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The motivic lambda algebra and motivic Hopf invariant one problem
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We investigate forms of the Hopf invariant one problem in motivic homotopy theory over arbitrary base
fields of characteristic not equal to 2. Maps of Hopf invariant one classically arise from unital products on
spheres, and one consequence of our work is a classification of motivic spheres represented by smooth
schemes admitting a unital product.

The classical Hopf invariant one problem was resolved by Adams, following his introduction of the Adams
spectral sequence. We introduce the motivic lambda algebra as a tool to carry out systematic computations
in the motivic Adams spectral sequence. Using this, we compute the E2-page of the R-motivic Adams
spectral sequence in filtrations f � 3. This universal case gives information over arbitrary base fields.

We then study the 1-line of the motivic Adams spectral sequence. We produce differentials d2.haC1/D

.h0C �h1/h
2
a over arbitrary base fields, which are motivic analogues of Adams’ classical differentials.

Unlike the classical case, the story does not end here, as the motivic 1-line is significantly richer than
the classical 1-line. We determine all permanent cycles on the R-motivic 1-line, and explicitly compute
differentials in the universal cases of the prime fields Fq and Q, as well as Qp and R.
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1 Introduction

Motivic homotopy theory is a homotopy theory for algebraic varieties, developed by Morel and Voevodsky

[1999]. Since its conception and subsequent use by Voevodsky [2003; 2011] to resolve the Milnor and

Bloch±Kato conjectures, an immense amount of work has gone into the theory, with applications to

algebraic geometry, algebraic number theory, and algebraic topology.

Motivic stable homotopy theory is the home of A1-invariants on algebraic varieties, such as algebraic

K-theory, motivic cohomology, and algebraic cobordism. The universal such invariants are motivic stable

homotopy groups, and as such the internal structure of the motivic stable homotopy groups of spheres

reflects the broad-scale structure of the motivic stable homotopy category. These motivic stable stems

encode deep geometric and number-theoretic information; for example, Morel [2004] showed that the

Milnor±Witt K-theory of a field appears in its stable stems, and Röndigs, Spitzweck and Østvñr [Röndigs

et al. 2019; 2021] have identified motivic stable stems in low Milnor±Witt stem in terms of variants of

Milnor K-theory, Hermitian K-theory, and motivic cohomology.

Motivic homotopy theory was originally developed to apply ideas and tools from homotopy theory to

problems in algebraic geometry and algebraic K-theory. Information now flows the other way as well.

After p-completion, C-motivic stable stems capture information about classical stable stems that is not

seen using classical techniques. This has led to the highly successful program of Gheorghe, Isaksen, Wang

and Xu [Isaksen 2019; Isaksen et al. 2023; Gheorghe et al. 2021], yielding groundbreaking advances in

computations of classical stable homotopy groups of spheres. A similar program using R-motivic stable

stems to capture information about C2-equivariant stable stems has also developed [Burklund et al. 2020;

Belmont and Isaksen 2022; Dugger and Isaksen 2017a; 2017b; Guillou and Isaksen 2020; Belmont et al.

2021]. More recently, Bachmann, Kong, Wang and Xu [Bachmann et al. 2022] related F -motivic stable

homotopy theory over a general field F to classical complex cobordism.

All of this has motivated a swath of explicit computations of motivic stable stems over particular base

fields F. We refer the reader to [Isaksen and Østvñr 2020] for a general survey, but mention the following

2-primary computations:

F DC Dugger and Isaksen [2010] computed the C-motivic stable stems through the 36 stem, and

these computations were pushed out to the 90 stem in [Isaksen 2019; Isaksen et al. 2023].

F DR Dugger and Isaksen [2017a] computed the first four Milnor±Witt stems over R, and Belmont

and Isaksen [2022] expanded on this to compute the first 11 Milnor±Witt stems over R.

F D Fq Wilson [2016] and Wilson and Østvñr [2017] computed the motivic stable homotopy groups of

finite fields in motivic weight zero through topological dimension 18.

There are still many mysteries contained in the motivic stable stems. All of the above computations

were enabled by the motivic Adams spectral sequence, originally introduced by Morel [1999] and further
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The motivic lambda algebra and motivic Hopf invariant one problem 1491

developed by Dugger and Isaksen [2010]. This is a motivic analogue of the classical Adams spectral

sequence, which was developed by Adams [1958; 1960] to resolve the Hopf invariant one problem.

Adams used this spectral sequence to prove that the only elements of Hopf invariant one in the classical

stable stems �cl
� are the classical Hopf maps �cl 2 �

cl
1 , �cl 2 �

cl
3 , and �cl 2 �

cl
7 . This theorem has a number

of implications, including classifications of which spheres can be made into H -spaces, which spheres are

parallelizable, which 2-dimensional modules over the Steenrod algebra can be realized by cell complexes,

which dimensions a finite-dimensional real division algebra can have, and more.

This paper is concerned with topics surrounding motivic analogues of the classical Hopf invariant

one problem. There is an element � in the motivic stable stems, represented by the canonical map

� WA2 n f0g ! P1, which refines the classical complex Hopf map �cl. Hopkins and Morel Ð see [Morel

2004] Ð showed that � is one of the generators of the Milnor±WittK-theory of the base field. This motivic

� behaves quite differently from the classical Hopf map; most famously, � is not nilpotent, and is generally

not 2-torsion. Because � is not nilpotent, one may consider the �-inverted stable stems ��;�Œ�
�1�. These

are closely related to Witt K-theory [Bachmann 2022; Bachmann and Hopkins 2020], and have been the

subject of thorough investigation [Andrews and Miller 2017; Guillou and Isaksen 2015; 2016; Ormsby

and Röndigs 2020; Wilson 2018].

Using the theory of Cayley±Dickson algebras, Dugger and Isaksen [2013] have shown that the classical

quaternionic and octonionic Hopf maps �cl and �cl also admit geometric refinements to motivic classes �

and � . All of these motivic Hopf maps �, �, and � are maps of Hopf invariant one, but, unlike classically,

they are not the only such maps. For example, the classical stable stems include into the weight 0 portion

of the motivic stable stems, and �cl, �cl, and �cl give rise to distinct examples of maps of Hopf invariant

one in the motivic setting. If we reformulate the condition of a map ˛ having nontrivial Hopf invariant

as asking that the homology of the 2-cell complex with attaching map ˛ not split as a module over the

motivic Steenrod algebra, then the situation becomes even richer: for example, �2cl admits an R-motivic

refinement to a map of nontrivial Hopf invariant in this sense, closely related to the nonexistent Hopf

map coming next in the sequence �, �, � .

All of this motivates the present work, the purpose of which is three-fold:

(1) to analyze the motivic Hopf invariant one problem and deduce geometric consequences;

(2) to advance our understanding of motivic stable stems over general base fields;

(3) to introduce the motivic lambda algebra, a new tool for motivic computations.

As mentioned above, Adams resolved the Hopf invariant one problem by introducing and studying the

Adams spectral sequence. Morel [1999] and Dugger and Isaksen [2010] have already introduced the

F -motivic Adams spectral sequence, which takes the form

E
�;�;�
2 D Ext�;�;�

AF .MF ;MF /) �F�;�:

Geometry & Topology, Volume 29 (2025)



1492 William Balderrama, Dominic Leon Culver and J D Quigley

Here A
F is the F -motivic Steenrod algebra [Voevodsky 2003; Hoyois et al. 2017], which acts on MF,

the mod 2 motivic cohomology of Spec.F /. This spectral sequence converges to �F�;�, the homotopy

groups of the .2; �/-completed F -motivic sphere [Hu et al. 2011a; Kylling and Wilson 2019]. Implicit is

the assumption that 2 is invertible in F.

In this paper, we bring the motivic Adams spectral sequence back to its classical roots, using it to study the

motivic Hopf invariant one problem. We do not follow Adams’ original approach. Instead, at least in broad

outline, we follow J S P Wang’s approach [1967], which proceeded by first gaining a good understanding

of the E2-page of the Adams spectral sequence. Importing this approach to motivic homotopy theory

requires analyzing the E2-page of the motivic Adams spectral sequence over general base fields in ranges

beyond what is known by previous techniques.

To carry out this analysis, we bring another tool from classical stable homotopy theory into the motivic

context: the lambda algebra. The classical lambda algebra ƒcl is a certain differential graded algebra,

originally constructed by Bousfield, Curtis, Kan, Quillen, Rector and Schlesinger [Bousfield et al. 1966],

whose homology recovers the E2-page of the Adams spectral sequence. The classical lambda algebra

is now a standard member of the homotopy theorist’s toolbox, and we cannot hope to list all of its

applications, but the following are a selection:

(1) Wang’s computation [1967] of the E2-page of the Adams spectral sequence through the 3-line, and

subsequent simplified resolution of the Hopf invariant one problem;

(2) some of the first automated computations of the E2-page of the Adams spectral sequence, including

products and Massey products [Tangora 1985; 1993; 1994; Curtis et al. 1987];

(3) the construction of Brown±Gitler spectra [1973], which played an important role in analyzing the

bo-resolution [Mahowald 1981; Shimamoto 1984], the proof of the immersion conjecture [Cohen

1985], and more [Mahowald 1977; Goerss 1999; Hunter and Kuhn 1999];

(4) the algebraic Atiyah±Hirzebruch spectral sequence for RP1 [Wang and Xu 2016], used as input to

their proof of the nonexistence of exotic smooth structures on the 61-sphere [Wang and Xu 2017];

(5) the only complete computations of the 4- and 5-lines of the Adams E2-term [Chen 2011; Lin

2008].

We expect that the motivic lambda algebra will likewise become a useful member of the motivic homotopy

theorist’s toolbox. We focus in particular on developing the lambda algebra and applying this to the

motivic Hopf invariant one problem. We consider both the unstable problem, with applications toH -space

structures on motivic spheres, and the stable problem, which is concerned with the 1-line of the motivic

Adams spectral sequence. The motivic situation is substantially richer than the classical situation, and

requires us to develop a number of new techniques for motivic computations across general base fields.

Adams’ resolution of the classical Hopf invariant one problem asserted the existence of differentials

d2.haC1/D h0h
2
a in the Adams spectral sequence. There are classes ha in the F -motivic Adams spectral

sequence for any field F, corresponding to the motivic Hopf maps discussed above for a � 3. Using
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Betti realization, it is possible to lift Adams’ differentials to the C-motivic Adams spectral sequence. It

follows that, if F admits a complex embedding, then haC1 must support a nontrivial differential for a� 3.

However, this is insufficient to determine the precise target of the differential, as well as to determine what

happens over other base fields, particularly fields of positive characteristic. The techniques we develop

are geared towards resolving this sort of issue. We use these to obtain a number of new results; let us

give the following here, as it is the most pleasant to state.

Theorem A (Theorem 7.3.1) For an arbitrary base field F of characteristic not equal to 2, there are

differentials of the form

d2.haC1/D .h0C �h1/h
2
a

in the F -motivic Adams spectral sequence , which are nonzero for a � 3.

It is worth making a couple remarks to distinguish this from the classical result.

Remark 1.0.1 Classically, there is at most one possible nontrivial target for a d2-differential on haC1.

As suggested by the target in Theorem A, the motivic situation is more complicated. For example, when

F DR, we show that, if a�4, then the group of potential values of d2.haC1/ is given by F2fh0h
2
a; �h1h

2
ag.

The general picture is similar, except there may be additional interference coming from the mod 2 Milnor

K-theory of F. This computation requires new techniques for computing the cohomology of the motivic

Steenrod algebra, which is much richer than the analogous classical computation. G

Remark 1.0.2 Even once we have carried out the algebraic work of identifying potential values of

d2.haC1/, the classical proof does not directly generalize to yield Theorem A. In spirit, our proof

follows Wang’s classical inductive proof [1967]. The base case of Wang’s induction is the differential

d2.h4/D h0h
2
3, which follows easily from graded commutativity of stable stems. By contrast, our base

case must include the differential d2.h5/D .h0C �h1/h24. Over R, this differential may be deduced by

combining complex and real Betti realization, but a completely different argument is required to obtain

the differential for other fields. To obtain this differential over other base fields, we use a certain motivic

Hasse principle to reduce to considering fields with simple mod 2 Milnor K-theory, then analyze how the

classical Kervaire class �4 appears in the motivic stable stems. G

Remark 1.0.3 There is another elegant proof of the classical Adams differential d2.haC1/D h
2
0ha, due

to Bruner [1986b, Corollary 1.5], which makes use of power operations in the Adams spectral sequence.

Tilson [2017] has explored analogues of Bruner’s results in the R-motivic setting, but so far these methods

have only succeeded in determining the R-motivic differential d2.haC1/ for a � 3. G

1.1 Brief overview

Now let us give a very brief overview of what we do in this paper, before giving a more thorough summary

in Section 1.2. This paper has three main parts. These parts are not independent, but none rely on the

hardest aspects of the others.
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The first part is purely algebraic, and is the most computationally intensive. In Section 2, we introduce

the F -motivic lambda algebra (Theorem B), and in Section 4 we use the R-motivic lambda algebra

to compute ExtR in filtrations f � 3 (Theorem C). The result is quite complicated, with eight infinite

families of multiplicative generators and numerous relations between these. As we explain in Section 7.1,

this gives information about ExtF for any base field F once the mod 2 Milnor K-theory of F is known.

The second part is shorter, and does not rely on the above computation. In Section 6, after some

preliminaries in Section 5, we consider the motivic analogue of the Hopf invariant one problem in

its classical unstable formulation, concerning unstable 2-cell complexes with specified cup product,

as well as concerning geometric applications such as to H -space structures on motivic spheres. Our

analysis proceeds by a novel reduction to the classical case and other known results, by first formulating a

certain motivic Lefschetz principle (Proposition 5.2.1), then using this to build unstable ªBetti realizationº

functors over arbitrary algebraically closed fields (Proposition 5.3.2). One consequence of this analysis is

a complete classification of motivic spheres which are represented by smooth schemes admitting a unital

product (Theorem D).

The third part is our main homotopical contribution. In Section 7, we give a detailed study of the 1-line

of the F -motivic Adams spectral sequence. This work has a direct geometric interpretation: permanent

cycles on the 1-line of the motivic Adams spectral sequence classify how the motivic Steenrod algebra

can act on the cohomology of a motivic 2-cell complex. This section does not rely on the full strength of

our computation of ExtR, and should be understandable by the reader familiar with prior work on the

R-motivic Adams spectral sequence. The main theorems in this section are Theorem A above, together

with much more detailed information about the 1-line of the F -motivic Adams spectral sequence for the

particular fields F D R, F D Fq with q an odd prime power, F DQp with p any prime, and F DQ

(Theorem E). As this includes all the prime fields, these computations give information that applies

to an arbitrary base field. When F D R, we completely determine all permanent cycles on the 1-line

by comparison with a computation in Borel C2-equivariant homotopy theory (Theorem F); both the

equivariant computation and the method of comparison are of independent interest.

1.2 Summary of results

We now summarize our work in more detail. We begin with our introduction of the motivic lambda

algebra. The nature of the classical lambda algebra ƒcl [Bousfield et al. 1966] was greatly clarified by

Priddy [1970], who introduced the notion of a Koszul algebra and showed that ƒcl is the Koszul complex

of the classical Steenrod algebra. We carry out the motivic analogue of this, producing the following.

Theorem B (Section 2.4) There is a differential graded algebra ƒF, the F -motivic lambda algebra,

with the following properties:

(1) ƒF may be described explicitly in terms of generators , relations , and monomial basis.

Geometry & Topology, Volume 29 (2025)
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(2) There is a surjective and multiplicative quasiisomorphism C.AF /!ƒF from the cobar complex

of the F -motivic Steenrod algebra to ƒF. In particular , there is an isomorphism

H�ƒ
F Š Ext�F

compatible with all products and Massey products. Moreover , the squaring operation Sq0 W Ext�F !

Ext�F lifts to a map � WƒF !ƒF of differential graded algebras.

(3) ƒF generalizes the classical lambda algebra , in the sense that , if F is algebraically closed , then

ƒF Œ��1�DƒclŒ�˙1�. In particular , it is considerably smaller than C.AF /.

Here we have abbreviated Ext�;�;�
AF .MF ;MF / to Ext�F , where the single index refers to filtration, or

homological degree, ie ExtfF DH
f .AF /.

Remark 1.2.1 Several subtleties arise in the construction and identification of the motivic lambda algebra.

We note two interesting points here:

(1) Priddy’s notion [1970] of Koszul algebra is not general enough for our situation: AF is generally

not augmented as an MF -algebra, and MF is generally not central in A
F. This forces us to

consider a more general notion of a Koszul algebra, as well as to find new arguments to prove that

A
F is Koszul in this more general sense.

(2) As readers familiar with the motivic Adem relations might suspect, the elements � and � of MF

appear in the relations defining the motivic lambda algebra, as well as in its differential and the

endomorphism � lifting Sq0. Determining these formulas precisely is delicate and requires some

careful arguments. G

Remark 1.2.2 As indicated above, we construct the F -motivic lambda algebra as a certain Koszul

complex for the F -motivic Steenrod algebra. The Koszul story produces other complexes as well: for

any A
F -modules M and N with M projective over MF, there are complexes ƒF .M;N / serving as

small models of the cobar complex computing ExtAF .M;N /. An amusing special case of this produces

a lambda algebra ƒC2 for the C2-equivariant Steenrod algebra (Remark 2.3.5). G

We use the motivic lambda algebra to study ExtF in low filtration. Before diving into our more extensive

computations, we illustrate the structure of ƒF with some simple examples in Section 3.1, showing how

it may be used to give easy rederivations of some well-known low-dimensional relations in ExtF . We

then carry out our main algebraic computation in Section 4, where we prove the following. Note that

Ext0
R
D F2Œ��.

Theorem C The structure of ExtR in filtrations f � 3 is as described in Section 4; in particular , the

F2Œ��-module structure is described in Theorem 4.2.12, including a description of multiplicative generators

and the action of Sq0, and the majority of the multiplicative structure is described in Theorem 4.3.7.
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Here we are justified in focusing on ExtR as it is, in a certain precise sense, the universal case (see

Remark 2.2.8). We explain in Section 7.1 how to pass from information about ExtR to information about

ExtF for other base fields F.

Example 1.2.3 (Theorem 4.2.12(1)) The computation of Ext�3
R

is much more involved than the

corresponding classical computation, and the result is much richer. We refer the reader to Section 4 for

the full statements, but illustrate this here with the following sample. Classically, Ext�3cl is generated as

an algebra by the classes ha and ca for a � 0. By contrast, a minimal multiplicative generating set of

Ext�3
R

as an F2Œ��-algebra is given by the classes in the following table:

multiplicative generator �-torsion exponent

haC1 1

caC1 1

�b2a�1.4nC1/cha 2a

�2
a.8nC1/h2aC2 2aC1 � 3

�b2a�1.2.16nC1/C1/ch2aC3ha 2a � 13

�2
a.4.4nC1/C1/h3aC3 2a � 7

�b2a�1.16nC1/cca 2a � 7

�2
aC1.8nC1/caC1 2aC2 � 3

�b2a�1.2.4nC1/C1/cca 2a � 3

Here a; n� 0, and the �-torsion exponent of a class ˛ is the minimal r for which �r˛ D 0; the classes

haC1 and caC1 are �-torsion-free. Note that all of the classes listed are named for their image in ExtC ,

and are not themselves products. G

Example 1.2.4 Observe that the multiplicative generators ha and ca of Ext�3cl appear, with a shift, as

�-torsion-free classes in ExtR. This is a general phenomenon: Dugger and Isaksen [2017a, Theorem 4.1]

produce an isomorphism ExtRŒ��1� ' ExtdclŒ�
˙1�; here Extdcl D Extcl only given a motivic grading

such that Exts;fcl D Ext2sCf;f;sCfdcl . As we discuss in Section 3.2, this in fact refines to a splitting

ExtRŠ ExtdclŒ��˚Ext�-tors
R

, where Ext�-tors
R

� ExtR is the subgroup of �-torsion; moreover, this splitting

is modeled by a multiplicatively split inclusion z� Wƒdcl!ƒR. The general shape of ExtR forced by this

may be illustrated by the description of the 1-line

(1-1) Ext1R D F2Œ��fha W a � 1g˚
M

a�0

F2Œ��=.�
2a

/f�b2a�1.4nC1/cha W n� 0g: G

As Ext�3cl is entirely understood by Wang’s computation [1967], the hard work of Theorem C is in

computing the �-torsion subgroup of Ext�3
R

. This is the most computationally intensive part of the paper,

and proceeds by a direct case analysis of monomials in ƒR in low filtration. In the end, we find that Ext�3
R

carries the multiplicative generators listed in Example 1.2.3, and that there are many exotic relations

between these generators. Our computation describes all of this.
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With the algebraic computation of Theorem C in place, we turn to more homotopical topics, namely those

surrounding the Hopf invariant one problem. There are (at least) two good motivic analogues of the Hopf

invariant one problem: one which is unstable, concerning the construction of unstable 2-cell complexes

with nontrivial cup product structure, and one which is stable, concerning the construction of stable 2-cell

complexes with nontrivial AF -module structure. As we recall in Section 6.2, understanding the latter

question is equivalent to understanding the 1-line of the F -motivic Adams spectral sequence; we get to

this in Section 7, which we will discuss further below.

It is the former unstable formulation which has more direct geometric applications. For example, following

[Dugger and Isaksen 2013] on the Hopf construction in motivic homotopy theory, it is directly tied up

with the question of which unstable motivic spheres Sa;b admit H -space structures (see Lemma 6.4.3).

Here Sa;b is the motivic sphere which is A1-homotopy equivalent to †a�bG^b
m . We discuss this unstable

formulation in Section 6, which is independent of our other calculations. One pleasant consequence of

this story is the following.

Theorem D (Theorem 6.4.5) The only motivic spheres which are represented by smooth F -schemes

admitting a unital product are S0;0, S1;1, S3;2, and S7;4.

The statement of Theorem D is directly analogous to the classical result that the only spheres admitting

unital products are S0, S1, S3, and S7. Classically, the nonexistence of H -space structures on any other

spheres may be reduced to the Hopf invariant one problem, which was then established by Adams. This

reduction makes use of the instability condition that Sqa.x/D x2 whenever x 2Ha.X/ for some space X.

There is an analogous instability condition for the motivic cohomology of a motivic space, but it holds

only in a smaller range than we would need; as a consequence, some additional input is needed to analyze

the unstable motivic Hopf invariant one problem (see Remark 6.3.2).

This additional input is interesting in itself. It follows from the formulation of the unstable motivic

Hopf invariant one problem that, at least for nonexistence, one may reduce to the case where F is

algebraically closed. In Section 5.2, we explain how work of Wilson and Østvñr [2017] implies a certain

Lefschetz principle for suitable 2-primary categories of cellular motivic spectra. When combined with

Mandell’s p-adic homotopy theory [2001], this gives a 2-primary unstable ªBetti realizationº functor

for any algebraically closed field F, which is well behaved with respect to the mod 2 cohomology of

motivic cell complexes; see Section 5.3. This gives a direct relation between motivic and classical

homotopy theory, and we are then able to analyze the unstable motivic Hopf invariant one problem using

a combination of classical results, work of Dugger and Isaksen [2013] on the motivic Hopf construction,

and work of Asok, Doran and Fasel [Asok et al. 2017] on smooth models of motivic spheres.

Finally, in Section 7, we turn to a study of the 1-line of the F -motivic Adams spectral sequence. After a

few preliminaries, we begin by proving Theorem A, producing the differentials

d2.haC1/D .h0C �h1/h
2
a

Geometry & Topology, Volume 29 (2025)



1498 William Balderrama, Dominic Leon Culver and J D Quigley

valid for any F (Theorem 7.3.1). As we mentioned above, the main content of this theorem is not the fact

that the classes haC1 for a � 3 support nonzero differentials, but the exact value of the target of these

differentials. We mention two interesting aspects of this computation here:

First, in order to get a more explicit handle on possible targets of d2.haC1/, we reduce to considering the

case where F is a prime field, ie F D Fp with p odd or F DQ. The latter case is then handled with the

aid of a Hasse principle. We explain how work of Ormsby and Østvñr [2013] on the structure of MQ

may be used to give a concrete description of ExtQ and of the Hasse map

(1-2) ExtQ! ExtR �
Y

p prime

ExtQp
;

in particular proving this map is injective (Proposition 7.1.3). In this way we reduce to computing the

differentials d2.hn/ over the fields Fp with p odd, Qp with p prime, and R.

Second, the classical argument, using the fact that 2�2 D 0, may be used to compute d2.h4/, but a

new argument is required to produce the differential d2.h5/D .h0C �h1/h24 (Proposition 7.3.3). Once

this differential is resolved, the rest follow by an inductive argument analogous to Wang’s classical

argument [1967]. After a further reduction when F D R, the differential d2.h5/ may be resolved

uniformly in the above choices of base field. In short, to resolve this differential, we lift the Hurewicz map

�cl
� ! �F�;0 to a map Ext�;�cl ! Ext�;�;0F of spectral sequences (Proposition 5.1.1) and, by considering the

effect of this on the Kervaire class �4, deduce that .h0C �h1/h24 must be hit by h5.

The story does not stop with the differentials d2.haC1/, as Ext1F contains many more classes than these;

recall for instance Ext1
R

from (1-1). Having resolved these differentials, we move on to giving an explicit

analysis of the 1-line of the F -motivic Adams spectral sequence for a number of base fields F. Our main

results may be summarized in the following.

Theorem E The following are carried out in Section 7:

(1) In Theorem 7.4.9, we compute all d2-differentials out of Ext1
R

, as well as all permanent cycles in

Ext1
R

.

(2) In Theorem 7.5.3, for q a prime power satisfying q�1 .mod 4/, we compute all Adams differentials

out of Ext1
Fq

, in particular giving all permanent cycles in Ext1
Fq

.

(3) In Theorem 7.5.6, for q a prime power satisfying q � 3 .mod 4/, we compute all d2-differentials

out of Ext1
Fq

, as well as all higher differentials in stems s � 7, in particular giving all permanent

cycles in Ext1
Fq

in stems s � 7.

(4) In Theorem 7.6.2, for p an odd prime , we give as much information about Ext1
Qp

as was given for

Ext1
Fp

.

(5) In Theorem 7.6.6, we compute all d2-differentials out of Ext1
Q2

, as well as all higher differentials

in stems s � 7, in particular giving all permanent cycles in Ext1
Q2

in stems s � 7.

(6) In Theorem 7.7.1, we give the same information for Ext1
Q

as was given for Ext1
Q2

.
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Cases (2)±(6) of Theorem E proceed by a direct analysis, combining the Hopf differentials we produced

in Theorem A with arithmetic differentials that may be obtained by comparison with the F -motivic

Adams spectral sequence for integral motivic cohomology. The latter has been computed by Kylling

[2015] for F D Fq with q an odd prime power, by Ormsby [2011] for F DQp with p an odd prime, and

by Ormsby and Østvñr [2013] for F DQ2 and F DQ. Case (6), where F DQ, may be read off the

cases F DR and F DQp , using our good understanding of the Hasse map (1-2). As with Ormsby and

Østvñr’s computations over Q, the final description of the set of d2-cycles in Ext1
Q

is quite intricate, but

we feel that our techniques show that understanding the Q-motivic Adams spectral sequence for �Q
�;� is

an accessible problem ripe for future investigation.

The R-motivic computation requires more work. Recall the structure of Ext1
R

from (1-1). Theorem A

describes what happens on the �-torsion-free summand of this, but says nothing about the large quantity

of �-torsion classes. It is possible to use similar methods to compute all d2-differentials supported on this

�-torsion summand, and we do so in Proposition 7.4.8. However, this is insufficient to determine which

classes in Ext1
R

are permanent cycles, as higher differentials may, and indeed must, occur.

We resolve this by comparison with Borel C2-equivariant homotopy theory. Behrens and Shah [2020]

formulate and prove an equivalence

.Spcell
R /^.2;�/Œ�

�1�' Fun.BC2; Sp^
2 /

between the �-periodic .2; �/-complete cellular R-motivic category and the 2-complete Borel C2-

equivariant category. Define

Exts;f;wBC2
D Exts�w;f

Acl .F2;H
�P1

w /;

where P1
w is a stunted real projective space. These form the E2-pages of the classical Adams spectral

sequences for the stable cohomotopy groups of infinite stunted projective spaces. The equivalence of

Behrens and Shah gives an effective method of computing these groups by ªinverting �º in ExtR. The

�-periodic behavior of ExtR is plainly visible in our computation of Ext�3
R

, allowing us to directly read

off the structure of Ext�3BC2
(Lemma 7.4.3). In particular,

Ext1BC2
D F2Œ��fha W a � 1g˚

M

a�0

F2Œ��=.�
2a

/f�b2a�1.4nC1/cha W n 2 Zg

(compare (1-1)). We warn the reader that this naming of classes is incompatible with viewing ExtBC2
as a

collection of ordinary Adams spectral sequences; for example, h0 does not detect 2, but instead the transfer

P1
0 ! S0. We may use the relatively simple structure of these 1-lines to verify that Ext1

R
! Ext1BC2

reflects permanent cycles (Lemma 7.4.4), and this reduces the identification of permanent cycles in Ext1
R

to the identification of permanent cycles in Ext1BC2
. The problem of �-torsion permanent cycles in Ext1BC2

turns out to be equivalent to the vector fields on spheres problem (Lemma 7.4.5), which was resolved by

Adams [1962]. Together with known information regarding the �-torsion-free classes, this leads to the

following classification of maps †cP1
w ! S0 detected in Adams filtration 1.
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Theorem F (Theorem 7.4.7) For a � 0, write aD cC 4d with 0� c � 3, and define  .a/D 2cC 8d .

Then the subgroup of permanent cycles in Ext1BC2
is given by

F2Œ��fh1; h2; h3; �h4g˚
M

a�0

F2Œ��=.�
 .a//f�2

a� .a/�b2a�1.4nC1/cha W n 2 Zg:

Moreover , one may characterize maps †cP1
w ! S0 detected by each of these classes.

1.3 Future directions

The classical lambda algebra has been applied broadly in stable homotopy theory. This suggests several

natural directions for future work, and we list a few here.

1.3.1 Homological computations The homology of the classical lambda algebra can be computed

algorithmically via a method known as the Curtis algorithm. This procedure was refined and implemented

by Tangora [1985] to compute the cohomology of the Steenrod algebra through internal degree 56, as

well as to compute products and Massey products [Tangora 1993; 1994]; further computations of Curtis,

Goerss, Mahowald and Milgram [Curtis et al. 1987] pushed this out to describe the cohomology of the

Steenrod algebra through stem 51. More recently, the Curtis algorithm was used by Wang and Xu [2016]

to compute the algebraic Atiyah±Hirzebruch spectral sequence for RP1, providing the data necessary

for their proof of the uniqueness of the smooth structure on the 61-sphere [Wang and Xu 2017].

Our method for computing Ext�3
R

is closely related to the homology algorithm of [Tangora 1985], only

modified to take into account the F2Œ��-module structure of ƒR, as well to incorporate some additional

flexibility in choosing representatives for the sake of a more digestible manual computation. By ignoring

this additional flexibility and incorporating the ideas of [loc. cit., Section 3.4], one obtains a Curtis

algorithm for computing the homology of the R-motivic lambda algebra, as well as of other motivic

lambda complexes. The effectiveness of these procedures in higher dimensions remains to be seen.

In addition to its use in computer-assisted computations, the classical lambda algebra has also been used in

[Lin 2008; Chen 2011] to completely compute the cohomology of the classical Steenrod algebra through

filtration 5. In principle, there should be no obstruction to continuing our computation of Ext�3
R

to higher

filtrations, other than the rather more involved calculations and bookkeeping that this would necessarily

take.

1.3.2 Motivic Brown±Gitler spectra Brown±Gitler spectra [1973] have many applications in classical

algebraic topology, including Mahowald’s analysis [1981; Shimamoto 1984] of the bo-resolution, Cohen’s

solution [1985] of the immersion conjecture, and more [Mahowald 1977; Hunter and Kuhn 1999; Goerss

1999]. The classical lambda algebra was essential for constructing and analyzing Brown±Gitler spectra

[1973; Shimamoto 1984] as above, as well as [Goerss et al. 1986]. Culver and Quigley [2021] introduced

a motivic analogue of the bo-resolution, the kq-resolution, and analyzed it over algebraically closed fields

of characteristic zero. The analysis of the kq-resolution over more general base fields would be greatly

simplified by the existence of motivic Brown±Gitler spectra.
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1.3.3 Unstable motivic Adams spectral sequences The classical lambda algebra ƒcl has certain

subcomplexes ƒcl.n/ which form the E1-page of an unstable Adams spectral sequence:

E1 Šƒ
cl.n/) ��S

n:

Moreover, James’s 2-local fiber sequence [1957]

Sn!�SnC1!�S2nC1;

which gives rise to the EHP sequence, is modeled by short exact sequences [Curtis 1971, Section 11]

0!ƒcl.n/!ƒcl.nC 1/!†nƒcl.2nC 1/! 0;

which are useful for understanding both the unstable complexes ƒcl.n/ and the stable complex ƒcl. It is

natural to ask whether there are analogous subcomplexes of ƒF related to a suitable motivic unstable

Adams spectral sequence. The motivic situation seems to be much more delicate: it is not obvious how

to define such subcomplexes of ƒF, and the nature of the cohomology of motivic Eilenberg±Mac Lane

spaces suggests that a motivic unstable Adams spectral sequence may not be as well behaved. A better

understanding of these topics would shed light both on the nature of ƒF and on unstable F -motivic

homotopy theory.

1.4 Conventions

We maintain the following conventions throughout the paper:

(1) We work solely at the prime 2.

(2) We write F for a base field of characteristic not equal to 2.

(3) We write �F�;� for the homotopy groups of the .2; �/-completed F -motivic sphere spectrum.

(4) Our homotopy and cohomology groups are bigraded by .s; w/, where s is stem and w is weight.

(5) In particular, we write Sa;b for the motivic sphere which is A1-homotopy equivalent to †a�bG^b
m .

(6) We write H�;� for reduced mod 2 F -motivic cohomology and H� for reduced ordinary mod 2

cohomology.

(7) We write, for instance, H�;�.XC/ for the unreduced mod 2 motivic cohomology of X.

(8) We will use homological grading even for cohomology classes, in the sense that, if x 2Ha;b.X/,

then we say jxj D .�a;�b/. This allows us to say, for instance, j� j D .0;�1/ and j�j D .�1;�1/,

regardless or whether we are working with homology or cohomology.

(9) We write MF DH�;�.Spec.F /C/ for the unreduced mod 2 motivic cohomology of a point.

(10) We write MF
0 for the portion of MF concentrated on the line s D w, so that MF DMF

0 Œ� �. (The

ring MF
0 may be identified as the mod 2MilnorK-theory of F, by work of Voevodsky; see [Isaksen

and Østvñr 2020, Section 2.1] for an overview of the structure of MF ).
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(11) We write ExtF for the cohomology of the F -motivic Steenrod algebra, employing the grading

conventions given in the following two points.

(12) We write ExtfF for the filtration f piece of ExtF .

(13) We write Exts;f;wF � ExtfF for the subset of elements in filtration f with topological stem s and

weight w.

(14) We use a subscript or superscript cl to denote classical objects; in particular, �cl
� are the classical

2-completed stable stems, Acl is the classical mod 2 Steenrod algebra, and Extcl is its cohomology.

(15) We take the binomial coefficient
�

a
b

�

to be aŠ
bŠ.a�b/Š

for 0� b � a, and to be zero otherwise.
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Part I The motivic lambda algebra

2 The motivic lambda algebra

In this section, we show that Priddy’s construction [1970] of the lambda algebra as a certain Koszul

complex can be extended to produce a motivic lambda algebra. As noted in Remark 1.2.1, a more refined

notion of Koszulity is needed to handle the more exotic nature of the MF -algebra A
F. The notion of a

Koszul algebra has been generalized in various ways; see [Polishchuk and Positselski 2005] for an account

of some developments in this area. We will use the formulation given in [Balderrama 2023, Section 3],

as this gives a sufficiently general definition of Koszul algebra and explicit description of their associated

Koszul complex. The reader familiar with Koszul algebras will find no surprises in this material.

In Section 2.2, we review the structure of the F -motivic Steenrod algebra AF. We show that AF is in fact

a Koszul algebra in Section 2.3, ultimately by reducing to Priddy’s classical PBW criterion for Koszulity

[Priddy 1970, Section 5]. The F -motivic lambda algebra ƒF is then defined to be the Koszul complex

of AF. We compute the structure of ƒF explicitly, and introduce an endomorphism � of ƒF lifting the

squaring operation Sq0 on ExtF . All of this structure is summarized in one place in Section 2.4.
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2.1 Review of Koszul algebras

This section summarizes the definitions and facts from [Balderrama 2023, Section 3] regarding Koszul

algebras which we will use to construct the motivic lambda algebra. We review this material in some

detail, in order to specialize from the more abstract context considered there. Many of the results we

need have appeared in varying levels of generality throughout the literature; in particular, the definition of

Koszulity we use can be considered as a direct generalization of the homogeneous case considered by

Rezk [2012, Section 4].

We fix throughout this subsection an associative algebra S to serve as our base ring, together with an

associative algebra A which is an S -algebra in the sense of being equipped with an algebra map S ! A.

Equivalently, A is a monoid in the category of S -bimodules. We abbreviate ˝D˝S .

We are most interested in the case where S DMF and A D A
F, and so, to avoid some subtle points

regarding signs, we shall assume that S is of characteristic 2. In addition, we suppose throughout that A

is projective as a left S -module.

Definition 2.1.1 Say that A is a graded S -algebra if we have chosen a decomposition AD
L

n�0AŒn�

of S -bimodules such that

(1) S Š AŒ0�;

(2) the product on A restricts to AŒn�˝AŒm�! AŒnCm�.

Say that A is a filtered S -algebra if we have chosen a filtration AŠ colimn!1A�n such that

(1) S Š A�0;

(2) the product on A restricts to A�n˝A�m! A�nCm.

Finally, say that the filtration on a filtered S -algebra A is projective if (both A and) the associated graded

algebra

grA WD
M

n�0

AŒn�; AŒn� WD coker.A�n�1! A�n/

are projective as left S -modules. G

Fix a left A-module M. Write Bun.A;A;M/ and B.A;A;M/ for the unreduced and reduced bar

resolutions of M relative to S ; that is, for the unnormalized and normalized chain complexes associated

to the standard monadic resolution of M with respect to the adjunction LModS � LModA. These are

projective left A-module resolutions provided that M is projective as a left S-module. If A is a filtered

algebra, then Bun.A;A;M/ is a filtered complex, with filtration defined by

(2-1) Bun
n .A;A;M/Œ�m� WD Im

�

M

m1C���CmnDm

A˝A�m1
˝ � � �˝A�mn

˝M ! Bun
n .A;A;M/

�

;
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and this descends to a filtration of B.A;A;M/; compare for instance [Priddy 1970, Section 10; Rezk

2012, Section 4; Balderrama 2023, Section 3.5]. If A is augmented, then this augmentation makes S

into an A-bimodule, allowing us to form the bar complex B.A/ WD S ˝A B.A;A; S/ and consider the

homologyH�.A/ WDH�.B.A//, and the filtration of (2-1) descends to a filtration on B.A/. If A is graded,

then A is naturally filtered by A�n D
L

i�nAŒi�; this filtration is split in the sense that AŠ grA, and

likewise the filtration on B.A/ is split with grB.A/D
L

m�0B.A/Œm�. This then passes to a splitting

H�.A/Š
L

m�0H�.A/Œm�.

Definition 2.1.2 [Rezk 2012, Definition 4.4; Balderrama 2023, Definition 3.5.3] We say that A is a

homogeneous Koszul S -algebra provided that

(1) A has been given the structure of a graded S -algebra;

(2) Hn.A/Œm�D 0 for n¤m.

We say that A is a Koszul S -algebra if

(1) A has been equipped with a projective filtration;

(2) grA is a homogeneous Koszul S -algebra. G

Suppose now that A is projectively filtered, and fix a left A-module M which is flat as a left S-module.

The filtration of (2-1) on B.A;A;M/ induced by that on A satisfies grB.A;A;M/Š A˝B.grA/˝M,

and so the convergent spectral sequence associated to this filtration is of signature

(2-2) E1p;q D A˝Hq.grA/Œp�˝M )HqB.A;A;M/; d rp;q WE
r
p;q!Erp�r;q�1:

Definition 2.1.3 Let M be an A-module which is flat as a left S -module. The Koszul resolution of M is

the augmented chain complex

M  K.A;A;M/

defined by

Kp.A;A;M/DE1p;p D A˝Hp.grA/Œp�˝M;

with differential given by the d1-differential of the spectral sequence (2-2). When M is projective as a

left S -module, we define the Koszul complex KA.M;M
0/ as the cochain complex

KA.M;M
0/ WD HomA.K.A;A;M/;M 0/Š HomS .H�.grA/˝M;M 0/;

with differential inherited from that on K.A;A;M/. G

Observe that, by construction, K.A;A;M/ is a subcomplex of B.A;A;M/, and dually KA.M;M 0/ is a

quotient complex of the cobar complex CA.M;M 0/ WD HomA.B.A;A;M/;M 0/. When A is Koszul, the

spectral sequence of (2-2) collapses into the Koszul complex K.A;A;M/, proving the following.
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Theorem 2.1.4 (see [Priddy 1970, Theorem 3.8; Rezk 2012, Proposition 4.8; Balderrama 2023, Theorem

3.5.5]) Suppose that A is a Koszul S -algebra , and fix left A-modules M and M 0.

(1) If M is flat over S, then there is an injective quasiisomorphism K.A;A;M/� B.A;A;M/.

(2) If M is projective over S, then there is a surjective quasiisomorphism CA.M;M
0/!KA.M;M

0/.

In particular , ifM is projective over S, the homology ofKA.M;M
0/ is isomorphic to ExtA.M;M 0/.

This allows us to define Koszul complexes in the generality we need. We now recall some facts from

[Balderrama 2023, Sections 3.6±3.7] describing the structure of Koszul complexes; these are direct

analogues of [Priddy 1970, Theorem 4.6]. We begin by fixing some conventions.

Definition 2.1.5 Fix a left S -module M. Then the dual M_ D LModS .M; S/ carries the structure of a

right S -module by
.f � s/.m/D f .m/ � s:

IfM is in fact an S -bimodule, thenM_ also carries an S -bimodule structure, with left S -module structure

.s �f /.m/D .f .m � s//:

Now, if M is a left S -module and M 0 is an S -bimodule, then there is a comparison map

c WM_˝M 0_! .M 0˝M/_; c.f ˝f 0/.m0˝m/D f 0.m0f .m//:

If M is finitely presented and projective as a left S -module, then this map is an isomorphism. In general,

if M 00 is another left S -module, then we write

M_ y̋ M 00 WD LModS .M;M
00/;

so that, in particular,
M_ y̋ M 0_ Š .M 0˝M/_I

in good cases, this may be realized as a topological tensor product, as the notation suggests. G

The theory of Koszul algebras is closely related to the theory of quadratic algebras; let us fix some notation.

Definition 2.1.6 Fix an S -bimodule B and subbimodule R � B˝B. The quadratic algebra generated

by the pair .B;R/ is the algebra

T .B;R/ WD
M

n�0

Tn.B;R/; Tn.B;R/ WD coker

�

X

iCjDn

B˝i�1˝R˝B˝j�1! B˝n

�

;

with multiplication inherited from the tensor algebra T .B/. Similarly, given a subbimoduleR0�B_ y̋ B_

dual to a quotient of B˝B, we define the completed quadratic algebra

yT .B_; R0/ WD
Y

n�0

yTn.B
_; R0/; yTn.B

_; R0/ WDcoker

�

X

iCjDn

.B_/
y̋ i�1 y̋R0 y̋ .B_/

y̋ j�1! .B_/
y̋n

�

:

Say that .B;R/ is a quadratic datum if T .B;R/ is projective. In this case, the dual quadratic datum

to .B;R/ is the pair .B_; R?/, where R? D .T2.B;R//
_. G
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The cohomology of a homogeneous Koszul algebra may be explicitly described as follows.

Theorem 2.1.7 (see [Priddy 1970, Theorem 2.5; Rezk 2012, Proposition 4.12; Balderrama 2023,

Theorem 3.6.4]) (1) Let .B;R/ be a quadratic datum. Then H 1.T .B;R//Œ1�Š B_, and the

inclusion B_ �H�.T .B;R// extends to an isomorphism yT .B_; R?/Š
Q

n�0H
n.T .B;R//Œn�.

(2) Let A D
L

n�0AŒn� be a homogeneous Koszul algebra , and let R D ker.AŒ1�˝AŒ1�! AŒ2�/.

Then AŠ T .AŒ1�; R/ is quadratic , and H�.A/Š yT .AŒ1�_; R?/.

Now fix a quadratic algebraADT .AŒ1�; R/ and leftA-modulesM andM 0, supposing thatM is projective

as a left S -module. We may use Theorem 2.1.7 to describe the Koszul complex KA.M;M 0/. Recall that

KnA.M;M
0/D LModA.A˝Hn.A/Œn�˝M;M

0/Š LModS .Hn.A/Œn�˝M;M
0/:

If we suppose that H�.A/ is projective as a left S-module, as holds if A is Koszul, then there is an

isomorphism .Hn.A//
_ ŠHn.A/ of S -bimodules. In this case, we have

KnA.M;M
0/Š LModS .M;H

n.grA/Œn� y̋ M 0/Š LModS
�

M; yTn.AŒ1�
_; R?/ y̋ M 0

�

I

Thus K�
A.M;M

0/ is completely described as a graded object by Theorem 2.1.7.

It remains to describe the differential on KA.M;M 0/. Observe first that, if M 00 is an additional A-module,

then there are pairings

oWKnA.M;M
0/˝ZK

n0

A .M
0;M 00/!KnCn0

A .M;M 00/:

This is a pairing of chain complexes compatible with analogous pairings on cobar complexes and, when

A is Koszul, it is a chain-level lift of the standard composition product in ExtA. In addition, it may be

described in terms of the product structure on yT .AŒ1�_; R?/ as follows (see [Balderrama 2023, Sections

3.2 and 3.7]). Write� for the multiplication on yT .AŒ1�_; R?/. Then, given f WM! yTn.AŒ1�_; R?/ y̋M 0

and g WM 0! yTn0.AŒ1�_; R?/ y̋ M 00, we have

f og D .�˝ 1/ ı .1˝g/ ıf:

In the special case where M DM 0, these pairings give KA.M;M/ the structure of a differential graded

algebra, and give KA.M;M 0/ the structure of a differential graded KA.M;M/-KA.M 0;M 0/-bimodule.

Note that K1A.M;M/D LModS .AŒ1�˝M;M/. The A-module structure on M restricts to an element

QM 2K1A.M;M/, and we have the following.

Theorem 2.1.8 [Balderrama 2023, Theorem 3.7.1] The differential on KA.M;M
0/ is given by

ı WKnA.M;M
0/!KnC1

A .M;M 0/; ı.f /DQM of �f oQM
0

:

In particular , if M DM 0, then ı.f / is the commutator ŒQM ; f �.

This theorem describes Koszul complexes for a homogeneous Koszul algebra. Suppose now that A is

an arbitrary Koszul S-algebra, and continue to fix left A-modules M and M 0 with M projective as a

left S-module. The additive and multiplicative structure of the Koszul complexes KA.M;M 0/ depend
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only on the algebra grA and left S -modules M and M 0, and so are still described by Theorem 2.1.7. In

practice, the differential on KA.M;M 0/ may be identified using the following.

Let qR D ker.A�1 ˝ A�1 ! A�2/, and observe that .A�1; qR/ is a quadratic datum. Let Abig D
L

n�0A�n. This is a graded algebra, and the inclusion A�1�A
big extends to a map T .A�1; qR/!Abig

of graded algebras.

Theorem 2.1.9 [Balderrama 2023, Theorem 3.7.3] (1) T .A�1; qR/! Abig is an isomorphism of

graded algebras.

(2) Abig is a homogeneous Koszul algebra.

(3) The surjection Abig! A gives rise to short exact sequences

0!KnA.M;M
0/!Kn

Abig.M;M
0/!Kn�1

A .M;M 0/! 0;

which are split if A is augmented.

In particular , KA.M;M 0/�KAbig.M;M 0/ is a subcomplex with differential on the target described by

Theorem 2.1.8.

2.2 The motivic Steenrod algebra

We will construct the motivic lambda algebra by applying the theory recalled in Section 2.1 to the mod 2

motivic Steenrod algebra, whose structure we now recall. The conventions of Section 1.4 are in force

throughout this section.

We note in particular that, following these conventions, we take the somewhat unconventional approach

of consistently using homological grading. Thus, for example, � 2H 0;1.Spec.F /C/, but we shall write

j� j D .0;�1/, as this is how it will appear in the lambda algebra.

We begin by recalling the general structure of the base ring MF DH�;�.Spec.F /C/.

Example 2.2.1 For any F, we have MF DMF
0 Œ� �, where

j� j D .0;�1/

and MF
0 �MF is the subring concentrated on the line s D w, isomorphic to the Milnor K-theory of F

taken mod 2. The following are some particular examples of the ring MF
0 . We refer the reader to [Isaksen

and Østvñr 2020, Section 2.1] for further details.

� For F D F algebraically closed, such as F DC, we have

MF
0 Š F2

� For F DR the real numbers, we have

MR
0 Š F2Œ��;

where j�j D .�1;�1/.
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� For F D Fq a finite field of odd prime-power order q, we have

M
Fq

0 Š

�

FqŒu�=u
2 if q � 1 .mod 4/;

FqŒ��=�
2 if q � 3 .mod 4/;

where j�j D juj D .�1;�1/.

� For F DQp the p-adic rationals with p an arbitrary prime, we have

M
Qp

0 Š

8

<

:

F2Œ�; u�=.�
2; u2/ if q � 1 .mod 4/;

F2Œ�; ��=.�
2; �� C�2/ if q � 3 .mod 4/;

F2Œ�; �; u�=.�
3; u2; �2; �u; ��; �2Cu�/ if q D 2;

where j�j D juj D j�j D .�1;�1/.

See also Section 7.1 for a discussion of MQ. G

Voevodsky [2003] (with minor corrections by Riou [2012]) and Hoyois, Kelly and Østvñr [Hoyois et al.

2017] have constructed Steenrod squares

Sqa WHm;n.X/!HmCa;nCba=2c.X/

for a� 0 and shown that they generate the algebra AF of natural operations in mod 2motivic cohomology.

It is convenient to take the convention that Sqa D 0 for a < 0. The relations between these squares are

generated by Sq0 D 1 together with the Adem relations:

Theorem 2.2.2 [Voevodsky 2003, Theorem 10.2; Riou 2012, théorème 4.5.1; Hoyois et al. 2017,

Theorem 5.1] Fix positive integers a and b with a < 2b.

If a is even and b is odd , then

Sqa Sqb D
X

0�j�ba=2c

�b�1�j
a�2j

�

SqaCb�j Sqj C
X

1�j�ba=2c
j odd

�b�1�j
a�2j

�

� SqaCb�j�1 Sqj :

If a and b are odd , then

Sqa Sqb D
X

1�j�ba=2c
j odd

�b�1�j
a�2j

�

SqaCb�j Sqj :

If a and b are even , then

Sqa Sqb D
X

0�j�ba=2c

�j mod 2
�b�1�j
a�2j

�

SqaCb�j Sqj :

If a is odd and b is even , then

Sqa Sqb D
X

0�j�ba=2c
j even

�b�1�j
a�2j

�

SqaCb�j Sqj C
X

1�j�ba=2c
j odd

� b�1�j
a�1�2j

�

� SqaCb�j�1 Sqj :

In all cases , the bounds on summation are not necessary, but give regions where the given binomial

coefficients may be nonzero.
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As with the classical Steenrod algebra, AF admits an admissible basis.

Definition 2.2.3 Given a sequence I D .r1; : : : ; rk/ with ri > 0 for all 1 � i � k, we abbreviate

SqI D Sqr1 : : : Sqrk . Say that SqI is admissible if ri � 2riC1 for all 1� i � k� 1. G

Proposition 2.2.4 [Voevodsky 2003, Section 11] A
F is freely generated as a left MF -module by the

admissible squares SqI.

The mod 2 motivic cohomology H�;�.XC/ of any smooth scheme X carries the structure of a left

A-module. These actions satisfy the following Cartan formulas.

Proposition 2.2.5 [Voevodsky 2003, Proposition 9.6; Riou 2012, Proposition 4.4.2] Let a � 0 and

x; y 2H�;�.XC/. Then

Sq2a.xy/D
a
X

rD0

Sq2r.x/Sq2a�2r.y/C �

a�1
X

sD0

Sq2sC1.x/Sq2a�2s�1.y/;

Sq2aC1.xy/D

a
X

rD0

.Sq2rC1.x/Sq2ai�2r.y/CSq2r.x/Sq2a�2rC1.y//

C �

a�1
X

sD0

Sq2sC1.x/Sq2a�2s�1.y/:

The action of AF on MF is determined by these Cartan formulas and the following.

Proposition 2.2.6 [Voevodsky 2003; Röndigs and Østvñr 2016, Appendix A] The action of AF on MF

satisfies

Sq�1.x/D 0 for x 2MF
0 ; Sq1.�/D �; Sq�2.�/D 0:

As in the classical case, the Cartan formulas of Proposition 2.2.5 may be encoded in a coproduct on the

algebra A
F. The resulting structure is not quite a Hopf algebra, but is dual to a Hopf algebroid structure

on the dual Steenrod algebra .AF /_. This complication arises in part due to the following. The Steenrod

algebra A
F is an MF -algebra, by way of the homomorphism MF !A

F sending an element x 2MF

to the stable operation given by left multiplication by x. However, MF does not land in the center of AF ;

equivalently, AF has nontrivial MF -bimodule structure. We may describe this structure explicitly as

follows.

Proposition 2.2.7 The MF -bimodule structure of AF is determined by

Sqn x D x Sqn for x 2MF
0 ;

Sq2n � D � Sq2nC�� Sq2n�1;

Sq2nC1 � D � Sq2nC1C� Sq2nC�2 Sq2n�1 :
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Proof It suffices to show both sides of each equality coincide when evaluated on an arbitrary cohomology

class. For example, for any X and x 2H�;�.XC/, we have

.Sq2n �/.x/D Sq2n.�x/D
X

iCjDn

.Sq2i �/.Sq2j x/C �
X

iCjDn�1

.Sq2iC1 �/.Sq2jC1 x/

D � Sq2n.x/C �� Sq2n�1.x/

by Proposition 2.2.5. This proves the second equation, and the other cases are similar.

Remark 2.2.8 Although we work in this section over an arbitrary base field F, there is a sense in which

F DR represents the universal case: the class � may be defined over any field F, making MF into an

MR-module, and in all cases we have

A
F DMF ˝MR A

R:

In fact, the formulas of Proposition 2.2.6 describe an action of AR on MF for which

ExtF Š ExtAR.MR;MF /;

and at least additively this depends only on the F2Œ��-module structure of MF
0 .

It is worth putting this observation in a slightly more general context. The Cartan formulas of Proposition

2.2.5 give the category of left AR-modules a symmetric monoidal structure. If R is a monoid in this

category, then the tensor product R˝MR A
R may be equipped with a product with the property that

LModR˝
MRAR ' LModR.LModAR/I

this is the semitensor product of [Massey and Peterson 1965]. Moreover, we have

ExtR˝
MRAR.R;R/Š ExtAR.MR; R/:

The algebras AF are obtained in the case where RDMF. Another simple class of example is given by

the algebras AR=.�n; �m/, where n and m are such that �m is central in A
R=.�n/. A more interesting

example is the following: there is an isomorphism of algebras

A
C2 ŠMC2 ˝MR A

R;

where A
C2 is the C2-equivariant Steenrod algebra, MC2 is the C2-equivariant cohomology of a point,

and A
R acts on MC2 as described, for instance, in [Guillou et al. 2020, Section 2] (building on [Hu and

Kriz 2001]). G

2.3 The motivic lambda algebra

We now produce the motivic lambda algebra. For simplicity of notation, we consider the base field F as

fixed, and abbreviate
ADA

F ; MDMF

throughout this subsection.
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2.3.1 Koszulity of A We begin by showing that A is Koszul. The algebra A is a projectively filtered

M-algebra under the length filtration: A�n �A is the submodule generated by squares SqI where I is a

sequence of length at most n. In particular,

A�1 DMfSqa W a � 0g

as a left M-module, with the understanding that Sq0 D 1 in A. By Definition 2.1.3, to show that A is

Koszul we must show that grA is homogeneous Koszul. To show that the classical Steenrod algebra

is Koszul, Priddy [1970, Theorem 5.3] developed a PBW criterion for Koszulity. We cannot apply this

criterion directly, in part due to the nontrivial M-bimodule structure of grA. Our strategy is to filter this

issue away, thereby reducing to Priddy’s criterion.

Theorem 2.3.1 A is a Koszul M-algebra.

Proof As A is a projectively filtered algebra, we need only show that grA is a homogeneous Koszul

algebra, ie that Hn.grA/Œm�D 0 for n¤m. To that end, we define a new filtration F� grA on grA by

declaring F�m grA � grA to be generated by elements of the form SqI, where I D .r1; : : : ; rk/ is a

sequence satisfying r1C� � �C rk �m. This filtration is multiplicative, and so we may form its associated

graded algebra gr grA.

The same construction employed in Section 2.1 shows that the filtration F� grA induces a filtration

on the bar complex B.grA/ with associated graded B.gr grA/. This filtration is compatible with the

decomposition
B.grA/Š

M

m�0

B.grA/Œm�;

and so, for each m, there is a convergent spectral sequence

En1 DHnB.gr grA/Œm�)Hn.grA/Œm�:

It is thus sufficient to verify that gr grA is a homogeneous Koszul algebra with respect to the grading

gr grAD
L

m�0 gr grmA. By passing from grA to gr grA, we have filtered away both the nontrivial M-

bimodule structure on grA described in Proposition 2.2.7 and the parts of the Adem relations involving �

which appear in Theorem 2.2.2, and in the end we may identify

gr grAŠMF ˝F2Œ�� grAC:

From here, it is easily seen that the admissible basis of gr grA satisfies Priddy’s PBW criterion [1970,

Section 5.1]. It now follows from [loc. cit., Theorem 5.3] that gr grA is Koszul; the assumption in [loc.

cit.] that the base is a field is not needed so long as everything in sight is free over the base.

Remark 2.3.2 When F DR, the filtration F� grA coincides with the �-adic filtration of grA. The use

of F allows us to apply our argument uniformly to arbitrary base fields, but we could have also proved

Theorem 2.3.1 in the R-motivic case, and deduced the general case from this. Indeed, everything in

Section 2.1 is compatible with base change (see [Balderrama 2023, Lemma 3.5.7]), so Koszulity of AR
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implies that any algebra obtained from the construction of Remark 2.2.8 is Koszul. As an example not

explicitly covered by the statement of Theorem 2.3.1, AC2 is Koszul over MC2 . G

Definition 2.3.3 The F -motivic lambda algebra ƒF is the Koszul complex KAF .MF ;MF / associated

to the Koszul MF -algebra A
F, as defined in Definition 2.1.3, where A

F acts on MF as described in

Proposition 2.2.6. G

We shall abbreviate ƒ D ƒF throughout the rest of this subsection. Theorem 2.1.4 now implies the

following.

Theorem 2.3.4 Let C.A/ D CA.M;M/ denote the cobar complex of A. Then there is a surjective

multiplicative quasiisomorphism

C.A/!ƒ:

In particular ,
H�ƒŠ Ext�

A
.M;M/;

and this isomorphism is compatible with all products and Massey products.

Remark 2.3.5 More generally, the theory recalled in Section 2.1 produces and describes Koszul com-

plexes KA.M;M
0/ modeling the cobar complex CA.M;M

0/ for any left A-modules M and M 0 with

M projective over M. Classically, the case where M D H�.RP1/ and M 0 D F2 is of particular

importance. Another amusing example is given over F DR with the observation that KAR.MR;MC2/Š

K
AC2 .M

C2 ;MC2/DƒC2 (see Remarks 2.2.8 and 2.3.2). G

2.3.2 The structure of the motivic lambda algebra We will now apply the theory recalled in

Section 2.1 to describe ƒ explicitly. First note that ƒ D
L

m�0ƒŒm� with ƒŒ1� D .AŒ1�/_, where

AŒ1�D coker.M!A�1/. As a left M-module, we may identify

AŒ1�DMfSqr W r � 1g:

Dualizing, we may identify
ƒŒ1�D f�r W r � 0gM

as a right M-module, where �r is dual to SqrC1 in the given basis. Considering internal algebraic degrees

yields j�r j D
�

r C 1;
�

1
2
.r C 1/

˘�

; following our conventions (Section 1.4), we subtract off the filtration

from the algebraic stem to obtain the topological stem, and so instead write j�r j D
�

r;
˙

1
2
r
��

.

We now begin by describing the multiplicative structure of ƒ.

Proposition 2.3.6 The left M-module structure on ƒŒ1� is determined by

x�nD�nx for x 2M0; ��2nC1D�2nC1�C�2nC2�; ��2nD�2n�C�2nC1��C�2nC2�
2:

Proof This follows by dualizing Proposition 2.2.7.
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Proposition 2.3.7 If a is odd or b is even , then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�

;

and if a is even and b is odd , then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�

� .r�1/ mod 2

C
X

0�r�.bC1/=2

�aCbC1�r�2aC1Cr

 

�

1
2
b
˘

�
�

1
2
r
˘

�

1
2
r
˘

!

�:

Proof By Theorem 2.1.7, the bimodule of relations defining ƒ as a quadratic algebra with generating

bimodule ƒŒ1� may be identified as AŒ2�_ D ker.AŒ1�_˝AŒ1�_!R_/, where R �AŒ1�˝AŒ1� is the

projection of the subbimodule qR �A�1˝A�1 of Adem relations recalled in Theorem 2.2.2. It follows

by direct computation that this kernel is generated by the indicated relations.

Remark 2.3.8 Unless both a and b are even, the Adem relation expanding a product of the form �a�b

is exactly as in the classical lambda algebra. G

The additive structure of ƒ may be understood just as in the classical case.

Definition 2.3.9 Given a sequence I D .r1; : : : ; rn/, write �I D �r1
� � ��rn

. Call the sequence I

coadmissible if 2ri � riC1 for all 1� i � n� 1. G

Proposition 2.3.10 ƒ is freely generated as a right M-module by classes of the form �I , where I is a

coadmissible sequence.

Proof The relations of Proposition 2.3.7 imply that the coadmissible classes �I generate ƒ as a right

M-module, and we must only verify that they do so freely. Following Remarks 2.2.8 and 2.3.2, there is

an isomorphism
ƒŠƒR˝MR MI

thus we may reduce to the case where F DR. By construction, ƒ is free as a right M-module. Thus, to

show that the coadmissible classes �I freely generate ƒ over M, it is sufficient to verify the same for

ƒ=.�/Œ��1� over M=.�/Œ��1�. There is an isomorphism ƒ=.�/Œ��1�Šƒcl˝F2
F2Œ�

˙1�, so this follows

from the classical case.

Finally, we describe the differential on ƒ by applying Theorem 2.1.8.

Proposition 2.3.11 The differential on ƒ is determined by the Leibniz rule , together with

ı.x/D 0 for x 2M0 ı.�/D �0�; ı.�n/D
X

1�r�n=2

�n�r�r�1

�n�r
r

�

:
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Proof Recall the construction A
bigD

L

m�0A�m used in the statement of Theorem 2.1.9. By inspection,

we find that Abig may be identified as the ªbig motivic Steenrod algebraº, defined with generators and

relations the same as A only without the stipulation that Sq0 D 1. Let ƒbig DKAbig.M;M/, where A
big

acts on M through the quotient Abig!A, ie with Sq0 acting by the identity.

Theorem 2.1.9 tells us that Abig is a homogeneous Koszul algebra, and that there is an inclusion ƒ�ƒbig

of differential graded algebras. As A
big is homogeneous Koszul, Theorem 2.1.7 applies to show that

ƒbig is generated by classes �r for r � �1, subject to relations of the same form as described for ƒ in

Propositions 2.3.6 and 2.3.7. The inclusion ƒ�ƒbig is the obvious one, identifying ƒ as the subalgebra

of ƒbig generated by the classes �r for r � 0.

Theorem 2.1.8 describes the differential on ƒbig as

ı.f /D ŒQ; f �DQ �f �f �Q;

where Q 2ƒbigŒ1�Š .AbigŒ1�/_ is the map A
bigŒ1�ŠA�1˝M!M induced by the action of Abig on M.

In the basis AbigŒ1�DA�1 DMfSqr W r � 0g, this map is the projection onto Sq0, which by definition is

the class ��1 2ƒ
big. So the differential on ƒbig is given by

ı.f /D Œ��1; f �D ��1f �f ��1;

and ƒ�ƒbig is closed under this. The proposition follows upon expanding out this commutator using

the relations defining the algebra ƒbig.

Remark 2.3.12 The description of the differential onƒ as the commutator ı.f /D Œ��1; f � has appeared

classically as well; see [Bruner 1988, page 83]. G

2.3.3 A closed formula for ı.�n/ Proposition 2.3.11 gives a recursive process for computing ı.�n/. It

is possible to solve this recursion, and we do so here. Recall that the pair .M;A_/ carries the structure

of a Hopf algebroid. In particular, A_ is a commutative ring, and A
_
�1 is a quotient of this ring. Now, the

differential ı WƒŒ0�!ƒŒ1� may be described as the composite

�RC �L WƒŒ0�DM!A
_!A

_
�1! coker.M!A

_
�1/DƒŒ1�;

where �L; �R W M ! A
_ are given by �R.m/.a/ D �.ma/ and �L.m/.a/ D �.am/, where � W A D

A˝M M!M encodes the action of A on M.

We may use this interpretation to compute ı.�n/. The full structure of the Hopf algebroid .M;A_/ was

determined by Voevodsky [2003]; however, we only need a small piece of this, which is easily computed

by hand from the structure of A recalled in Section 2.2. We record this piece in the following.

Lemma 2.3.13 There is an isomorphism of rings

A
_
�1 DMŒ�0; �1�=.�

2
0 C �1�0�C �1�/;

where the quotient map

A
_
�1!ƒŒ1�
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acts by

��0�
n
1 7! �2n�1C�

for � 2 f0; 1g and n � 0, with the interpretation that ��1 D 0. Moreover , the maps �L; �R WM! A
_
�1

act by

�R.x/D x for x 2M; �L.x/D x for x 2M0; �L.�/D � C �0�:

Proof The structure of the ring A
_
�1 may be read off the coproduct of A, as given in Proposition 2.2.5,

and its relation with our basis of ƒŒ1� then follows by construction. The behavior of the left and right

units may be read off the M-bimodule structure of A�1 as given in Proposition 2.3.11, together with

knowledge of the counit map � WA�1!M given in Proposition 2.2.6.

The main input to our computation of ı.�n/ is the following elementary computation.

Lemma 2.3.14 In the ring A
_
�1, we have

�n0 D
X

�2f0;1g
.n��/=2�i�n�1

��0�
i
1

� iC��1
n�i�1

�

�n�i���2i�nC�:

These bounds on i are not necessary, but give a region where the binomial coefficients may be nonzero.

Proof We first compute �n in the quotient ring

F2Œ�0; �1�=.�
2
0 C �1�0C �1/

of A_
�1, in which both � and � are set to 1. Clearly,

�n0 D
X

0�i�n

.� i1cn;i C �0�
i
1dn;i /

for some cn;i ; dn;i 2 F2. The relation

�n0 D �1.�
n�1
0 C �n�2

0 /

gives rise to recurrence relations

cn;i D cn�1;i�1C cn�2;i�1; dn;i D dn�1;i�1C dn�2;i�1:

Set c0
i;n D cnCi;i and d 0

i;n D dnCi;i . Then these relations become

c0
i;n D c

0
i�1;n�1C c

0
i�1;n; d 0

i;n D d
0
i�1;n�1C d

0
i�1;n;

exactly as seen in Pascal’s triangle. Paired with the initial conditions

c0
i;0 D c

0
0;1 D d

0
1;0 D 0; c0

1;1 D 1D d
0
0;1;

we find that
c0
i;n D

� i�1
n�1

�

; d 0
n;i D

� i

n�1

�

;
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and thus

cn;i D
� i�1
n�i�1

�

; dn;i D
� i

n�i�1

�

:

Plugging this back in, we find

�n0 D
X

0�i�n

�

� i1

� i�1
n�i�1

�

C �0�
i
1

� i

n�i�1

��

D
X

�2f0;1g
0�i�n

��0�
i
1

� iC��1
n�i�1

�

:

To compute �n0 in A
_
�1 itself, recall that j� j D .0;�1/, j�j D .�1;�1/, j�0j D .1; 0/, j�1j D .2; 1/. Solving

j�n0 j D j�
�
0�
i
1�
a�bj

yields

aD n� i � �; b D 2i �nC �:

It follows that

�n0 D
X

�2f0;1g
0�i�n

��0�
i
1

� iC��1
n�i�1

�

�n�i���2i�nC�

in A
_
�1. For this binomial coefficient to be nonzero, we require

0� i C �� 1; 0� n� i � 1; n� i � 1� i C �� 1;

giving the stated bounds on summation.

Proposition 2.3.15 The differential ı satisfies

ı.�n/D
X

r�0

�r

 

nC
�

1
2
r
˘

r C 1

!

�n�br=2c�1�rC1:

Proof Following Lemma 2.3.13, to compute ı.�n/ one may compute

�nC .� C �0�/
n

in terms of the standard basis of A_
�1 DMŒ�0; �1�=.�

2
0 C �1�0�C �1�/. Moreover, it is sufficient to work

in the quotient of A_
�1 wherein � and � are set to 1, as the necessary quantity of �’s and �’s may be

recovered by comparing degrees, just as in the proof of Lemma 2.3.14. Using Lemma 2.3.14, we find

1C .1C �0/
n D

X

1�k�n

�n

k

�

�k0 D
X

1�k�n

�n

k

�

X

�2f0;1g
i�0

� iC��1
k�i�1

�

��0�
i
1I

here we are free to omit the bounds of summation on i , as they merely recorded when certain binomial

coefficients were zero. The coefficient of ��0�
i
1 in this sum is

X

1�k�n

�n

k

�� iC��1
k�i�1

�

D
X

1�k�n

�n

k

�� iC��1
2iC��k

�

D
�nCiC��1

2iC�

�

I
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here the first equality uses the standard identity
�

a
b

�

D
�

a
a�b

�

, and the second uses Vandermonde’s identity.

Adding in a sufficient number of �’s and � ’s, and converting to ƒŒ1�, we learn

ı.�n/D
X

�2f0;1g; i�0
.i;�/¤.0;0/

�2iC��1

�nCiC��1
2iC�

�

�n�i���2iC�:

Set r D 2i C �� 1. Then
�

1
2
r
˘

D i C �� 1, leading to the given description.

2.3.4 Lift of Sq0 The dual motivic Steenrod algebra A
_ is a commutative Hopf algebroid, and thus

its cohomology, which agrees by definition with ExtA.M;M/, is equipped with algebraic Steenrod

operations [Bruner 1986a]. The purpose of this section is to lift the operation Sq0 to an endomorphism

of ƒ. Our approach essentially follows the proof of [Palmieri 2007, Proposition 1.4].

Let C.A/D CA.M;M/ denote the cobar complex of the algebra A; this is by definition the same as the

cobar complex of the Hopf algebroid A
_. As A_ is a commutative ring, C.A/ is the Moore complex

of a cosimplicial commutative ring, and the levelwise Frobenius on this cosimplicial commutative ring

induces a map
� W C.A/! C.A/:

This is a map of differential graded algebras, and Sq0 is the map induced by � in homology.

Theorem 2.3.16 The map � W C.A/! C.A/ induced by the levelwise Frobenius descends to a map

� Wƒ!ƒ

of differential graded algebras. This map is given on generators by

�.x/D x2 for x 2M; �.�2n�1/D �4n�1; �.�2n/D �4nC1� C�4nC2�:

Proof Recall Abig and ƒbig from the proof of Proposition 2.3.11. Let C.Abig/ be the cobar complex

for Abig with respect to augmentation of Abig, so that H�C.A
big/ D ƒbig as algebras. The levelwise

Frobenius gives a map
� W C.Abig/! C.Abig/

of differential graded algebras and, by taking homology, this induces a map

� 0 Wƒbig!ƒbig

of algebras. We claim that to produce � it suffices to show that � 0 restricts to an endomorphism of

ƒ�ƒbig satisfying the given formulas. Indeed, there is an inclusion C.A/� C.Abig/ of algebras, which

does not respect differentials but does commute with the levelwise Frobenius � . It would thus follow

that the restriction � of � 0 to ƒ is induced by the levelwise Frobenius on C.A/. In particular, this would

show that � W C.A/! C.A/ indeed descends to an algebra map � Wƒ!ƒ. That � moreover respects

the differential is inherited from � .
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To understand � 0, it suffices to understand its effect on the generators of ƒbig, ie to understand the map

� 0 WƒbigŒ1�!ƒbigŒ1�:

Recall that ƒbigŒ1�D .AbigŒ1�/_ DA
_
�1. This ring was described in Lemma 2.3.13, and � 0 acts on it by

the Frobenius. We find that � 0 satisfies the same formulas as described for � , only with the addition that

� 0.��1/D ��1. In particular, � 0 does restrict to ƒ, and this restriction satisfies the stated formulas.

2.4 Summary

For ease of reference, let us summarize what we have learned in one place. As always, F is a base field

of characteristic not equal to 2.

2.4.1 Generators There is a differential graded algebra ƒF, the F -motivic lambda algebra, together

with a multiplicative quasiisomorphism C.AF /!ƒF, where C.AF / is the reduced cobar complex of AF.

We write ƒF D
L

m�0ƒ
F Œm�, where the differential on ƒF is of the form ı WƒF Œm�!ƒF ŒmC 1�.

The F -motivic lambda algebra ƒF is an MF -bimodule algebra, generated by classes �r 2 ƒF Œ1� for

r � 0. In the trigrading .stem;filtration;weight/, we have

j� j D .0; 0;�1/; j�j D .�1; 0;�1/; j�aj D
�

a; 1;
˙

1
2
a
��

:

A right MF -module basis of ƒF is given by those �r1
� � ��rn

with 2ri � riC1 for 1� i � n� 1.

2.4.2 Relations The F -motivic lambda algebra is a quadratic MF -bimodule algebra. Recall that

MF DMF
0 Œ� �. The MF -bimodule structure of ƒF is determined by

x�nD�nx for x 2MF
0 ; ��2nC1D�2nC1�C�2nC2�; ��2nD�2n�C�2nC1��C�2nC2�

2;

and the quadratic relations are given as follows. Fix a; b � 0. If a is odd or b is even, then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�

I

and if a is even and b is odd, then

�a�2aCbC1 D
X

0�r<b=2

�aCb�r�2aC1Cr

�b�r�1
r

�

� .r�1/ mod 2

C
X

0�r�db=2e

�aCbC1�r�2aC1Cr

 

�

1
2
b
˘

�
�

1
2
r
˘

�

1
2
r
˘

!

�:

2.4.3 Differentials The differential on ƒ is determined by the Leibniz rule, together with

ı.x/D 0 for x 2MF
0 ; ı.�/D �0�; ı.�n/D

X

1�r�n=2

�n�r�r�1

�n�r
r

�

:

Moreover, we have

ı.�n/D
X

r�0

�r

 

nC
�

1
2
r
˘

r C 1

!

�n�br=2c�1�rC1:
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2.4.4 The endomorphism � The squaring operation Sq0 W Exts;f;wF ! Ext2sCf;f;wCf
F lifts to an

endomorphism � WƒF !ƒF of differential graded algebras, determined by

�.x/D x2 for x 2MF ; �.�2n�1/D �4n�1; �.�2n/D �4nC1� C�4nC2�:

3 Some first examples, and the doubling map

3.1 First examples

Before continuing on, we give some basic examples illustrating the form of the motivic lambda algebra.

In particular, we use ƒF to define some classes in ExtF , and reprove some well-known low-dimensional

relations. This material is meant only to familiarize the reader with ƒF ; we give a more thorough and

entirely self-contained investigation in Section 4.

Given a cycle z 2ƒF, in this section we write Œz� 2 ExtF for the corresponding cohomology class.

Lemma 3.1.1 We have ı.�2a�1/D 0 for all a � 0.

Proof The proof is identical to the proof of [Wang 1967, Proposition 2.2].

This allows us to define the following Hopf elements.

Definition 3.1.2 Let ha WD Œ�2a�1�. G

Lemma 3.1.3 If �D 0 in MF, such as when F is algebraically closed , then ı.�n/D 0 for all n� 0.

Proof This is immediate from the differential ı.�/D �0�.

In general, if � is nilpotent in MF, then various powers of � will be cycles in ƒF. We shall write �n in

place of Œ�n� in this case. We begin by considering some examples in the case where F is algebraically

closed.

Proposition 3.1.4 For F algebraically closed , there is a relation

� � h31 D h2h
2
0:

Proof By definition, � � h31 D Œ�
3
1�� and h2h20 D h

2
0h2 D Œ�

2
0�3�. We have

�20�3 D �
3
1�;

so these classes coincide in ExtF .

Proposition 3.1.5 For F algebraically closed , there is a relation

� � h41 D 0:

However , hn1 ¤ 0 for any n.
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Proof Observe that �0�1 D 0, and thus h1h0 D 0. Combined with Proposition 3.1.4, we find

� � h41 D �h
3
1 � h1 D h2h

2
0 � h1 D 0:

Alternatively, �h41 D Œ�
4
1��, and there is a differential

ı.�22�1/D �
4
1�:

On the other hand, for hn1 to vanish, the class �n1 must be nullhomotopic, ie ı.x/D �n1 for some x 2ƒ.

The class x must live in stem nC 1, weight n, and filtration n� 1, and in this degree ƒ is generated by

the cycle �3�n�2
1 . So no such x exists.

Next we consider some examples relevant to base fields F over which � does not vanish. We begin by

defining some classes. Note that the differential

ı.�/D �0�

implies that ı.�2
n

/� 0 .mod �2
n

/. This allows for the following definition.

Definition 3.1.6 If F DR, then
�2

a�1

ha WD

�

1

�2
a ı.�

2a

/

�

for a � 1. In general, �2
a�1

ha 2 ExtF is defined by pushing these classes forward along the map

ƒR!ƒF induced by MR!MF (see Remark 2.2.8). G

Remark 3.1.7 Following our convention that ƒF is considered primarily as a right MF -module, it

would be more natural to write ha�2
a�1

for the classes introduced above. We have chosen instead to

work with naming conventions compatible with those in [Belmont and Isaksen 2022], as no confusion

should arise. G

Remark 3.1.8 If �2
a�1

is a cycle in ExtF , then �2
a�1

ha D �
2a�1

� ha. G

Example 3.1.9 We have

�h1D Œ�1�C�2��; �2h2D Œ�3�
2C�5��

2C�6�
3�; �4h3D Œ�7�

4C�11�
2�4C�13��

6C�14�
7�:

In fact, we may identify �b2a�1cha D Œ�
2a

�2a�1� for all a � 1. G

The following relation was proved over R by Dugger and Isaksen [2017a, Proof of Lemma 6.2] using

Massey products and May’s convergence theorem. We may use the lambda algebra to provide an explicit

direct proof.

Proposition 3.1.10 There is a relation

.h0C �h1/ � �h1 D 0:

Proof By definition,

h0 � �h1 D Œ�0.�1� C�2�/�; �h1 � �h1 D Œ��1.�1� C�2�/�:
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Expanding, we have

�0.�1� C�2�/D �
2
1��C�1�2�

2C�2�1�
2; �h1.�1� C�2�/D �

2
1��C�1�2�

2:

But
ı.�3��C�4�

2/D �2�1�
2;

so h0 � �h1 D �h1 � �h1. The proposition follows.

The fact that ı.�n/� 0 .mod �/ allows for the following definition.

Definition 3.1.11 If F DR, then
�2nh0 WD

h

1

�
ı.�2nC1/

i

:

In general, �2nh0 2 ExtF is defined by pushing these classes forward along the map ƒR!ƒF induced

by MR!MF (see Remark 2.2.8). G

Example 3.1.12 We have

h0 D Œ�0�;

�2h0 D Œ�0�
2C�1�

2�C�3��
3C�4�

4�;

�4h0 D Œ�0�
4C�3�

3�3C�4�
2�4C�5�

2�5C�7��
7C�8�

8�: G

The following proposition was originally proved over R by Dugger and Isaksen [2017a, Proof of

Lemma 6.2] using Massey products, May’s convergence theorem, and analysis of the �-Bockstein

spectral sequence. Using the lambda algebra, the proof amounts to checking that the products of cycle

representatives are equal.

Proposition 3.1.13 There is a relation

�2h0 � h1 D �.�h1/
2:

Proof We may directly compute

�2h0 � h1 D Œ.�0�
2C�1�

2�C�3��
3C�4�

4/�1�

D Œ�21�
2�C�2�1��

2C�22�
3C�2�3�

4�

D Œ�.�1� C�2�/
2�D �.�h1/

2:

3.2 The doubling map

Dugger and Isaksen [2017a, Theorem 4.1] produce an isomorphism

ExtclŒ�
˙1�Š ExtRŒ�

�1�;

which doubles internal degrees. We can lift this isomorphism to a quasiisomorphism of lambda algebras.
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Proposition 3.2.1 Let ƒdcl denote the classic lambda algebra , only given a motivic grading where j�nj

has stem 2nC 1 and weight nC 1. For any F, there is a retraction

ƒdcl z��!ƒF !ƒF
q
�!ƒdcl

with the following properties:

(1) All maps shown are maps of differential graded algebras respecting � .

(2) z� is given on generators by z�.�n/D �2nC1.

(3) q is given on generators by q.�/D 0, q.�2n/D 0, and q.�2nC1/D �n.

Now say F DR, and write Ext�-tors
R

� ExtR for the �-torsion subgroup of ExtR.

(4) The map ExtdclŒ��˚Ext�-tors
R
!ExtR induced by z� and the inclusion of �-torsion is an isomorphism.

(5) In particular , z� extends to a quasiisomorphism ƒdcl˝F2
F2Œ�

˙1�!ƒRŒ��1�.

Proof The assignments given in (2) and (3) are easily seen to extend to maps of differential graded

algebras, proving (1), and that the resulting sequence is a retraction is clear. Evidently (4) implies (5), so

we are left with proving (4).

It is equivalent to verify that the composite ExtdclŒ��! ExtR! ExtR =Ext�-tors
R

is an isomorphism. This

is a split inclusion of free F2Œ��-modules, so for it to be an isomorphism it is sufficient to verify that it is an

isomorphism after inverting �, and for this it is sufficient for the injection ExtdclŒ�
˙1�! ExtRŒ��1� to be

an isomorphism. By Dugger and Isaksen’s isomorphism [2017a, Theorem 4.1] ExtRŒ��1�Š ExtdclŒ�
˙1�,

we find that our map ExtdclŒ�
˙1�! ExtRŒ��1� is an injection between vector spaces of equal finite rank

in each degree, and is thus an isomorphism.

Remark 3.2.2 Proposition 3.2.1 has the following amusing corollary: there is a multiplicative injection

Q W ker.Sq0 W Extcl! Extcl/! Ext�-tors
C ;

acting in degrees as Sq0 would. For example, as z��n0 D �
n
1 , we find that Q.hn0/ D h

n
1 . This provides

another explanation of the fact that h1 is not nilpotent in ExtC . It is natural to ask whether Q accounts for

all indecomposable � -torsion classes in ExtC , but a counterexample is given by the class B6 in stem 55

and filtration 7, as Ext24;7cl D 0. G

4 ExtR in filtrations f � 3

In this section, we use the R-motivic lambda algebra to compute Extf
R

for f � 3. Throughout this section,

we shall abbreviate

ƒDƒR:
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4.1 Preliminaries

We begin by describing our strategy for computing ExtR. We rely on the following device, which uses

ideas from Tangora’s work [1985] on the classic lambda algebra to produce something like a chain-level

lift of the �-Bockstein spectral sequence [Hill 2011]. While the algorithm is essentially standard, we

include a detailed description since we were unable to find a reference with the algorithm in precisely the

form we need in the sequel. We begin with some preliminary definitions.

Definition 4.1.1 Let V D F2fxs W s 2 Sg be a (locally) finite F2-vector space with ordered basis.

(1) The leading term of a class x 2 V is the largest term appearing when x is written as a sum of basis

elements.

(2) We write x < x0 when the leading term of x is less than that of x0.

(3) Given another vector space U D F2fxs W s 2 T g with ordered basis, map � W V ! U, and s 2 S and

t 2 T, we write

�.xsC</D yt C<

for the relation that there exist some classes u < xs and v < yt for which �.xsCu/D yt Cv. G

The main technical lemma we need is the following. The reader is invited to skip this lemma on first

reading; the details are not necessary to understand our computation, and we rephrase what we need in

the context of ƒ in Theorem 4.1.4.

Lemma 4.1.2 Let .C; d/ be a chain complex of locally finite and free F2Œ��-modules , and suppose (for

simplicity) that H�C Œ�
�1�D 0. Choose an ordered basis F2fxs W s 2 T g for C=.�/, and extend this to a

basis F2f�
nxs W .s; n/ 2 T �Ng for C, itself ordered by �nxs < �

mxt whenever n > m, or else nD m

and s < t . Let f˛s W s 2 Bg be a basis for H�.C=.�//, indexed by a subset B � T with the property that ,

for each ˛s , there is some zs 2 C with leading term xs which projects to a cycle representative of ˛s . Let

B1 � B be the subset of those s for which xs is the leading term of some cycle in C, and let B0 D B nB1.

There is then a unique injection t W B0! B such that

d.xsC</D �
r.s/xt.s/C<

for all s 2 B0. Here r.s/� 1 is an integer uniquely determined by comparing the degrees of xs and xt.s/.

Moreover , t restricts to a bijection t W B0 Š B1, and there is an isomorphism

H�C D
M

s2B0

F2Œ��=.�
r.s//;

where we may take the summand indexed by s to be generated by any class of the form ��r.s/ �d.xsC</

with leading term xt.s/.
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Proof We begin by defining a function t�1 WB1!B. Fix b 2B1; we claim that there exists some s 2B

such that d.xs C</ D xb C<. The function t�1 will then be defined by declaring t�1.b/ to be the

minimal s for which d.xsC</D xbC<.

Indeed, let zb be a cycle with leading term xb which projects to a cycle representative for ˛b . As

H�C Œ�
�1� D 0, necessarily �rzb is nullhomologous for some minimal r � 1. That is, there is some

y 2 C not divisible by � such that d.y/D �rzb . If y D xsC< with s 2 B, then we are done. Otherwise,

as y is a cycle in C=.�/, necessarily y is homologous to some xsCu with u < xs and s 2 B, in which

case there exists some v with d.v/D xsCuCy. We find that

d.xsC</D d.xsCu/D d.xsCuC d.v//D d.y/D �
rzb D �

rxbC<;

as claimed. Thus we have produced the function t�1.

Next we claim that t�1 restricts to a function t�1 W B1! B0. Indeed, suppose towards contradiction that

there are some b 2 B1 such that xt�1.b/ is the leading term of some cycle. That is to say, suppose given

u; v < xt�1.b/ such that

d.xt�1.b/Cu/D xbC<; d.xt�1.b/C v/D 0:

Adding these together, we find

d.uC v/D xbC<:

As uC v < xt�1.b/, this contradicts minimality of t�1.b/. Thus we have a function t�1 W B1! B0.

Next we claim that t�1 is a bijection. It is a function between locally finite sets, and the assumption that

H�C Œ�
�1� D 0 implies that these sets have the same cardinality in each degree. So it is sufficient to

verify that t�1 is an injection. Indeed, suppose towards contradiction that there were some b < c in B1
for which t�1.b/D s D t�1.c/. Thus there are u; v < xs such that

d.xsCu/D xbC<; d.xsC v/D xc C<:

Adding these together, we find

d.uC v/D xc C<:

As uC v < xs , this contradicts minimality of t�1.c/.

By taking the inverse of t�1 W B1! B0, we have thus proved the existence of a bijection t W B0! B1

with the property that d.xsC</D xt.s/C< for all s 2B0. With this t , the given description of H�C is

clear; in effect, we have described how to choose a basis for C for which d is upper triangular, where,

if a diagonal entry is divisible by �r , so too are all entries above it. Compare the notion of a tag from

[Tangora 1985].

It remains to verify uniqueness. Suppose towards contradiction that we have found some other injection

t 0 W B0! B such that d.xsC</D xt 0.s/C< for all s 2 B0. The condition that t 0 ¤ t means that there
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exists some s 2 B0 for which d.xsC</D xt 0.s/C<, but s is not minimal among possible a 2 B0 with

d.xaC</D xt 0.s/C<. Choose such s with t 0.s/ maximal, and let aD t�1.t 0.s// be the minimal a 2B0
with d.xaC</D xt 0.s/C<. So there are u; v < xa for which

d.xaCu/D xt 0.s/C<; d.xaC v/D xt 0.a/C<:

Adding these together, we find that

d.uC v/D xt 0.s/C xt 0.a/C<;

where uC v < xa. If t 0.a/ < t 0.s/, then this reduces to

d.uC v/D xt 0.s/C<;

contradicting minimality of a. If t 0.s/ < t 0.a/, then this reduces to

d.uC v/D xt 0.a/C<;

contradicting maximality of t 0.s/. So there is no such t 0, proving that t is the unique injection satisfying

the required property.

We now specialize to the computation of ExtR. Observe that by Proposition 3.2.1, we may reduce to

considering only the �-torsion subgroup of ExtR. In terms of ƒ, this amounts to ignoring monomials of

the form �I where I is a sequence of odd numbers. We will apply Lemma 4.1.2 to compute this �-torsion

subgroup as follows.

We take as basis of ƒ=.�/ the standard basis �I �n where I is coadmissible (Definition 2.3.9) and n� 0.

We also need to order this basis. In the region where we will compute, our choice of order makes

no difference, in the sense that all ªerror termsº appearing in ªC<º will be divisible by �. But for

concreteness let us say that �I �n < �J �m if n > m, or else n D m and I < J lexicographically, ie if

I D .i1; : : : ; if / and J D .j1; : : : ; jf /, then i1 < j1, or else i1 D j1 and i2 < j2, and so forth.

We must fix some further notation. Let f˛0
s W s 2 S0g be a basis for Extcl, and write ˛s 2 ExtC for the

image of ˛0
s under the map induced by z� Wƒdcl!ƒC (see Proposition 3.2.1). Extend this to a minimal

generating set f˛s W s 2 Sg for ExtC as an F2Œ� �-module. For s 2 S, let ns denote the � -torsion exponent

of ˛s , so that f˛s�n W s 2S; n<nsg is an F2-basis for ExtC . For each s 2S, choose a distinct coadmissible

monomial �I.s/ which is the leading term of a cycle representative for ˛s in ƒC , making this choice so

that, if s 2 S0, then �I.s/ is in the image of z� . See the discussion following Proposition 4.2.1 for the

particular choices we will take in our computation.

Let B 0 D f.s; n/ W s 2 S; n < nsg. Given b D .s; n/ 2 B 0, write xb D �I.s/�
n 2 ƒR. Let B � B 0 be the

subset of pairs not of the form .s; 0/ with s 2 S0. Let B1 � B be the subset of those b such that xb is the

leading term of some cycle, and let B0 D B nB1. Let BŒf �� B be the subset of those b for which xb is

in filtration f, and extend this notation to all the indexing sets under consideration.
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For our computation, we will produce, for every b 2 B0Œf � with f � 2, some t .b/ 2 B such that

ı.xbC</D �
r.b/xt.b/C<;

making this choice so that t WB0!B is injective. Here r.b/� 1 is some integer which may be determined

by comparing the stems of xb and xt.b/.

Definition 4.1.3 In the above situation, we shall write xb! xt.b/�
r.b/. G

Theorem 4.1.4 Fix notation as above. Then:

(1) t is uniquely determined (given our choice of ordered basis).

(2) t restricts to bijections t W B0Œf �Š B1Œf C 1�.

(3) The �-torsion subgroup of ExtfC1
R

is isomorphic to
M

b2B0Œf �

F2Œ��=.�
r.b//;

where the summand corresponding to b 2 B0Œf � is generated by any class of the form

ı.xbC</

�r.b/

with leading term xt.b/.

Proof This follows by specializing Lemma 4.1.2 to the complementary summand of z� Wƒcl �ƒ.

Most notably, the �-torsion in ExtfC1
R

is obtained by understanding differentials out of ƒŒf �; this is

significantly easier than finding cycles in ƒŒf C 1� directly.

We end with two remarks, which could have been made in the more general context of Lemma 4.1.2.

Remark 4.1.5 More generally, H�.AR=.�m//DH�.ƒ=.�
m// (denoted by Ext.m/ in Section 7) may

be read off our computation as follows. For each b 2 B0, choose ub 2 ƒ such that ub < xb and

ı.xbCub/D �
r.b/xt.b/C<, and let zb D �

�r.b/ � ı.xbCub/. Then H�.ƒ=.�
m// is given as follows:

(1) For each s 2 S0, there is a summand of the form F2Œ��=.�
m/, generated by the image of ˛s .

(2) For each xb! �r.b/xt.b/, there is a summand of the form F2Œ��=.�
min.m;r.b///, generated by the

class with cycle representative zs .

(3) For each xb! �r.b/xt.b/, there is a summand of the form F2Œ��=.�
m�max.0;m�r.b///, generated

by the class with cycle representative �max.0;m�r.b//.xbCub/. G

Remark 4.1.6 Our approach to computing ExtR via ƒ is closely related to the computation of ExtR via

the �-Bockstein spectral sequence ExtCŒ��) ExtR [Hill 2011]. The precise relation is as follows. For

b D .s; n/ 2 B, let ˛b D ˛s�
n, so that f˛b W b 2 Bg is a basis of ExtC . Our ordering on ƒ and choice of

classes xb gives B an order, thus making this into an ordered basis of ExtC . Now, xb ! �r.b/xt.b/ if

and only if dr.b/.˛bC</D �
r.b/˛t.b/C< in the �-Bockstein spectral sequence. G
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The above discussion describes how we will compute Ext�3
R

as an F2Œ��-module. The computation gives

more, as it produces explicit cocycle representatives for our generators of Ext�3
R

. We will use this in

Section 4.3 to compute products in Ext�3
R

.

4.2 Ext
f

R
for f � 3

We now proceed to the computation. We begin by understanding ƒR=.�/ŠƒC .

Proposition 4.2.1 Ext�3
C

is generated as a commutative F2Œ� �-algebra by classes ha for a�0, represented

in ƒC by �2a�1, and ca for a � 0, represented in ƒC by �2a3�1�
2
2aC2�1

. A full set of relations is given

by

haC1ha D 0; h2aC2ha D 0; h2h
2
0 D �h

3
1; haC3h

2
aC1 D h

3
aC2

for all a � 0. This is free over F2Œ� �, with basis given by the classes in the following table:

class constraints

1

ha a � 0

ha � hb a � b � 0 and a¤ bC 1

ha � hb � hc a � b � c � 0 with a¤ bC 1, b ¤ cC 1 and , if b D c or aD b, then a¤ cC 2

ca a � 0

The only such classes not in the image of z� W Extdcl! ExtC are those in which either h0 or c0 appears.

Proof This is essentially well known, owing to work of Isaksen [2019] on the cohomology of the

C-motivic Steenrod algebra. Alternatively, one may compute H�3.ƒ
C=.�// following Wang’s approach

[1967], and run the � -Bockstein spectral sequence to recover Ext�3
C

. One finds that H�3.ƒ
C=.�// agrees

with Ext�3cl , with two exceptions:

(1) Instead of h20 � h2 D h
3
1, one has h20 � h2 D 0.

(2) There is a new cycle ˛ represented by �22�1.

There is a � -Bockstein differential d1.˛/D �h41, after which we recover the claimed F2Œ� �-module basis

of Ext�3
C

. The hidden extension h20 �h2 D �h
3
1 was shown in Proposition 3.1.4; alternatively, it is the only

relation compatible with Sq0.h20 � h2/D �
2h21h3 D �

2h32 D Sq0.�h31/.

Proposition 4.2.1 describes a basis for Ext�3
C

, thus giving our set SŒ�3�. We must also choose lambda

algebra representatives of these classes. We shall choose cn to be represented by �2n3�1�
2
2nC2�1

and

a product hn1
� � � hnk

with n1 � � � � � nk to be represented by �2n1 �1 � � ��2nk �1. We warn that these

representatives are not minimal; for example, we have chosen �3�0 as our representative for h2h0, rather

than the minimal representative �2�1. However, they are easily defined and convenient enough for our

computation.
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The following identity will be used frequently in consolidating various cases in our computation. It is an

immediate consequence of the description of � given in Theorem 2.3.16.

Lemma 4.2.2 We have

�a.�0�
n/D �2a�1�

b2a�1.2nC1/cCO.�2
a�1

/

for all n� 0, the error term being omitted when aD 0.

Remark 4.2.3 Explicitly,

b2a�1.2nC 1/c D

�

2a�1.2nC 1/ if a � 1;

n if aD 0:

This sort of pattern appears frequently throughout our computation, as a consequence of Lemma 4.2.2. G

We now produce the relation ª!º described in Definition 4.1.3, proceeding filtration by filtration. To

start, observe that B0Œ0�D f�n W n� 1g.

Proposition 4.2.4 We have

ı.�2
a.2mC1//D �2a�1�

b2a�1.4mC1/c�2
a

CO.�d2aC2a�1e/

for all a;m� 0. In particular ,

�2
a.2mC1/! �2a�1�

b2a�1.4mC1/c�2
a

:

Proof When aD 0, as �2 is a cycle mod �2, we may compute

ı.�2mC1/D ı.�/�2mCO.�2/D �0�
2m�CO.�2/;

as claimed. By Lemma 4.2.2, applying �a for a � 1 to this yields

ı.�2
a.2mC1//D .�2a�1�

2a�1.4mC1/CO.�2
a�1

//�2
a

CO.�2
aC1

/

D �2a�1�
b2a�1.4mC1/c�2

a

CO.�2
aC2a�1

/:

Combining the cases aD 0 and a � 1 yields the proposition.

Corollary 4.2.5 The set B0Œ1� consists of those �2a�1�
n such that n is not of the form 2a�1.4mC 1/

for any m.

We have located the following indecomposable classes.

Definition 4.2.6 For a; n� 0, we declare

�b2a�1.4nC1/cha

to be the class represented by
��2a

� ı.�2
a.2nC1//: G
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We now compute out of B0Œ1�.

Proposition 4.2.7 For the combinations of a and b below , we have �2b�1�
2a.2mC1/! the following

monomial :
row case target

.1/ a < b� 1 or aD b �2b�1�2a�1�
b2a�1.4mC1/c�2

a

.2/ a > bC 1 and b ¤ 0 �2a�1�2b�1�
b2a�1.4mC1/c�2

a

.3/ aD b� 1 and mD 2nC 1 �2
2b�1

�2
b.4nC1/�2

b

.4/ aD bC 1 and b ¤ 0 �2
2bC1�1

�b2b�1.8mC1/c�2
b3

Moreover , these cases are mutually exclusive and altogether exhaust B0Œ1�.

Proof That these cases are mutually exclusive and altogether exhaust B0Œ1� is seen by direct inspection.

As the monomials arising as targets are �-multiples of distinct elements of BŒ2�, it suffices to verify that

for each claim of x! y we have ı.xC</D yC<.

(1) We have

ı.�2b�1�
2a.2mC1//D �2b�1�2a�1�

b2a�1.4mC1/c�2
a

CO.�2
aC2a�1

/:

(2) Note that
�2

a.2mC1/�2b�1 D �2b�1�
2a.2mC1/C<;

as � is central mod �. Now we have

ı.�2
a.2mC1/�2b�1/D .�2a�1�

b2a�1.4mC1/c�2
a

CO.�2
aC2a�1

//�2b�1

D �2a�1�2b�1�
b2a�1.4mC1/c�2

a

CO.�2
aC1/:

(3) Note that
�b.�0�

2nC1/D �2b�1�
b2b�1.4nC3/cCO.�/:

Now we have

ı.�b.�0�
2nC1//D �b.ı.�0�

2nC1//D �b.�20�
2n�CO.�2//D �2

2b�1
�2

b.4nC1/�2
b

CO.�2
bC1/:

(4) We have

ı.�2b�1�
2bC1.2mC1//D ı.�b�1.�1�

8mC4//D �b�1.�1ı.�
4/�8mCO.�8//

D �b�1.�23�
8mC1�6CO.�7//D �2

2bC1�1
�2

b�1.8mC1/�2
b3CO.�2

b3C2b�1

/:

Here the third equality uses the Adem relations �1�3 D 0 and �1�5 D �3�3 to determine the leading

term of �1ı.�4/.

Corollary 4.2.8 The set B0Œ2� consists of those �2b�1�2c�1�
n where b D c or b � cC 2, and where

moreover:

(1) n¤ b2b�1.4mC 1/c and n¤ b2c�1.4mC 1/c for any m.

(2) If b D c D 0, then n is odd.
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(3) If b D c � 1, then n¤ 2b.4mC 1/ for any m.

(4) If b D c � 2, then n¤ 2b�2.8mC 1/ for any m.

We have located the following indecomposable classes.

Definition 4.2.9 For a; n� 0, we declare

�2
a.8nC1/h2aC2

to be the class represented by
��2aC13 � ı.�2aC1�1�

2aC2.2nC1// G

We now compute out of B0Œ2�.

Proposition 4.2.10 For bD c or b � cC2, we have �2b�1�2c�1�
2a.2mC1/! the following monomial :

# case target

(1) b D c D 0, aD�1, mD 2nC 1 �30�
2n�

(2) b D c � 1, aD b� 1, mD 2nC 1 �3
2b�1

�2
b.2nC1/�2

b

(3) b D c � 0, aD c, mD 2nC 1 �3
2b�1

�b2b�1.4.2nC1/C1/c

(4) b D c � 1, aD bC 1 �2b�13�1�
2
2bC1�1

�b2b�2.16mC1/c�2
b�17

(5) b D c � 1, aD bC 2 �2
2bC2�1

�2b�1�1�
b2b�2.2.16mC1/C1/c�2

b�113

(6) b D c � 1, a � bC 3 �2a�1�
2
2b�1

�b2a�1.4mC1/c�2
a

(7) b D c � 2, aD b� 2, mD 4nC 2 �3
2b�1

�b2b�2.2.4nC1/C1/c�2
b

(8) b D c � 2, aD b� 2, mD 2nC 1 �2b�23�1�
2
2b�1

�b2b�3.2.4nC1/C1/c�2
b�23

(9) b D c � 3, a � b� 3 �2
2b�1

�2a�1�
b2a�1.4mC1/c�2

a

(10) b� 2� c D 0, aD 0, mD 2nC 1 �2b�1�
2
0�
2n�

(11) b� 2D c � 1, aD b �2
c.8nC1/�2c3�1�

2
2cC2�1

�2
cC13

(12) b� 2D c � 1, a � bC 2 �2a�1�2b�1�2c�1�
b2a�1.4mC1/c�2

a

(13) b� 3� c � 1, a � b, a¤ bC 1 �2a�1�2b�1�2c�1�
b2a�1.4mC1/c�2

a

(14) b� 2� c � 1, c � a < b, a … fcC 1; b� 1g �2b�1�2a�1�2c�1�
b2a�1.4mC1/c�2

a

(15) b� 2D c � 1, aD c � 1, mD 2nC 1 �3
2cC1�1

�2
c.2nC1/�2

c

(16) b� 3� c � 1, aD c � 1, mD 2nC 1 �2b�1�
2
2c�1�

2c.2nC1/�2
c

(17) b� 2D c � 1, aD cC 1, mD 2nC 1 �3
2b�1

�b2b�3.4.4nC1/C1/c�2
b�27

(18) b� 3D c � 1, aD cC 1 �3
2cC2�1

�b2c�1.8mC1/c�2
c3

(19) b� 4� c � 1, aD cC 1 �2b�1�
2
2cC1�1

�b2c�1.8mC1/c�2
c3

(20) b� 3� c � 1, aD b� 1, mD 2nC 1 �2
2b�1

�2c�1�
2b.2nC1/�2

b

(21) b� 2� c � 1, aD bC 1 �2
2bC1�1

�2c�1�
b2b�1.8mC1/c�2

b3

(22) b� 2� c � 2, a � c � 2 �2b�1�2c�1�2a�1�
b2a�1.4mC1/c�2

a

Moreover , these cases are mutually exclusive and altogether exhaust B0Œ2�.
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Proof That these cases are mutually exclusive and altogether exhaust B0Œ2� is seen by direct inspection.

As the monomials arising as targets are �-multiples of distinct elements of BŒ3�, it suffices to verify that

for each claim of x! y we have ı.xC</D yC<.

Each case represents a collection of families of monomials whose leading terms are connected by � .

Thus we may always reduce to the smallest possible c, except in cases (9) and (22), where doing so

would place extra constraints on a. In addition, by working modulo the smallest power of � in which the

proposed target does not vanish, we may always reduce to the smallest possible m.

We may further divide the list of cases provided into three types: those which require no calculations

beyond those carried out in Proposition 4.2.7; cases (15) and (18); and the more interesting cases which do

require additional calculation, producing new indecomposable classes in Ext3
R

. Here cases (15) and (18)

are not really exceptional; they could be consolidated into cases (16) and (19), only this would require

slightly modifying the setup of Section 4.1, and it is easier to just separate them out. The more interesting

cases are (4), (5), (8), (11), and (17). The remaining less interesting cases may all be handled exactly

the same way as the first two cases of Proposition 4.2.7 were handled. Thus we shall not handle them

individually, and instead only illustrate this point with a verification of (21). With these reductions in

place, the proposition is proved by the following calculations:

(4) Here we are claiming ı.�21�
4C</D �2�

2
3�
7C<. In fact, ı.�21�

4/D �2�
2
3�
7 on the nose.

(5) Here we are claiming ı.�21�
8C</D �27�0��

13C<. Observe that ı.�21�
8/D �33�

4�8CO.�12/,

but �3�4�4 is already seen as a target in case (1). Thus some additional correction term must be added to

�21�
8 to get down to �27�0��

13. Such a correction term is given by

uD �23�
6�4C�3�5�

5�6C�3�6�
4�7C�5�7�

3�10C .�5�8C�6�7/�
2�11C .�11�3C�5�9/�

2�12

C .�8�7C�7�8C�6�9/��
13I

with this choice of u, we have ı.�21�
8Cu/D �27�0��

13CO.�14/.

(8) Here we are claiming ı.�23�
3C</D �2�

2
3��

3C<. Indeed, let

uD .�3�4C�4�3/�
2�C�3�5�

2�2C�4�5��
3I

then we have ı.�23�
3Cu/D �2�

2
3��

3CO.�4/.

(11) Here we are claiming ı.�7�1�8C</D �5�27�
2�12. Indeed, let

uD �9�7�
4�8C�9�11�

2�12I

then we have ı.�7�1�8Cu/D �5�27�
2�12CO.�14/.

(15) Here we are claiming ı.�7�1�3C</D �33�
2�2C<. Indeed, let

uD �7�2�
2�C .�9�1C�5�5/�

2�2I

then we have ı.�7�1�3C</D �33�
2�2CO.�3/.
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(17) Here we are claiming ı.�7�1�12C</D �37�
5�14C<. Indeed, let

uD �11�3�
9�6C .�11�4C�12�3C�7�8C�8�7/�

8�7C�27�
9�6C�9�7�

8�8I

then we have ı.�7�1�12Cu/D �37�
5�14CO.�15/.

(18) Here we are claiming ı.�15�1�4C</D �37��
6C<. Indeed, let

uD .�19�3C�11�11/��
6I

then we have ı.�15�1�4Cu/D �37��
6CO.�7/.

(21) Here we are claiming ı.�2b�1�2c�1�
2bC1.2mC1/C</D �2

2bC1�1
�2c�1�

2b�1.8mC1/�2
b3C<, at

least provided b� 2� c � 1. This case is intended to illustrate all the remaining cases, and is identical in

form to case (2) of Proposition 4.2.7. Recall from Proposition 4.2.7 that

ı.�2b�1�
2bC1.2mC1/CO.�//D �2

2bC1�1
�2

b�1.8mC1/�2
b3CO.�2

b3C1/:

As

�2b�1�2c�1�
2bC1.2mC1/ � �2b�1�

2bC1.2mC1/�2c�1 .mod �/;

it follows that

ı.�2b�1�2c�1�
2bC1.2mC1/CO.�//D ı.�2b�1�

2bC1.2mC1/�2c�1CO.�//

D .�2
2bC1�1

�2
b�1.8mC1/�2

b3CO.�2
b3C1//�2c�1

D �2
2bC1�1

�2c�1�
2b�1.8mC1/�2

b3CO.�2
b3C1/;

which gives the desired relation. The remaining cases are either identical in form to this, or simpler in that

they do not require one to first move � around to reduce to a case already considered in Proposition 4.2.7.

This produces the indecomposable classes

�2
a�1.2.16nC1/C1/h2aC3ha; �2

a.4.4nC1/C1/h3aC3; �2
a�1.16nC1/ca;

�2
aC1.8nC1/caC1; �2

a�1.2.4nC1/C1/ca

for a; n� 0, following the same recipe as employed in Definitions 4.2.6 and 4.2.9, only where one must

employ � -iterates of � -multiples of the correction terms u given in Proposition 4.2.10.

Proposition 4.2.10 concludes the work necessary for our computation of the F2Œ��-module structure

of Ext�3
R

. Let us now summarize in one theorem what we have learned. We wish to give a minimal

generating set of Ext�3
R

whose elements are products of the indecomposable classes we have found.

Before doing so, let us treat the following subtlety.

By way of example, let x D .1=�2
b

/ı.�2b�1�
2b�1.4mC3// with b � 1, and let ˛ 2 ExtR be the class

represented by x. Our computation in Proposition 4.2.7 combined with the recipe of Theorem 4.1.4

would yield ˛ as an element of a minimal generating set for ExtR. Observe that x has leading term
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�2
2b�1�

2b.4mC1/. It follows quickly from this that x has the same leading term as the cocycle representative

of .�2
b�1.4mC1/hb/

2 given by the product of those cocycle representatives for �2
b�1.4mC1/hb given in

Definition 4.2.6. However, this does not prove that ˛ D .�2
b�1.4mC1/hb/

2: we have not ruled out the

possibility that ˛CˇD .�2
b�1.4mC1/hb/

2 for some nonzero ˇ represented by a cycle y<�2
2b�1

�2
b.4mC1/.

This is still sufficient to deduce that we may, if necessary, replace ˛ with ˛Cˇ in our minimal generating

set in order to obtain a minimal generating set built as products of indecomposables. It turns out that no

such correction is necessary.

Lemma 4.2.11 Write � W ExtR! ExtC for the quotient. Fix classes ˛; ˇ in Ext1
R

or Ext2
R

, at least one of

which is �-torsion and not both in Ext2
R

. Let r be minimal for which �r˛ D 0 or �rˇ D 0. Fix 
 2 Ext�3
R

not divisible by � and such that �r
 D 0, and suppose �.˛/ ��.ˇ/D �.
/. Then ˛ �ˇ D 
 .

Proof Under the given conditions, there is in fact a unique class in the degree of ˛ � ˇ which is not

divisible by � and is killed by �r . This may be seen by direct inspection of the propositions preceding

this.

We may now state the main theorem of this section.

Theorem 4.2.12 (1) A minimal multiplicative generating set for Ext�3
R

as an F2Œ��-algebra is given

by the classes in the following table:

multiplicative generator �-torsion exponent

haC1 1

caC1 1

�b2a�1.4nC1/cha 2a

�2
a.8nC1/h2aC2 2aC1 � 3

�b2a�1.2.16nC1/C1/ch2aC3ha 2a � 13

�2
a.4.4nC1/C1/h3aC3 2a � 7

�b2a�1.16nC1/cca 2a � 7

�2
aC1.8nC1/caC1 2aC2 � 3

�b2a�1.2.4nC1/C1/cca 2a � 3

Here a; n � 0, and the �-torsion exponent of a class ˛ is the minimal r for which �r˛ D 0; the

classes haC1 and caC1 are �-torsion-free.

(2) The operation Sq0 acts on these classes by incrementing a in each row.

(3) The image of these classes under ExtR! ExtC is as their name suggests.

(4) A minimal F2Œ��-module generating set for Ext�3
R

is given in the following table. In all cases ,

the �-torsion exponent of a given class is the minimal �-torsion exponent of the multiplicative

generators it is written as a product of.
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F2Œ��-module generator constraints

1

ha a � 1

�b2a�1.4nC1/cha a; n� 0

ha � hb a � b � 1 and a¤ bC 1

ha � �
b2b�1.4nC1/chb a � 1 and b; n� 0, and a¤ b˙ 1

�b2a�1cha � �
b2a�1.4nC1/cha a; n� 0

�2
a.8nC1/h2aC2 a; n� 0

ha � hb � hc
a � b � c � 1 with a¤ bC 1, b ¤ cC 1,

and if b D c or aD b then a¤ cC 2

ha � hb � �
b2c�1.4nC1/chc

a � b � 1 and c; n� 0 with a¤ bC 1 and c … fa˙ 1; b˙ 1g,
and if aD b then c … fa� 2; a; aC 2g, and if aD bC 2 then c ¤ a

ha � �
b2b�1chb � �

b2b�1.2nC1/chb a � 1 and b; n� 0, and a … fb� 2; b� 1; bC 1g

h0 � h0 � �
2nh0 n� 0

ha � �
2b.8nC1/h2

bC2
a � 1 and b; n� 0, and either a � b� 1 or a � bC 4

�b2a�1.2.16nC1/C1/ch2aC3ha a; n� 0

�2
a.4.4nC1/C1/h3aC3 a; n� 0

ca a � 1

�b2a�1.16nC1/cca a; n� 0

�2
aC1.8nC1/caC1 a; n� 0

�b2a�1.2.4nC1/C1/cca a; n� 0

Proof All of this may be read off the preceding computations, using Lemma 4.2.11 with Proposition 4.2.1

if necessary to write a given class as a product of classes in the given generating set.

We point out the following corollary.

Corollary 4.2.13 The operation � �Sq0 is injective on Ext�3
R

.

Remark 4.2.14 As indicated in Remark 4.1.6, one may also read off our computation a description of all

differentials in the �-Bockstein spectral sequence ExtCŒ��) ExtR emanating out of filtration at most 2.

We leave this to the interested reader. G

4.3 Multiplicative structure

We now compute the multiplicative structure of Ext�3
R

. This material is mostly not needed for our study

of the 1-line of the motivic Adams spectral sequence in Section 7; the exception is that we will use the

relation Proposition 4.3.4(4) in the proof of Theorem 7.4.9.
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Already Lemma 4.2.11 produces a large number of relations. For example, it implies that we may always

shift powers of � around in products that do not vanish in ExtC , provided it makes sense to do so, yielding

relations such as

�b2a�1.4nC1/cha � �
b2b�1.4mC1/chb D ha � �

b2b�1.4.mC2a�b�2.4nC1//C1/chb

for a � bC 2. These were implicitly used in the proof of Theorem 4.2.12. The condition that the product

does not vanish in ExtC is necessary; see Example 4.3.3 below.

We are left only with relations that would be realized as hidden extensions in the �-Bockstein spectral

sequence. These arise from the possible failure of the relations haC1ha D 0 and h2aC2ha D 0 to lift

through ExtR! ExtC .

Remark 4.3.1 The following computations will involve some explicit calculations with cocycle repre-

sentatives. For ease of reference, we collect some important cocycle representatives here:

class cocycle representative

h0 �0

h1 �1

h2 �3

h3 �7

c0 �2�
2
3

c1 �5�
2
7

�2
a

haC1 ��2aC1

� ı.�2
aC1

/D �aC1.�0/D �
2a

�2aC1�1 D �2aC1�1�
2a

CO.�2
a

/

�2h0 �0�
2C�1�

2�C�3��
3C�4�

4

�4h0 �0�
4C�3�

3�3C�5�
2�5C�7��

7C�8�
8

�h22 �23� C .�3�4C�4�3/�D ��
2
3

�9h22 �23�
9C .�3�4C�4�3/�

8�C�5�3�
8�2CO.�10/

We will use these without further comment. G

We begin with some products in Ext�3
R

which lift the relation haC1ha D 0.

Proposition 4.3.2 (1) haC1 � �
b2a�1.4.2nC1/C1/cha D �

2a

� �2
a

haC1 � �
2a.4nC1/haC1.

(2) haC1 � �
b2a�1.8nC1/cha D 0.

(3) �2
aC1.4nC1/haC2 � haC1 D �

2aC1

� �2
a.8nC1/h2aC2.

(4) �2
a.8nC1/h2aC2 � haC1 D �

2a

� �b2a�1.16nC1/cca.

(5) �2
a.8nC1/h2aC2 � �

2a.4mC1/haC1 D �
2a

� �b2
a�1.2.4.mC2n//C1/cca.

(6) haC3 � �
2a.16nC1/h2aC2 D 0.

(7) haC3 � �
2a.8.2nC1/C1/h2aC2 D �

2aC3

� �2
a.4.4nC1/C1/h2aC3.
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Proof In each of these, we may use Sq0 to reduce to the case a D 0. In all cases where the product

does not vanish, the claimed value of the product is the unique nonzero class in its degree which is both

�-torsion and divisible by �, so it suffices to verify the product working modulo the smallest power of �

in which the claimed value does not vanish. In doing so, we may in each case reduce to nDmD 0. With

these reductions in place, the proposition is proved by the following computations:

(1) Here we are claiming h1 � �2h0 D � � �h1 � �h1. Indeed, we may compute

.�0�
2C�1�

2�C�3��
3C�4�

4/��1D�
2
1�
2�C�2�1��

2C�2�2�
3C�2�3�

4D�.�1�C�2�/
2D��.�0/

2;

which represents � � �h1 � �h1.

(2) There are no nonzero �-torsion classes in this degree, so the product must vanish.

(3) Here we are claiming h1 � �2h2 D �2 � �h22. Indeed, we may compute

�1 � �
2�3 D �

2 � ��23

on the nose.

(4) Here we are claiming h1 � �h22 D � � c0. Indeed, we may compute

�1 � ��
2
3 D �2�

2
3�

on the nose.

(5) Here we are claiming �h1 ��h22D � ��c0. For this, it suffices to work mod �2. Here we may compute

��1 � ��
2
2 D � ��2�

2
3� CO.�

2/;

and the claim follows.

(6) Here we have reduced to aD 0 but not yet to nD 0. The only nonzero �-torsion class in this degree

is �6�16nC1c1, so it suffices to work mod �7. In doing so, we may now reduce to nD 0. Indeed, we have

��23 ��7 D 0;

and the claim follows.

(7) Here we are claiming h3 � �9h22 D �
8 � �5h33. For this, it suffices to work mod �9. Here we may

compute

.�23�
9C .�4�3C�3�4/�

8�C�5�3�
8�2/ ��7 D �

3
7�
5�8CO.�9/;

yielding the claim.

Example 4.3.3 We have

�2h2 � h
2
1 D �

3c0; h2 � .�h1/
2 D 0:

This serves as a warning that one cannot in general freely shift around powers of � in products. G
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We now give some products that lift the relation h2aC2ha D 0.

Proposition 4.3.4 (1) h2aC2 � �
b2a�1.16nC1/cha D 0.

(2) h2aC2 � �
b2a�1.4.2nC1/C1/cha D �

2aC1

� �b2a�1.2.4nC1/C1/cca.

(3) h2aC2 � �
b2a�1.8.2nC1/C1/cha D �

2a3 � �2
aC1

haC2 � �
2a.8nC1/h2aC2.

(4) �2
aC2

haC3 � �
2aC2.4nC1/haC3 � haC1 D �

2aC13 � �2
a.4.4nC1/C1/h3aC3.

(5) haC1 � haC3 � �
2aC2.4nC1/haC3 D �

2aC2

� �2
aC1.8nC1/caC1.

(6) �2
aC1.8nC1/h2aC3 � haC1 D 0.

Proof As in the proof of Proposition 4.3.2, we may use Sq0 to reduce to the case aD 0, and in all cases

where the product does not vanish may reduce to nD 0. With these reductions in place, the proposition is

proved by the following computations:

(1) There are no nonzero �-torsion classes in this degree, so the product must vanish.

(2) Here we are claiming h22 � �
2h0 D �

2 � �c0. For this, it suffices to work mod �3. Recall that �2h0 is

represented by �0�2C�1�2�CO.�3/. We may compute

.�0�
2C�1�

2�/ ��23 D �
2 ��2�

2
3� CO.�

3/;

and the claim follows.

(3) Here we are claiming h22 � �
4h0 D �

3 � �2h2 � �h
2
2. For this, it suffices to work mod �4. Observe that

h2 � h2 � �
4h0 D h2 � �

2h2 � �
2h0 D �

2h2 � h2 � �
2h0 D �

2h2 � �
2h2 � h0

by Lemma 4.2.11. We may now compute

�0 � �
2�3 � �

2�3 D �
3 ��33�

3CO.�4/;

yielding the claim.

(4) Here we are claiming �4h3 � �4h3 � h1 D �6 � �5h33. For this, it suffices to work mod �7. Here we

may compute

�1 � �
4�7 � �

4�7 D �
6 ��37�

5CO.�7/;

yielding the claim.

(5) Here we are claiming h1 � h3 � �4h3 D �4 � �2c1. For this, it suffices to work mod �5. Here we may

compute

�1 � �
4�7 ��7 D �

4 ��5�
2
7�
2CO.�6/;

yielding the claim.

(6) There are no nonzero �-torsion classes in this degree, so the product must vanish.
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The preceding propositions leave open three families of products. A complete resolution of these requires

the following, which appeared as a conjecture in an earlier version of this work. We thank Dugger, Hill

and Isaksen for supplying a proof.

Lemma 4.3.5 (Dugger, Hill and Isaksen) There are relations

(1) �4mC1h1 � �
2lh0 D �h1 � �

2.2mCl/h0;

(2) �4.4mC1/h3 � �
8lC1h22 D �

4h3 � �
8.2mCl/C1h22;

(3) �8mC1h22 � �
2lh0 D �h

2
2 � �

2.2mCl/h0.

Proof These will be proved using Massey product-shuffling techniques. The Massey products we require

are most easily computed using the �-Bockstein spectral sequence; see especially [Belmont and Isaksen

2022, Section 7.4] for a discussion of Massey products in ExtR.

(1) By induction on m, it suffices to show

�2lh0 � �
4mC5h1 D �

2lC4h0 � �
4mh1

for m� 0. Observe that

�4mC5h1 D h�
2; �2�2h2; �

4mC1h1i; �2lC4h0 D h�
2l ; �2; �2�2h1i

with no indeterminacy. We may therefore shuffle

�2lh0 ��
4mC5h1D �

2lh0h�
2; �2�2h2; �

4mC1h1iD h�
2lh0; �

2; �2�2h2i�
4mC1h1D �

2lC4h0 ��
4mC1h1:

(2) By induction on m, it suffices to show

�8lC1h22 � �
4.4mC1/C16h3 D �

8lC17h22 � �
4.4mC1/h3

for m� 0. Observe that

�4.4mC1/C16h3 D h�
8; �8�8h4; �

4.4mC1/h3i; �8lC17h22 D h�
8lC1h22; �

8; �8�8h4i

with no indeterminacy. We may therefore shuffle

�8lC1h22 � �
4.4mC1/C16h3 D �

8lC1h22h�
8; �8�8h4; �

4.4mC1/h3i

D h�8lC1h22; �
8; �8�8h4i�

4.4mC1/h3 D �
8lC17h22 � �

4.4mC1/h3:

(3) By induction on m, it suffices to show

�2lh0 � �
8mC9h22 D �

2lC8h0 � �
8mC1h22

for m� 0. Observe that

�8mC9h22 D h��
4h3; �

7; �8mC1h22i; �2lC8h0 D h�
2lh0; ��

4h0; �
7i

with no indeterminacy. We may therefore shuffle

�2lh0 � �
8mC9h22 D �

2lh0h��
4h3; �

7; �8mC1h22i

D h�2lh0; ��
4h0; �

7i�8mC1h22 D �
2lC8h0 � �

8mC1h22:
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From here, we have the following.

Proposition 4.3.6 Write 2mC l C 1D 2k.2nC 1/. Then the following hold :

(1) �2
a.4mC1/haC1 � �

b2a�1.4lC1/cha D �
2a.2kC1�1/ � haC1 � �

2aCk.4nC1/haCkC1.

(2) �2
aC2.4mC1/haC3 � �

2a.8lC1/h2aC2 D �
2aC1.2kC2�3/ � haC1 � haC3 � �

2aCkC2.4nC1/haCkC3.

(3) �2
a.8mC1/h2aC2 � �

b2a�1.4lC1/cha D �
2a.2kC1�1/ � h2aC2 � �

2aCk.4nC1/haCkC1.

Proof In each of these, we may use Sq0 to reduce to the case aD 0. By working modulo the smallest

power of � in which the claimed product does not vanish, we may reduce to the case n D 0. By

Lemma 4.3.5, we may moreover reduce to the case m D 0. The proposition is now proved by the

following computations:

(1) Here we are claiming �h1 ��2.2
k�1/h0D�

2kC1�1 �h1 ��
2k

hkC1. Recall that �2.2
k�1/h0 is represented

by ��1ı.�2.2
k�1/C1/. Now, the Leibniz rule implies

��1ı.�2.2
k�1/C1/ � ��1 D �

�1ı.�2
kC1

/ ��1C �
�1�2.2

k�1/C1 � ı.�/ ��1:

The second summand vanishes, as ı.�/ ��1 D ��0 ��1 D 0; the first represents �2
kC1�1 � �2

k

hkC1 � h1,

yielding the claimed relation.

(2) Here we are claiming �4h3��8.2
k�1/C1h22D�

2.2kC2�3/�h1�h3��
2kC2

hkC3. Recall that �8.2
k�1/C1h22

is represented by ��6ı.�1�
8.2k�1/C4/. Now, the Leibniz rule implies

��6ı.�1�
8.2k�1/C4/ � �4�7 D �

�6�1 � ı.�
2kC3

/ ��7C �
�6�1 � �

8.2k�1/C4 � ı.�4/ ��7:

The second term vanishes, as ı.�4/��3D �2�3 ��7D 0; the first represents �2.2
kC2�3/ �h1 �h3 ��

2kC2

hkC3,

yielding the claimed relation.

(3) Here we are claiming �h22 ��
2.2k�1/h0D�

2kC1�1 �h22 ��
2k

hkC1. Recall that �2.2
k�1/h0 is represented

by ��1ı.�2.2
k�1/C1/. Now, the Leibniz rule implies

��1ı.�2.2
k�1/C1/ � ��23 D �

�1ı.�2
kC1

/ ��23C �
�1�2.2

k�1/C1 � ı.�/ ��23:

The second term vanishes, as ı.�/ ��23 D ��0 ��
2
3 D 0. The first summand represents �2

kC1�1hkC1 � h
2
2,

yielding the claimed relation.

The relations above suffice to write any product in Ext�3
R

in terms of the basis given in Theorem 4.2.12.

Thus we have the following.

Theorem 4.3.7 A full set of relations for Ext�3
R

is given by those visible relations which may be deduced

from Lemma 4.2.11 together with the products listed in Propositions 4.3.2, 4.3.4, and 4.3.6.
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Part II The motivic Hopf invariant one problem

5 Some homotopical preliminaries

With the algebraic computation of Section 4 out of the way, we now proceed to more homotopical

considerations. This brief section collects a couple of constructions that will be used in the following

sections. Explicitly, Section 5.1 will be used in our computation of d2.h5/ in Section 7, and Section 5.3

will be used in our discussion of the unstable Hopf invariant one problem in Section 6.

5.1 The Hurewicz map

The constant functor c W Spcl! SpF has a lax symmetric monoidal right adjoint c�, described by

c�.X/D SpF .S0;0; X/:

In particular, the unit of c�.S0;0/ gives a ring map

S0! c�.S0;0/;

and on homotopy groups this yields a Hurewicz map

c W �cl
� ! �F�;0:

Proposition 5.1.1 For any F, there is map

c W Exts;fcl ! Exts;f;0F

of multiplicative spectral sequences , converging to the Hurewicz map

c W �cl
� ! �F�;0:

Moreover , c commutes with Sq0 and satisfies c.h0/D h0C �h1.

Proof Write HF2 for the ordinary mod 2 Eilenberg±Mac Lane spectrum and HFF2 for the motivic

spectrum representing mod 2 motivic cohomology. Then c�.HFF2 /DHF2, thereby giving maps

HF˝n
2 ' c�.HFF2 /

˝n! c�..HFF2 /
˝n/:

Thus there is a map from the canonical Adams resolution of the sphere to the restriction along c� of the

canonical Adams resolution of the F -motivic sphere. On homotopy groups, this gives a map from the

cobar complex of Acl to the weight 0 portion of the cobar complex of AF, and passing to homology we

obtain a map
Exts;fcl ! Exts;f;0F

which is multiplicative and commutes with Sq0, and by construction this is a map of spectral sequences

converging to the Hurewicz map. That c.h0/D h0C�h1 follows as these are the classes detecting 2 (see

for instance [Isaksen and Østvñr 2020, Remark 6.3]).
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5.2 The Lefschetz principle

The Lefschetz principle asserts, informally, that ªeverythingº which is true over C is true over any

algebraically closed field. In this subsection, we note how one may read off a certain motivic Lefschetz

principle from [Wilson and Østvñr 2017].

So far, we have primarily been concerned with F -motivic homotopy theory for F a field of characteristic

not equal to 2. For this subsection, we extend our notation to apply also when F is some ring in which 2

is invertible. We shall write S0;0 for the HFF2 -nilpotent completion of the F -motivic sphere spectrum.

When F is a field, this is the .2; �/-completion of the F -motivic sphere spectrum, and, when F is an

algebraically closed field, this reduces to a 2-completion [Hu et al. 2011a; Kylling and Wilson 2019].

Let SpF2 denote the category of modules over this completed F -motivic sphere spectrum. In addition,

let SpF;cell
2 � SpF2 denote the cellular subcategory, ie the category generated by the spheres Sa;b under

colimits.

Proposition 5.2.1 Let F be an algebraically closed field. Then there is an equivalence

SpF;cell
2 ' SpC;cell

2 :

Moreover , this is compatible on Adams spectral sequences with the isomorphism ExtF Š ExtC .

Proof First suppose that F is of odd characteristic p. We follow the methods of [Wilson and Østvñr

2017, Section 6]. Let W.F / be the ring of Witt vectors on F, and choose an algebraically closed field L

of characteristic 0 together with embeddings

C! L W.F /! F:

This gives rise to base change functors

SpC! SpL SpW.F /! SpF ;

and, in particular, maps

(5-1) �C
�;�! �L�;� �

W.F /
�;� ! �F�;�:

Although W.F / is not a field, Wilson and Østvñr [2017] show that its Steenrod algebra and Adams

spectral sequence are still well behaved, and [loc. cit., Corollary 6.3] that the above maps are modeled on

motivic Adams spectral sequences by a zigzag of isomorphisms

ExtC! ExtL ExtW.F /! ExtF :

It follows that (5-1) is a zigzag of isomorphisms. In particular, consider the zigzag

SpC;cell
2 ! SpL;cell

2  SpW.F /;cell
2 ! SpF;cell

2 :

This is a zigzag of colimit-preserving functors of compactly generated stable categories which are

equivalences on subcategories of compact generators, and is thus a zigzag of equivalences. This yields

the canonical equivalence SpC;cell
2 ' SpF;cell

2 .
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If F is of characteristic zero, then we may apply the same argument instead to a zigzag of the form

C! L F

with L algebraically closed.

5.3 Betti realization

If X is a smooth scheme over C, then the space of complex points of X is a complex manifold. This

refines to give Betti realization functors [Morel and Voevodsky 1999] from C-motivic spaces to ordinary

spaces, and from C-motivic spectra to ordinary spectra, with a number of nice properties. We may use

the Lefschetz principle of Proposition 5.2.1 to obtain an analogue for an arbitrary algebraically closed

field F.

Let S0 denote the 2-completed sphere spectrum, and Spcl
2 the category of modules thereover.

Proposition 5.3.1 Let F be an algebraically closed field. Then there is a symmetric monoidal ªBetti

realizationº functor

Be W SpF;cell
2 ! Spcl

2 ;

factoring through an equivalence from the category of modules over S0;0Œ��1� in SpF;cell
2 to Spcl

2 , with the

following properties:

(1) Be.�/D 1. In particular , Be.Sa;b/D Sa, so that Be induces a map �Fs;w ! �cl
s , and these patch

together to an isomorphism �F�;�Œ�
�1�Š �cl

� Œ�
˙1�.

(2) The above isomorphism is modeled on Adams spectral sequences by the map

ExtF ! ExtF Œ�
�1�Š ExtclŒ�

˙1�:

(3) The composite Be ıc W Spcl
2 ! SpF;cell

2 ! Spcl
2 is an equivalence. In particular , the map c W Extcl!

ExtF of Proposition 5.1.1 extends to an equivalence ExtclŒ�
˙1�! ExtF Œ��1�.

Proof These facts are known of the Betti realization functor for F D C [Dugger and Isaksen 2010,

Section 2], and the general case immediately follows from Proposition 5.2.1.

Using Mandell’s p-adic homotopy theory [2001], we may also produce an unstable analogue. Let F be

an algebraically closed field. Note from [Hu et al. 2011b, Proposition 15] that the spectrum HFF2 is

cellular; moreover, Be.HFF2 /DHF2, as can be seen by inspection of homotopy groups. Let Spc.F / be

the category of F -motivic spaces and Spc2 be the category of 2-complete spaces.

Proposition 5.3.2 Let F be an algebraically closed field , and define

Be W Spc.F /! Spc2; Be.X/D CAlgHF2

�

Be..HFF2 /
XC/;F2

�

:

Then Be.Sa;b/ D .Sa/^2 , and , at least when restricted to the full subcategory of Spc.F / consisting of

simply connected finite motivic cell complexes , the functor Be preserves finite colimits and satisfies

HF
Be.X/C
2 ' Be..HFF2 /

XC/:
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Proof We begin by recalling two facts from Mandell’s work [2001] on p-adic homotopy theory. Strictly

speaking, Mandell states his main theorem at the level of homotopy categories; a reference explicitly

treating the full homotopical version we use is [Lurie 2011, Section 3]. First, the functor

Spc! CAlgHF2
; Y 7!HF

YC

2 ;

is fully faithful when restricted to the full subcategory of connected 2-complete nilpotent spaces with

locally finite mod 2 cohomology. In particular, if Y is a connected nilpotent space with locally finite

mod 2 cohomology, then the unit map

Y ' Spc.�; Y /! CAlgHF2
.HF

YC

2 ;HF
�C

2 /' CAlgHF2
.HF

YC

2 ;HF2/

realizes the target as the 2-completion of Y. Second, the functor

CAlgop
HF2
! Spc; R 7! CAlgHF2

.R;HF2/;

lands in Spc2 and preserves finite colimits when restricted to the full subcategory of E1-algebras R

over F2 such that R� is locally finite-dimensional, R0 D F2, R1 D 0, and the Dyer±Lashof operation Q0

acts by the identity on R�.

We now apply this to our situation. The stable Betti realization functor is symmetric monoidal, and thus

Be..HFF2 /
XC/ is indeed an E1-ring over F2. Moreover, as Sq0 acts by the identity on H�;�.X/, the

Dyer±Lashof operation Q0 acts by the identity on �� Be..HFF2 /
XC/. In particular, Be..HFF2 /

S
a;b
C /'

HF
Sa

C

2 , and so the proposition follows by applying Mandell’s theory.

Remark 5.3.3 We have focused in this section on 2-primary motivic homotopy theory over a field F of

characteristic not 2. However, our discussion applies in general to p-primary motivic homotopy theory

over a field F of characteristic not p. G

6 The motivic Hopf invariant one problem

In this section, we formulate and discuss motivic analogues of the Hopf invariant one problem. The

material in this section is not needed for Section 7.

6.1 The unstable Hopf invariant one problem

Classically, Adams’ determination of the permanent cycles in Ext1cl resolved the Hopf invariant one

problem. The Hopf invariant one problem may be formulated motivically using the following.

Definition 6.1.1 Let f W S2a�1;2b! Sa;b be an unstable map between motivic spheres; in particular,

a� b � 0 and a� 1. Write C.f / for the cofiber of f. The map f vanishes in mod 2 motivic cohomology

for degree reasons, and thus there exists an isomorphism

H�;�.C.f /C/ŠMF f1; x; yg
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of MF -modules, where jxj D .�a;�b/ and jyj D .�2a;�2b/. Say that f has Hopf invariant one if one

may choose such generators x and y to satisfy

x2 D y;

ie if H�;�.C.f /C/ŠMF Œx�=.x3/; otherwise x2 D 0 and f has Hopf invariant zero. G

The unstable motivic Hopf invariant one problem is now the following question.

Question 6.1.2 For which .a; b/ does there exist a map f W S2a�1;2b! Sa;b of Hopf invariant one? G

This turns out to mostly reduce to the classical case, by way of the following.

Lemma 6.1.3 Let f W S2a�1;2b! Sa;b be an unstable F -motivic map. Then f has Hopf invariant one

if and only if its base change to an algebraic closure of F is of Hopf invariant one.

Proof This is immediate from the definitions.

Proposition 6.1.4 Fix an unstable F -motivic map f W S2a�1;2b ! Sa;b of Hopf invariant one. Then

the Betti realization (see Proposition 5.3.2) of f is an odd multiple of 2, �, �, or � . In particular ,

a 2 f1; 2; 4; 8g.

Proof By Lemma 6.1.3, we may as well suppose that F is algebraically closed. Let C.f / denote the

cofiber of f and C.Be.f // the cofiber of Be.f /. Then Be.C.f // D C.Be.f // by Proposition 5.3.2,

and thus H�
�

C.Be.f //C
�

DH�
�

Be.C.f //C
�

D F2Œx�=.x
3/ with jxj D �a. In other words, the map

between 2-completed spheres Be.f / W S2a�1! Sa has Hopf invariant one. The proposition now follows

from Adams’ resolution [1960] of the Hopf invariant one problem.

Proposition 6.1.4 is not a complete answer to Question 6.1.2, as we have not given any bounds on b,

nor have we discussed the existence of maps of Hopf invariant one. Although we will not end up with a

complete answer in general, there is more we can say. Before this, we recall what information is encoded

in the 1-line of the F -motivic Adams spectral sequence.

6.2 The stable Hopf invariant one problem

Question 6.1.2 can be rephrased as asking when there exists an unstable 2-cell complex, with cells in

dimension .a; b/ and .2a; 2b/, such that in cohomology the bottom cell squares to the top cell. In the

stable category, one no longer has cup squares; instead, one has Steenrod operations. Thus we may

consider the stable motivic Hopf invariant one problem to be the following question.

Question 6.2.1 What AF -modules arise as the cohomology of 2-cell complexes? In particular, for which

.a; b/ does there exist a 2-cell complex, with cells in dimensions .0; 0/ and .a; b/ and attaching map

vanishing in mod 2motivic cohomology, such thatH�;�XDMF fx; yg is not split as an A
F -module? G
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This is a particular case of the realization problem for AF -modules, and is exactly what the 1-line of the

F -motivic Adams spectral sequence encodes. The following is standard.

Proposition 6.2.2 Fix a class � 2 Exta�1;1;b
F classifying an extension 0!MF fyg!E!MF fxg! 0

of AF -modules with jxj D .0; 0/ and jyj D .�a;�b/. Then the following are equivalent :

(1) There is stable 2-cell complex C with cells in dimensions .0; 0/ and .a; b/ such that H�;�C ŠE.

(2) The class � is a permanent cycle in the F -motivic Adams spectral sequence , and thus detects a

stable class ˛ 2 �F
a�1;b

.

Explicitly, if � 2 Exta�1;1;b
F detects ˛ 2 �F

a�1;b
, then the cofiber C.˛/ satisfies H�;�C.˛/ Š E; and ,

if C is a stable 2-cell complex with H�;�C D E, then the fiber of the inclusion S0;0 ! C is a map

˛ W Sa�1;b! S0;0 detected by � 2 Exta�1;1;b
F .

As we will see in Section 7, the 1-line of the F -motivic Adams spectral sequence is already quite rich,

and strongly depends on the base field F. Thus, in considering the stable Hopf invariant one problem,

one may not reduce to the case where F is algebraically closed, unlike in the unstable case.

6.3 Relation between the unstable and stable motivic Hopf invariant one problems

We may now relate the unstable and stable questions, Questions 6.1.2 and 6.2.1.

Proposition 6.3.1 Let f W S2a�1;2b! Sa;b be a map of Hopf invariant one. Then the associated stable

class ˛ 2 �F
a�1;b

is detected by a permanent cycle in Exta�1;1;b
F which , after base change to the algebraic

closure of F, is one of

h0; h1; �h1; h2; �h2; �2h2; h3; �h3; �2h3; �3h3; �4h3:

In particular , if Exta�1;1;b
F does not contain any such permanent cycle , then there is no map f WS2a�1;2b!

Sa;b of Hopf invariant one.

Proof By Lemma 6.1.3, we may suppose that F itself is algebraically closed. By stabilizing Proposition

6.1.4, we find that Be.˛/ is detected by h1, h2, or h3 in Ext1cl. Recall from Proposition 5.3.1 that Betti

realization is modeled on Adams spectral sequences by the map

ExtF ! ExtF Œ�
�1�Š ExtclŒ�

˙1�:

In particular, the structure of ExtF (see Proposition 4.2.1) implies that ˛ must be detected by a permanent

cycle in ExtF of the form �nh0, �nh1, �nh2, or �nh3 for some n � 0. As f is an unstable map, this

class must have nonnegative weight, reducing to the listed classes.

Remark 6.3.2 Our method of relating the unstable motivic Hopf invariant one problem to the stable

motivic Hopf invariant one problem, going through the ªBetti realizationº functors of Section 5.3, may

seem somewhat roundabout. This route was taken for the following reason: if f W S2a�1! Sa is a map
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of Hopf invariant one, then the fact that H�.C.f // is nonsplit as an A
cl-module, and thus the associated

stable class ˛ 2 �cl
a�1 is detected in Ext1cl, follows from the instability condition Sqa.x/D x2.

Motivically, the analogous instability condition asserts that, if X is a motivic space and x 2H 2a;a.XC/,

then Sq2a.x/D x2 [Voevodsky 2003, Lemma 9.7]. Now suppose that f WS2a�1;2b!Sa;b is an unstable

map of Hopf invariant one, and write H�;�.C.f /C/DMF Œx�=.x3/ with jxj D .�a;�b/. If a is even

and b � 1
2
a, then one may set c D 1

2
a � b and deduce Sqa.�cx/ D �2cx2, so that H�;�.C.f // is

not split as an A
F -module. If a is odd, then one may argue by appealing to an integral motivic Hopf

invariant and graded commutativity, as in the classical case. Thus, it is to rule out the possibility of a map

f W S2a�1;2b! Sa;b of Hopf invariant one with b > 1
2
a that we have taken our approach. G

Our computations in Section 7 show, for a variety of base fields F, when Ext1F contains a permanent cycle

whose image over the algebraic closure is one of the classes listed in Proposition 6.3.1, yielding various

nonexistence results. To obtain existence results, we must recall how maps of Hopf invariant one arise.

6.4 Geometric applications

Adams’ resolution of the classical Hopf invariant one problem had geometric consequences; notably, it

implied that the only spheres which admit H -space structures are S0, S1, S3, and S7. It makes sense to

ask for the motivic analogue of this, ie to ask which spheres Sa;b admit H -space structures.

This question is in some sense geometric, but we can also ask for something even more concrete. The

spheres Sa;b are certain sheaves on the Nisnevich site of smooth F -schemes, and so it is reasonable to

ask when Sa;b is in fact represented by a smooth F -scheme. This question was raised and studied by

Asok et al. [2017]; in particular, they produce explicit smooth affine schemes representing Sa;da=2e, as

well as prove that Sa;b is not represented by a smooth scheme for a > 2b. Motivated by this, we are led

to ask the following question.

Question 6.4.1 For what pairs .a; b/ is Sa;b a motivic H -space? Of these, when is it represented by a

smooth F -scheme which admits a unital product? G

Classically, the connection between the H -space structures and the Hopf invariant one problem is via

the Hopf construction. This construction may also be carried out in the motivic category, and has been

studied in this context in [Dugger and Isaksen 2013]. We recall the key points.

Definition 6.4.2 [Dugger and Isaksen 2013, Definition C.1] Let X, Y, and Z be pointed spaces, and let

h WX �Y !Z be a pointed map. The Hopf construction of h is the map H.h/ WX ?Y !†Z obtained

by taking homotopy colimits of the rows of the diagram

X X �Y Y

� Z � G
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Here ? is the join. Note that Sa;b ? Sc;d ' SaCcC1;bCd ; thus the Hopf construction may be used to

construct maps between motivic spheres. Using the theory of Cayley±Dickson algebras, Dugger and

Isaksen [2013, Section 4] used this to define motivic Hopf maps � 2 �F1;1, � 2 �F3;2, and � 2 �F7;4. As

noted in [loc. cit., Remark 4.14], these motivic Hopf maps have Hopf invariant one. This is a general

property of the Hopf construction, which we may summarize in the following.

Lemma 6.4.3 If � W Sa�1;b � Sa�1;b ! Sa�1;b is an H -space product , then its Hopf construction

H.�/ W S2a�1;2b! Sa;b has Hopf invariant one.

Proof The proof of the analogous fact for topological spaces [Steenrod 1962, Section I.5] extends to

motivic spaces. We summarize the key points.

Define the (mod 2) degree of a pointed map Sa;b ! Sa;b of motivic spaces to be its induced map in

reduced motivic cohomology. A pointed map f W Sa�1;b �Sa�1;b! Sa�1;b of motivic spaces is said

to have degree .˛; ˇ/ if f jSa�1;b�fp2g has degree ˛ and f jfp1g�Sa�1;b has degree ˇ. Since � is an

H -space product, its restrictions to Sa�1;b �fp2g and fp1g�Sa�1;b are homotopic to the identity, so �

has degree .1; 1/. The lemma follows by showing that, more generally, the Hopf invariant, defined in the

evident way, of the Hopf construction of a map of degree .˛; ˇ/ is ˛ �ˇ.

Steenrod and Epstein’s proof of [Steenrod 1962, Lemma 5.3] carries over to the motivic setting to complete

the proof. The main point is that Steenrod and Epstein work with particular models of the cone, join,

homotopy cofiber, and suspension in their proof, but any model would work, as all of their statements

only depend on the homotopy types of the relevant spaces and homotopy classes of the relevant maps.

More precisely, with notation as in their proof, one may replace E1, E2, EC, and E� by the cones on

S1, S2, S, and S, respectively, to avoid any potential point-set issues. In particular, one regards E1, E2,

EC, and E� as suspension data in the sense of [Dugger and Isaksen 2013, Remark 2.9] for the various

suspensions appearing in the Hopf construction. In this language, the identifications of various pushouts in

the proof of [Steenrod 1962, Lemma 5.3] are examples of induced orientations [Dugger and Isaksen 2013,

Remark 2.10]. The proof carries through unchanged with these new choices of E1, E2, EC, and E�.

To be precise, their proof considers maps Sn�1 �Sn�1! Sn�1 with n > 1 even and works integrally.

Routine modifications extend this to arbitrary n� 1 provided one works mod 2 throughout. Classically,

this is the adaption needed to incorporate the degree 2 map S1! S1, which is the Hopf construction

of the standard product on S0 Š C2. Motivically, this is the adaption needed for our lemma to hold for

arbitrary unstable motivic spheres Sa�1;b , allowing especially for the uniform treatment of 2 and �.

Remark 6.4.4 Under Definition 6.1.1, the map h W S1;1! S1;1 represented by the squaring map on Gm,

sometimes called the ªzeroth Hopf mapº and stably detected by h0, is not a map of Hopf invariant one.

In the context of Lemma 6.4.3, this is justified by the fact that, for degree reasons, h is not the Hopf

construction of an H -space structure on any motivic sphere. G
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We can now summarize what is known in the following.

Theorem 6.4.5 A motivic sphere is represented by a smooth F -scheme admitting a unital product if and

only if it is one of

S0;0; S1;1; S3;2; S7;4:

In addition to the motivic spheres listed above , the following motivic spheres admit H -space structures:

S1;0; S3;0; S7;0:

The only other motivic spheres that could possibly admit H -space structures are

S3;1; S7;3; S7;2; S7;1I

moreover , an H -space structure on such a sphere produces a permanent cycle in ExtF whose image over

the algebraic closure is �h2, �h3, �2h3, or �3h3, respectively.

Proof That the spheres S0;0, S1;1, S3;2, and S7;4 are represented by smooth F -schemes admitting a

unital product is given by [Dugger and Isaksen 2013]. The spheres S1;0, S3;0, and S7;0 are the images of

S1, S3, and S7, respectively, under the unstable constant functor from spaces to motivic spaces, and so

inherit H -space structures from their classical structures. That all the spheres listed are the only spheres

which may admit H -space structures follows from Lemma 6.4.3 and Proposition 6.3.1, as does the final

claim concerning the F -motivic Adams spectral sequence. Finally, Asok et al. [2017, Proposition 2.3.1]

prove that, if Sa�1;b is represented by a smooth F -scheme, then necessarily 2b � a� 1, and the only

possible H -spaces satisfying this are S0;0, S1;1, S3;2, and S7;4, as listed.

We note the following special case.

Corollary 6.4.6 Suppose there is an R-motivic map f W S2a�1;2b! Sa;b of Hopf invariant one. Then

.a; b/ is one of

.1; 0/; .2; 1/; .4; 2/; .8; 4/; .2; 0/; .4; 0/; .8; 0/:

Moreover , all of these are realized , and in fact

S0;0; S1;1; S3;2; S7;4; S1;0; S3;0; S7;0

are all the R-motivic spheres admitting H -space structures.

Proof This is immediate from Theorem 6.4.5, either appealing to the fact that ExtR vanishes in the

degrees detecting the remaining possibilities, or else noting that the real points of Sa;b are Sa�b , so that,

if Sa;b is an H -space, then a� b 2 f0; 1; 3; 7g.

7 The 1-line of the motivic Adams spectral sequence

We now analyze the 1-line of the F -motivic Adams spectral sequence. We begin in Section 7.1 by

explaining how to read off the structure of ExtF for various fields F from our computation of ExtR.
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After some additional preliminaries in Section 7.2, we give a direct motivic analogue of the classical

differentials in Section 7.3, proving d2.haC1/D .h0C �h1/h
2
a for a � 3 over arbitrary base fields. We

then proceed to give more detailed information about the 1-line for the particular fields F of the form R,

Fq with q an odd prime power, Qp with p any prime, and Q.

7.1 Computing ExtF

As a general rule, ExtF is largely understood once MF and ExtR are both understood. Rather than

formulate a precise statement, let us just describe ExtF for the various particular fields F we shall

encounter, namely those described in Example 2.2.1 as well as F DQ.

Recall from Remark 2.3.2 that, for any field F, we may view MF as an A
R-module, and there is an

isomorphism

ExtF Š ExtAR.MR;MF /:

Thus, the main point is to understand MF as an A
R-module, and this is in fact determined by MF

0 as an

F2Œ��-module. For the examples of interest, we have the following. Abbreviate

MD F2Œ�; ��; M.r/ DM=.�r/:

Lemma 7.1.1 As AR-modules , we have the following:

(1) MR DM.

(2) If F D F is algebraically closed , then MF DM.1/.

(3) If q � 1 .mod 4/, then MFq DM.1/f1; ug.

(4) If q � 3 .mod 4/, then MFq DM.2/.

(5) If p � 1 .mod 4/, then MQp DM.1/f1; �; u; �ug.

(6) If p � 3 .mod 4/, then MQp DM.2/f1; �g.

(7) MQ2 DM.3/f1g˚M.1/fu; �g.

(8) MQ DMf1g˚M.1/fŒ2�g˚M.1/fŒp�; ap W p � 1 .mod 4/g˚M.2/fup W p � 3 .mod 4/g.

Proof All but the case F DQ may be read off the examples listed in Example 2.2.1. When F DQ, the

ring MQ is described in [Ormsby and Østvñr 2013, Propositions 5.3 and 5.4], following [Milnor 1970].

Our description may be read off this upon setting up D Œp�C � for p � 3 .mod 4/.

For r � 0, define

Ext.r/ D ExtAR.M;M.r//DH�.ƒ
R=.�r//:

The F2Œ��-module structure of Ext.r/ may be easily computed from ExtR via the long exact sequence

associated to the cofiber of �r . Even less work is necessary when ExtR has been computed by some
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method compatible with the �-Bockstein spectral sequence such as ours; see in particular Remark 4.1.5.

Thus Theorem 4.2.12 allows us to read off Extf
.r/

for f � 2, as well as the image of ExtR! Ext3
.r/

. This

does not give the entirety of Ext3
.r/

; however, we at least know that whatever remains is generated by

classes which appear in the �-Bockstein spectral sequence as �k˛ with ˛ 2 Ext3
.1/

and k < r , and this is

enough information for our purposes.

Lemma 7.1.1 describes for various F how ExtF may be written as a direct sum of copies of various

Ext.r/. For example, ExtQ2
D Ext.3/f1g ˚ Ext.1/fu; �g. We may use this to prove a Hasse principle

for ExtQ.

Lemma 7.1.2 The map

MQ!MQp

satisfies

Œp� 7! �; ap 7! u�; up 7! � C �:

Here the first is relevant for p D 2 or p � 1 .mod 4/, the second for p � 1 .mod 4/, and the third for

p � 3 .mod 4/.

Proof The behavior of these maps is described in [Ormsby and Østvñr 2013, Proposition 5.3]. Our

description follows immediately; note we have defined up D Œp�C � for p � 3 .mod 4/.

Proposition 7.1.3 The Hasse map

ExtQ! ExtR �
Y

p

ExtQp

is injective.

Proof By Lemma 7.1.1, we have

ExtQ D ExtR˚Ext.1/fŒ2�g˚Ext.1/fŒp�; ap W p � 1 .mod 4/g˚Ext.2/fup W p � 3 .mod 4/g:

The summand ExtR maps isomorphically to ExtR, and the maps ExtQ ! ExtQp
are determined by

Lemma 7.1.2. In particular, it is easily seen that the maps

Ext.1/fŒ2�g ! ExtQ2
; Ext.1/fŒp�; apg ! ExtQp

; Ext.2/fupg ! ExtQp

are all split injections, and the proposition follows.

The preceding discussion, together with our computation of ExtR, describes what we will need of ExtF
in low filtrations and arbitrary stem. So that we may rule out various higher differentials in low stems for

degree reasons, we record the following.

Lemma 7.1.4 Ext.1/ is given in stems s � 6 by the module

F2Œ� �˝
�

F2fh
n
0 W n� 0g˚F2fh1; h

2
1; h

3
1; h2; h0h1; h

2
2g
�

˚F2Œ� �=.�/fh
4
1; h

5
1; h

6
1g:

Proof These groups have been computed in [Dugger and Isaksen 2010].
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7.2 Existence of Hopf elements

Our computation of the F -motivic Adams differentials d2.haC1/ will follow a similar pattern to Wang’s

computation [1967] of the corresponding classical Adams differentials (differentials which were first

computed in [Adams 1960]). This is an inductive argument, beginning with information about the Hopf

elements which are known to exist. We record some of this information in this subsection.

Write � 2 �F0;0 for the class represented by the twist map S1;1˝S1;1! S1;1˝S1;1.

Lemma 7.2.1 Fix ˛ 2 �F
a;b

and ˇ 2 �F
c;d

. Then there is an identity

˛ �ˇ D .�1/.a�b/.c�d/�bd �ˇ �˛:

Moreover , 1� � is detected in ExtF by h0 and 2 by h0C �h1.

Proof The claimed graded commutativity is given in [Morel 2004, Corollary 6.1.2]; see also [Isaksen

and Østvñr 2020, Section 6.1] for a discussion. That 1� � is detected by h0 and 2 by h0C �h1 is noted

in [Isaksen and Østvñr 2020, Remark 6.3].

Lemma 7.2.2 For any field F, the class ha is a permanent cycle for a 2 f0; 1; 2; 3g.

Proof The class h0 is a permanent cycle by Lemma 7.2.1. Dugger and Isaksen [2013] construct the

motivic Hopf elements �, �, and � , and indicate [loc. cit., Remark 4.14] that these are detected by h1,

h2, and h3, respectively; see also our discussion in Section 6.4. Thus these classes must be permanent

cycles.

7.3 Nonexistence of Hopf elements

The purpose of this subsection is to prove the following.

Theorem 7.3.1 For an arbitrary base field F of characteristic not equal to 2, there are differentials of the

form

d2.haC1/D .h0C �h1/h
2
a

in the F -motivic Adams spectral sequence , which are nonzero for a � 3. G

By naturality, it suffices to produce these differentials in the case where F is a prime field, ie F D Fq or

F DQ, and when F is algebraically closed. Moreover, by the Hasse principal given in Proposition 7.1.3,

the case F DQ may be deduced from the cases F DQp and F DR combined. All of these build on the

case where F is algebraically closed, which may be treated as follows.

Proposition 7.3.2 If F D F is algebraically closed , then

d2.haC1/D h0h
2
a:

This is nonzero for a � 3.
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Proof The corresponding classical differentials are known due to [Adams 1960]. The proposition could

be reduced to this by appealing to Proposition 5.3.1; however, we shall instead proceed as follows.

Wang [1967, Section 3] gives another proof of the classical differentials, combining only a minimal

amount of homotopical input with a good understanding of Extcl. His argument may be applied essentially

verbatim to produce the claimed F -motivic differentials. It is this argument that may be adapted to work

for other base fields, so to motivate our later computations let us recall this argument in full.

The proof proceeds by induction on a, where only the base case requires any homotopical input.

Consider the base case a D 3. The class h3 is a permanent cycle, detecting the Hopf element � ; see

Lemma 7.2.2. By Lemma 7.2.1, we find that 2�2 D 0. As 2 is detected by h0 over algebraically closed

fields, it follows that h0h23 cannot survive the Adams spectral sequence. The structure of ExtF implies

that d2.h4/D h0h23 is the only way for h0h23 to die.

Now suppose we have produced the differential d2.ha/Dh0h2a�1 for some n�4. The relation haC1haD0

together with the Leibniz rule implies

0D d2.haC1ha/D d2.haC1/ � haC haC1 � d2.ha/:

Applying our inductive hypothesis and the relation haC1 � h
2
a�1 D h

3
a, this reduces to

.d2.haC1/C h0h
2
a/ � ha D 0:

The algebraic structure of Ext3F implies that d2.haC1/ 2 F2fh0h
2
ag, so it suffices to verify that h0h3a ¤ 0

for a � 4. This follows from Wang’s computation [1967, Proposition 3.4] by comparison along the map

ExtF ! ExtF Œ��1�' ExtclŒ�
˙1�.

The base step for the inductive argument given in Proposition 7.3.2 works for arbitrary base fields, but

the inductive step falls apart. This inductive step relies on the algebraic fact that, when working over an

algebraically close field, multiplication by ha is injective on the degree of d2.haC1/ for a� 4. Over other

base fields, this fails for aD 4: this degree may contain elements of the form !h1h
2
4 where ! 2Ext�1;0;�1F

is a sum of elements such as �, � , and u, and

!h1h
2
4 � h4 D !h1 � h

3
4 D !h1 � h

2
3 � h5 D 0:

Luckily, the inductive step fails only for aD 4; once we have resolved d2.h5/, the remaining differentials

will follow via the same argument. To resolve this differential, we proceed as follows.

Proposition 7.3.3 Let F be a field of the form Fq for q odd , Qp for any p, or R. Then there is a

differential

d2.h5/D .h0C �h1/h
2
4

in the F -motivic Adams spectral sequence.
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Proof When F DR, we first make the following reduction. Observe that ExtR in the degree of d2.h5/

is given by F2fh0h
2
4; �h1h

2
4g, and that neither of these classes are divisible by �2. Thus it is sufficient to

verify this differential in the Adams spectral sequence for the cofiber of �2. By [Behrens and Shah 2020,

Lemma 7.8], this cofiber is a ring spectrum, and so its Adams spectral sequence is multiplicative. Having

made this reduction, the remainder of the argument is uniform in the given choices of F. For brevity of

notation, in the following we shall write ExtF for the object so named when F D Fq or F DQp, and

write the same for Ext.2/ when F DR.

First observe that, as �4 2 Ext0F , the class �16 is a square and thus a d2-cycle. As �16 acts injectively on

ExtfF for f � 3, it suffices to show

d2.�
16h5/D .h0C �h1/�

16h24:

Consider the Hurewicz map c W ��! �F�;0: Let �4 2 �30S0 be the Kervaire class, detected by h24 and

satisfying 2�4 D 0. By Proposition 5.1.1, we find that c.�4/ is detected by .Sq0/4.h20/ D �
16h24. As

2 � c.�4/ D 0, the class .h0 C �h1/�16h24 cannot survive. The only possibility is that d2.�16h4/ D

.h0C �h1/�
16h24, yielding the desired differential.

Remark 7.3.4 When F DR, the differential d2.h5/, and in fact all the differentials d2.haC1/, may also

be produced as follows. By comparison with C, one finds d2.h5/ 2 h0h24CF2f�h1h
2
4g. Thus it suffices

to verify that d2.h5/ is not �-torsion. This is a consequence of the fact that the isomorphism ExtRŒ��1�'

ExtdclŒ�
˙1� [Dugger and Isaksen 2017b, Theorem 4.1] commutes with Adams differentials. G

We need just one more algebraic fact for the proof of Theorem 7.3.1.

Lemma 7.3.5 Let ! 2 Ext0F be nonzero. Then !h1h
3
a ¤ 0 for all a � 5.

Proof The class h0h3a�1 is nonzero in Extcl for a� 5 by [Wang 1967, Proposition 3.4]. Proposition 3.2.1

gives an injection Extdcl! ExtF , and this extends by linearity to an injection Ext0F ˝F2
Extdcl! ExtF ,

as can be seen by using Lemma 7.1.1 to reduce to the injections Ext0
.r/
˝F2

Extdcl! Ext.r/. The class

!h1h
3
a is the image of !˝ h0h3a�1 under this map, yielding the claim.

We may now give the following.

Proof of Theorem 7.3.1 As discussed, it suffices to consider only the cases where F is of the form Fq

for some q odd, Qq for some q, or R. So let F be one of these. We now induct on a, with base cases

aD 3 and aD 4.

First consider the case aD 3. By Lemma 7.2.2, the class h3 is a permanent cycle detecting the class � .

By Lemma 7.2.1, 2�2 D 0, and so .h0C �h1/h23 must be the target of a differential. The only possibility

is that d2.h4/D .h0C �h1/h23.

The case aD 4 was handled in Proposition 7.3.3.
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Now suppose inductively that we have produced the differential d2.ha/ D .h0C �h1/h2a�1 for some

a � 5. Combining the Leibniz rule with the relation haC1ha D 0, we find

0D d2.haC1ha/D d2.haC1/haC haC1d2.ha/:

Applying our inductive hypothesis and the relation haC1h
2
a�1 D h

2
a, we find

.d2.haC1/C .h0C �h1/h
2
a/ha D 0:

It follows that d2.haC1/D .h0C �h1/h
2
aC x where x is some class killed by ha. The only classes in

this degree are h0h2a and those of the form !h1h
2
a where ! 2 Ext0F . By comparison with F , we find

that x must be zero or a nonzero class of the form !h1h
2
a with ! 2 Ext�1;0;�1F . As a � 5, Lemma 7.3.5

implies that none of the latter are killed by ha. Thus x D 0, yielding the desired differential.

This concludes our uniform analysis of differentials out of Ext1F . The rest of this section is dedicated to

studying the 1-line in more detail for particular fields F.

7.4 The real numbers

We now study the case F DR in more detail. Recall from Theorem 4.2.12 that

Ext1R D F2Œ��fha W a � 1g˚
M

a�0

F2Œ��=.�
2a

/f�b2a�1.4nC1/cha W n� 0g:

Here recall that 2a�1.4nC 1/D 2n for aD 0. Theorem 7.3.1 allows one to understand the fate of the

classes in the �-torsion-free summand, so we turn our attention to the �-torsion subgroup. We shall first

pin down which of these �-torsion classes are permanent cycles, and then by separate methods compute

all d2-differentials on these �-torsion classes. A comparison reveals that there must be numerous higher

differentials, but determining these is outside the scope of our computation. The first point of order is the

following.

Definition 7.4.1 For a � 0, write aD cC 4d with 0� c � 3, and define  .a/D 2cC 8d to be the ath

Radon±Hurwitz number. G

Proposition 7.4.2 The class �r�2
a�1.4nC1/ha is a permanent cycle if and only if r � 2a � .a/.

The proof of Proposition 7.4.2 requires some preliminaries. We proceed by comparison with Borel

C2-equivariant stable homotopy theory. Let ExtBC2
denote the E2-page of the Borel C2-equivariant

Adams spectral sequence [Greenlees 1988]. Explicitly,

Exts;f;wBC2
D Exts�w;f

Acl .F2;H
�P1

w /I

this is just a combination of the ordinary Adams spectral sequences for the stable cohomotopy groups

of infinite stunted projective space. By Lin’s positive resolution [1980] of the Segal conjecture, this

spectral sequence converges to �C2
�;�, the homotopy groups of the 2-completion of the C2-equivariant

sphere spectrum.
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Betti realization followed by Borel completion yields a functor from the stable R-motivic category to the

Borel C2-equivariant stable category Fun.BC2; Sp/, and Behrens and Shah [2020, Section 8] show that

this may be understood as completing at � and inverting � . Applying this to an Adams resolution, we

find that

ExtBC2
D lim
n!1

Ext.2n/Œ�
�2n

�:

The simple form of Ext�3
R

allows us to immediately read off Ext�3BC2
.

Lemma 7.4.3 Ext�3BC2
is exactly as Ext�3

R
is described in Theorem 4.2.12, except n is allowed to be

negative , and in place of the map ExtR! ExtC is a map ExtBC2
! ExtCŒ��1�Š ExtclŒ�

˙1�.

In particular,

Ext1BC2
D F2Œ��fha W a � 1g˚

M

a�0

F2Œ��=.�
2a

/f�b2a�1.4nC1/cha W n 2 Zg:

We have introduced ExtBC2
in order to make the following reduction.

Lemma 7.4.4 Write h W ExtR! ExtBC2
for the canonical map of spectral sequences. Fix a �-torsion

class x 2 Ext1
R

. Then x is a permanent cycle if and only if h.x/ is a permanent cycle.

Proof Clearly, if x is a permanent cycle, then the same must be true of h.x/. Conversely, suppose that

h.x/ is a nontrivial permanent cycle; we claim that x is a permanent cycle.

Write ExtC2
for theE2-page of theC2-equivariant Adams spectral sequence [Hu and Kriz 2001, Section 6],

converging to the same target as ExtBC2
. This splits additively as ExtC2

D ExtR˚ExtNC for a certain

summand ExtNC (see [Guillou et al. 2020, Section 2]), and h factors as hDgıf WExtR!ExtC2
!ExtBC2

,

the first map being the obvious inclusion and the second map killing the summand ExtNC.

As h.x/ is a nontrivial permanent cycle, it detects a class ˛ in Borel Adams filtration 1. The class ˛

must then be detected in Ext�1C2
. By [Belmont et al. 2021], the map ExtR! ExtC2

is an isomorphism

in the degrees under consideration, so the same must be true for ExtC2
! ExtBC2

. As there is at most

one nonzero �-torsion class in these degrees, the only possibility is that ˛ is detected by f .x/ in Ext1C2
,

implying that f .x/ is a permanent cycle. As ExtR! ExtC2
is the inclusion of a summand, this implies

that x is a permanent cycle, as claimed.

Thus it suffices to understand permanent cycles in Ext1BC2
. The main point is the following.

Lemma 7.4.5 There exists a nonzero �-torsion class ˛ 2 �C2
s;w detected in Borel Adams filtration 1 if and

only if the inclusion of the bottom cell of Pw�1
w�s�1 is split , where P n

k
is the Thom spectrum of the k-fold

Whitney sum of the tautological line bundle over the real projective space RP n.
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Proof First suppose given such a map ˛. The structure of Ext1BC2
implies that ˛ must have �-torsion

exponent sC 1, and so there is a lift x̨ in the diagram

†s�wC1Pw�1
w�s�1

†s�wP1
w S0

†s�wP1
w�s�1

x̨
@

˛

�sC1˛D0

As ˛ and @ have Adams filtration 1, necessarily x̨ has Adams filtration 0. It follows that precomposing x̨

with the inclusion of the bottom cell S0!†s�wC1Pw�1
w�s�1 gives a map S0! S0 which is nonzero in

mod 2 cohomology, and must therefore be an equivalence. In other words, x̨ splits off the bottom cell

of Pw�1
w�s�1.

Conversely, if the inclusion of the bottom cell of Pw�1
w�s�1 is split, then its splitting gives a nonzero map x̨

as above in Adams filtration 0. Let ˛ D x̨ ı @; we claim that ˛ is a nonzero class detected in Adams

filtration 1. Indeed, the cofibering Pw�1
w�s�1! P1

w�s�1! P1
w gives an exact sequence

Ext0.F2;H
�P1

w /! Ext0.F2;H
�P1

w�s�1/! Ext0.F2;H
�Pw�1

w�s�1/
@0

�! Ext1.F2;H
�P1

w /;

where @0 models restriction along @ in the previous diagram. The first map is exactly

�sC1 W Ext�;0;wBC2
! Ext�;0;w�s�1

BC2
:

As Ext0BC2
D F2Œ��, we find that the kernel of @0 consists of only that class represented by the inclusion

F2!H 0Pw�1
w�s�1. So @0 is injective in the relevant degrees, implying that ˛ is nonzero and of Adams

filtration 1, as claimed.

We may now give the following.

Proof of Proposition 7.4.2 By Lemma 7.4.4, it suffices to show that a class �r�b2a�1.4nC1/cha 2Ext1BC2

is a permanent cycle if and only if r � 2a� .a/. By sparseness of Ext1BC2
, the class �r�b2a�1.4nC1/cha

is a permanent cycle if and only if there is some �-torsion class ˛ 2 �C2

2a�r�1;�2aC1n�r
detected in Borel

Adams filtration 1. By Lemma 7.4.5, this holds if and only if inclusion of the bottom cell of P�2aC1n�r�1
�2aC1n�2a

is split. By James periodicity [1958; 1959], this holds if and only if the inclusion of the bottom cell of

P 2
N �2aC1n�r�1

2N �2aC1�2a is split for some sufficiently largeN�0; that is, we may assume ourselves to be working

with suspension spectra of honest real projective spaces. When this happens was resolved by Adams’

solution [1962, Theorem 1.2] of the vector fields on spheres problem, yielding the condition claimed.

Corollary 7.4.6 The classes �b2a�1.4nC1/cha are permanent cycles for a � 3.

Corollary 7.4.6 could also be proved more directly, applying the technique used in the proof of Theorem

7.3.1 or Proposition 7.4.8 below to reduce to the region considered by Belmont and Isaksen.
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It is worth summarizing what we have learned from the proof of Proposition 7.4.2 about the stable

cohomotopy groups of projective spaces.

Theorem 7.4.7 The subgroup of permanent cycles in Ext1BC2
is given by

F2Œ��fh1; h2; h3; �h4g˚
M

a�0

F2Œ��=.�
 .a//f�2

a� .a/�b2a�1.4nC1/cha W n 2 Zg:

A choice of maps †cP1
w ! S0 detected by these permanent cycles is given by the following:

(1) For all r � 0, there are maps

P1
1�r ! P1

1
�
�! S0; †P1

2�r !†P1
2

��! S0; †3P1
4�r !†3P1

3
��! S0:

Here �, �, and � are equivariant refinements of the Hopf maps with the same names. These

composites are detected by �rh1, �rh2, and �rh3, respectively.

(2) For all r � 0, there is a map

†7P1
7�r !†7P1

7
Sq.�/
���! S0;

where Sq.�/ is the symmetric square of � W S7! S0. This composite is detected by �1Crh4.

(3) For all a � 0, n 2 Z, and 1� r �  .a/, there is a map

†2
a.2nC1/�1P1

�2a.2nC1/Cr
@�!†2

a.2nC1/P
�2a.2nC1/Cr�1
�2a.2nC1/

s�! S0:

Here @ is the cofiber of the map †2
a.2nC1/�1P1

�2a.2nC1/ ! †2
a.2nC1/�1P1

�2a.2nC1/Cr
, and

s is any map that splits off the bottom cell of P�2a.2nC1/Cr�1
�2a.2nC1/

. This composite is detected by

�2
a�r�b2a�1.4nC1/cha.

Proof Recall that

Ext1BC2
D F2Œ��fha W a � 1g˚

M

a�0

F2Œ��=.�
2a

/f�b2a�1.4nC1/cha W n 2 Zg:

We have just analyzed which classes in the �-torsion summand are permanent cycles, leading to exactly

the claimed �-torsion permanent cycles with representatives as described in (3). Lemma 7.2.2 implies that

h1, h2, and h3 are permanent cycles, and these detect the maps described in (1). Theorem 7.3.1 shows that

�nha supports a d2-differential for a� 5 and n� 0, and that h4 supports a d2-differential but �h4 does not.

We are left with verifying that �h4 is a permanent cycle detecting the map Sq.�/. Indeed, taking geometric

fixed points yields an isomorphism �
C2
�;�Œ�

�1�Š �cl
� Œ�

˙1� which sends Sq.˛/ to ˛ for any ˛ 2 �cl
� . This

isomorphism is modeled on Adams spectral sequences by ExtC2
Œ��1� Š ExtRŒ��1� Š ExtclŒ�

˙1�. As

�h4 is the only class in its degree lifting h3 2 Ext1cl, it must be that �h4 detects Sq.�/.

Proposition 7.4.2 implies that the classes �2
a�1.4nC1/ha must support Adams differentials for a � 4.

Although we do not compute all these differentials, we do give the following.

Proposition 7.4.8 For all n� 0 and a � 3, there is a differential

d2.�
2a.4nC1/haC1/D .h0C �h1/.�

2a�1.4nC1/ha/
2:
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Proof We give separate arguments for the case aD 3 and a > 3. First consider the case aD 3. The class

�4.4nC1/h3 is a permanent cycle by Corollary 7.4.6, detecting a class which we might call �4.4nC1/� . By

Lemma 7.2.1, 2 �.�4.4nC1/�/2D 0, and so .h0C�h1/ �.�4.4nC1/h3/
2 must die. This class is not divisible

by �, and the only non-�-divisible classes that may hit it are �8h4 and �8h4C�16h5. By Theorem 7.3.1, if

d2.�
8h4C�

16h5/D .h0C�h1/�.�
4.4nC1/h3/

2, then d2.�8h4/D .h0C�h1/�.�4.4nC1/h3Ch4/
2. This is

not possible as �8h4 is �-torsion and this target is not. Thus, in fact, d2.�8h4/D .h0C�h1/�.�4.4nC1/h3/
2,

as claimed.

Next consider the case a > 3. The �-torsion subgroup of ExtR in the degree of d2.�2
a.4nC1/haC1/ is

given by F2fh0; �h1g˝F2f.�
2a�1.4nC1/ha/

2g. These classes are not divisible by �2, and so it suffices

to verify the differential in the Adams spectral sequence for the cofiber of �2. By [Behrens and Shah

2020, Lemma 7.8], this cofiber is a ring spectrum, so its Adams spectral sequence is multiplicative. As

�2 is a cycle, �4 is a d2-cycle, so we reduce to showing d2.haC1/D .h0C �h1/h
2
a. This was shown in

Theorem 7.3.1.

We may summarize what we have learned as follows.

Theorem 7.4.9 The nontrivial d2-differentials out of the 1-line of the R-motivic Adams spectral sequence

are exactly those given in the following table:

source target constraints

h4 h0h
2
3

�rha �r.h0C �h1/h
2
a�1 a � 5, r � 0

�r�2
a�1.4nC1/ha �r.h0C �h1/.�

2a�2.4nC1/ha�1/
2 n� 0, a � 4, 0� r � 2a�1� 1

The 1-line of the E3-page of the R-motivic Adams spectral sequence has a basis given by the elements in

the following table:

F2Œ��-module generator constraints �-torsion exponent

ha a 2 f1; 2; 3g 1

�h4 1

�b2a�1.4nC1/cha n� 0 and a 2 f0; 1; 2; 3g 2a

�2
a�1�1�2

a�1.4nC1/ha n� 0 and a � 4 2a�1C 1

Those classes in Ext1
R

which are permanent cycles are given in the following table:

F2Œ��-module generator constraints �-torsion exponent stem

ha a 2 f1; 2; 3g 1 2a � 1

�h4 1 14

�b2a�1.4nC1/cha n� 0 and a 2 f0; 1; 2; 3g 2a 2a � 1

�2
a� .a/�2

a�1.4nC1/ha n� 0, a � 4  .a/  .a/� 1
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Proof All of this is immediate from Theorem 7.3.1, Propositions 7.4.2 and 7.4.8, Theorem 7.4.7, and

the �-torsion exponents of the generators of Ext3
R

given in Theorem 4.2.12, with the following exception:

Proposition 7.4.8 produces differentials d2.�8.4nC1/h4/D .h0C �h1/.�
4.4nC1/h3/

2, and one must use

Proposition 4.3.4(4) to check that this target has �-torsion exponent 7.

7.5 Finite fields

We now study the case where F is a finite field. For the most part, this case follows by combining

Theorem 7.3.1 with differentials out of Ext0F that may be deduced from [Kylling 2015]. By naturality,

our discussion in this subsection gives information for F an arbitrary field of odd characteristic.

We will need the following definition.

Definition 7.5.1 For an integer q, let �2.q/ denote the 2-adic valuation of q, ie

q D 2�2.q/.2nC 1/

for some integer n, and let

".q/D �2.q� 1/; �.q/D �2.q
2� 1/: G

We now split into cases based on congruence of the order of the field mod 4.

7.5.1 q � 1 .mod 4/ Fix a prime power q such that q � 1 .mod 4/. We work over F D Fq . Recall

that ExtFq
D Ext.1/f1; ug. In particular,

Ext1Fq
D F2Œ� �f1; ug˝F2fha W a � 0g:

The class u is a permanent cycle for degree reasons, and we have already computed the differential on all

the classes ha. However the story does not stop there; instead, we have the following.

Lemma 7.5.2 There are differentials

d".q/Cs.�
2s

/D u�2
s�1h

".q/Cs
0

for all s � 0.

Proof Kylling [2015, Lemma 4.2.1] produces identical differentials in the Fq-motivic Adams spectral

sequence for HZ. The claimed differentials follow by naturality.

This may be combined with Theorem 7.3.1 to easily compute all differentials out of the 1-line.

Theorem 7.5.3 For q � 1 .mod 4/, the 1-line of the Fq-motivic Adams spectral sequence supports only

the nontrivial differentials given in the following table:
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source dr target constraints

�nh0 d".q/C�2.n/ �n�1h
".q/C�2.n/C1
0 n� 1

�2nC1h2 d2 u�2nh2h
2
0 n� 0, ".q/D 2

�2nC1h3 d2 u�2nh3h
2
0 n� 0, ".q/D 2

�2nC1h3 d3 u�4nC1h3h
3
0 n� 0, ".q/D 3

�4nC2h3 d3 u�4nC1h3h
3
0 n� 0, ".q/D 2

�nhb d2 �nh0h
2
b�1
C d2.�

n/hb n� 0, b � 4

u�nhb d2 u�nh0h
2
b�1

n� 0, b � 4

After these have been run , the 1-line of the E1-page of the Fq-motivic Adams spectral sequence has a

basis given by the elements in the following table:

class constraints

h0

�nh1 n� 0

�nh2 n� 0, where if ".q/D 2 then n� 0 .mod 2/

�nh3 n� 0, where if ".q/D 2 then n� 0 .mod 4/, and if ".q/D 3 then n� 0 .mod 2/

u�nhb n� 0, b 2 f0; 1; 2; 3g

Proof The first four families of differentials follow immediately from Lemmas 7.5.2 and 7.2.2, and the

remaining two by combining Lemma 7.5.2 with Theorem 7.3.1. Note in particular that d2.�n/�0 .mod u/,

and thus d2.�nhb/¤ 0 for b� 4. The second table may be easily read off the first, provided we verify that

we have not missed any differentials, ie that the classes listed in the second table are indeed permanent

cycles. For degree reasons, the only possible nontrivial differentials on the classes �nhb with b 2 f1; 2; 3g

would be of the form

(1) dr.�
nh1/

‹
D �n�1hr�1

0 ,

(2) d2.�
nh2/

‹
D u�n�1h20h2,

(3) d2.�
nh3/

‹
D u�n�1h20h3,

(4) d3.�
nh3/

‹
D u�n�1h30h3

with n� 1. The first is impossible for nD 1 as h0 detects 2 and thus no power of h0 may be killed, and

is impossible for n� 2 as the class �n�1hr�1
0 must support the differential given the first row of the first

table. The remaining three differentials may occur, and when they occur is accounted for in the given

tables.

7.5.2 q � 3 .mod 4/ Now fix a prime power q such that q� 3 .mod 4/. We work over F D Fq . Recall

that ExtFq
D Ext.2/.
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Lemma 7.5.4 We may identify

Ext0Fq
D F2Œ�

2; �; ���=.�2 D � � .��/D .��/2 D 0/;

and Ext1
Fq

is the tensor product of F2Œ�
2� with

F2fh0; �� � h0g˚F2fh1; � � h1; �� � h1; �h1g˚F2fhb; � � hb; �� � hb W b � 2g:

Proof This follows quickly from our computation of ExtR, following the recipe of Remark 4.1.5.

Alternatively, one may compute the �-Bockstein spectral sequence

Ext.1/Œ��=.�
2/) Ext.2/

directly (see [Wilson and Østvñr 2017]); the only relevant differential is d1.�/D �h0.

As in the previous case, powers of � support arbitrarily long differentials.

Lemma 7.5.5 There are differentials

d�.q/Cs.�
2sC1

/D ��2
sC1�1h

�.q/Cs
0

for all s � 0. On the other hand , �� is a permanent cycle.

Proof The class �� is a permanent cycle for degree reasons. Kylling [2015, Lemma 4.2.2] produces

identical differentials in the Fq-motivic Adams spectral sequence for Fq-motivic HZ. The claimed

differentials follow by naturality.

Theorem 7.5.6 For q � 3 .mod 4/, the 1-line of the Fq-motivic Adams spectral sequence supports the

differentials given in the following table:

source dr target constraints

�2nh0 d�.q/C�2.n/ ��2n�1h
�.q/C�2.n/C1
0 n� 1

�4nC2h3 d3 ��4nC1h30h3 n� 0, �.q/D 3

�2nhb d2 �2n.h0C �h1/h
2
b�1

n� 1, b � 4

��2nC1hb d2 ��2nC1h0h
2
b�1

n� 0, b � 4

After the d2-differentials have been run , the 1-line of the E3-page of the Fq-motivic Adams spectral

sequence has a basis given by the classes in the following table:

class constraints

h0

�� � �2nhb n� 0, � 2 f0; 1g, b 2 f1; 2; 3g

��2nC1hb n� 0, b 2 f0; 1; 2; 3g

���4nC1h1 n� 0, � 2 f0; 1g

�2nh0 n� 1

��2nhb n� 0, b � 4
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Of these , all the classes in the first region are permanent cycles , with the exception that �4nC2h3 supports

a d3-differential if �.q/D 3. The classes �2nh0 for n� 1 are not permanent cycles , and we leave open

the fate of the classes ��2nhb for n� 1 and b � 4.

Proof The given differentials follow quickly by combining Theorem 7.3.1 with Lemma 7.5.5, and

this accounts for all d2-differentials. Note in particular that �2 is a d2-cycle as �.q/ � 3 whenever

q � 3 .mod 4/. Thus the given E3-page may be produced by linearly propagating the differentials of

Theorem 7.3.1. Note also that d2.��2nhb/D ��
2n.h0C�h1/h

2
b�1
D 0 for all n� 0 and b � 4, yielding

the classes in the final row of the second table.

It remains only to verify that the permanent cycles provided are indeed permanent cycles. As � and �� are

permanent cycles for degree reasons, we may reduce to considering only the classes �2nhb , ��2nC1h0,

and �4nC1h1 for b 2 f1; 2; 3g and n � 0. For degree reasons, the only possible nontrivial differentials

supported by these classes would be of the form

(1) d2.�
2nhb/

‹
D ��2n�1h20hb for b 2 f2; 3g,

(2) d3.�
2nh3/

‹
D ��2n�1h30h3

with n� 1. The first does not hold, as �2 and hb are d2-cycles. The second holds only when �.q/D 3,

and this is accounted for in the theorem statement.

7.6 The p-adic rationals

We now work over F DQp, the p-adic rationals. This is very similar to the case where F D Fq , only

where the additional input necessary to understand differentials out of Ext0
Qp

comes from work of Ormsby

[2011] for p odd and Ormsby and Østvñr [2013] for pD 2. The case where p is odd turns out to entirely

reduce to what we have already done.

Lemma 7.6.1 There are the following differentials in the Qp-motivic Adams spectral sequence:

(1) If p � 1 .mod 4/, then da.q/Cs.�
2s

/D u�2
s�1h

a.q/Cs
0 ;

(2) If p � 3 .mod 4/, then d�.q/Cs.�
2sC1

/D ��2
sC1�1h

�.q/Cs
0 .

Proof Ormsby [2011, Theorem 5.2] produces identical differentials in the Qp-motivic Adams spectral

sequence for the Brown±Peterson spectrum BPh0i. The claimed differentials follow by naturality.

We may summarize the situation as follows.

Theorem 7.6.2 Fix an odd prime p, and consider the facts outlined about the Fp-motivic Adams spectral

sequence in Theorems 7.5.3 and 7.5.6. The same facts hold for the Qp-motivic Adams spectral sequence

upon tensoring with Fpf1; �g.

Proof The class � is a permanent cycle for degree reasons, and the differentials given in Lemma 7.6.1

agree with those given in Lemmas 7.5.2 and 7.5.5. All of the work carried out over Fp then goes through

verbatim, only where everything in sight has a twin copy indexed by � .
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Remark 7.6.3 The somewhat awkward phrasing of Theorem 7.6.2 is necessary as we did not wish to

repeat two verbatim copies of both Theorems 7.5.3 and 7.5.6, but we have not shown that the 1-line of

the Qp-motivic Adams spectral sequence is a direct sum of two copies of the 1-line of the Fp-motivic

Adams spectral sequence. The possible failure of this arises from the fact that when p � 3 .mod 4/, the

classes ��2nhb for b � 4 could support different higher differentials over Fp and Qp. G

The case where p D 2 requires a separate analysis. Recall that

ExtQ2
D Ext.3/f1g˚Ext.1/fu; �g:

Lemma 7.6.4 We may identify

Ext0.3/ D F2.�
4; ��2; �2�; �2�3; �/� F2Œ�; ��=.�

3/;

and Ext1
.3/

is the tensor product of F2Œ�
4� with the direct sum of the modules

F2fh0; �
2h0; �

2�h0; �
2�3h0g;

F2f1; �g˝F2f�h1g˚F2f��
3h1g˚F2f1; �; �

2; ��2; �2�2; �2�3g˝F2fh1g;

F2f1; �; �
2; �2�; �2�3; ��2; �2�2g˝F2fhb W b � 2g:

Proof As with Lemma 7.5.4, this follows from our computation of ExtR via the recipe in Remark 4.1.5,

or via the �-Bockstein spectral sequence; here the relevant �-Bockstein differentials are d1.�/D �h0 and

d2.�
2/D �2�h1.

Lemma 7.6.5 The classes

�4nC1�2; �2n�; �4nC3�2; ��n; u; u�2nC1

are permanent cycles. There are differentials

d4Cr.�
2rC2

/D��2
rC2�1h4Cr

0 ; d3Cr.u�
2rC1

/D�2�2
rC1�1h3Cr

0 ; d3Cr.�
2rC1

h0/D��
2rC1�1h4Cr

0

for all r � 0.

Proof Ormsby and Østvñr [2013, Lemma 5.7] compute differentials in the Q2-motivic Adams spectral

sequence for BPh0i. The claimed facts follow by comparison.

Theorem 7.6.6 The 1-line of the Q2-motivic Adams spectral sequence supports the following nontrivial

differentials:
source dr target constraints

�2nh0 d3C�2.n/ ��2n�1h
4C�2.n/
0 n� 1

�4nhb d2 �4n.h0C �h1/h
2
b�1

n� 0, b � 4

��2nhb d2 �2�2nh1h
2
b�1

n� 0, b � 5

u�nhb d2 u�nh0h
2
b�1

n� 0, b � 4

��nhb d2 ��nh0h
2
b�1

n� 0, b � 4

u�4nC2h3 d3 �2�4nC1h30h3 n� 0
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After all the d2-differentials have been run , the 1-line of the E3-page of the Q2-motivic Adams spectral

sequence has a basis given by the classes in the following table:

class constraints

h0

�ı�4nhb n� 0, ı 2 f0; 1; 2g, b 2 f1; 2; 3g

�2�2nC1h0 n� 0

���4nC1h1 n� 0, � 2 f0; 1g

�1C��4nC3h1 n� 0, � 2 f0; 1g

�1C��4nC2h1 n� 0, � 2 f0; 1g
uh0

u�2nC1h0 n� 0

u�nhb n� 0, b 2 f1; 2g

u�2nC1h3 n� 0

u�4nh3 n� 0

��nhb n� 0, b 2 f0; 1; 2; 3g

u��2nh0 n� 1, � 2 f0; 1g

u�4nC2h3 n� 0

�1C��4nh4 n� 0, � 2 f0; 1g

�2�4nhb n� 0, b � 5

Of these , the classes in the first region are permanent cycles , the classes u��2nh0 with n� 1 and � 2 f0; 1g,

as well as u�4nC2h3 with n� 0, support higher differentials , and we leave open the fate of the classes

�1C��4nh4 and �2�4nhb for n� 0, � 2 f0; 1g, and b � 5.

Proof The given differentials follow by combining Theorem 7.3.1 with Lemma 7.6.5. For example,

d2.��
2nhb/D ��

2n � d2.hb/D ��
2n � .h0C �h1/h

2
b�1 D �

2�2nh1h
2
b�1

for b � 4, which is nonzero precisely when b � 5; as another example,

d3.u�
4nC2h3/D d3.u�

2/ � �4nh3 D �
2� � �4nh3 D �

2�4nC1h3:

We must verify that all d2-differentials are accounted for in this table; the claimed description of the

E3-page follows quickly. We must also verify that the classes we give as permanent cycles are indeed

permanent cycles. It suffices to verify the latter.

We may cut down the number of classes to consider by taking into account the classes which are products

of the permanent cycles given in Lemma 7.6.5 with some other class. After this reduction, degree

considerations rule out all differentials except for possibly

(1) dr.�
4nC1h1/

‹
D �4nhrC1

0 ,

(2) dr.��
4nC3h1/ 2 F2fu; �g˝F2f�

4nC2hrC1
0 g,

(3) dr.��
4nC2h1/

‹
D �2�4nC1hrC1

0 ,
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(4) dr.u�
2nh1/

‹
D �2�2n�1hrC1

0

with n � 0, and in the fourth case n � 1. In all cases, the possible nonzero targets are present and

not boundaries in Ormsby and Østvñr’s computation [2013] of the Adams spectral sequence for the

Q2-motivic BPh0i, so by naturality they cannot be boundaries in the Adams spectral sequence for the

sphere. Thus these possible nonzero differentials are in fact not possible, yielding the theorem.

7.7 The rational numbers

We end by considering the case F D Q. By naturality, this gives information over arbitrary fields of

characteristic zero. Recall the functions " and � defined in Definition 7.5.1.

Theorem 7.7.1 The 1-line of the E3-page of the Q-motivic Adams spectral sequence is given by a direct

sum of that for the R-motivic Adams spectral sequence with the classes in the following table , where p

ranges through all primes:

class constraints

�nhbŒ2� n� 0, b 2 f0; 1; 2; 3g

h0Œp� p � 1 .mod 4/

�nh1Œp� p � 1 .mod 4/, n� 0

�2nh2Œp� p � 1 .mod 4/, n� 0

�2nC1h2Œp� p � 1 .mod 4/, n� 0, ".p/� 3

�4nh3Œp� p � 1 .mod 4/, n� 0

�4nC2h3Œp� p � 1 .mod 4/, n� 0, ".p/� 3

�2nC1h3Œp� p � 1 .mod 4/, n� 0, ".p/� 4

�nhbap p � 1 .mod 4/, n� 0, b 2 f0; 1; 2; 3g

h0up p � 3 .mod 4/

�2nhbup p � 3 .mod 4/, n� 0, b 2 f1; 2g

�4nh3up p � 3 .mod 4/, n� 0

�4nC2h3up p � 3 .mod 4/, n� 0, �.p/� 4

��2nhbup p � 3 .mod 4/, n� 0, b 2 f1; 2; 3g

��2nC1hbup p � 3 .mod 4/, n� 0, b 2 f1; 2; 3; 4g

���4nC1h1up p � 3 .mod 4/, n� 0, � 2 f0; 1g

�2nh0Œp� p � 1 .mod 4/, n� 1

�2nC1h0Œp� p � 1 .mod 4/, n� 1, ".p/� 3

�4nC2h3Œp� p � 1 .mod 4/, n� 0, ".p/D 2

�2nC1h3Œp� p � 1 .mod 4/, n� 0, ".p/D 3

�4nC2h3up p � 3 .mod 4/, n� 0, �.p/D 3

�2nh0up p � 3 .mod 4/, n� 1

��2nhbup p � 3 .mod 4/, n� 0, b � 4
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Moreover , we have the following information about higher differentials. The classes in the first region

of this table are permanent cycles , as are the classes ha and �b2a�1.4nC1/cha for a � 3. The classes in

the second region of this table support higher differentials , as do the classes in Ext1
R

, which must support

higher differentials by Theorem 7.4.9. We leave open the fate of the classes in the third region of this table ,

as well as the possibility of exotic higher differentials on the classes �h4 and �2
a� .a/�2

a�1.4nC1/ha

for a � 4.

Proof Recall the splitting

ExtQ D ExtR˚Ext.1/fŒ2�g˚Ext.1/fŒp�; ap W p � 1 .mod 4/g˚Ext.2/fup W p � 3 .mod 4/g

implied by Lemma 7.1.1. As in the proof of Proposition 7.1.3, each of these summands is itself either ExtR
or an identifiable summand of some corresponding ExtQp

; for p odd, this summand looks like ExtFp
.

We may thus read the given table off the information given in Theorems 7.4.9, 7.6.2 (with Theorems 7.5.3

and 7.5.6), and 7.6.6, provided we verify the following claim: if ˛Œp� 2 Ext1
Q

is a class in stem s � 6,

then ˛Œp� or ˛up is a dr -cycle if and only if it projects to a dr -cycle in the Qp-motivic Adams spectral

sequence; and, likewise, if ˛ 2 Ext1
R

is a class in stem s � 7, then ˛ is a dr -cycle in the Q-motivic Adams

spectral sequence if and only if it projects to a dr -cycle in the R-motivic Adams spectral sequence.

As in the proofs of Theorems 7.5.3, 7.5.6, and 7.6.6, differentials on the classes ˛Œp� and ˛up in stems

s � 6 are completely determined by the structure of differentials on the classes Œp��2
i

and up�2
i

in the Q-

motivic Adams spectral sequence for BPh0i, together with the fact that h0, h1, h2, and h3 are permanent

cycles. The Q-motivic Adams spectral sequence for BPh0i was computed in [Ormsby and Østvñr 2013,

Theorem 5.8]. We find that differentials on the classes Œp��2
i

and up�2
i

in the Q-motivic Adams spectral

sequence for BPh0i are entirely detected over Qp , and our first claim follows. That the classes ha 2 Ext1
R

for a � 3 are permanent cycles was seen in Lemma 7.2.2, and the classes �b2a�1.4nC1/cha 2 Ext1
R

must

be permanent cycles for a � 3 as there is no room for exotic higher differentials.
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