corollary 4.15 to account for all of the almost-I -augmented
horn inclusions. The remaining maps f"g ,! I are accounted for because we assumed �Œ1� ,! I to be
anodyne-ready.
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4.4 Proving Proposition 4.10

We now turn to showing that �Œ1� ,! J and �Œ1� ,! K are anodyne-ready. An important ingredient
of the proof will be the following observation about when we can upgrade ordinary horn inclusions to
augmented horn inclusions.

Lemma 4.16 Given a simplicial set I and �Œ1� ,! I and k � 2, if ƒj Œk�! X is a k-horn in some
simplicial set such that all of the edges of ƒj Œk� are sent to almost-I -edges , then all of the edges of �Œk�
are sent to almost-I -edges in �Œk�tƒj Œk� X . Furthermore , the inclusion X ,! �Œk�tƒj Œk� X can be
witnessed as a pushout of an almost-I -augmented horn inclusion.

Proof For k > 2, there are no new edges added in the pushout, so the first claim is immediate. For kD 2,
since the two edges of ƒj Œ2� are sent to almost-I -edges, the new edge is also an almost-I -edge in the
pushout X tƒj Œ2��Œ2� by applying the simplicial 2-out-of-3 property from Proposition 3.23. In each of
these cases, the inclusion X ,!�Œk�tƒj Œk�X can be upgraded to an almost-I -augmented horn pushout
because every edge of the horn in X is an almost-I -edge.

Iterated application of Lemma 4.16 yields the following corollary.

Corollary 4.17 Given a simplicial set I and �Œ1� ,! I , if A ,! B is a sequence of pushouts of k-horns
for varying k � 2, and A!X is a map such that all of the edges of A are sent to almost-I -edges , then all
of the edges of B are sent to almost-I -edges in B tAX . Furthermore , the inclusion X ,!B tAX can be
witnessed as a sequence of pushouts of almost-I -augmented horn inclusions.

Another ingredient to the proof of Proposition 4.10 is the following observation that the given inclusions
are themselves a sequence of pushouts of ordinary k-horns.

Lemma 4.18 The inclusions �Œ1� ,! J and � W�Œ1� ,!K are obtained via a sequence of pushouts of
k-horn inclusions for k � 2.

Proof We first consider �Œ1� ,! J . Recall that J has precisely two nondegenerate n-simplices for all
n� 0. Furthermore, for each n-simplex, only the d0 and dn faces are nondegenerate. We may therefore
inductively build J from �Œ1� as follows. For the base case, we observe that �Œ1� � J contains both
0-simplices and one of the nondegenerate 1-simplices. Now, assuming for n � 1 that we have glued
in all .n�1/-simplices and exactly one of the nondegenerate n-simplices, we may glue in one of the
.nC1/-simplices along an .nC1/-horn (where nC 1� 2) since it is missing exactly one of its faces. We
then have all of the n-simplices and exactly one of the nondegenerate .nC1/-simplices.

Now let us consider � W�Œ1� ,!K. We build K out of �Œ1� by pushouts along outer 2-horns where the
0! 2 edge is degenerate.
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P0

Q0
1

P1 R.0/1

Q1
2 S.0/12

P2 R.0/2

Q2
3 S.0/23

:::
:::

Figure 6

Combining Lemma 4.18 and Corollary 4.17 yields the following corollary.

Corollary 4.19 Given a simplicial set X , if an edge �Œ1�!X is an almost-J -edge , then the inclusion
X ,!J t�Œ1�X can be witnessed as a pushout of almost-J -augmented horns. Similarly, if�Œ1�!X is an
almost-K-edge , then the inclusionX ,!Kt�Œ1�X can be witnessed as a pushout of almost-K-augmented
horns.

The last ingredient to the proof of Proposition 4.10 is the observation that each inclusion

.@�Œ1�� I /[ .�Œ1�� f"g/ ,! .�Œ1�� I /

for I D J;K and "D 0; 1 is also obtained via a sequence of pushouts of ordinary k-horns. The following
two lemmas handle the two cases I D J and I DK separately.

Lemma 4.20 The inclusion .@�Œ1��J /[ .�Œ1��f0g/ ,!�Œ1��J is a sequence of pushouts of k-horn
inclusions for varying k � 2.

Proof For each `� 0, let B` denote the nondegenerate `-simplex of J whose initial vertex is 0. Each B`
contains all m-simplices for m<`, so J D

S
`�0B`. Notice that B0Df0g, so .@�Œ1��J /[.�Œ1��f0g/

is precisely .@�Œ1��J /[ .�Œ1��B0/. It therefore suffices to show that each inclusion

.@�Œ1��J /[ .�Œ1��B`/ ,! .@�Œ1��J /[ .�Œ1��B`C1/

for all `� 0 is a sequence of pushouts of .`C1/-horns and .`C2/-horns, with .`C1/-horns only necessary
when `� 1. Recalling the notation from Figure 5 in the proof of Lemma 4.14, we depict in Figure 6 the
simplices of �Œ1��B`C1 that are not in �Œ1��B`. We can proceed by gluing in the QiiC1 simplices
together with the S.0/iiC1 simplices for each i � 1 via pushouts of .`C1/-horns, indicated by the blue
arrows. Note that this first step is only necessary if `� 1. Then we can glue in via an .`C2/-horn the P0
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.0; b/ .0; a/ .0; b/ .0; a/

.1; b/ .1; a/ .1; b/ .1; a/

0�f 0�g

�Œ1��a

0�h

�Œ1��a

1�f 1�g 1�h

Figure 7

simplex with Q01, as indicated by the red arrow. Finally, we glue each Pi together with R.0/i for each
i � 1, also via .`C2/-horns, as indicated by the green arrows.

Lemma 4.21 Given " D 0; 1, the inclusion .@�Œ1��K/[ .�Œ1�� f"g/ ,! �Œ1��K is a sequence of
pushouts of 2-horn and 3-horn inclusions.

Proof We start by including all of the missing 1-simplices, which we can do working in �Œ1�� sk1K.
For this proof, let us rename the 0 and 1 vertices of K to a and b, respectively, and let f , g, and h denote
the nondegenerate edges of K. The 1-simplices of �Œ1��K that we start with can then be pictured as in
the first diagram of Figure 7. The latter three diagrams in Figure 7 show the order in which we can glue
in four 2-horns to end up with all of the 1-simplices of �Œ1��K.

From here, we must glue in the missing 3-simplices as well as the remaining 2-simplices. First, we attach
the 3-simplices outlined by the edges

�Œ1��a

0�g 0�h

�Œ1��a

1�g 1�h

The 3-simplex on the left is only missing its d1 face, and the 3-simplex on the right is only missing its d2
face (which are different 2-simplices), so we can attach them both via 3-horn extensions. Having done so,
we can then glue in the 3-simplex

0�g

�Œ1��b

1�h
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that is now only missing its d0 face (which was left empty in the diagram above). We now have all of the
nondegenerate 3-simplices that involve the h edges. For those involving the f edges, the order

0�f 0�g

�Œ1��b

0�f

�Œ1��a �Œ1��b

1�g 1�f 1�g

works because the first 3-simplex is only missing its d2 face, then the second 3-simplex is only missing
its d1 face, and then the last 3-simplex is only missing its d3 face.

We now have all of the pieces to prove Proposition 4.10.

Proof of Proposition 4.10 Let I DJ orK. We wish to show that the maps .@IˇI /[.Iˇf"g/ ,! IˇI

for "D 0; 1 can be realized as a sequence of pushouts of almost-I -augmented horn inclusions. The central
claim of the proof is that all of the missing simplices of �Œ1�� I � I ˝ I can be glued in via a sequence
of pushouts of k-horns for varying k � 2, which we proved for I D J in Lemma 4.20 and for I DK in
Lemma 4.21. Now, we apply Lemma 4.16 to upgrade it to a sequence of pushouts of almost-I -augmented
horn inclusions, and note that all of the new edges are also almost-I -edges. The last step is to glue in
a copy of I along the vertical edge that was missing when we started, ie the edge �Œ1�� f"0g where
"0 ¤ ". We can witness this gluing as a sequence of pushouts of almost-I -augmented horn inclusions by
Corollary 4.17.

4.5 The resulting model structures

Having proved Propositions 4.9 and 4.10, and therefore Proposition 4.7, Cisinski’s theory gives us our
desired model structures.

Proposition 4.22 For I D J or K, there is a cofibrantly generated model structure on sSet whose
cofibrations are the monomorphisms , and whose fibrant objects are the simplicial sets X such that X !�
has the right lifting property with respect to the set of almost-I -augmented horn inclusions.

Proof Let S denote the set containing the maps f"g ,!I for "D0; 1 together with the almost-I -augmented
horn inclusions. By Proposition 4.7, the set S generates an .Iˇ�/-anodyne class, so Theorem 2.10
gives us a model structure whose fibrant objects are the simplicial sets X such that S � .X !�/. Since
.� ,! A/� .Y !�/ for all simplicial sets A and Y , a simplicial set is fibrant in this model structure if it
has lifts of almost-I -augmented horn inclusions.

Remark 4.23 Recall that Theorem 2.10 gives a description of the weak equivalences in this model
structure as well, but that we do not get an explicit description of the fibrations.

To check that a simplicial set is fibrant in one of these model structures, it is actually not necessary to
check all almost-I -augmented horn inclusions.
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Proposition 4.24 Given I ¤�Œ1� with two 0-simplices and an inclusion �Œ1� ,! I , if X is a simplicial
set such that X !� has the right lifting property with respect to all I -augmented horn inclusions , then
every almost-I -edge is an I -edge too.

Proof The result follows if we can show that if an edge �Œ1�! X factors through some TI then it
factors through a UI of strictly smaller size. Since there is at least one 2-simplex of every I -augmented
unordered triangulation where two of the edges are I -edges, it suffices to show that if two edges of a
2-simplex in X are I -edges, then so is the third edge.

Since �Œ1� ,! I is bijective on 0-simplices, we know by Corollary 4.13 that the maps

g" W .f"gˇ I /[ .I ˇ�Œ1�/ ,! I ˇ I

can be witnessed as sequences of pushouts of I -augmented horn inclusions for "D 0; 1, so X!� has the
right lifting property with respect to g". Let WI be �Œ2� with a copy of I glued along two edges. Then
we can choose "¤ "0 and a surjective map f W .f"gˇ I /[ .I ˇ�Œ1�/!WI that sends the f"0g ��Œ1�
edge to the edge e of WI that is not an I -edge. Let g0 WWI ! P be the pushout of g along f , so that
X!� also has the right lifting property with respect to g0. Note that the edge e becomes an I -edge in P ,
so we have shown that every WI -edge of X is also an I -edge because we can extend every WI ! X

along g0 WWI ,! P .

Corollary 4.25 Let I DJ orK. A simplicial setX is fibrant in the model structure from Proposition 4.22
if and only if X !� has the right lifting property with respect to all I -augmented horn inclusions.

Proof The forward implication is immediate because every I -augmented horn inclusion is also an
almost-I -augmented horn inclusion. For the other implication, let us assume X !� has the right lifting
property with respect to all I -augmented horn inclusions. Given an almost-I -augmented horn in X , by
Proposition 4.24 the almost-I edge of the horn can be turned into an I -edge, so we get a lift.

Definition 4.26 We call the model structures from Proposition 4.22 the minimal homotopically behaved
model structure and K-minimal homotopically behaved model structure.

The word “minimal” in the above definition is justified by the following remark.

Remark 4.27 By Corollary 3.14, a Cisinski model structure is homotopically behaved if and only if the
J -augmented horn inclusions are weak equivalences in that model structure. The minimal homotopically
behaved model structure therefore has the smallest class of weak equivalences possible for a homotopically
behaved model structure. Similarly, if the map K!� is a weak equivalence in a Cisinski model structure,
then that model structure is homotopically behaved if and only if all K-augmented horn inclusions are
weak equivalences as well, so the K-minimal homotopically behaved model structure has smallest class
of weak equivalences possible for a homotopically behaved model structure where K ! � is a weak
equivalence.
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Corollary 4.28 The Joyal model structure is a localization of the K-minimal homotopically behaved
model structure.

Proof Let X be a quasicategory. Given a K-augmented horn ƒj Œn�Ki!iC1! X , there are two cases:
either 0 < j < n, in which case the horn is inner so there is a lift, or the horn is an outer horn with edge
0! 1 or n�1! n factoring through K. In the latter case, the edge factoring through K means it is sent
to a categorical preisomorphism, making the horn a special outer horn, so there is a lift in this case as
well.

We have shown that every fibrant object in the Joyal model structure is also fibrant in the K-minimal
homotopically behaved model structure, which implies that the K-minimal homotopically behaved model
structure is a localization of the Joyal model structure since their cofibrations are the same.

Furthermore, these model structures are also minimal with respect to the exact cylinders J ˇ� and �ˇ�,
as we now explain.

Remark 4.29 Observe that for all n� 2, the I -augmented horn inclusion ƒ1Œn�I0!1 ,!�Œn�I0!1 is a
retract of the inclusion

.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�:

The same cannot be said of ƒj Œn�I0!1 ,!�Œn�Ij�1!j for 1 < j � n. However, it is instead true that it is
a retract of a closely related inclusion. To illustrate, recall the notation from Lemma 4.12, along with the
diagram

Q0

P0

Q01

P1

:::
:::

Pn�1

Qn�1n

Pn

showing the simplices of �Œ1� ˇ �Œn� that are not in .f0g ˇ �Œn�/ [ .I ˇ @�Œn�/. Let us denote
by Aj the union of .f0g ˇ �Œn�/ [ .I ˇ @�Œn�/ with the simplices Pn�j ; Pn�jC1; : : : ; Pn. Then
ƒj Œn�I0!1 ,!�Œn�Ij�1!j is a retract of Aj ,! I ˇ�Œn� 1�.

The above remark sets us up to prove the following proposition inductively.

Proposition 4.30 Given a simplicial set I and �Œ1� ,! I and n� 2, if the map

.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�
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is a weak equivalence , then so is every I -augmented horn inclusion of the form

ƒj Œn�I0!1 ,!�Œn�Ij�1!j :

Similarly, if the map

.f1gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�

is a weak equivalence , then so is every I -augmented horn inclusion of the form

ƒj Œn�I0!1 ,!�Œn�Ij!jC1:

Proof We prove the first claim, as the second is similar. We proceed by induction on j . As observed in
Remark 4.29, for the base case j D 1, the inclusion

ƒj Œn�I0!1 ,!�Œn�Ij�1!j

is a retract of
.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1�;

so is a weak equivalence. Now, assuming 1 < j � n and each

ƒ`Œn�I0!1 ,!�Œn�I`�1!`

for 1� ` < j is a weak equivalence, then, using the notation from Remark 4.29, the inclusion

.f0gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! Aj

is a weak equivalence, and so Aj ,! I ˇ�Œn� 1� is by the 2-out-of-3 property, and therefore

ƒj Œn�I0!1 ,!�Œn�Ij�1!j

is a weak equivalence since it is a retract of Aj ,! I ˇ�Œn� 1�.

Corollary 4.31 Let S be a set of monomorphisms.

(1) If S generates an .Iˇ�/-anodyne class for some I , then the corresponding Cisinski model structure
M (whose fibrant objects are simplicial sets with the right lifting property with respect to S ) is a
localization of the minimal homotopically behaved model structure.

(2) If S generates a .�ˇ�/-anodyne class , then the corresponding Cisinski model structure M is a
localization of the K-minimal homotopically behaved model structure.

Proof We first prove (1). The maps .f"gˇ�Œn� 1�/[ .I ˇ @�Œn� 1�/ ,! I ˇ�Œn� 1� are necessarily
in �.S�/ and hence weak equivalences for "D 0; 1 and n� 2 in M, and so by Proposition 4.30 all of the
I -augmented horn inclusions are also weak equivalences. Since the inclusion f0g ,! I is also in �.S�/

and hence a weak equivalence, by the 2-out-of-3 property the map I !� is also a weak equivalence. We
may therefore apply Corollary 3.14 to see that M is homotopically behaved, and so is a localization of the
minimal homotopically behaved model structure by Remark 4.27.
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To prove (2), we apply (1) with I DK to see that M is homotopically behaved. In our proof of (1) we also
see that K!� is a weak equivalence in M, so by Remark 4.27 we can conclude that M is a localization
of the K-minimal homotopically behaved model structure.

Remark 4.32 We note that K-augmented horns ƒi Œn�Ki!iC1 are themselves fibrant in the minimal
homotopically behaved model structure, but not in theK-minimal homotopically behaved model structure,
so these model structures are distinct. Furthermore, the map K ! � is not a weak equivalence in the
minimal homotopically behaved model structure because otherwise Proposition 3.10 would imply that all
K-augmented horn inclusions would be as well and so the model structures would be the same.

We summarize the results of this section with the following theorem.

Theorem 4.33 Let Mmhb be the minimal homotopically behaved model structure on sSet, and let MK;mhb

be the K-minimal homotopically behaved model structure on sSet.

(1) (a) Every homotopically behaved model structure is a localization of Mmhb.

(b) Every Cisinski model structure corresponding to an .Iˇ�/-anodyne class for some I is a
localization of Mmhb.

(c) The fibrant objects in Mmhb are the simplicial sets with the right lifting property with respect to
all J -augmented horn inclusions.

(d) The Joyal model structure is a localization of Mmhb.

(2) (a) The model structure MK;mhb is the localization of Mmhb with respect to K!�.

(b) Every Cisinski model structure corresponding to a .Kˇ�/-anodyne class is a localization
of MK;mhb.

(c) The fibrant objects in MK;mhb are the simplicial sets with the right lifting property with respect
to all K-augmented horn inclusions.

(d) The Joyal model structure is a localization of MK;mhb.

We conclude this section with one more useful corollary to this theorem.

Corollary 4.34 Given a set of monomorphisms S DfAi ,!Big of simplicial sets such that the inclusions

.Ai ��Œ1�/[ .Bi � @�Œ1�/ ,! Bi ��Œ1�

are in �.S�/, there exists a homotopically behaved model structure on sSet whose fibrant objects are
those with lifts against S and all J -augmented horn inclusions.

Proof We claim that the set S together with f0g ,! J and the set of almost-J -augmented horn inclusions
generates a .J ˝�/-anodyne class. Because we know that f0g ,! J together with the J -augmented horn
inclusions generate such a class, it suffices to check that S satisfies axiom (An20). However, the maps that
we must show are in �.S�/ are pushouts of the maps we have assumed are in �.S�/, so we are done.
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5 A model structure for special horn inclusions

Intuitively, considering I -edges to be “invertible” implies we want I -augmented horn inclusions to be
weak equivalences. So far, the invertibility of I -edges has come from I !� being a weak equivalence. In
particular, since every TK!� is a weak equivalence in the Joyal model structure, the almost-K-augmented
horn inclusions are also Joyal weak equivalences. However, the Joyal model structure comes with its own
notion of invertible edges, the categorical preisomorphisms. The following example demonstrates that, in
an arbitrary simplicial set, a categorical preisomorphism need not be an almost-K-edge.

Example 5.1 Let T be the simplicial set depicted by

z y y

x x w

eT

with eT W�Œ1� ,!T the vertical edge in the middle. We have a nondegenerate 2-simplex for each of the four
triangles in the picture. The dotted arrows indicate degenerate edges. If T were Joyal equivalent to �Œ0�,
then every edge of T would be a categorical preisomorphism, but in fact eT is the only nondegenerate
categorical preisomorphism in T as the functor T ! Set

fa; cg fa0g fa0g

fag fag fa; cg

a

a

which sends every other nondegenerate edge of T to a nonisomorphism in Set, demonstrates.

Furthermore, there is no simplicial set T 0 that is Joyal equivalent to �Œ0� such that the inclusion
eT W �Œ1� ,! T from the above example factors through eT 0 W �Œ1� ,! T 0, because the sequence of
edges in T 0 that provide a left inverse to eT 0 are all categorical preisomorphisms, but there is no directed
sequence of categorical preisomorphisms in T from y to x. Therefore, while all T -edges are necessarily
categorical preisomorphisms, this example shows that they need not be almost-K-edges.

The goal of this section is to address this disparity. We identify a set of inclusions ED f�Œ1� ,! T g such
that an edge in an arbitrary simplicial set is a categorical equivalence if and only if it is a T -edge for
some �Œ1� ,! T in E. We then define the set of special horn inclusions to be the set of T -augmented
horn inclusions for all �Œ1� ,! T in E. There turns out to be an intermediate model structure between
the K-minimal homotopically behaved model structure and the Joyal model structure where the fibrant
objects are precisely the simplicial sets with lifts of special horn inclusions.

We begin by establishing notation and terminology. This first definition is standard.

Definition 5.2 For n� 1, let SpŒn� denote the spine of �Œn�, the union of the edges i ! .i C 1/ in �Œn�
ranging over 0� i � n� 1.
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SpŒn� SpŒnC 1�

n nC 1 nC 1

:::
:::

:::

i i C 1 i C 1

i i

i � 1 i � 1 i � 1

:::
:::

:::

0 0 0

Ci Œn; nC 1�

Figure 8

For the purposes of this section, we introduce some new notions in the following definitions.

Definition 5.3 For n� 1 and 1� i � n, let Ci Œn; nC 1� denote the union in �ŒnC 1� of SpŒnC 1� with
the 2-simplex .i � 1/! i ! .i C 1/. Call Ci Œn; nC 1� a composition tile.

Remark 5.4 There are two inclusions of spines into the composition tile Ci Œn; nC 1� that preserve the
initial and final vertex, the inclusion SpŒnC 1� ,! Ci Œn; nC 1� that hits every vertex of Ci Œn; nC 1� and
the inclusion SpŒn� ,! Ci Œn; nC 1� that avoids the i th vertex. These inclusions are depicted in Figure 8.

Definition 5.5 Call a simplicial set a composition tiling if it is a colimit of a diagram of the form

Ci Œn; nC 1� Ci 0 Œn
0; n0C 1� � � � Ci.k/ Œn.k/; n.k/C 1�

SpŒm� SpŒm0� SpŒm.k�1/�

built out of the inclusions from above. (For such a diagram to make sense, we must have n.j /Dn.jC1/˙1
and m.j / Dmax.n.j /; n.jC1// for all 0� j � k� 1.)

A composition tiling C comes with two important inclusions of spines, coming from the unused inclusions
of the composition tiles on the left and right in the diagram above. These spines must start at the same
vertex and end at the same vertex, and their union is precisely the outer edges of the composition tiling.
We view a composition tiling as linking these two spines. For our purposes, those two spines are the
crucial data to keep track of in a composition tiling, so we use C r;s to denote a composition tiling linking
a length r spine to a length s spine.
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Figure 9

Example 5.6 We visualize the components of the diagram

C3Œ3; 4� C2Œ3; 4� C1Œ3; 4� C2Œ2; 3� C1Œ1; 2�

SpŒ3� SpŒ4� SpŒ3� SpŒ2�

along with the leftmost and rightmost spines as shown in Figure 9, and then taking the colimit we get a
composition tiling C 4;1

The green edges show the spine SpŒ4� ,! C 4;1 and the blue edge shows SpŒ1� ,! C 4;1.

Example 5.7 An unordered triangulation need not be a composition tiling. For example, in the unordered
triangulation

� �

� �

there is not a choice of precisely two spines whose union is the set of outer edges. However, every (ordered)
triangulation of the .nC1/-gon is a composition tiling, linking the spine 0! 1! � � �! .n�1/! n with
the spine 0! n. At the same time, not every composition tiling from SpŒn� to SpŒ1� is a triangulation
since in general composition tilings can have interior vertices.

Remark 5.8 Recall that h W sSet! Cat is the left adjoint of the nerve functor. Given a simplicial set X ,
we can construct hX explicitly by first letting the set of objects of hX equal the set of 0-simplices X0.
To define HomhX .x; y/ for x; y 2X0, we take the set of all maps SpŒn�!X (for varying n) that start at
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x and end at y and then quotient out by the equivalence relation where f W SpŒr�!X is equivalent to
g W SpŒs�!X if there exists a composition tiling C r;s and a map C r;s!X such that restricting along
SpŒr� ,! C r;s is f and restricting along SpŒs� ,! C r;s is g. The composition functions are induced by
concatenation of spines.

Although this construction of hX is nonstandard, one can check that is just another way of phrasing the
more standard explicit construction given in [16].

Definition 5.9 For any r � 1 and composition tiling C r;1, call the pushout

SpŒ1�D�Œ1� �Œ0�

C r;1 zC r

a pinched tiling. Call the inclusions �Œ1� ,! SpŒr� ,! zC r coming from the 0! 1 and .r � 1/! r edge
inclusions �Œ1�! SpŒr� the first edge inclusion and last edge inclusion, respectively.

Example 5.10 In Example 5.6, we collapse the rightmost arrow of C 4;1 to a degeneracy to get a pinched
tiling zC 4. The first edge inclusion is the bottom-most edge, and the last edge inclusion is the top-most
edge in the picture.

Example 5.11 The standard 2-simplex �Œ2� is itself a composition tiling C 2;1. We collapse the 0! 2

edge to get a pinched tiling zC 2, whose first edge inclusion is 0! 1 and last edge inclusion is 1! 2.

Since a map from a composition tiling C r;1!X is capturing that the restriction to SpŒr�!X and to
�Œ1�!X correspond to the same morphism in hX , we can see that a map from the respective pinched
tiling zC r !X is capturing that the restriction to SpŒr�!X becomes the identity in hX . In particular,
the first edge inclusion of a pinched tiling (the 0! 1 edge of the spine SpŒr�) has a left inverse (coming
from the 1! 2! � � � ! r edges), and the last edge inclusion (the .r � 1/! r edge) has a right inverse
(0! 1! � � � ! .r � 1/). In fact, by Remark 5.8, an edge �Œ1�!X has a right or left inverse in hX if
and only if it extends along a pinched tiling. We record this observation as a lemma.

Lemma 5.12 Given an edge e W�Œ1�!X , the morphism h.e/ has left (right) inverse in hX if and only if
there exists a pinched tiling zC r and a map zC r !X that restricts to e along the first (last) edge inclusion.

Since we can use pinched tilings to identify edges of a simplicial set X that have left or right inverses, we
can use a pushout of pinched tilings to identify edges that have both inverses.

Definition 5.13 Given two pinched tilings zC r and . zC 0/s , let T be the pushout

�Œ1� . zC 0/s

zC r T

last

first
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Call T an inverting tiling, and let eT denote the diagonal composite map �Œ1� ,! T . Call eT the inverting
inclusion of T .

The following proposition shows that categorical preisomorphisms are characterized by maps out of
inverting tilings.

Proposition 5.14 An edge e W�Œ1�!X is a categorical preisomorphism if and only if there exists an
inverting tiling T such that e extends along the inclusion eT :

�Œ1� X

T

eT

e

Proof By Lemma 5.12, the morphism h.e/ has a left and a right inverse if and only if there exist two
pinched tilings such that e extends along the first inclusion of one and the last inclusion of the other,
which happens if and only if e extends along the pushout of those inclusions.

Example 5.15 The simplicial set K from Example 4.5 is an inverting tiling built out of the pinched
tiling zC 2.

This set of inverting tilings fT g characterizes which edges of a simplicial set we want to think of as
invertible, in the context of the Joyal model structure. So, in the spirit of Section 4, let us consider the set
of T -augmented horn inclusions from Definition 3.3.

Definition 5.16 Let ED f�Œ1� ,! T g be the set of all inverting inclusions into inverting tilings. Given
�Œ1� ,! T in E, we say that a T -augmented horn inclusion is a special horn inclusion. If the horn is
outer, we say that it is a special outer horn inclusion. Let SpHorn be the set of all special horn inclusions
and let SpOH be the set of all special outer horn inclusions.

Remark 5.17 The sets SpHorn and SpOH are countable by Remark 3.26.

Recall that the standard phrasing of the special outer horn lifting property of quasicategories is that there
exist lifts of outer horns so long as they satisfy the additional property that a certain edge is sent to a
categorical preisomorphism. We can now rephrase this condition directly as a lifting condition with
respect to the set of special horn inclusions.

Proposition 5.18 If Q is a quasicategory , then Q! � has the right lifting property with respect to
SpOH.

Proof All inner special horns are pushouts of ordinary inner horns, so it suffices just to check outer
special horns. By symmetry, it suffices to consider an inverting inclusion �Œ1� ,! T and a special
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horn map ƒ0Œn�T0!1!Q. Because the edge 0! 1 factors through T !Q, it is sent to a categorical
preisomorphism in Q, and so by the special horn lifting property, we get an extension of the horn
ƒ0Œn�!Q to �Œn�!Q, inducing a lift of the original special horn map �Œn�T0!1!Q.

We now turn to constructing the special horn model structure using Cisinski’s theory.

Lemma 5.19 The class generated by the set of special horn inclusions satisfies axiom (An20) from
Lemma 2.8.

Proof Apply Lemma 4.14 where I 0 D T , the inverting tiling for a given special horn.

Corollary 5.20 The class generated by SpHorn[ff"g ,! Kg together with the set of almost-K-
augmented horn inclusions is .�ˇ�/-anodyne.

Proof We already knew from Proposition 4.7 that axiom (An10) is satisfied, as well as (An20) for
ff"g ,!Kg together with the set of almost-K-augmented horn inclusions. Lemma 5.19 tells us that (An20)
is satisfied for the remaining maps.

Theorem 5.21 There is a Cisinski model structure on sSet whose fibrant objects are the simplicial sets
X such that X !� has the right lifting property with respect to the set of special horn inclusions.

Proof By Theorem 2.10, we get a Cisinski model structure from Corollary 5.20 whose fibrant objects
are those with lifts against SpHorn[ff"g ,!Kg as well as the set of K-augmented horn inclusions. We
claim that simply knowing X !� has lifts of special horn inclusions is enough to conclude that X is
fibrant in this model structure. We first note that X ! � has the right lifting property with respect to
ff"g ,!Kg for all simplicial sets X . Now, note that K is itself an inverting tiling, so if X !� has lifts
of special horn inclusions, it in particular has lifts of K-augmented horn inclusions, so by Corollary 4.25
we see that X !� has lifts of all almost-K-augmented horn inclusions.

Definition 5.22 We call the model structure in Theorem 5.21 the special horn model structure. We say a
simplicial set is special horn fibrant if it is fibrant in this model structure.

Remark 5.23 The special outer horn lifting property of quasicategories implies that the Joyal model
structure is a localization of the special horn model structure. While these model structures have a close
relationship in sharing a notion of “invertible edges”, they are distinct because ƒ1Œ2� is fibrant in the
special horn model structure but not in the Joyal model structure.

The fact that K is itself an inverting tiling means that every special horn fibrant simplicial set has lifts
of K-augmented horns. Therefore, the special horn model structure is a localization of the K-minimal
homotopically behaved model structure. These model structures are also distinct; if T is as in Example 5.1,
then the special horns ƒi Œn�Ti!iC1 are fibrant in the K-minimal homotopically behaved model structure
but not in the special horn model structure.
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The special horn model structure is therefore a curious intermediate between theK-minimal homotopically
behaved model structure and the Joyal model structure. The fibrant objects are very similar to those
of the K-minimal homotopically behaved model structure, making it tempting to claim it as a model
structure with “the homotopical properties of quasicategories without the composition aspects”. However,
compositionality actually does play a subtle but key role in determining the notion of homotopy for the
special horn model structure.

We conclude this section by conjecturing a partial characterization of the trivial cofibrations in the Joyal
model structure.

Conjecture 5.24 The class of trivial cofibrations in the Joyal model structure that are bijective-on-0-
simplices is generated by the set of inner horn inclusions together with the set of special outer horn
inclusions. That is , the bijective-on-0-simplices trivial cofibrations are precisely �..IH[SpOH/�/.

Remark 5.25 The special outer horn inclusions are weak equivalences in the special horn model
structure, and so are also Joyal weak equivalences. The uncertain aspect of the conjecture is whether the
containment of �..IH[SpOH/�/ in the class of bijective-on-0-simplices trivial cofibrations in the Joyal
model structure is strict.

Joyal [13] left open whether the inner horn inclusions alone generated the bijective-on-0-simplices trivial
cofibrations in his model structure, but Campbell [1] recently provided a counterexample of a map that is
bijective-on-0-simplices and a weak equivalence in the Joyal model structure but is not in �.IH�/. Since
Campbell’s map is in fact a pushout of a special 2-horn, it is not a counterexample to Conjecture 5.24.

An intuitive argument for Conjecture 5.24 is that this set of maps seems as close as possible to the set of
ordinary horn inclusions (which generate the trivial cofibrations of the Kan–Quillen model structure on
sSet) while still being weak equivalences in the Joyal model structure.

We also state a similar conjecture for the special horn model structure.

Conjecture 5.26 The class of bijective-on-0-simplices trivial cofibrations in the special horn model
structure is generated by the set of special horn inclusions. That is , the bijective-on-0-simplices trivial
cofibrations are precisely �.SpHorn�/.

6 Comparing model structures

In this section, we compare the fibrant objects in the minimal model structure to the fibrant objects of
homotopically behaved model structures to get a better understanding of what it means to be homotopically
behaved. We begin by explaining the horn-based characterization of the minimal model structure’s fibrant
objects from [6].
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Definition 6.1 Fix n� 1 and 0� i �n�1. Let Œn�i denote the category Œn� with the morphism ci! ciC1

inverted,
c0! c1! � � � ! ci�1! ci � ciC1! ciC2! � � � ! cn�1! cn;

and let ri Œn� denote the nerve of Œn�i . Call ri Œn� an n-isoplex, or simply an isoplex.

Let djri Œn� denote the nerve of the full subcategory of Œn�i that includes all but the j th vertex. Call
djri Œn� the j th face of ri Œn�.

For j ¤ i; i C 1, the dj face of the isoplex ri Œn� is an .n�1/-isoplex, while the di and diC1 faces are
standard .n�1/-simplices. We can therefore think of the n-isoplex as an “isomorphism of .n�1/-simplices”
between its diC1 face and its di face.

Having defined our “iso” analogue of simplices and faces, we can now define “iso-horns” to be the union
of all but one face of an isoplex. However, just like we saw with augmented horns, we want to limit
ourselves to horns that omit the dk or dkC1 face, where k! kC 1 is a J -edge. Furthermore, due to the
symmetry of isoplexes, it suffices just to consider horns where the dk face is missing.

Definition 6.2 Let n� 1 and 0� i � n� 1 be as in Definition 6.1. Let Vi Œn� be the union of all but the
i th face of ri Œn�. We call Vi Œn� an iso-horn, and call the inclusion Vi Œn� ,!ri Œn� an iso-horn inclusion.

We can now state the main result of [6].

Theorem 6.3 A simplicial set X is fibrant in the minimal model structure if and only if it has lifts of
iso-horn inclusions.

The takeaway of this theorem is that, from a certain perspective, isoplexes are the fundamental building
blocks of homotopies in the minimal model structure, and hence in any Cisinski model structure. They
are inherently equipped with all the higher invertibility data we want from a good notion of homotopy.

To understand what is happening when we localize to a homotopically behaved model structure, consider
the diagram

�Œn�Ji!iC1 ri Œn�

�Œn� 1�

�

Since the map on the right is a weak equivalence in any Cisinski model structure, by localizing with
respect to the maps on the left to yield a homotopically behaved model structure, we are equivalently
localizing with respect to the horizontal maps. These maps being weak equivalences is effectively saying
that “n-simplices with a J -edge along i! .iC1/ extend to full-fledged homotopies of .n�1/-simplices”.
In other words, we are justified in considering a n-simplex with a J -edge in its spine to be a “homotopy”
since all of the higher invertibility data comes along for free.
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Min.¿/ Min.HtpyBehaved/

Min.K!�/ Min.K;HtpyBehaved/ Special Joyal

Figure 10

We conclude by reviewing the broader picture of Cisinski model structures on sSet that localize to the
Joyal model structure. Figure 10 shows the model structures discussed in this paper, with an arrow drawn
to indicate that the target is a localization of the source. (The minimal model structure is denoted by
Min.¿/, and its localization with respect to K ! � by Min.K ! �/. The minimal and K-minimal
homotopically behaved model structures are depicted in the second column.) By Remark 5.23, the two
localizations on the right are nontrivial. The vertical arrows indicate nontrivial localizations because
K!� is not a weak equivalence in the two upper model structures by Remark 4.32. The upper horizontal
arrow indicates a nontrivial localization because the simplicial set�Œ2��0!1 is fibrant in the minimal model
structure but not in the minimal homotopically behaved model structure. The remaining localization is
nontrivial by the following lemma.

Lemma 6.4 Given a simplicial set I with exactly two vertices a and b and with 1-simplices a! b and
b! a, the localization of the minimal model structure at the map I !� is not homotopically behaved.

Proof Since the map �Œ2��0!1!� is a weak equivalence but not a trivial fibration in a homotopically
behaved model structure, it cannot be a fibration. So, it suffices to show that �Œ2��0!1 is fibrant in
the minimal model structure localized at I !�. A similar argument as in [6, Section 3] shows that a
simplicial set is fibrant in this model structure if and only if it has lifts with respect to all maps in the set

AI D f.I � @�Œn�/[ .fvg ��Œn�/ ,! I ��Œn�gv2fa;bg;n�0:

We therefore see that �Œ2��0!1 is fibrant by observing that any map

.I � @�Œn�/[ .fvg ��Œn�/!�Œ2��0!1

either factors through the collapse map .I � @�Œn�/[ .fvg��Œn�/!�Œn� or through �Œ1� ,!�Œ2��0!1
because the 1-simplices of I go in opposite directions.

Min.¿/ Min.HtpyBehaved/

Min.K 0!�/ Min.K 0;HtpyBehaved/ 2-Special Quasi-2-Seg

Min.K!�/ Min.K;HtpyBehaved/ Special Joyal

Figure 11
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In Figure 11, we indicate how we expect the 2-Segal analogue of these model structures to fit in. In
particular, it appears likely that there is a separate simplicial set K 0 that plays the same role for the
2-Segal situation as K does for quasicategories. It also seems likely that there be a notion of 2-Segal
preisomorphism that is distinct from categorical preisomorphisms, and hence a notion of 2-special horns
that is distinct from that of special horns. These model structures are the topic of [7].

References
[1] A Campbell, A counterexample in quasi-category theory, Proc. Amer. Math. Soc. 148 (2020) 37–40 MR

Zbl

[2] A Campbell, E Lanari, On truncated quasi-categories, Cah. Topol. Géom. Différ. Catég. 61 (2020)
154–207 MR Zbl

[3] D-C Cisinski, Les préfaisceaux comme modèles des types d’homotopie, Astérisque 308, Soc. Math. France,
Paris (2006) MR Zbl

[4] D-C Cisinski, Higher categories and homotopical algebra, Cambridge Stud. Adv. Math. 180, Cambridge
Univ. Press (2019) MR Zbl

[5] T Dyckerhoff, M Kapranov, Higher Segal spaces, Lecture Notes in Math. 2244, Springer (2019) MR Zbl

[6] M Feller, A horn-like characterization of the fibrant objects in the minimal model structure on simplicial
sets, High. Struct. 7 (2023) 166–181 MR Zbl

[7] M Feller, Quasi-2-Segal sets, Tunis. J. Math. 5 (2023) 327–367 MR Zbl

[8] I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion, I:
Basic theory, Adv. Math. 331 (2018) 952–1015 MR Zbl

[9] P G Goerss, J F Jardine, Simplicial homotopy theory, Progr. Math. 174, Birkhäuser, Basel (1999) MR Zbl

[10] P S Hirschhorn, Model categories and their localizations, Math. Surv. Monogr. 99, Amer. Math. Soc.,
Providence, RI (2003) MR Zbl

[11] M Hovey, Model categories, Math. Surv. Monogr. 63, Amer. Math. Soc., Providence, RI (1999) MR Zbl

[12] A Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002) 207–222 MR Zbl

[13] A Joyal, Notes on quasi-categories, preprint (2008) Available at https://www.math.uchicago.edu/
~may/IMA/Joyal.pdf

[14] A Joyal, The theory of quasi-categories and its applications, II, lecture notes, CRM (2008) Available at
https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf

[15] D G Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer (1967) MR Zbl

[16] C Rezk, Introduction to quasicategories, lecture notes, University of Illinois (2022) Available at https://
rezk.web.illinois.edu/quasicats.pdf

Department of Mathematics, University of Virginia
Charlottesville, VA, United States

feller@virginia.edu

Received: 23 November 2021 Revised: 22 May 2023

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1090/proc/14692
http://msp.org/idx/mr/4042827
http://msp.org/idx/zbl/1444.18025
https://doi.org/10.1134/s0037446620020020
http://msp.org/idx/mr/4504075
http://msp.org/idx/zbl/1452.18025
http://numdam.org/item/AST_2006__308__R1_0/
http://msp.org/idx/mr/2294028
http://msp.org/idx/zbl/1111.18008
https://doi.org/10.1017/9781108588737
http://msp.org/idx/mr/3931682
http://msp.org/idx/zbl/1430.18001
https://doi.org/10.1007/978-3-030-27124-4
http://msp.org/idx/mr/3970975
http://msp.org/idx/zbl/1459.18001
https://doi.org/10.21136/HS.2023.05
https://doi.org/10.21136/HS.2023.05
http://msp.org/idx/mr/4600459
http://msp.org/idx/zbl/1532.18014
https://doi.org/10.2140/tunis.2023.5.327
http://msp.org/idx/mr/4596737
http://msp.org/idx/zbl/1520.18023
https://doi.org/10.1016/j.aim.2018.03.016
https://doi.org/10.1016/j.aim.2018.03.016
http://msp.org/idx/mr/3804694
http://msp.org/idx/zbl/1403.00023
https://doi.org/10.1007/978-3-0348-8707-6
http://msp.org/idx/mr/1711612
http://msp.org/idx/zbl/0927.55022
https://doi.org/10.1090/surv/099
http://msp.org/idx/mr/1944041
http://msp.org/idx/zbl/1017.55001
http://msp.org/idx/mr/1650134
http://msp.org/idx/zbl/0909.55001
https://doi.org/10.1016/S0022-4049(02)00135-4
http://msp.org/idx/mr/1935979
http://msp.org/idx/zbl/1015.18008
https://www.math.uchicago.edu/~may/IMA/Joyal.pdf
https://www.math.uchicago.edu/~may/IMA/Joyal.pdf
https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf
https://doi.org/10.1007/BFb0097438
http://msp.org/idx/mr/223432
http://msp.org/idx/zbl/0168.20903
https://rezk.web.illinois.edu/quasicats.pdf
https://rezk.web.illinois.edu/quasicats.pdf
mailto:feller@virginia.edu
http://msp.org
http://msp.org


ALGEBRAIC & GEOMETRIC TOPOLOGY
msp.org/agt

EDITORS

PRINCIPAL ACADEMIC EDITORS

John Etnyre
etnyre@math.gatech.edu

Georgia Institute of Technology

Kathryn Hess
kathryn.hess@epfl.ch

École Polytechnique Fédérale de Lausanne

BOARD OF EDITORS

Julie Bergner University of Virginia
jeb2md@eservices.virginia.edu

Steven Boyer Université du Québec à Montréal
cohf@math.rochester.edu

Tara E Brendle University of Glasgow
tara.brendle@glasgow.ac.uk

Indira Chatterji CNRS & Univ. Côte d’Azur (Nice)
indira.chatterji@math.cnrs.fr

Alexander Dranishnikov University of Florida
dranish@math.ufl.edu

Tobias Ekholm Uppsala University, Sweden
tobias.ekholm@math.uu.se

Mario Eudave-Muñoz Univ. Nacional Autónoma de México
mario@matem.unam.mx

David Futer Temple University
dfuter@temple.edu

John Greenlees University of Warwick
john.greenlees@warwick.ac.uk

Ian Hambleton McMaster University
ian@math.mcmaster.ca

Matthew Hedden Michigan State University
mhedden@math.msu.edu

Hans-Werner Henn Université Louis Pasteur
henn@math.u-strasbg.fr

Daniel Isaksen Wayne State University
isaksen@math.wayne.edu

Thomas Koberda University of Virginia
thomas.koberda@virginia.edu

Markus Land LMU München
markus.land@math.lmu.de

Christine Lescop Université Joseph Fourier
lescop@ujf-grenoble.fr

Robert Lipshitz University of Oregon
lipshitz@uoregon.edu

Norihiko Minami Yamato University
minami.norihiko@yamato-u.ac.jp

Andrés Navas Universidad de Santiago de Chile
andres.navas@usach.cl

Robert Oliver Université Paris 13
bobol@math.univ-paris13.fr

Jessica S Purcell Monash University
jessica.purcell@monash.edu

Birgit Richter Universität Hamburg
birgit.richter@uni-hamburg.de

Jérôme Scherer École Polytech. Féd. de Lausanne
jerome.scherer@epfl.ch

Vesna Stojanoska Univ. of Illinois at Urbana-Champaign
vesna@illinois.edu

Zoltán Szabó Princeton University
szabo@math.princeton.edu

Maggy Tomova University of Iowa
maggy-tomova@uiowa.edu

Chris Wendl Humboldt-Universität zu Berlin
wendl@math.hu-berlin.de

Daniel T Wise McGill University, Canada
daniel.wise@mcgill.ca

Lior Yanovski Hebrew University of Jerusalem
lior.yanovski@gmail.com

See inside back cover or msp.org/agt for submission instructions.

The subscription price for 2025 is US $760/year for the electronic version, and $1110/year (C$75, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic & Geometric Topology is
indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.

Algebraic & Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by
Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.
Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical
Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall #3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

https://msp.org/
© 2025 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/agt
mailto:etnyre@math.gatech.edu
mailto:kathryn.hess@epfl.ch
mailto:jeb2md@eservices.virginia.edu
mailto:cohf@math.rochester.edu
mailto:tara.brendle@glasgow.ac.uk
mailto:indira.chatterji@math.cnrs.fr
mailto:dranish@math.ufl.edu
mailto:tobias.ekholm@math.uu.se
mailto:mario@matem.unam.mx
mailto:dfuter@temple.edu
mailto:john.greenlees@warwick.ac.uk
mailto:ian@math.mcmaster.ca
mailto:mhedden@math.msu.edu
mailto:henn@math.u-strasbg.fr
mailto:isaksen@math.wayne.edu
mailto:thomas.koberda@virginia.edu
mailto:markus.land@math.lmu.de
mailto:lescop@ujf-grenoble.fr
mailto:lipshitz@uoregon.edu
mailto:minami.norihiko@yamato-u.ac.jp
mailto:andres.navas@usach.cl
mailto:bobol@math.univ-paris13.fr
mailto:jessica.purcell@monash.edu
mailto:birgit.richter@uni-hamburg.de
mailto:jerome.scherer@epfl.ch
mailto:vesna@illinois.edu
mailto:szabo@math.princeton.edu
mailto:maggy-tomova@uiowa.edu
mailto:wendl@math.hu-berlin.de
mailto:daniel.wise@mcgill.ca
mailto:lior.yanovski@gmail.com
http://dx.doi.org/10.2140/agt
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
https://msp.org/
https://msp.org/


ALGEBRAIC & GEOMETRIC TOPOLOGY
Volume 25 Issue 1 (pages 1–644) 2025

1Cutting and pasting in the Torelli subgroup of Out.Fn/

JACOB LANDGRAF

39Hyperbolic groups with logarithmic separation profile

NIR LAZAROVICH and CORENTIN LE COZ

55Topology and geometry of flagness and beltness of simple handlebodies

ZHI LÜ and LISU WU

107Property (QT) for 3-manifold groups

SUZHEN HAN, HOANG THANH NGUYEN and WENYUAN YANG

161On positive braids, monodromy groups and framings

LIVIO FERRETTI

207Highly twisted diagrams

NIR LAZAROVICH, YOAV MORIAH and TALI PINSKY

245Rational homology ribbon cobordism is a partial order

STEFAN FRIEDL, FILIP MISEV and RAPHAEL ZENTNER

255A cubulation with no factor system

SAM SHEPHERD

267Relative h-principle and contact geometry

JACOB TAYLOR

287Relations amongst twists along Montesinos twins in the 4-sphere

DAVID T GAY and DANIEL HARTMAN

301Complexity of 3-manifolds obtained by Dehn filling

WILLIAM JACO, JOACHIM HYAM RUBINSTEIN, JONATHAN SPREER and STEPHAN TILLMANN

329The enumeration and classification of prime 20-crossing knots

MORWEN B THISTLETHWAITE

345An exotic presentation of Z � Z and the Andrews–Curtis conjecture

JONATHAN ARIEL BARMAK

357Generalizing quasicategories via model structures on simplicial sets

MATT FELLER

399Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups

ASHOT MINASYAN and LAWK MINEH

489Mapping tori of A1-autoequivalences and Legendrian lifts of exact Lagrangians in circular contactizations

ADRIAN PETR

563Infinite-type loxodromic isometries of the relative arc graph

CAROLYN ABBOTT, NICHOLAS MILLER and PRIYAM PATEL

A
L

G
E

B
R

A
IC

&
G

E
O

M
E

T
R

IC
T

O
P

O
L

O
G

Y
2025

Vol.25,
Issue

1
(pages

1–644)

http://dx.doi.org/10.2140/agt.2025.25.1
http://dx.doi.org/10.2140/agt.2025.25.39
http://dx.doi.org/10.2140/agt.2025.25.55
http://dx.doi.org/10.2140/agt.2025.25.107
http://dx.doi.org/10.2140/agt.2025.25.161
http://dx.doi.org/10.2140/agt.2025.25.207
http://dx.doi.org/10.2140/agt.2025.25.245
http://dx.doi.org/10.2140/agt.2025.25.255
http://dx.doi.org/10.2140/agt.2025.25.267
http://dx.doi.org/10.2140/agt.2025.25.287
http://dx.doi.org/10.2140/agt.2025.25.301
http://dx.doi.org/10.2140/agt.2025.25.329
http://dx.doi.org/10.2140/agt.2025.25.345
http://dx.doi.org/10.2140/agt.2025.25.357
http://dx.doi.org/10.2140/agt.2025.25.399
http://dx.doi.org/10.2140/agt.2025.25.489
http://dx.doi.org/10.2140/agt.2025.25.563

	1. Introduction
	1.1. Model structures on simplicial sets
	1.2. 2-Segal motivation
	1.3. Cisinski's theory and the minimal model structure
	1.4. Homotopically behaved model structures and augmented horns
	1.5. Special horns
	1.6. Pointwise cylinders
	1.7. Organization
	Acknowledgements

	2. Background
	2.1. Basics of simplicial sets and model structures
	2.2. Cisinski's theory

	3. Homotopically behaved model structures and augmented horns
	3.1. Augmented horn extensions
	3.2. Augmented triangulations

	4. Minimal homotopically behaved model structures
	4.1. Pointwise cylinders
	4.2. Constructing the model structures
	4.3. Proving Proposition 4.9
	4.4. Proving Proposition 4.10
	4.5. The resulting model structures

	5. A model structure for special horn inclusions
	6. Comparing model structures
	References
	
	

