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We investigate forms of the Hopf invariant one problem in motivic homotopy theory over arbitrary base
fields of characteristic not equal to 2. Maps of Hopf invariant one classically arise from unital products on
spheres, and one consequence of our work is a classification of motivic spheres represented by smooth
schemes admitting a unital product.

The classical Hopf invariant one problem was resolved by Adams, following his introduction of the Adams
spectral sequence. We introduce the motivic lambda algebra as a tool to carry out systematic computations
in the motivic Adams spectral sequence. Using this, we compute the E;-page of the R-motivic Adams
spectral sequence in filtrations f < 3. This universal case gives information over arbitrary base fields.

We then study the 1-line of the motivic Adams spectral sequence. We produce differentials da (hg+1) =
(ho + ph1)h? over arbitrary base fields, which are motivic analogues of Adams’ classical differentials.
Unlike the classical case, the story does not end here, as the motivic 1-line is significantly richer than
the classical 1-line. We determine all permanent cycles on the R-motivic 1-line, and explicitly compute
differentials in the universal cases of the prime fields I, and Q, as well as Q, and R.
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1 Introduction

Motivic homotopy theory is a homotopy theory for algebraic varieties, developed by Morel and Voevodsky
[1999]. Since its conception and subsequent use by Voevodsky [2003; 2011] to resolve the Milnor and
Bloch—Kato conjectures, an immense amount of work has gone into the theory, with applications to
algebraic geometry, algebraic number theory, and algebraic topology.

Motivic stable homotopy theory is the home of Al-invariants on algebraic varieties, such as algebraic
K-theory, motivic cohomology, and algebraic cobordism. The universal such invariants are motivic stable
homotopy groups, and as such the internal structure of the motivic stable homotopy groups of spheres
reflects the broad-scale structure of the motivic stable homotopy category. These motivic stable stems
encode deep geometric and number-theoretic information; for example, Morel [2004] showed that the
Milnor-Witt K -theory of a field appears in its stable stems, and Rondigs, Spitzweck and @stver [Rondigs
et al. 2019; 2021] have identified motivic stable stems in low Milnor—Witt stem in terms of variants of
Milnor K-theory, Hermitian K-theory, and motivic cohomology.

Motivic homotopy theory was originally developed to apply ideas and tools from homotopy theory to
problems in algebraic geometry and algebraic K-theory. Information now flows the other way as well.
After p-completion, C-motivic stable stems capture information about classical stable stems that is not
seen using classical techniques. This has led to the highly successful program of Gheorghe, Isaksen, Wang
and Xu [Isaksen 2019; Isaksen et al. 2023; Gheorghe et al. 2021], yielding groundbreaking advances in
computations of classical stable homotopy groups of spheres. A similar program using R-motivic stable
stems to capture information about C-equivariant stable stems has also developed [Burklund et al. 2020;
Belmont and Isaksen 2022; Dugger and Isaksen 2017a; 2017b; Guillou and Isaksen 2020; Belmont et al.
2021]. More recently, Bachmann, Kong, Wang and Xu [Bachmann et al. 2022] related F'-motivic stable
homotopy theory over a general field F to classical complex cobordism.

All of this has motivated a swath of explicit computations of motivic stable stems over particular base
fields F. We refer the reader to [Isaksen and @stveer 2020] for a general survey, but mention the following
2-primary computations:

F =C Dugger and Isaksen [2010] computed the C-motivic stable stems through the 36 stem, and
these computations were pushed out to the 90 stem in [Isaksen 2019; Isaksen et al. 2023].

F =R Dugger and Isaksen [2017a] computed the first four Milnor—Witt stems over R, and Belmont
and Isaksen [2022] expanded on this to compute the first 11 Milnor—Witt stems over R.

F =TF, Wilson [2016] and Wilson and @stvear [2017] computed the motivic stable homotopy groups of
finite fields in motivic weight zero through topological dimension 18.

There are still many mysteries contained in the motivic stable stems. All of the above computations
were enabled by the motivic Adams spectral sequence, originally introduced by Morel [1999] and further
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developed by Dugger and Isaksen [2010]. This is a motivic analogue of the classical Adams spectral
sequence, which was developed by Adams [1958; 1960] to resolve the Hopf invariant one problem.
Adams used this spectral sequence to prove that the only elements of Hopf invariant one in the classical
stable stems nil are the classical Hopf maps 7.1 € nfl, Vel € ngl, and o € 7151. This theorem has a number
of implications, including classifications of which spheres can be made into H -spaces, which spheres are
parallelizable, which 2-dimensional modules over the Steenrod algebra can be realized by cell complexes,
which dimensions a finite-dimensional real division algebra can have, and more.

This paper is concerned with topics surrounding motivic analogues of the classical Hopf invariant
one problem. There is an element 1 in the motivic stable stems, represented by the canonical map
n: A2\ {0} — P!, which refines the classical complex Hopf map 7. Hopkins and Morel — see [Morel
2004] — showed that 7, is one of the generators of the Milnor—Witt K-theory of the base field. This motivic
n behaves quite differently from the classical Hopf map; most famously, 1 is not nilpotent, and is generally
not 2-torsion. Because 7 is not nilpotent, one may consider the n-inverted stable stems 7« «[1~']. These
are closely related to Witt K-theory [Bachmann 2022; Bachmann and Hopkins 2020], and have been the
subject of thorough investigation [Andrews and Miller 2017; Guillou and Isaksen 2015; 2016; Ormsby
and Rondigs 2020; Wilson 2018].

Using the theory of Cayley—Dickson algebras, Dugger and Isaksen [2013] have shown that the classical
quaternionic and octonionic Hopf maps v and o also admit geometric refinements to motivic classes v
and o. All of these motivic Hopf maps 7, v, and ¢ are maps of Hopf invariant one, but, unlike classically,
they are not the only such maps. For example, the classical stable stems include into the weight O portion
of the motivic stable stems, and 7, V], and o give rise to distinct examples of maps of Hopf invariant
one in the motivic setting. If we reformulate the condition of a map « having nontrivial Hopf invariant
as asking that the homology of the 2-cell complex with attaching map « not split as a module over the
motivic Steenrod algebra, then the situation becomes even richer: for example, aczl admits an R-motivic
refinement to a map of nontrivial Hopf invariant in this sense, closely related to the nonexistent Hopf
map coming next in the sequence 7, v, 0.

All of this motivates the present work, the purpose of which is three-fold:

(1) to analyze the motivic Hopf invariant one problem and deduce geometric consequences;
(2) to advance our understanding of motivic stable stems over general base fields;

(3) to introduce the motivic lambda algebra, a new tool for motivic computations.

As mentioned above, Adams resolved the Hopf invariant one problem by introducing and studying the
Adams spectral sequence. Morel [1999] and Dugger and Isaksen [2010] have already introduced the
F-motivic Adams spectral sequence, which takes the form

*okk g kokk on e Fon i F F
E, =Ext ;" (M",M") = 7y 4.
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Here A is the F-motivic Steenrod algebra [Voevodsky 2003; Hoyois et al. 2017], which acts on M,
the mod 2 motivic cohomology of Spec(F'). This spectral sequence converges to nf’ «» the homotopy
groups of the (2, n)-completed F-motivic sphere [Hu et al. 2011a; Kylling and Wilson 2019]. Implicit is
the assumption that 2 is invertible in F.

In this paper, we bring the motivic Adams spectral sequence back to its classical roots, using it to study the
motivic Hopf invariant one problem. We do not follow Adams’ original approach. Instead, at least in broad
outline, we follow J S P Wang’s approach [1967], which proceeded by first gaining a good understanding
of the E,-page of the Adams spectral sequence. Importing this approach to motivic homotopy theory
requires analyzing the E,-page of the motivic Adams spectral sequence over general base fields in ranges
beyond what is known by previous techniques.

To carry out this analysis, we bring another tool from classical stable homotopy theory into the motivic
context: the lambda algebra. The classical lambda algebra A is a certain differential graded algebra,
originally constructed by Bousfield, Curtis, Kan, Quillen, Rector and Schlesinger [Bousfield et al. 1966],
whose homology recovers the E»-page of the Adams spectral sequence. The classical lambda algebra
is now a standard member of the homotopy theorist’s toolbox, and we cannot hope to list all of its

applications, but the following are a selection:

(1) Wang’s computation [1967] of the E,-page of the Adams spectral sequence through the 3-line, and
subsequent simplified resolution of the Hopf invariant one problem;

(2) some of the first automated computations of the E»-page of the Adams spectral sequence, including
products and Massey products [Tangora 1985; 1993; 1994; Curtis et al. 1987];

(3) the construction of Brown—Gitler spectra [1973], which played an important role in analyzing the
bo-resolution [Mahowald 1981; Shimamoto 1984], the proof of the immersion conjecture [Cohen
1985], and more [Mahowald 1977; Goerss 1999; Hunter and Kuhn 1999];

(4) the algebraic Atiyah—Hirzebruch spectral sequence for RP *° [Wang and Xu 2016], used as input to
their proof of the nonexistence of exotic smooth structures on the 61-sphere [Wang and Xu 2017];

(5) the only complete computations of the 4- and 5-lines of the Adams E»-term [Chen 2011; Lin
2008].

We expect that the motivic lambda algebra will likewise become a useful member of the motivic homotopy
theorist’s toolbox. We focus in particular on developing the lambda algebra and applying this to the
motivic Hopf invariant one problem. We consider both the unstable problem, with applications to H -space
structures on motivic spheres, and the stable problem, which is concerned with the 1-line of the motivic
Adams spectral sequence. The motivic situation is substantially richer than the classical situation, and
requires us to develop a number of new techniques for motivic computations across general base fields.

Adams’ resolution of the classical Hopf invariant one problem asserted the existence of differentials
da(hat+1) = hoh? in the Adams spectral sequence. There are classes /1, in the F-motivic Adams spectral
sequence for any field F, corresponding to the motivic Hopf maps discussed above for a < 3. Using
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Betti realization, it is possible to lift Adams’ differentials to the C-motivic Adams spectral sequence. It
follows that, if F' admits a complex embedding, then A, 1 must support a nontrivial differential for a > 3.
However, this is insufficient to determine the precise target of the differential, as well as to determine what
happens over other base fields, particularly fields of positive characteristic. The techniques we develop
are geared towards resolving this sort of issue. We use these to obtain a number of new results; let us
give the following here, as it is the most pleasant to state.

Theorem A (Theorem 7.3.1) For an arbitrary base field F of characteristic not equal to 2, there are
differentials of the form
da(hat1) = (ho + ph1)h;,

in the F -motivic Adams spectral sequence, which are nonzero fora > 3.
It is worth making a couple remarks to distinguish this from the classical result.

Remark 1.0.1 Classically, there is at most one possible nontrivial target for a d,-differential on /44 1.
As suggested by the target in Theorem A, the motivic situation is more complicated. For example, when
F =R, we show that, if @ > 4, then the group of potential values of d»(/14+1) is given by Fa{hoh2, ph1h2}.
The general picture is similar, except there may be additional interference coming from the mod 2 Milnor
K-theory of F. This computation requires new techniques for computing the cohomology of the motivic
Steenrod algebra, which is much richer than the analogous classical computation. <

Remark 1.0.2 Even once we have carried out the algebraic work of identifying potential values of
d>(hg+1), the classical proof does not directly generalize to yield Theorem A. In spirit, our proof
follows Wang’s classical inductive proof [1967]. The base case of Wang’s induction is the differential
dy(h4) = hoh?3, which follows easily from graded commutativity of stable stems. By contrast, our base
case must include the differential d(hs) = (ho + ph1)h3. Over R, this differential may be deduced by
combining complex and real Betti realization, but a completely different argument is required to obtain
the differential for other fields. To obtain this differential over other base fields, we use a certain motivic
Hasse principle to reduce to considering fields with simple mod 2 Milnor K-theory, then analyze how the
classical Kervaire class 64 appears in the motivic stable stems. <

Remark 1.0.3 There is another elegant proof of the classical Adams differential ds(hg+1) = hgha, due
to Bruner [1986b, Corollary 1.5], which makes use of power operations in the Adams spectral sequence.
Tilson [2017] has explored analogues of Bruner’s results in the R-motivic setting, but so far these methods
have only succeeded in determining the R-motivic differential d5 (hg41) for a < 3. <

1.1 Brief overview

Now let us give a very brief overview of what we do in this paper, before giving a more thorough summary
in Section 1.2. This paper has three main parts. These parts are not independent, but none rely on the
hardest aspects of the others.
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The first part is purely algebraic, and is the most computationally intensive. In Section 2, we introduce
the F-motivic lambda algebra (Theorem B), and in Section 4 we use the R-motivic lambda algebra
to compute Extg in filtrations f < 3 (Theorem C). The result is quite complicated, with eight infinite
families of multiplicative generators and numerous relations between these. As we explain in Section 7.1,
this gives information about Extg for any base field F' once the mod 2 Milnor K-theory of F is known.

The second part is shorter, and does not rely on the above computation. In Section 6, after some
preliminaries in Section 5, we consider the motivic analogue of the Hopf invariant one problem in
its classical unstable formulation, concerning unstable 2-cell complexes with specified cup product,
as well as concerning geometric applications such as to H -space structures on motivic spheres. Our
analysis proceeds by a novel reduction to the classical case and other known results, by first formulating a
certain motivic Lefschetz principle (Proposition 5.2.1), then using this to build unstable “Betti realization”
functors over arbitrary algebraically closed fields (Proposition 5.3.2). One consequence of this analysis is
a complete classification of motivic spheres which are represented by smooth schemes admitting a unital
product (Theorem D).

The third part is our main homotopical contribution. In Section 7, we give a detailed study of the 1-line
of the F-motivic Adams spectral sequence. This work has a direct geometric interpretation: permanent
cycles on the 1-line of the motivic Adams spectral sequence classify how the motivic Steenrod algebra
can act on the cohomology of a motivic 2-cell complex. This section does not rely on the full strength of
our computation of Extg, and should be understandable by the reader familiar with prior work on the
R-motivic Adams spectral sequence. The main theorems in this section are Theorem A above, together
with much more detailed information about the 1-line of the F'-motivic Adams spectral sequence for the
particular fields F =R, F = F, with ¢ an odd prime power, F = Q, with p any prime, and F = Q
(Theorem E). As this includes all the prime fields, these computations give information that applies
to an arbitrary base field. When F = R, we completely determine all permanent cycles on the 1-line
by comparison with a computation in Borel C-equivariant homotopy theory (Theorem F); both the
equivariant computation and the method of comparison are of independent interest.

1.2 Summary of results

We now summarize our work in more detail. We begin with our introduction of the motivic lambda
algebra. The nature of the classical lambda algebra A [Bousfield et al. 1966] was greatly clarified by
Priddy [1970], who introduced the notion of a Koszul algebra and showed that A is the Koszul complex
of the classical Steenrod algebra. We carry out the motivic analogue of this, producing the following.

Theorem B (Section 2.4) There is a differential graded algebra AF, the F-motivic lambda algebra,
with the following properties:

(1) AF may be described explicitly in terms of generators, relations, and monomial basis.
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(2) There is a surjective and multiplicative quasiisomorphism C(AF) — AF from the cobar complex
of the F-motivic Steenrod algebra to AF. In particular, there is an isomorphism

HoAF = Exth.

compatible with all products and Massey products. Moreover, the squaring operation Sq°: Exty —
Ext}, lifts to a map 0: AF — AF of differential graded algebras.

3) AT generalizes the classical lambda al ebra, in the sense that, if F' is algebraically closed, then
g g g y
AF[t71) = AY[t*1]. In particular, it is considerably smaller than C (AF).

Here we have abbreviated Eth’;’*(MF , MF ) to Ext}}, where the single index refers to filtration, or

homological degree, ie Ext{, = H/(AF).

Remark 1.2.1 Several subtleties arise in the construction and identification of the motivic lambda algebra.
We note two interesting points here:

(1) Priddy’s notion [1970] of Koszul algebra is not general enough for our situation: AF is generally
not augmented as an M ¥ -algebra, and M ¥ is generally not central in A¥. This forces us to
consider a more general notion of a Koszul algebra, as well as to find new arguments to prove that
AF is Koszul in this more general sense.

(2) As readers familiar with the motivic Adem relations might suspect, the elements t and p of M
appear in the relations defining the motivic lambda algebra, as well as in its differential and the
endomorphism 6 lifting Sq°. Determining these formulas precisely is delicate and requires some
careful arguments. <

Remark 1.2.2 As indicated above, we construct the F-motivic lambda algebra as a certain Koszul
complex for the F-motivic Steenrod algebra. The Koszul story produces other complexes as well: for
any Af -modules M and N with M projective over M, there are complexes A (M, N) serving as
small models of the cobar complex computing Ext (M, N). An amusing special case of this produces
a lambda algebra A2 for the C,-equivariant Steenrod algebra (Remark 2.3.5). <

We use the motivic lambda algebra to study Extg in low filtration. Before diving into our more extensive

computations, we illustrate the structure of AF with some simple examples in Section 3.1, showing how

it may be used to give easy rederivations of some well-known low-dimensional relations in Extg. We

then carry out our main algebraic computation in Section 4, where we prove the following. Note that
0

EXtR =T, [,O]

Theorem C The structure of Extg in filtrations f < 3 is as described in Section 4; in particular, the
IF»[p]-module structure is described in Theorem 4.2.12, including a description of multiplicative generators
and the action of Sq°, and the majority of the multiplicative structure is described in Theorem 4.3.7.
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Here we are justified in focusing on Extg as it is, in a certain precise sense, the universal case (see
Remark 2.2.8). We explain in Section 7.1 how to pass from information about Extg to information about
Extg for other base fields F.

Example 1.2.3 (Theorem 4.2.12(1)) The computation of ExtfR3 is much more involved than the
corresponding classical computation, and the result is much richer. We refer the reader to Section 4 for
the full statements, but illustrate this here with the following sample. Classically, Ext§3 is generated as
an algebra by the classes /, and ¢, for a > 0. By contrast, a minimal multiplicative generating set of
Ext]lsg3 as an [ [p]-algebra is given by the classes in the following table:

multiplicative generator p-torsion exponent

ha+1 oo
Ca+1 oo
fL2071(4n+1)Jha na
.[2"(811-1-1);%_’_2 2a+1 .3
TLZ“*I(2(16n+1)+1)Jh§+3ha 7a.13
.[2a(4(4I’l-i-l)+1)hg+3 2a .7
.L,|_2“_1(16n+1)Jca 2a .7
r2a+1(8”+1)ca+1 ha+2 3
TL2“—1(2(4n+1)+1)Jca 0a .3

Here a,n > 0, and the p-torsion exponent of a class « is the minimal r for which p"« = 0; the classes
hq+1 and cq41 are p-torsion-free. Note that all of the classes listed are named for their image in Extc,
and are not themselves products. <

Example 1.2.4 Observe that the multiplicative generators s, and ¢, of Extfl3 appear, with a shift, as
p-torsion-free classes in Extg. This is a general phenomenon: Dugger and Isaksen [2017a, Theorem 4.1]
produce an isomorphism Extg[p™'] ~ Extga[p*!]; here Extqq = Exty only given a motivic grading
such that Extil’f = Extis]-"f’f’s-'_f . As we discuss in Section 3.2, this in fact refines to a splitting
Extr = Extqci[o] ® Extf)R_tors, where Extﬁgmrs C Extp is the subgroup of p-torsion; moreover, this splitting
is modeled by a multiplicatively split inclusion 6: Al 5 AR The general shape of Extg forced by this
may be illustrated by the description of the 1-line

(1-1) Exth = Fa[pl{ha :a > 1} ® @ Falpl/ (0> ) (27 @+ D, o0 > 0}, p

a>0

As Extcsl3 is entirely understood by Wang’s computation [1967], the hard work of Theorem C is in
computing the p-torsion subgroup of Ext§3. This is the most computationally intensive part of the paper,
and proceeds by a direct case analysis of monomials in AR in low filtration. In the end, we find that Ext]f{3
carries the multiplicative generators listed in Example 1.2.3, and that there are many exotic relations
between these generators. Our computation describes all of this.
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With the algebraic computation of Theorem C in place, we turn to more homotopical topics, namely those
surrounding the Hopf invariant one problem. There are (at least) two good motivic analogues of the Hopf
invariant one problem: one which is unstable, concerning the construction of unstable 2-cell complexes
with nontrivial cup product structure, and one which is stable, concerning the construction of stable 2-cell
complexes with nontrivial AF -module structure. As we recall in Section 6.2, understanding the latter
question is equivalent to understanding the 1-line of the F'-motivic Adams spectral sequence; we get to
this in Section 7, which we will discuss further below.

It is the former unstable formulation which has more direct geometric applications. For example, following
[Dugger and Isaksen 2013] on the Hopf construction in motivic homotopy theory, it is directly tied up
with the question of which unstable motivic spheres S @b admit H -space structures (see Lemma 6.4.3).
Here S%? is the motivic sphere which is A!-homotopy equivalent to ya—b G,’,\lb . We discuss this unstable
formulation in Section 6, which is independent of our other calculations. One pleasant consequence of
this story is the following.

Theorem D (Theorem 6.4.5) The only motivic spheres which are represented by smooth F -schemes
admitting a unital product are $%°, S1-1, §3:2 and S7-*.

The statement of Theorem D is directly analogous to the classical result that the only spheres admitting
unital products are S°, S, §3, and S”7. Classically, the nonexistence of H -space structures on any other
spheres may be reduced to the Hopf invariant one problem, which was then established by Adams. This
reduction makes use of the instability condition that Sq% (x) = x2 whenever x € H%(X) for some space X.
There is an analogous instability condition for the motivic cohomology of a motivic space, but it holds
only in a smaller range than we would need; as a consequence, some additional input is needed to analyze
the unstable motivic Hopf invariant one problem (see Remark 6.3.2).

This additional input is interesting in itself. It follows from the formulation of the unstable motivic
Hopf invariant one problem that, at least for nonexistence, one may reduce to the case where F' is
algebraically closed. In Section 5.2, we explain how work of Wilson and @stvar [2017] implies a certain
Lefschetz principle for suitable 2-primary categories of cellular motivic spectra. When combined with
Mandell’s p-adic homotopy theory [2001], this gives a 2-primary unstable “Betti realization” functor
for any algebraically closed field F, which is well behaved with respect to the mod 2 cohomology of
motivic cell complexes; see Section 5.3. This gives a direct relation between motivic and classical
homotopy theory, and we are then able to analyze the unstable motivic Hopf invariant one problem using
a combination of classical results, work of Dugger and Isaksen [2013] on the motivic Hopf construction,
and work of Asok, Doran and Fasel [Asok et al. 2017] on smooth models of motivic spheres.

Finally, in Section 7, we turn to a study of the 1-line of the F-motivic Adams spectral sequence. After a
few preliminaries, we begin by proving Theorem A, producing the differentials

da(hat1) = (ho + ph1)h2
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valid for any F (Theorem 7.3.1). As we mentioned above, the main content of this theorem is not the fact
that the classes 441 for a > 3 support nonzero differentials, but the exact value of the target of these
differentials. We mention two interesting aspects of this computation here:

First, in order to get a more explicit handle on possible targets of d»(h4+1), we reduce to considering the
case where F' is a prime field, ie /' =IF, with p odd or F' = Q. The latter case is then handled with the
aid of a Hasse principle. We explain how work of Ormsby and @stver [2013] on the structure of M@
may be used to give a concrete description of Extg and of the Hasse map

(1-2) Extg — Extg x ]_[ Extg,.

D prime
in particular proving this map is injective (Proposition 7.1.3). In this way we reduce to computing the
differentials d»(h,) over the fields I, with p odd, Q, with p prime, and R.

Second, the classical argument, using the fact that 202 = 0, may be used to compute dp(h4), but a

new argument is required to produce the differential d» (hs) = (ho + phl)hi (Proposition 7.3.3). Once

this differential is resolved, the rest follow by an inductive argument analogous to Wang’s classical

argument [1967]. After a further reduction when F = R, the differential d»(/5) may be resolved

uniformly in the above choices of base field. In short, to resolve this differential, we lift the Hurewicz map
cl

Ty > f o to a map Ext;’* — Ext*F’*’O of spectral sequences (Proposition 5.1.1) and, by considering the
effect of this on the Kervaire class 04, deduce that (ho + phl)h% must be hit by /5.

The story does not stop with the differentials da(hg+1), as Ext}7 contains many more classes than these;
recall for instance Extﬂq{ from (1-1). Having resolved these differentials, we move on to giving an explicit
analysis of the 1-line of the F-motivic Adams spectral sequence for a number of base fields F. Our main
results may be summarized in the following.

Theorem E The following are carried out in Section 7:
(1) In Theorem 7.4.9, we compute all d,-differentials out of Extﬁg, as well as all permanent cycles in
1
Extp.
(2) In Theorem 7.5.3, for q a prime power satisfying g =1 (mod 4), we compute all Adams differentials
out of Extﬁ;q, in particular giving all permanent cycles in Ext]i.q.

(3) In Theorem 7.5.6, for g a prime power satistying ¢ = 3 (mod 4), we compute all d,-differentials
out of Extlqu, as well as all higher differentials in stems s <7, in particular giving all permanent
cycles in Extﬁ-q in stems s <7.

(4) In Theorem 7.6.2, for p an odd prime, we give as much information about Ext(bp as was given for
Extlle.

(5) In Theorem 7.6.6, we compute all d,-differentials out of Ext(bz, as well as all higher ditferentials
in stems s <7, in particular giving all permanent cycles in Ext(b22 in stems s <7.

(6) In Theorem 7.7.1, we give the same information for Extb as was given for Extbz.
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Cases (2)-(6) of Theorem E proceed by a direct analysis, combining the Hopf differentials we produced
in Theorem A with arithmetic differentials that may be obtained by comparison with the F-motivic
Adams spectral sequence for integral motivic cohomology. The latter has been computed by Kylling
[2015] for F = IF, with ¢ an odd prime power, by Ormsby [2011] for F = Q,, with p an odd prime, and
by Ormsby and @stveer [2013] for F = Q, and F = Q. Case (6), where F = QQ, may be read off the
cases F' =R and F = Qp, using our good understanding of the Hasse map (1-2). As with Ormsby and
@stveer’s computations over Q, the final description of the set of d,-cycles in Extb is quite intricate, but
we feel that our techniques show that understanding the Q-motivic Adams spectral sequence for ng* is

an accessible problem ripe for future investigation.

The R-motivic computation requires more work. Recall the structure of Ext]}{ from (1-1). Theorem A
describes what happens on the p-torsion-free summand of this, but says nothing about the large quantity
of p-torsion classes. It is possible to use similar methods to compute all d»-differentials supported on this
p-torsion summand, and we do so in Proposition 7.4.8. However, this is insufficient to determine which
classes in ExtﬁQ are permanent cycles, as higher differentials may, and indeed must, occur.

We resolve this by comparison with Borel Ca-equivariant homotopy theory. Behrens and Shah [2020]
formulate and prove an equivalence

(8PE") 3,07 '] = Fun(BC2.8p3)

between the t-periodic (2, p)-complete cellular R-motivic category and the 2-complete Borel C;-
equivariant category. Define

Extya = ExC ! (2. H* PY),
where P_° is a stunted real projective space. These form the E,-pages of the classical Adams spectral
sequences for the stable cohomotopy groups of infinite stunted projective spaces. The equivalence of
Behrens and Shah gives an effective method of computing these groups by “inverting t” in Extg. The
t-periodic behavior of Extg is plainly visible in our computation of Extf;, allowing us to directly read

off the structure of Extlfgé2 (Lemma 7.4.3). In particular,

Extpc, = Falpltha :a = 1y @ @ Falpl/ (0 ) (e 2" @ Dhg 10 e 2
a>0

(compare (1-1)). We warn the reader that this naming of classes is incompatible with viewing Extgc, as a
collection of ordinary Adams spectral sequences; for example, /¢ does not detect 2, but instead the transfer
Pg° — S 0. We may use the relatively simple structure of these 1-lines to verify that Ext]%{ — Ext}g C,
reflects permanent cycles (Lemma 7.4.4), and this reduces the identification of permanent cycles in Extﬁ@
to the identification of permanent cycles in Ext}; ¢, The problem of p-torsion permanent cycles in Ext}; Cs
turns out to be equivalent to the vector fields on spheres problem (Lemma 7.4.5), which was resolved by
Adams [1962]. Together with known information regarding the p-torsion-free classes, this leads to the
following classification of maps X PS° — S 0 detected in Adams filtration 1.
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Theorem F (Theorem 7.4.7) Fora > 0, writea = ¢ + 4d with 0 < ¢ <3, and define ¥ (a) = 2 + 8d.
Then the subgroup of permanent cycles in Ext}g c, is given by

Falolthy, ha. hs. pha} @ @ Falpl/ (0¥ @) (p>' V@2 Gt Dl 2 e 23,

a>0

Moreover, one may characterize maps ¢ PS® — S° detected by each of these classes.
1.3 Future directions

The classical lambda algebra has been applied broadly in stable homotopy theory. This suggests several
natural directions for future work, and we list a few here.

1.3.1 Homological computations The homology of the classical lambda algebra can be computed
algorithmically via a method known as the Curtis algorithm. This procedure was refined and implemented
by Tangora [1985] to compute the cohomology of the Steenrod algebra through internal degree 56, as
well as to compute products and Massey products [Tangora 1993; 1994]; further computations of Curtis,
Goerss, Mahowald and Milgram [Curtis et al. 1987] pushed this out to describe the cohomology of the
Steenrod algebra through stem 51. More recently, the Curtis algorithm was used by Wang and Xu [2016]
to compute the algebraic Atiyah—Hirzebruch spectral sequence for RP °°, providing the data necessary
for their proof of the uniqueness of the smooth structure on the 61-sphere [Wang and Xu 2017].

Our method for computing Ext§3 is closely related to the homology algorithm of [Tangora 1985], only
modified to take into account the F»[p]-module structure of AR, as well to incorporate some additional
flexibility in choosing representatives for the sake of a more digestible manual computation. By ignoring
this additional flexibility and incorporating the ideas of [loc. cit., Section 3.4], one obtains a Curtis
algorithm for computing the homology of the R-motivic lambda algebra, as well as of other motivic
lambda complexes. The effectiveness of these procedures in higher dimensions remains to be seen.

In addition to its use in computer-assisted computations, the classical lambda algebra has also been used in
[Lin 2008; Chen 2011] to completely compute the cohomology of the classical Steenrod algebra through
filtration 5. In principle, there should be no obstruction to continuing our computation of Extﬁ3 to higher
filtrations, other than the rather more involved calculations and bookkeeping that this would necessarily
take.

1.3.2 Motivic Brown-Gitler spectra Brown-Gitler spectra [1973] have many applications in classical
algebraic topology, including Mahowald’s analysis [1981; Shimamoto 1984] of the ho-resolution, Cohen’s
solution [1985] of the immersion conjecture, and more [Mahowald 1977; Hunter and Kuhn 1999; Goerss
1999]. The classical lambda algebra was essential for constructing and analyzing Brown—Gitler spectra
[1973; Shimamoto 1984] as above, as well as [Goerss et al. 1986]. Culver and Quigley [2021] introduced
a motivic analogue of the ho-resolution, the kg-resolution, and analyzed it over algebraically closed fields
of characteristic zero. The analysis of the kg-resolution over more general base fields would be greatly
simplified by the existence of motivic Brown—Gitler spectra.
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1.3.3 Unstable motivic Adams spectral sequences The classical lambda algebra A has certain
subcomplexes A(n) which form the E;-page of an unstable Adams spectral sequence:

E1 = A%n) = m.S".
Moreover, James’s 2-local fiber sequence [1957]
S" - Qs"t sl
which gives rise to the EHP sequence, is modeled by short exact sequences [Curtis 1971, Section 11]
0— A%n) = An+1)— "AQ2n +1) >0,

which are useful for understanding both the unstable complexes A!(n) and the stable complex A, It is
natural to ask whether there are analogous subcomplexes of Af related to a suitable motivic unstable
Adams spectral sequence. The motivic situation seems to be much more delicate: it is not obvious how
to define such subcomplexes of AF, and the nature of the cohomology of motivic Eilenberg—Mac Lane
spaces suggests that a motivic unstable Adams spectral sequence may not be as well behaved. A better
understanding of these topics would shed light both on the nature of AF and on unstable F-motivic
homotopy theory.

1.4 Conventions

We maintain the following conventions throughout the paper:

(1) We work solely at the prime 2.

(2) We write F for a base field of characteristic not equal to 2.

(3) We write nf: « for the homotopy groups of the (2, n)-completed F-motivic sphere spectrum.

(4) Our homotopy and cohomology groups are bigraded by (s, w), where s is stem and w is weight.
(5) In particular, we write .S @b for the motivic sphere which is Al-homotopy equivalent to ya=b G,Qb .

(6) We write H** for reduced mod 2 F-motivic cohomology and H* for reduced ordinary mod 2
cohomology.

(7) We write, for instance, H**(X) for the unreduced mod 2 motivic cohomology of X.

(8) We will use homological grading even for cohomology classes, in the sense that, if x € H ab(x),
then we say |x| = (—a, —b). This allows us to say, for instance, |t| = (0, —1) and |p| = (=1, —1),
regardless or whether we are working with homology or cohomology.

(9) We write MF = H**(Spec(F)) for the unreduced mod 2 motivic cohomology of a point.

(10) We write M{; for the portion of M¥ concentrated on the line s = w, so that MIF" = I\\/JI(I; [t]. (The
ring Mg may be identified as the mod 2 Milnor K -theory of F, by work of Voevodsky; see [Isaksen
and @stvaer 2020, Section 2.1] for an overview of the structure of M ).
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(11) We write Extr for the cohomology of the F'-motivic Steenrod algebra, employing the grading
conventions given in the following two points.

(12) We write Ext{, for the filtration f piece of Extp.

(13) We write Extiif’w C Extlj; for the subset of elements in filtration f with topological stem s and
weight w.

(14) We use a subscript or superscript cl to denote classical objects; in particular, ¢ are the classical
2-completed stable stems, A°! is the classical mod 2 Steenrod algebra, and Exty is its cohomology.

(15) We take the binomial coefficient (Z) to be Wib)! for 0 < b < a, and to be zero otherwise.
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PartI The motivic lambda algebra

2 The motivic lambda algebra

In this section, we show that Priddy’s construction [1970] of the lambda algebra as a certain Koszul
complex can be extended to produce a motivic lambda algebra. As noted in Remark 1.2.1, a more refined
notion of Koszulity is needed to handle the more exotic nature of the M -algebra AF. The notion of a
Koszul algebra has been generalized in various ways; see [Polishchuk and Positselski 2005] for an account
of some developments in this area. We will use the formulation given in [Balderrama 2023, Section 3],
as this gives a sufficiently general definition of Koszul algebra and explicit description of their associated
Koszul complex. The reader familiar with Koszul algebras will find no surprises in this material.

In Section 2.2, we review the structure of the F-motivic Steenrod algebra A, We show that AF is in fact
a Koszul algebra in Section 2.3, ultimately by reducing to Priddy’s classical PBW criterion for Koszulity
[Priddy 1970, Section 5]. The F-motivic lambda algebra AF is then defined to be the Koszul complex
of AF. We compute the structure of A explicitly, and introduce an endomorphism 6 of AF lifting the
squaring operation Sq° on Extz. All of this structure is summarized in one place in Section 2.4.
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2.1 Review of Koszul algebras

This section summarizes the definitions and facts from [Balderrama 2023, Section 3] regarding Koszul
algebras which we will use to construct the motivic lambda algebra. We review this material in some
detail, in order to specialize from the more abstract context considered there. Many of the results we
need have appeared in varying levels of generality throughout the literature; in particular, the definition of
Koszulity we use can be considered as a direct generalization of the homogeneous case considered by
Rezk [2012, Section 4].

We fix throughout this subsection an associative algebra S to serve as our base ring, together with an
associative algebra A which is an S-algebra in the sense of being equipped with an algebra map S — A.
Equivalently, A is a monoid in the category of S-bimodules. We abbreviate ® = ®5.

We are most interested in the case where S = M¥ and 4 = AF, and so, to avoid some subtle points
regarding signs, we shall assume that S is of characteristic 2. In addition, we suppose throughout that 4
is projective as a left S-module.

Definition 2.1.1 Say that A is a graded S-algebra if we have chosen a decomposition 4 = @nzo Aln]
of S-bimodules such that

(1) §=A[0];

(2) the product on A restricts to A[n] ® A[m] — A[n + m].

Say that A is a filtered S-algebra if we have chosen a filtration A = colim,— o A<y such that

(1) S =Aco;
(2) the product on A restricts to A<p @ A<m = A<n+m-

Finally, say that the filtration on a filtered S-algebra A is projective if (both A and) the associated graded
algebra
grd .= @A[n], A[n] := coker(A<p—1 — A<n)

n>0

are projective as left S-modules. <

Fix a left A-module M. Write B""(A, A, M) and B(A, A, M) for the unreduced and reduced bar
resolutions of M relative to S; that is, for the unnormalized and normalized chain complexes associated
to the standard monadic resolution of M with respect to the adjunction LModg <= LMody4. These are
projective left A-module resolutions provided that M is projective as a left S-module. If A4 is a filtered
algebra, then B""(A, A, M) is a filtered complex, with filtration defined by

(2-1) B;;H(A,A,M)[gm]:lm( & A®A5ml®--~®A5mn®M—>B,‘l‘“(A,A,M)),

mi+-+my=m
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and this descends to a filtration of B(A, A, M); compare for instance [Priddy 1970, Section 10; Rezk
2012, Section 4; Balderrama 2023, Section 3.5]. If 4 is augmented, then this augmentation makes S
into an A-bimodule, allowing us to form the bar complex B(A4) := S ®4 B(A4, A, S) and consider the
homology Hx«(A) := H.«(B(A)), and the filtration of (2-1) descends to a filtration on B(A). If A is graded,
then A is naturally filtered by A<, = @; _,, A[i]; this filtration is split in the sense that 4 = gr A, and
likewise the filtration on B(A) is split with gr B(A) = P,,>o B(A)[m]. This then passes to a splitting
Hy(A) = D,y Hx(A)[m].

Definition 2.1.2 [Rezk 2012, Definition 4.4; Balderrama 2023, Definition 3.5.3] We say that A is a
homogeneous Koszul S-algebra provided that

(1) A has been given the structure of a graded S-algebra;
(2) H,(A)[m] =0 for n # m.
We say that A is a Koszul S-algebra if

(1) A has been equipped with a projective filtration;

(2) gr A is a homogeneous Koszul S-algebra. N

Suppose now that A is projectively filtered, and fix a left A-module M which is flat as a left S-module.
The filtration of (2-1) on B(A, A, M) induced by that on A satisfies gr B(4, A, M) =2 A® B(gr A) ® M,
and so the convergent spectral sequence associated to this filtration is of signature

(2-2) Epq=A®Hy(gr A)lpl®M = HyB(A, A M), dy  Ep,—Ep 4.

Definition 2.1.3 Let M be an A-module which is flat as a left S-module. The Koszul resolution of M is
the augmented chain complex
M «— K(A, A, M)
defined by
Kp(A, A.M)=E, ,=A® Hy(gr A)[p] ® M.

with differential given by the d !-differential of the spectral sequence (2-2). When M is projective as a
left S-module, we define the Koszul complex K4(M, M’) as the cochain complex

KA(M,M') :=Homy(K(A, A, M), M") = Homg (H(gr A) @ M, M),
with differential inherited from that on K(A4, A, M). N
Observe that, by construction, K(A, A, M) is a subcomplex of B(A, A, M), and dually K4(M, M') is a

quotient complex of the cobar complex C4(M, M') := Homy(B(A, A, M), M’). When A is Koszul, the
spectral sequence of (2-2) collapses into the Koszul complex K(A4, A, M), proving the following.
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Theorem 2.1.4 (see [Priddy 1970, Theorem 3.8; Rezk 2012, Proposition 4.8; Balderrama 2023, Theorem
3.5.5]) Suppose that A is a Koszul S -algebra, and fix left A-modules M and M’

(1) If M is flat over S, then there is an injective quasiisomorphism K(A, A, M) C B(A, A, M).
(2) If M is projective over S, then there is a surjective quasiisomorphism C4(M, M’) — K4(M, M').

In particular, if M is projective over S, the homology of K4(M, M") is isomorphic to Extq (M, M"). |

This allows us to define Koszul complexes in the generality we need. We now recall some facts from
[Balderrama 2023, Sections 3.6-3.7] describing the structure of Koszul complexes; these are direct
analogues of [Priddy 1970, Theorem 4.6]. We begin by fixing some conventions.

Definition 2.1.5 Fix a left S-module M. Then the dual MY = LModgs (M, S) carries the structure of a
right S-module by

(f -5)(m) = f(m)-s.

If M is in fact an S-bimodule, then MV also carries an S -bimodule structure, with left S-module structure
(s )m) = (f(m-s)).
Now, if M is a left S-module and M’ is an S-bimodule, then there is a comparison map
c:MYM"Y — (M @M)”, c(f®f)m @m)= f'(mf(m)).
If M is finitely presented and projective as a left S-module, then this map is an isomorphism. In general,
if M" is another left S-module, then we write
MY @M" :=LModg(M, M"),
so that, in particular,
MY M"Y = (M ®M)Y;
in good cases, this may be realized as a topological tensor product, as the notation suggests. <

The theory of Koszul algebras is closely related to the theory of quadratic algebras; let us fix some notation.

Definition 2.1.6 Fix an S-bimodule B and subbimodule R C B ® B. The quadratic algebra generated
by the pair (B, R) is the algebra
T(B.R):=@DTu(B.R). Ty(B.R):= coker( > B¥ '®@R@B® - B®”),
n>0 i+j=n

with multiplication inherited from the tensor algebra T'(B). Similarly, given a subbimodule R’ C B ® BY
dual to a quotient of B ® B, we define the completed quadratic algebra

T(BY.R):=]]Ta(B.R). Tu(B.R) :=coker( Y BV IRREBY)S T - (BV)@’").

n>0 i+j=n

Say that (B, R) is a quadratic datum if T (B, R) is projective. In this case, the dual quadratic datum
to (B, R) is the pair (BY, R1), where R+ = (T»(B, R))". q
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The cohomology of a homogeneous Koszul algebra may be explicitly described as follows.

Theorem 2.1.7 (see [Priddy 1970, Theorem 2.5; Rezk 2012, Proposition 4.12; Balderrama 2023,
Theorem 3.6.4]) (1) Let (B, R) be a quadratic datum. Then H'(T (B, R))[1] = B", and the
inclusion BY C H*(T(B, R)) extends to an isomorphism T (BY, R+) =~ [[s0 H"(T(B, R))[n].

(2) Let A =D, Aln] be a homogeneous Koszul algebra, and let R = ker(A[1] ® A[1] — A[2]).
Then A =~ T(z_‘l[l], R) is quadratic, and H*(A) = T (A[1]¥, RY). O

Now fix a quadratic algebra A = T'(A[1], R) and left A-modules M and M’, supposing that M is projective
as a left S-module. We may use Theorem 2.1.7 to describe the Koszul complex K4(M, M'). Recall that
K3i(M, M") = LMody(AQ® Hp(A)[n] @ M, M") = LMods (Hn(A)[n] ® M, M").

If we suppose that H«(A) is projective as a left S-module, as holds if A is Koszul, then there is an

isomorphism (H,(A))Y =~ H"(A) of S-bimodules. In this case, we have
K% (M, M') = LMods (M, H" (gr A)[n] ® M") = LMods (M, T, (A[1]¥, RY) & M');
Thus K3 (M, M') is completely described as a graded object by Theorem 2.1.7.
It remains to describe the differential on K4 (M, M'). Observe first that, if M" is an additional A-module,
then there are pairings
2 KE(M, M) @z K3 (M',M") — K" (M, M").

This is a pairing of chain complexes compatible with analogous pairings on cobar complexes and, when
A is Koszul, it is a chain-level lift of the standard composition product in Ext4. In addition, it may be
described in terms of the product structure on YA“(A[I]V, R1) as follows (see [Balderrama 2023, Sections
3.2 and 3.7]). Write x for the multiplication on 7'(A[1]Y, RL). Then, given f: M — T, (A[1]Y, RH) @M’
and g: M’ — YA‘n/(A[l]V, RL)® M”, we have

flg=u®o(1®g)o f

In the special case where M = M, these pairings give K4 (M, M) the structure of a differential graded
algebra, and give K4(M, M’) the structure of a differential graded K4(M, M)-K4(M’, M’)-bimodule.
Note that K}l (M, M) =LMods (A[1]® M, M). The A-module structure on M restricts to an element
oM ¢ K}l (M, M), and we have the following.

Theorem 2.1.8 [Balderrama 2023, Theorem 3.7.1] The differential on K4(M, M) is given by
§: Ki(M, M) > K3 (M, M), 8(f)=0Mf—froM
In particular, if M = M’, then 8( f) is the commutator [Q™ , f]. |

This theorem describes Koszul complexes for a homogeneous Koszul algebra. Suppose now that A is
an arbitrary Koszul S-algebra, and continue to fix left A-modules M and M’ with M projective as a
left S-module. The additive and multiplicative structure of the Koszul complexes K4(M, M’) depend
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only on the algebra gr A and left S-modules M and M’, and so are still described by Theorem 2.1.7. In
practice, the differential on K4 (M, M’) may be identified using the following.

Let gR = ker(A<; ® A<] — A<>), and observe that (A<1,¢R) is a quadratic datum. Let A2 =
@D,>0 A<n- This is a graded algebra, and the inclusion A<; C AV extends to amap T (A<, gR) — Ae
of graded algebras.

Theorem 2.1.9 [Balderrama 2023, Theorem 3.7.3] (1) T(A<1.qR) — A2 is an isomorphism of
graded algebras.

(2) AP is a homogeneous Koszul algebra.

(3) The surjection A®®€ — A gives rise to short exact sequences
0— Kj(M,. M) - Kl (M, M") - K}7" (M, M) — 0,
which are split if A is augmented.
In particular, Kq4(M, M") C K 4o (M, M') is a subcomplex with differential on the target described by
Theorem 2.1.8. |

2.2 The motivic Steenrod algebra

We will construct the motivic lambda algebra by applying the theory recalled in Section 2.1 to the mod 2
motivic Steenrod algebra, whose structure we now recall. The conventions of Section 1.4 are in force
throughout this section.

We note in particular that, following these conventions, we take the somewhat unconventional approach
of consistently using homological grading. Thus, for example, T € H%1(Spec(F)+ ), but we shall write
|t] = (0, —1), as this is how it will appear in the lambda algebra.

We begin by recalling the general structure of the base ring M = H**(Spec(F)4).

Example 2.2.1 For any F, we have M[F' = M(I; [t], where
Izl =(0,-1)

and Mg C MF is the subring concentrated on the line s = w, isomorphic to the Milnor K-theory of F
taken mod 2. The following are some particular examples of the ring Mg . We refer the reader to [Isaksen
and @stveer 2020, Section 2.1] for further details.

o For F = F algebraically closed, such as F = C, we have
ME =T,
e For F = R the real numbers, we have
Mg = Fa[p],
where |p| = (—1,—1).
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e For F =T, a finite field of odd prime-power order g, we have

Fy Fylu]/u? ifg =1 (mod4),

O T Fylpl/p? ifq =3 (mod4),
where |p| = |u| = (—1,-1).
e For F = Q) the p-adic rationals with p an arbitrary prime, we have
Fo [, u]/ (w2, u?) if g =1 (mod 4),
M?” =~ (s, pl/ (0%, pmc 4+ 2) if g =3 (mod 4),
Falm, p,ul/(0®, u?, 72, pu, prr, p* +um) if g =2,
where |p| = |u| = || = (-1, -1).

See also Section 7.1 for a discussion of M@, <

Voevodsky [2003] (with minor corrections by Riou [2012]) and Hoyois, Kelly and @stver [Hoyois et al.
2017] have constructed Steenrod squares

Sqa: Hm,n(X) N Hm+a,n+|_a/2j (X)

for @ > 0 and shown that they generate the algebra A% of natural operations in mod 2 motivic cohomology.
It is convenient to take the convention that Sq* = 0 for @ < 0. The relations between these squares are
generated by Sq° = 1 together with the Adem relations:

Theorem 2.2.2 [Voevodsky 2003, Theorem 10.2; Riou 2012, théoréme 4.5.1; Hoyois et al. 2017,
Theorem 5.1] Fix positive integers a and b witha < 2b.

If a is even and b is odd, then

b—1—j P b—1—j i ;
setsd = 3 (G )sat s 30 (O] Jesat sl
0<j<la/2] 151‘.55:3/2J
Jj o
If a and b are odd, then
b—1—j i
Sq?Sq” = )~ ( a—2j] ) Sq* 7 Sq .
1<j<la/2]
J odd

If a and b are even, then
ag.b _ J mod 2 b_l_j) a+b—j q.J
Sq” Sq” = Z T ( a—2j Sq Sq”’ .
0<j<la/2]
If a is odd and b is even, then
aqb _ b=1=jN\ « a+b—j q.j (b—l—j ) at+b—j—1q,.Jj
Sq?Sq” = ) ( a—2j )Sq S/ + ) a—1-2;)PS4 5q7 -
0=<j=<la/2] 1<j=<la/2]
J even Jj odd
In all cases, the bounds on summation are not necessary, but give regions where the given binomial

coefficients may be nonzero. O

Geometry & Topology, Volume 29 (2025)



The motivic lambda algebra and motivic Hopf invariant one problem 1509
As with the classical Steenrod algebra, A admits an admissible basis.

Definition 2.2.3 Given a sequence I = (ry,...,rr) with r; > 0 for all 1 <i < k, we abbreviate
Sql =Sq"'...Sq"*. Say that Sq” is admissible if r; > 2rj 4, forall 1 <i <k —1. q

Proposition 2.2.4 [Voevodsky 2003, Section 11] AF is freely generated as a left M ¥ -module by the

admissible squares SqI . |

The mod 2 motivic cohomology H**(X4) of any smooth scheme X carries the structure of a left
A-module. These actions satisfy the following Cartan formulas.

Proposition 2.2.5 [Voevodsky 2003, Proposition 9.6; Riou 2012, Proposition 4.4.2] Let a > 0 and
x,y € H**(X4). Then

a a—1
Sq**(xy) = > S (x) S () + 1 Y _ ST (x) S (y),
r=0 s=0
a .
Sq2a+1(.xy) — Z(Squ-{-l(x) Sanl—Zr(y) + Sq2r(x) San—2r+l(y))
r=0
a—1
+pZSq2S+1(x) qua_zs_l(y)~ O
5s=0

The action of AF on M¥ is determined by these Cartan formulas and the following.

Proposition 2.2.6 [Voevodsky 2003; Rondigs and @stvzar 2016, Appendix A] The action of AT on M¥
satisfies

Sq='(x) =0 for x € Mg, Sql(x) = p, Sq=%(r) =0. |

As in the classical case, the Cartan formulas of Proposition 2.2.5 may be encoded in a coproduct on the
algebra AF. The resulting structure is not quite a Hopf algebra, but is dual to a Hopf algebroid structure
on the dual Steenrod algebra (A)Y. This complication arises in part due to the following. The Steenrod
algebra AF is an MF -algebra, by way of the homomorphism M* — AF sending an element x € M ¥
to the stable operation given by left multiplication by x. However, M¥ does not land in the center of A ;
equivalently, A has nontrivial M ¥ -bimodule structure. We may describe this structure explicitly as
follows.

Proposition 2.2.7 The M -bimodule structure of A¥ is determined by
Sq"x =xSq" for x e ME,
Sq2n IT=1 qun +pf qun_l,

Sq2n+1 T = _[Sq2n+1 +psq2n +p2 qun—l .
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Proof It suffices to show both sides of each equality coincide when evaluated on an arbitrary cohomology
class. For example, for any X and x € H**(X ), we have

S 1)(x) =S (tx) = Y (S D)(Sq¥ x)+7 Y (S¥ 1)(Sq¥ ! x)

i+j=n i+j=n—1
= ©5¢*" (x) + pr S¢>" ! (x)
by Proposition 2.2.5. This proves the second equation, and the other cases are similar. a

Remark 2.2.8 Although we work in this section over an arbitrary base field F, there is a sense in which
F = R represents the universal case: the class p may be defined over any field F, making M into an
MR -module, and in all cases we have

AF = MF @yr AR,
In fact, the formulas of Proposition 2.2.6 describe an action of AR on M¥ for which
Extr 2 Ext,r (MR, M%),
and at least additively this depends only on the 5 [p]-module structure of M(I): .

It is worth putting this observation in a slightly more general context. The Cartan formulas of Proposition
2.2.5 give the category of left AR-modules a symmetric monoidal structure. If R is a monoid in this
category, then the tensor product R @pr AR may be equipped with a product with the property that

LModgg,  p.ar = LModg(LMod 4r);
this is the semitensor product of [Massey and Peterson 1965]. Moreover, we have
Extgg, za% (R, R) = Extyz (M, R).
The algebras AF are obtained in the case where R = M. Another simple class of example is given by

the algebras AR /(p", t™), where n and m are such that t™ is central in AR /(p"). A more interesting
example is the following: there is an isomorphism of algebras

AC? = M2 @ AR,
where AC2 is the Cy-equivariant Steenrod algebra, M€2 is the C,-equivariant cohomology of a point,

and AR acts on M €2 as described, for instance, in [Guillou et al. 2020, Section 2] (building on [Hu and
Kriz 2001])). <

2.3 The motivic lambda algebra

We now produce the motivic lambda algebra. For simplicity of notation, we consider the base field F as

fixed, and abbreviate
A=AF, M=MF

throughout this subsection.
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2.3.1 Koszulity of A We begin by showing that A is Koszul. The algebra A is a projectively filtered
M-algebra under the length filtration: A<, C A is the submodule generated by squares SqI where [ is a
sequence of length at most n. In particular,

A<1 =M{Sq? :a >0}

as a left M-module, with the understanding that Sq° = 1 in A. By Definition 2.1.3, to show that A is
Koszul we must show that gr A is homogeneous Koszul. To show that the classical Steenrod algebra
is Koszul, Priddy [1970, Theorem 5.3] developed a PBW criterion for Koszulity. We cannot apply this
criterion directly, in part due to the nontrivial Ml-bimodule structure of gr A. Our strategy is to filter this
issue away, thereby reducing to Priddy’s criterion.

Theorem 2.3.1 A is a Koszul M-algebra.

Proof As A is a projectively filtered algebra, we need only show that gr A is a homogeneous Koszul
algebra, ie that H, (gr.A)[m] = 0 for n # m. To that end, we define a new filtration F, gr.A on gr.A by
declaring F<,, gr A C grA to be generated by elements of the form SqI, where I = (r1,...,7r¢) is a
sequence satisfying ry + - - - + rp < m. This filtration is multiplicative, and so we may form its associated
graded algebra gr gr A.

The same construction employed in Section 2.1 shows that the filtration F, gr.A induces a filtration
on the bar complex B(gr.A) with associated graded B(grgr.A). This filtration is compatible with the
decomposition

B(grA) = P B(gr A)[m].

m=>0

and so, for each m, there is a convergent spectral sequence
EY = Hy B(gr gr A)[m] = Hy(grA)[m].

It is thus sufficient to verify that gr gr A is a homogeneous Koszul algebra with respect to the grading
gregr A =@, grgr’” A. By passing from gr.A to gr gr.A, we have filtered away both the nontrivial M-
bimodule structure on gr A described in Proposition 2.2.7 and the parts of the Adem relations involving p
which appear in Theorem 2.2.2, and in the end we may identify

grer A =~ MF ®F, (7] grﬂc.

From here, it is easily seen that the admissible basis of gr gr A satisfies Priddy’s PBW criterion [1970,
Section 5.1]. It now follows from [loc. cit., Theorem 5.3] that gr gr A is Koszul; the assumption in [loc.
cit.] that the base is a field is not needed so long as everything in sight is free over the base. O

Remark 2.3.2 When F = R, the filtration F, gr A coincides with the p-adic filtration of gr A. The use
of F allows us to apply our argument uniformly to arbitrary base fields, but we could have also proved
Theorem 2.3.1 in the R-motivic case, and deduced the general case from this. Indeed, everything in
Section 2.1 is compatible with base change (see [Balderrama 2023, Lemma 3.5.7]), so Koszulity of AR
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implies that any algebra obtained from the construction of Remark 2.2.8 is Koszul. As an example not
explicitly covered by the statement of Theorem 2.3.1, A2 is Koszul over M 2. <

Definition 2.3.3 The F-motivic lambda algebra AF is the Koszul complex K AF(MF ,MF) associated
to the Koszul M ¥ -algebra A, as defined in Definition 2.1.3, where A% acts on M as described in
Proposition 2.2.6. N

We shall abbreviate A = AF throughout the rest of this subsection. Theorem 2.1.4 now implies the
following.

Theorem 2.3.4 Let C(A) = C4(M, M) denote the cobar complex of A. Then there is a surjective
multiplicative quasiisomorphism
C(A) = A.
In particular,
HiA = Ext} (M, M),

and this isomorphism is compatible with all products and Massey products. a

Remark 2.3.5 More generally, the theory recalled in Section 2.1 produces and describes Koszul com-
plexes K4 (M, M’) modeling the cobar complex C4(M, M’) for any left A-modules M and M’ with
M projective over M. Classically, the case where M = H*(RP*°) and M’ = T, is of particular
importance. Another amusing example is given over ' = R with the observation that K jr (MR, M€2) ~
K ;oo (M€2, M©2) = AC2 (see Remarks 2.2.8 and 2.3.2). q

2.3.2 The structure of the motivic lambda algebra We will now apply the theory recalled in
Section 2.1 to describe A explicitly. First note that A = @,,., A[m] with A[1] = (A[1])V, where
A[l] = coker(M — A<1). As a left M-module, we may identify_
A[l] =M{Sq" : r > 1}.
Dualizing, we may identify
All] ={A, :r > 0}M

r+1

as a right M-module, where A, is dual to Sq" ™" in the given basis. Considering internal algebraic degrees

yields [A,| = (r +1, L%(r + l)J); following our conventions (Section 1.4), we subtract off the filtration
from the algebraic stem to obtain the topological stem, and so instead write |A,| = (r, f%r])

We now begin by describing the multiplicative structure of A.

Proposition 2.3.6 The left M-module structure on A[1] is determined by
XAn =Anx for x € M, TAon+1=A2n+1T+A2n+420, TAon =A2nT+A2nt 170+ A2ng2p’.
Proof This follows by dualizing Proposition 2.2.7. O
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Proposition 2.3.7 If a is odd or b is even, then

Aarzatpr1 = Z Aa+b—r12a+1+r(
0<r<b/2

b—r—l),

r

and if a is even and b is odd, then

b—r—1 _
hahoatpi1 = ) Aa+b—r)tza+1+r< )r(r 1) mod 2

r
0<r<b/2
+ Z la+b+1—rlza+1+r(

1
0<r=(+1)/2 2

1 1
[20] =157
2 2
) )"
Proof By Theorem 2.1.7, the bimodule of relations defining A as a quadratic algebra with generating
bimodule A[1] may be identified as A[2]Y = ker(A[1]Y ® A[1]Y — RY), where R C A[1] ® A[l] is the
projection of the subbimodule gR C A<1 ® A< of Adem relations recalled in Theorem 2.2.2. It follows
by direct computation that this kernel is generated by the indicated relations. |

Remark 2.3.8 Unless both a and b are even, the Adem relation expanding a product of the form A,Ap
is exactly as in the classical lambda algebra. <

The additive structure of A may be understood just as in the classical case.

Definition 2.3.9 Given a sequence [ = (ry,...,ry), write Ay = A, ---A,,. Call the sequence /

coadmissible if 2r; > riyq foralll <i <n—1. <

Proposition 2.3.10 A is freely generated as a right Ml-module by classes of the form Ay, where I is a
coadmissible sequence.

Proof The relations of Proposition 2.3.7 imply that the coadmissible classes A; generate A as a right
M-module, and we must only verify that they do so freely. Following Remarks 2.2.8 and 2.3.2, there is
an isomorphism

A = AR @pr M;

thus we may reduce to the case where F' = R. By construction, A is free as a right Ml-module. Thus, to
show that the coadmissible classes A7 freely generate A over M, it is sufficient to verify the same for
A/(p)[t™1] over M/(p)[t~!]. There is an isomorphism A /(p)[t!] = A® ®F, Fa [t%1], so this follows
from the classical case. |

Finally, we describe the differential on A by applying Theorem 2.1.8.

Proposition 2.3.11 The differential on A is determined by the Leibniz rule, together with

§(x)=0 forxeMy  8(r) = Aop, §(An) = Z /\n—rlr—1(n_r).

r
1<r<n/2
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Proof Recall the construction A%€ =P, . o A<p, used in the statement of Theorem 2.1.9. By inspection,
we find that A€ may be identified as the T‘big motivic Steenrod algebra”, defined with generators and
relations the same as A only without the stipulation that Sq° = 1. Let AY€ = K 4 (M, M), where A€
acts on M through the quotient A€ — A, ie with Sq° acting by the identity.

Theorem 2.1.9 tells us that AP is a homogeneous Koszul algebra, and that there is an inclusion A C AP
of differential graded algebras. As A€ is homogeneous Koszul, Theorem 2.1.7 applies to show that
A2 is generated by classes A, for r > —1, subject to relations of the same form as described for A in
Propositions 2.3.6 and 2.3.7. The inclusion A C AP is the obvious one, identifying A as the subalgebra
of AP generated by the classes A, for r > 0.

Theorem 2.1.8 describes the differential on AP as

§(H=I10.f1=0-f-S-0.
where Q € AP¢[1] = (A"2[1])V is the map AP€[1] = A<; ® M — M induced by the action of A€ on M.
In the basis A€[1] = A<; = M{Sq" : r > 0}, this map is the projection onto Sq°, which by definition is
the class A_1 € AP2. So the differential on A€ is given by
§(f)=MA-r. fl=A1f = fA1,

and A C A" is closed under this. The proposition follows upon expanding out this commutator using
the relations defining the algebra A2, a

Remark 2.3.12 The description of the differential on A as the commutator §( f) =[A—1, f] has appeared
classically as well; see [Bruner 1988, page 83]. <

2.3.3 A closed formula for §(z") Proposition 2.3.11 gives a recursive process for computing §(z"). It
is possible to solve this recursion, and we do so here. Recall that the pair (M, AY) carries the structure
of a Hopf algebroid. In particular, A is a commutative ring, and AY, is a quotient of this ring. Now, the
differential §: A[0] — A[l] may be described as the composite -

nrR+nL: A[0] =M — AY — AL — coker(M — AL;) = A[l],
where np,nr: M — AV are given by nr(m)(a) = e€(ma) and ny(m)(a) = e(am), where €: A =
A @y M — M encodes the action of A on M.

We may use this interpretation to compute §(z™). The full structure of the Hopf algebroid (M, AY) was
determined by Voevodsky [2003]; however, we only need a small piece of this, which is easily computed
by hand from the structure of A recalled in Section 2.2. We record this piece in the following.

Lemma 2.3.13 There is an isomorphism of rings

ALy = M(ro. £1]/ (x5 + E170p + £17).
where the quotient map
A;l — AJl]
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acts by
TSS? = /\2n—1+e

for e € {0, 1} and n > 0, with the interpretation that A_y = 0. Moreover, the maps np,ng: M — Aél
act by
nr(x)=x for x e M, np(x) =x for x € My, nL(t) =7+ 19p.

Proof The structure of the ring AY, may be read off the coproduct of A, as given in Proposition 2.2.5,
and its relation with our basis of A| [1] then follows by construction. The behavior of the left and right
units may be read off the M-bimodule structure of A< as given in Proposition 2.3.11, together with
knowledge of the counit map €: A<; — M given in Proposition 2.2.6. |

The main input to our computation of §(z") is the following elementary computation.

Lemma 2.3.14 In the ring A\s/p we have

.1 —1 . .
_L,g — 2 : _[ggi(;"_‘j_l)_[n—z—epm—n-i-e‘
e€{0,1}
(n—e)/2<i<n—1

These bounds on i are not necessary, but give a region where the binomial coefficients may be nonzero.
Proof We first compute t” in the quotient ring

Falto, 11/ (4 + E17o + 1)
of AZ |, in which both 7 and p are set to 1. Clearly,

70 = Z (Sicn,i +T0§idn,i)

0<i<n

for some ¢y, i, dy,; € F. The relation

=6 +152)

gives rise to recurrence relations
Cnji = Cn—1,i—1 T Cn—2,i—1, dn,i =dn-1,i—1 +dn-2,i-1.
Set clf,n = Cp+i,; and di,,n = dp+i,;. Then these relations become
cl{,n = cl{—l,l’l—l + c;—l,n’ di/,n = di,—l,n—l + di/—l,n’
exactly as seen in Pascal’s triangle. Paired with the initial conditions

Y A 7 A I 1 —
Ci,0 =Co,1 = dl,O =0, c;=1= dO,l’

i—1 i
Cin = (n—l)’ dyi = (n—l)’
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i—1 i
c"’i:<n—i—1)’ d”’iz(n—i—l)'
Plugging this back in, we find

) = E <§1< i )+7051( i_1))= Z Tééi(;tf:})
0<i<n €<{0,1}
0<i<n

and thus

To compute 7§ in A;l itself, recall that || = (0, —1), |p| = (=1, —1), |70| = (1,0), |£1| = (2, 1). Solving

75| =I5 70"
yields
a=n—i—e, b=2i—-—n-+e.

1 . .
7;6’: Z Ogl(l—i_e l)tn—t—ep21—n+e

€€{0,1}
0<i<n

It follows that

in AY,. For this binomial coefficient to be nonzero, we require
0<i+e—1, O0<n—i—-1, n—i—-1<i+e-—1,

giving the stated bounds on summation. |

Proposition 2.3.15 The differential § satisfies

§(") = Zz\ (n + I-ZrJ) n=lr/2]=1 41,

r>0

Proof Following Lemma 2.3.13, to compute §(z”) one may compute
™+ (t + 70p)"

in terms of the standard basis of Avl = Mo, &1]/ (‘EO + &1700 + £17). Moreover, it is sufficient to work
in the quotient of AY £1 Wherein 7 and p are set to 1, as the necessary quantity of t’s and p’s may be
recovered by comparing degrees, just as in the proof of Lemma 2.3.14. Using Lemma 2.3.14, we find

1+ (1+1)" = Z (Z)Té(: Z (Z) Z (;:—6 1) ol

1<k=<n 1<k<n €€{0,1}
i>0

here we are free to omit the bounds of summation on 7, as they merely recorded when certain binomial
coefficients were zero. The coefficient of 75§ i in this sum is

Y (OG- X MG =AY

1<k=<n 1<k=<n
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here the first equality uses the standard identity (Z) = ( aib)’ and the second uses Vandermonde’s identity.

Adding in a sufficient number of p’s and t’s, and converting to A[1], we learn

n+ite—1\ ,_i ¢ 2
(S(‘L’n) — Z A2i+€—1( 2 e )Tn i ep21+e‘
€€{0,1},i>0
(i,€)#(0,0)
Setr =2i +¢e¢—1. Then L%rJ =i + € —1, leading to the given description. |

2.3.4 Lift of Sq0 The dual motivic Steenrod algebra A" is a commutative Hopf algebroid, and thus
its cohomology, which agrees by definition with Ext4 (M, M), is equipped with algebraic Steenrod
operations [Bruner 1986a]. The purpose of this section is to lift the operation Sq° to an endomorphism
of A. Our approach essentially follows the proof of [Palmieri 2007, Proposition 1.4].

Let C(A) = C4 (M, M) denote the cobar complex of the algebra A; this is by definition the same as the
cobar complex of the Hopf algebroid AY. As A" is a commutative ring, C(A) is the Moore complex
of a cosimplicial commutative ring, and the levelwise Frobenius on this cosimplicial commutative ring
induces a map

0:C(A)— C(A).

This is a map of differential graded algebras, and Sq° is the map induced by o in homology.

Theorem 2.3.16 The map o: C(A) — C(A) induced by the levelwise Frobenius descends to a map
0:A— A
of differential graded algebras. This map is given on generators by

0(x) =x> for x € M, O(A2n—1) = Aan—1, 0(A2n) = Aan+17 + Adn+2p.

Proof Recall A and A€ from the proof of Proposition 2.3.11. Let C(A"2) be the cobar complex
for AP with respect to augmentation of A€, so that H,C(A"€) = AP as algebras. The levelwise
Frobenius gives a map
o: C(AM2) — C(APie)
of differential graded algebras and, by taking homology, this induces a map
0’: Abig > Abig

of algebras. We claim that to produce 6 it suffices to show that 8’ restricts to an endomorphism of
A C AP satisfying the given formulas. Indeed, there is an inclusion C(A) C C(A"®) of algebras, which
does not respect differentials but does commute with the levelwise Frobenius o. It would thus follow
that the restriction 6 of 6’ to A is induced by the levelwise Frobenius on C(A). In particular, this would

show that 0: C(A) — C(A) indeed descends to an algebra map 6: A — A. That 8 moreover respects
the differential is inherited from o.
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To understand @, it suffices to understand its effect on the generators of A”2, ie to understand the map
6': APe[1] — APe[1].
Recall that AP2[1] = (A€[1]) = AY,. This ring was described in Lemma 2.3.13, and 6’ acts on it by

the Frobenius. We find that 6’ satisfies the same formulas as described for 6, only with the addition that
0’(A—1) = A—1. In particular, 6" does restrict to A, and this restriction satisfies the stated formulas. 0O

2.4 Summary

For ease of reference, let us summarize what we have learned in one place. As always, F is a base field
of characteristic not equal to 2.

2.4.1 Generators There is a differential graded algebra AF, the F-motivic lambda algebra, together
with a multiplicative quasiisomorphism C(Af) — AF, where C(AF) is the reduced cobar complex of AF.
We write AF' = EBsz AF [m], where the differential on AF is of the form §: AF [m] — AF [m + 1].

The F-motivic lambda algebra AF is an M¥ -bimodule algebra, generated by classes A, € AF[1] for
r > 0. In the trigrading (stem, filtration, weight), we have

7| = (0,0,-1), |p|=(-1,0,—-1), [As]=(a,1.[3a]).
A right M ¥ -module basis of AT is given by those A, --- A, with 2r; > r;yq for1 <i <n—1.

2.4.2 Relations The F-motivic lambda algebra is a quadratic M ¥ -bimodule algebra. Recall that
MF = M(I; [z]. The M -bimodule structure of AF is determined by
XA, =A,x for XEM(I;, TAon+1 =Aon+1T+A2n+42p0, TAon Z/\2nf+)tzn+1‘[p+)tz”+2p2,

and the quadratic relations are given as follows. Fix a, b > 0. If a is odd or b is even, then

Aaroarpi1 = Y ka+b—rlza+1+r(
0<r<b/2

il

b—r—l)

r

and if a is even and b is odd, then
b—r—1 _
Aak2a+b+1 = Z Aa+b_rkza+1+r( , )-[(r 1) mod 2

0<r<b/2
+ Z Aatb+1—rA2a+1+r (
0<r<[b/2]

i

2.4.3 Differentials The differential on A is determined by the Leibniz rule, together with

5()6) =0 for x € M(I;’ 8(‘[) = Aop, S(Ap) = Z An—rAr—1 (l’l_r)'

7
1<r<n/2

Moreover, we have .
(” + LirJ)Tn—Lr/zj—lprﬂ

8" =2

r>0

r+1
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s, fyw

2.4.4 The endomorphism # The squaring operation Sq°: Ext p — Ext

%,S+f’f’w+f lifts to an

endomorphism 0: A — AF of differential graded algebras, determined by

0(x) = x? for x € MF, O(A2n—1) = Aan—1, 0(A2n) = Aan+17 + Aan+2p.

3 Some first examples, and the doubling map

3.1 First examples

Before continuing on, we give some basic examples illustrating the form of the motivic lambda algebra.
In particular, we use AF to define some classes in Extz, and reprove some well-known low-dimensional
relations. This material is meant only to familiarize the reader with A ; we give a more thorough and
entirely self-contained investigation in Section 4.

Given a cycle z € AF, in this section we write [z] € Extf for the corresponding cohomology class.
Lemma 3.1.1 We have §(Aza—1) =0 forall a > 0.

Proof The proof is identical to the proof of [Wang 1967, Proposition 2.2]. |
This allows us to define the following Hopf elements.

Definition 3.1.2 Let i, := [Aa—_1]. <
Lemma 3.1.3 If p = 0 in M, such as when F is algebraically closed, then §(t"*) = 0 for all n > 0.
Proof This is immediate from the differential 6(t) = Agp. |

In general, if p is nilpotent in M ¥, then various powers of © will be cycles in AF. We shall write " in
place of [t"] in this case. We begin by considering some examples in the case where F is algebraically
closed.

Proposition 3.1.4 For F algebraically closed, there is a relation

T-h3 = hoh?.
Proof By definition, 7-h3 = [AJ7] and hah3 = h3hs = [A3A3]. We have

AgAs = i,
so these classes coincide in Extfg. O
Proposition 3.1.5 For F algebraically closed, there is a relation

t-ht=0.

However, h'l # 0 for any n.
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Proof Observe that AgA; = 0, and thus /149 = 0. Combined with Proposition 3.1.4, we find
T hY =th3-hy =hyh’-hy =0.
Alternatively, th‘ll = [A‘l‘r], and there is a differential
§(A5A1) = Att.

On the other hand, for 47 to vanish, the class A7 must be nullhomotopic, ie §(x) = A} for some x € A.
The class x must live in stem #n + 1, weight 7, and filtration n — 1, and in this degree A is generated by
the cycle 13)\'1’_2. So no such x exists. O

Next we consider some examples relevant to base fields F' over which p does not vanish. We begin by
defining some classes. Note that the differential

8(r) = Aop
implies that §(z2") = 0 (mod p2"). This allows for the following definition.

Definition 3.1.6 If F = R, then

a— 1 a
2 lha = |: >a §(z? )}
o

for a > 1. In general, rzailha € Extr is defined by pushing these classes forward along the map
AR — AF induced by MR — MF (see Remark 2.2.8). <

Remark 3.1.7 Following our convention that AF is considered primarily as a right MF -module, it
would be more natural to write hlﬂzk1 for the classes introduced above. We have chosen instead to
work with naming conventions compatible with those in [Belmont and Isaksen 2022], as no confusion
should arise. <

Remark 3.1.8 If 2 ' isa cycle in Extg, then rza_lha = 27! “hg. <
Example 3.1.9 We have

thy =[At+ Azp], 2hy = [k3r2 +)Lsrp2 +k6p3], t4hy = [/\7t4 +111r2p4 +)&131:p6 +/\14p7].
In fact, we may identify rLza_tha =[t2"Aga_q] foralla > 1. <

The following relation was proved over R by Dugger and Isaksen [2017a, Proof of Lemma 6.2] using
Massey products and May’s convergence theorem. We may use the lambda algebra to provide an explicit
direct proof.

Proposition 3.1.10 There is a relation

(ho + phy)-thy = 0.
Proof By definition,

ho-thy =[Ao(A1T +A20)],  phi-thy = [pA1(A1T + A2p)].
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Expanding, we have
Ao(A1T +A2p) = AT+ A1d2p0” + X210, phi(AiT + A2p) = ATt + A1 A2p?.

But
8(A3tp + Aap®) = A2A1p?,

s0 hg-thy = phy - thy. The proposition follows.
The fact that §(z™) = 0 (mod p) allows for the following definition.

Definition 3.1.11 If F =R, then 1
_E2nh0 = [;8(7’,2”4—1)].

In general, 72" hg € Extr is defined by pushing these classes forward along the map AR — AF
by MR — M¥ (see Remark 2.2.8).

Example 3.1.12 We have
ho = [Ao,
2ho = [Aot? + A172p + 310> + Aap?],
*ho = Aot + A3 0> + A412p* + A5120° + A71p” 4 Agp8].

1521

induced
<

<

The following proposition was originally proved over R by Dugger and Isaksen [2017a, Proof of

Lemma 6.2] using Massey products, May’s convergence theorem, and analysis of the p-Bockstein

spectral sequence. Using the lambda algebra, the proof amounts to checking that the products of cycle

representatives are equal.

Proposition 3.1.13 There is a relation
t2ho-h1 = p(th1)>.
Proof We may directly compute
2ho-h1 = [(AoT* + A1T2p + A37p° + Aaph) 1]
= [/\%‘[2,0 + AadiTp? + )L%p3 + AaA3pY]
= [p(A1T 4+ A2p)°] = p(thy)>.
3.2 The doubling map

Dugger and Isaksen [2017a, Theorem 4.1] produce an isomorphism

Exty[p®!] 2 Extg[p~ 1],

which doubles internal degrees. We can lift this isomorphism to a quasiisomorphism of lambda algebras.
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Proposition 3.2.1 Let A% denote the classic lambda algebra, only given a motivic grading where ||
has stem 2n + 1 and weight n + 1. For any F, there is a retraction

Adel 0, AF _ AF 4 pde
with the following properties:

(1) All maps shown are maps of differential graded algebras respecting 6.
(2) 6 is given on generators by 5(/\,1) = Aon+1.
(3) gq is given on generators by q(t) =0, g(A2,) =0, and g(A2p+1) = An.

p-tors

Now say F =R, and write Extp " C Extg for the p-torsion subgroup of Extg.

(4) The map Extge[p] @Extﬁ_tors — Extg induced by 6 and the inclusion of p-torsion is an isomorphism.

(5) In particular, 6 extends to a quasiisomorphism A%! ®F, F2 [pE!] — AR[p™1].

Proof The assignments given in (2) and (3) are easily seen to extend to maps of differential graded
algebras, proving (1), and that the resulting sequence is a retraction is clear. Evidently (4) implies (5), so
we are left with proving (4).

It is equivalent to verify that the composite Extgei[p] — Extg — Extg / Extl ™" is an isomorphism. This

is a split inclusion of free IF2[p]-modules, so for it to be an isomorphism it is sufficient to verify that it is an
isomorphism after inverting p, and for this it is sufficient for the injection Extge[p=1] — Extgr[p~!] to be
an isomorphism. By Dugger and Isaksen’s isomorphism [2017a, Theorem 4.1] Extg [0~'] = Extga[pT!],
+ 1]

we find that our map Extgq[pT!] — Extr[p~!] is an injection between vector spaces of equal finite rank

in each degree, and is thus an isomorphism. |

Remark 3.2.2 Proposition 3.2.1 has the following amusing corollary: there is a multiplicative injection
0 : ker(Sq°: Ext — Exty) — Ext& ",

acting in degrees as Sq° would. For example, as oAR = All, we find that Q(hy) = h’l. This provides
another explanation of the fact that &1 is not nilpotent in Extc. It is natural to ask whether Q accounts for
all indecomposable 7-torsion classes in Extc, but a counterexample is given by the class Bg in stem 55

and filtration 7, as Ext2*7 = 0.

cl <

4 Extg in filtrations f <3

In this section, we use the R-motivic lambda algebra to compute Ext]{{: for f < 3. Throughout this section,
we shall abbreviate

A = AR,
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4.1 Preliminaries

We begin by describing our strategy for computing Extg. We rely on the following device, which uses
ideas from Tangora’s work [1985] on the classic lambda algebra to produce something like a chain-level
lift of the p-Bockstein spectral sequence [Hill 2011]. While the algorithm is essentially standard, we
include a detailed description since we were unable to find a reference with the algorithm in precisely the
form we need in the sequel. We begin with some preliminary definitions.

Definition 4.1.1 Let V = F,{x;:s € S} be a (locally) finite [F>-vector space with ordered basis.

(1) The leading term of a class x € V is the largest term appearing when x is written as a sum of basis
elements.

(2) We write x < x’ when the leading term of x is less than that of x’.

(3) Given another vector space U = F{x; : s € T'} with ordered basis, map ¢p: V — U, and s € S and
t € T, we write

Plxs+<) =yt +<

for the relation that there exist some classes # < xg and v < y; for which ¢(xs +u) =y, +v. <«

The main technical lemma we need is the following. The reader is invited to skip this lemma on first
reading; the details are not necessary to understand our computation, and we rephrase what we need in
the context of A in Theorem 4.1.4.

Lemma 4.1.2 Let (C,d) be a chain complex of locally finite and free 5 [p]-modules, and suppose (for
simplicity) that H4C[p~'] = 0. Choose an ordered basis F»{xs : s € T'} for C /(p), and extend this to a
basis F2{p" x5 : (s,n) € T x N} for C, itself ordered by p"xs < p™x; whenevern > m, orelsen = m
and s <t. Let {ag : s € B} be a basis for H«(C /(p)), indexed by a subset B C T with the property that,
for each o, there is some zg € C with leading term x5 which projects to a cycle representative of o. Let
B1 C B be the subset of those s for which x; is the leading term of some cycle in C, and let Bo = B\ B.

There is then a unique injection t : By — B such that
d(xs+<) = p" Vx5 + <

for all s € By. Here r(s) > 1 is an integer uniquely determined by comparing the degrees of xs and X s).
Moreover, t restricts to a bijection t: By = B, and there is an isomorphism

H.C = P F2[pl/ (o).

s€By

where we may take the summand indexed by s to be generated by any class of the form p~" ) . d (xs + <)
with leading term x; ).
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Proof We begin by defining a function t~1: By — B. Fix b € By; we claim that there exists some s € B
such that d(xsy + <) = x + <. The function ¢! will then be defined by declaring t~1(b) to be the
minimal s for which d (x5 + <) = xp + <.

Indeed, let z; be a cycle with leading term x; which projects to a cycle representative for o. As
H.C[p~!] = 0, necessarily p”z; is nullhomologous for some minimal » > 1. That is, there is some
y € C not divisible by p such that d(y) = p”zp. If y = x5 + < with s € B, then we are done. Otherwise,
as y is a cycle in C/(p), necessarily y is homologous to some x; 4+ u with u < xg and s € B, in which
case there exists some v with d(v) = x5 +u + y. We find that

d(xs +<)=d(xs +u) =d(xs +u+d) =d(y) =p"zp = p'xp + <,
as claimed. Thus we have produced the function 1.

Next we claim that # ! restricts to a function #~!: By — By. Indeed, suppose towards contradiction that
there are some b € B such that x,—13) is the leading term of some cycle. That is to say, suppose given
U, v < X;~1(p) such that

d(xtfl(b)+u)=)€b+<, d(xfl(b)+v) =0.

Adding these together, we find

dlu+v)=xp+ <.
As u + v < x;~13), this contradicts minimality of t~1(b). Thus we have a function t~!: By — By.
Next we claim that 7! is a bijection. It is a function between locally finite sets, and the assumption that
H.C[p~'] = 0 implies that these sets have the same cardinality in each degree. So it is sufficient to

verify that =1 is an injection. Indeed, suppose towards contradiction that there were some b < ¢ in By
for which t=1(b) = s =t~(c). Thus there are u, v < x, such that

dixs+u)=xp+<, d(xs+v)=xc+<.

Adding these together, we find

du+v)=x.+ <.
As u + v < xj, this contradicts minimality of =1 (c).
By taking the inverse of t~!: By — By, we have thus proved the existence of a bijection ¢: By — B
with the property that d (x5 + <) = x;(5) + < for all s € Bo. With this 7, the given description of HxC is
clear; in effect, we have described how to choose a basis for C for which d is upper triangular, where,

if a diagonal entry is divisible by p”, so too are all entries above it. Compare the notion of a tag from
[Tangora 1985].

It remains to verify uniqueness. Suppose towards contradiction that we have found some other injection
t": Bo — B such that d (x5 + <) = x;/(5) + < for all s € By. The condition that ¢” # ¢ means that there
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exists some s € By for which d (x5 + <) = x;/(5) + <, but s is not minimal among possible a € By with
d(xq + <) = x47(5) + <. Choose such s with #’(s) maximal, and let a = t~1(¢'(s)) be the minimal a € By
with d(xq + <) = x4/(5) + <. So there are u, v < x, for which

d(xg +u)=xpi) +<, dxg+v)=xp+<.
Adding these together, we find that
du+v) = Xp(5) + Xp1(a) + <,
where u +v < x4. If t'(a) < t/(s), then this reduces to
d(u+v) = Xy + <,
contradicting minimality of a. If t'(s) < t’(a), then this reduces to
d(u+v) = Xpa) + <.

contradicting maximality of #/(s). So there is no such ¢/, proving that ¢ is the unique injection satisfying
the required property. |

We now specialize to the computation of Extg. Observe that by Proposition 3.2.1, we may reduce to
considering only the p-torsion subgroup of Extg. In terms of A, this amounts to ignoring monomials of
the form A; where [ is a sequence of odd numbers. We will apply Lemma 4.1.2 to compute this p-torsion
subgroup as follows.

We take as basis of A/(p) the standard basis A;t” where I is coadmissible (Definition 2.3.9) and n > 0.
We also need to order this basis. In the region where we will compute, our choice of order makes
no difference, in the sense that all “error terms” appearing in “ 4 <” will be divisible by p. But for
concreteness let us say that A;t” < Ayt™ if n > m, or else n = m and I < J lexicographically, ie if
I =(y,....i)and J = (j1..... jr), theniy < ji, orelse iy = j; and i2 < j2, and so forth.

We must fix some further notation. Let {a} : s € So} be a basis for Ext, and write o; € Extc for the
image of o, under the map induced by 6: A% — AC (see Proposition 3.2.1). Extend this to a minimal
generating set {o; : s € S} for Extc as an Fp[r]-module. For s € S, let ny denote the t-torsion exponent
of o, so that {ast” : 5 € S, n <ng} is an [F-basis for Extc. For each s € S, choose a distinct coadmissible
monomial A7) which is the leading term of a cycle representative for a5 in A, making this choice so
that, if s € So, then Ay is in the image of 6. See the discussion following Proposition 4.2.1 for the
particular choices we will take in our computation.

Let B’ ={(s,n):s € S,n <ng}. Given b = (s,n) € B’, write xp = Ay(57" € AR. Let B C B’ be the
subset of pairs not of the form (s, 0) with s € So. Let By C B be the subset of those b such that xp, is the
leading term of some cycle, and let Bo = B \ Bj. Let B[ f] C B be the subset of those b for which x, is
in filtration f, and extend this notation to all the indexing sets under consideration.
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For our computation, we will produce, for every b € By[ f] with f <2, some ¢(b) € B such that

r(b)

§(xp+ <) =p"Vxsp) + <,

making this choice so that ¢ : Bo — B is injective. Here r(b) > 1 is some integer which may be determined
by comparing the stems of x; and x; ().

Definition 4.1.3 In the above situation, we shall write x; — x;(3)0" ®),

Theorem 4.1.4 Fix notation as above. Then:

(1) 1t is uniquely determined (given our choice of ordered basis).

(2) t restricts to bijections t: Bo[f] = B1[f + 1].

(3) The p-torsion subgroup of Ext]{éJrl is isomorphic to

P Falol/ (0" ®),

beBo[f]
where the summand corresponding to b € By[ f] is generated by any class of the form
8(xp + <)
,Or(b)
with leading term X (p).

Proof This follows by specializing Lemma 4.1.2 to the complementary summand of 6:A"CA. O

Most notably, the p-torsion in ExtﬂfkJrl is obtained by understanding differentials out of A[f]; this is

significantly easier than finding cycles in A[ f + 1] directly.

We end with two remarks, which could have been made in the more general context of Lemma 4.1.2.

Remark 4.1.5 More generally, H* (AR /(p™)) = H.(A/(p™)) (denoted by Ext(y) in Section 7) may
be read off our computation as follows. For each b € By, choose u; € A such that u; < x5 and
8(xp +up) = p’(b)x,(b) + <, and let z, = p~"®) . §(xp + up). Then Hy(A/(p™)) is given as follows:
(1) For each s € Sy, there is a summand of the form F5[p]/(0™), generated by the image of .
(2) Foreach xp — p" (b)xt(b), there is a summand of the form [F,[p]/(p™"("7(®))) generated by the
class with cycle representative zg.

(3) For each x; — p’(b)x,(b), there is a summand of the form F5[p]/ (p™™2x(0.m=r (b)) " generated
by the class with cycle representative p™X(0-7=7(®)) (x; 4 1), <

Remark 4.1.6 Our approach to computing Extg via A is closely related to the computation of Extg via
the p-Bockstein spectral sequence Extc [p] = Extg [Hill 2011]. The precise relation is as follows. For
b= (s,n) € B, letap = 57", so that {&p, : b € B} is a basis of Extc. Our ordering on A and choice of
classes xp gives B an order, thus making this into an ordered basis of Extc. Now, x5 — p” (b)x,(b) if
and only if d, ) (ap + <) = p" (b)a,(b) + < in the p-Bockstein spectral sequence. <
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The above discussion describes how we will compute Extf{3 as an [F[p]-module. The computation gives
more, as it produces explicit cocycle representatives for our generators of Ext]l?. We will use this in
Section 4.3 to compute products in Ext§3.

4.2 Ext] for f <3
We now proceed to the computation. We begin by understanding AR /(p) 2= AC.

Proposition 4.2.1 Exté3 is generated as a commutative [F» [t]-algebra by classes h, for a > 0, represented

2

in AC by Aza_q, and c, fora > 0, represented in AC by A2a3_1/\2a+2_1.

by

A full set of relations is given

has1ha =0, h2 ,ha =0, hohy=1th3, hepshZ i =hl,,

for all a > 0. This is free over F»[t], with basis given by the classes in the following table:

class constraints
1
hg a>0
ha-hyp a>b>0anda#b+1
hg-hy-he a>b>c>0witha#b+1,b#c+1and,ifb=cora=>b,thena #c+2
Ca a>0

The only such classes not in the image of 6 Extq.1 — Extc are those in which either hg or co appears.

Proof This is essentially well known, owing to work of Isaksen [2019] on the cohomology of the
C-motivic Steenrod algebra. Alternatively, one may compute H 53(A(C /(7)) following Wang’s approach
[1967], and run the t-Bockstein spectral sequence to recover Exté3. One finds that H 53(A(C /(7)) agrees
with Ext5>

o » with two exceptions:

(1) Instead of h%-hz = hf, one has h% -hp =0.
(2) There is a new cycle « represented by A%)&l.

There is a T-Bockstein differential dq (o) = fh‘l‘, after which we recover the claimed [F»[r]-module basis
of Exté3. The hidden extension h% -ha = th? was shown in Proposition 3.1.4; alternatively, it is the only
relation compatible with Sqo(h% chy) = tzh%h3 = rzhg = Sqo(rh?). |

Proposition 4.2.1 describes a basis for Exté3, thus giving our set S[<3]. We must also choose lambda

2
2

a product hy, ---hy, with ny > --- > ny to be represented by Ayny_q---Aynx_q. We warn that these

algebra representatives of these classes. We shall choose ¢, to be represented by Aynz_117, +2_, and

representatives are not minimal; for example, we have chosen A3A¢ as our representative for ik, rather
than the minimal representative AoA;. However, they are easily defined and convenient enough for our
computation.
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The following identity will be used frequently in consolidating various cases in our computation. It is an
immediate consequence of the description of 6 given in Theorem 2.3.16.

Lemma 4.2.2 We have
69 (Aot") = Aga— 2T G L 02T

for all n > 0, the error term being omitted when a = 0. O

Remark 4.2.3 Explicitly,

2271op 4+ 1) ifa>1,
1297120 + 1)) = @n+1) ifaz
n

ifa=0.

This sort of pattern appears frequently throughout our computation, as a consequence of Lemma 4.2.2. <«

We now produce the relation “—” described in Definition 4.1.3, proceeding filtration by filtration. To
start, observe that By[0] = {t" :n > 1}.

Proposition 4.2.4 We have

8(T2“(2m+1)) _ [2“—1(4m+1)Jp2“ + O(p[2“+2“—11)

)tza —-17
for all a,m > 0. In particular,

r2¢@m+1) [24—1 (4m+1)Jp2a‘

— )Lza_l‘f

Proof When a = 0, as 72 is a cycle mod p?, we may compute
B2 = 8(2)7" + 0(p?) = 207" p+ O(p?),
as claimed. By Lemma 4.2.2, applying 6¢ for a > 1 to this yields
B @mHD) = (hpa_y 7 D 1 002 p2 4 0
_ Azu_lrLza—l(4m+1)Jpza + 0(p2”+2”—1)‘

Combining the cases ¢ = 0 and a > 1 yields the proposition. |

Corollary 4.2.5 The set Bo[1] consists of those A»a_11" such that n is not of the form 2a-1 dm+1)
for any m. |

We have located the following indecomposable classes.

Definition 4.2.6 For a,n > 0, we declare
2! @n+Dlp

to be the class represented by

p—2” . 8(_[2“(2n+1)).
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We now compute out of By[1].

Proposition 4.2.7 For the combinations of a and b below, we have )Lzh_lfza @m+1) _; the following

monomial:
row case target
(1) a<b—lora=5hb kzb_lkzu_ltha_1(4m+1)Jp2a
(2  a>b+landb#0  Apa_yhys_ rl2* GmtD] 2
3 a=b—landm=2n+1 A%b_lrzb(“"“)pzb
4) a=b+1andb #0 k;bH_lthhil(gm"'l)Jpz%

Moreover, these cases are mutually exclusive and altogether exhaust By[1].

Proof That these cases are mutually exclusive and altogether exhaust Bg[1] is seen by direct inspection.
As the monomials arising as targets are p-multiples of distinct elements of B[2], it suffices to verify that
for each claim of x — y we have §(x + <) =y + <.

(1) We have
§(Ayp_ 72 CMHD) Z ), Aa_ygl29T GmAD] 27 4 (27427

(2) Note that

fza(2m+1)/\2b_1 _EZG(Zm-‘r-l) + <,

= Azb_l
as 7 is central mod p. Now we have
8(r2”(2m+1)kzb_1) — (AZQ_ITLZQ_1(4M+1)J102“ + 0(p2d+2a_l))kzb_1
— Aza_lkzb_lrp”_l(“m““p2” + 0¥ Y.
(3) Note that .
eb(korZYH-l) — Azb_lfl‘z ' (4n+3)] + O(p)
Now we have
b b b
8(6° Mot *1) = 07 (B(AoT>"*1) = 0° (A5 p + O(p?)) = A%, _ 7> W D> + 0 (0™ H1).
(4) We have
8(A2b_112b+1(2m+1)) — S(Qb_l(kl‘fgm—i_“)) — Gb_l()k18(‘[4)1’8m + O(/OS))
_ b—1 b b b—1
— eb I(A§T8m+1p6 + 0(p7)) — A’%b-{-l_lfz (8m+1)p2 3 + 0(p2 3+2 )
Here the third equality uses the Adem relations A;A3 = 0 and A1A5 = A343 to determine the leading
term of 118(7%). |

Corollary 4.2.8 The set By[2] consists of those Ayp_1Azc_1T" where b = ¢ orb > ¢ + 2, and where
moreover:

(1) n# 20" 4m+1)] and n # |2~ (4m + 1)] for any m.

(2) If b=c =0, thenn is odd.
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(3) Ifb=c>1, thenn #2°(4m + 1) for any m.
(4) Ifb=c >2,thenn # 26=2(8m + 1) for any m. a
We have located the following indecomposable classes.

Definition 4.2.9 For a,n > 0, we declare
r2a(8n+1)h§+2

to be the class represented by " -
p—Z 3, 8(kza+l_1T2 (2n+1)) 4

We now compute out of Bg[2].

Proposition 4.2.10 Forb = c orb > ¢ +2, we have Ay»_ Age_172“ @+ s the following monomial:

# case target

(1) b=c=0,a=—1,m=2n+1 A3t p

2) b=c>1l,a=b—-1,m=2n+1 Agh_lrzb(2”+1)p2b

3) b=c>0,a=c,m=2n+1 k;b_lrub_l(“(z”“)“”

4) b=c>l,a=b+1 Agp-13_y A2,y 71277 A6m+D] 20707
(5) b=c>l,a=b+2 A2y s Agpe1 72T @AGMEDED] 2073
(6) b=c>1,a>b+3 Aza_lxgb_lfLZ“‘l(4m+1)Jp2“

(7 b=c>2a=b—2,m=4n+2 k;b_lTLzb_2(2(4”+1)+1)Jp2b

(8) b=c>2a=b-2,m=2n+1 A2h723_1)&§b_1rLzb_3(2(4”+1)+1)Jp2b_23
9) b=c>3,a<b-3 A2, Aga_grl2T @mED] 2
(10) b—2>c=0,a=0,m=2n+1 Agb_ 1/\2 21 4
(11) b—2=c>1,a=b 2@ty o 1/\2€+2 1;)26%3
(12) b—2=c>1,a>b+2 Aza_1Agp_qAge_qrl2*7 4mED] 52
(13) b—3>c>1l,a>b,a#b+1 Aaa— 1 Agp_ g Age_g 71297 Gm+D)] 20
(14 b—2>c>1l,c<a<b,a¢{c+1,b—1} Agp_Aga_yAge_p 127 @mED] 2
(15 b-2=c>l,a=c—1l,m=2n+1 Aoy 720G g2
(16) b—-3>c>l,a=c—1,m=2n+1 Agp g A3e_ 72 @D p2°
(17)  b-2=c>la=c+1,m=2n+1 A3, Tl @@k DED] 20T
(18) b—3=c>l,a=c+]1 Aoy, T2 EmED] 293
(19) b—4>c>1l,a=c+1 kzb_lkicH_lrch_l(SmH)JpZ%
20) b-3>c>la=b—1l,m=2n+1 22, Ape_g7¥ @D 2"
Q1) b—2>c>1l,a=b+1 A2, 00 Apeogrl?7T @mED] 273
(22) b—2>c>2a<c—2 Agp_yAoe—1Aga_q L2 @mED] 52

Moreover, these cases are mutually exclusive and altogether exhaust By|[2].
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Proof That these cases are mutually exclusive and altogether exhaust By[2] is seen by direct inspection.
As the monomials arising as targets are p-multiples of distinct elements of B[3], it suffices to verify that
for each claim of x — y we have §(x + <) = y + <.

Each case represents a collection of families of monomials whose leading terms are connected by 6.
Thus we may always reduce to the smallest possible ¢, except in cases (9) and (22), where doing so
would place extra constraints on a. In addition, by working modulo the smallest power of p in which the
proposed target does not vanish, we may always reduce to the smallest possible m.

We may further divide the list of cases provided into three types: those which require no calculations
beyond those carried out in Proposition 4.2.7; cases (15) and (18); and the more interesting cases which do
require additional calculation, producing new indecomposable classes in Exti. Here cases (15) and (18)
are not really exceptional; they could be consolidated into cases (16) and (19), only this would require
slightly modifying the setup of Section 4.1, and it is easier to just separate them out. The more interesting
cases are (4), (5), (8), (11), and (17). The remaining less interesting cases may all be handled exactly
the same way as the first two cases of Proposition 4.2.7 were handled. Thus we shall not handle them
individually, and instead only illustrate this point with a verification of (21). With these reductions in
place, the proposition is proved by the following calculations:

(4) Here we are claiming 5()&%14 +<)= )Lz)%p7 + <. In fact, S(A%r“) = )Lz)tg/ﬂ on the nose.

(5) Here we are claiming S(A%fs +<)= )L%)Lofpn + <. Observe that S(A%ts) = )Lgr“ps + 0(p'?),
but A37%p* is already seen as a target in case (1). Thus some additional correction term must be added to
2278 to get down to A2197p!3. Such a correction term is given by

u=2A31%0% + 43457708 + A3het?p” + AsA773010 + (Ashg + AeA7) 20 + (A1143 + AsAo) 202
+ (AgA7 + A71g + AeAo)Tp'?;
with this choice of u, we have 8(/\%18 +u)= )\%)Lotpw + 0(p').
(8) Here we are claiming 8(A§r3 +<)= kzkgrﬁ + <. Indeed, let
u=(A3ks +A4A3)T%p + A3hs72p? + Aydstp’;

then we have 8()@13 +u)= Azkgf;ﬁ + 0(p*).
(11) Here we are claiming 8(171118 +<)= Askgrzplz. Indeed, let

u = o7t p® + Aod117%p'%;
then we have §(A7A178 +u) = ksk%rzplz + 0(p').
(15) Here we are claiming §(A7A173 + <) = kgrzpz + <. Indeed, let

u = A7220%p + (Aoh1 + Ashs)t>p%;

then we have §(A7A 73 + <) = Agrzpz + 0(p?).
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(17) Here we are claiming §(A7A17!% + <) = Agrsp” + <. Indeed, let
u=2A11A37° 0% + (A11da + 21243 + X745 + Agd7)Tp” + 1377 0% + Ao d77808;
then we have §(A7A17!% +u) = /\315,014 + 0(p").
(18) Here we are claiming §(A15A174 + <) = /\%tp6 + <. Indeed, let
u=(AroAz + A11411)7p%;
then we have §(A1sA 174 +u) = )\31,06 + 0(p").
2b+1

@mH+1) 4 <) = A§b+1—1A2“—172b_1(8m+1),02b3 + <, at

least provided b —2 > ¢ > 1. This case is intended to illustrate all the remaining cases, and is identical in

(21) Here we are claiming §(Ayp_jA2c—17

form to case (2) of Proposition 4.2.7. Recall from Proposition 4.2.7 that

b+1
12

b—1 b b
§(Azp_y CmED 1+ 0(p)) = Ay T° ®m+1) 1273 4 (27311,

As
Azh_lkzc_lt2b+l(2m+l) = Azb_1T2b+l(2m+1))&2€—1 (mod )0),
it follows that
26+t1(2m+1) _ 20t (2m+1)
8(Agp_1Azc1T + 0(p)) =8(Ayp_y7 Aze—1+ O(p))
= (A§h+1—112b_1(8m+1)l)2b3 + 0(P2b3+1))120—1

b—1 b b
— A%b-‘,—]_lAZC—lfz (8m+1)p2 3 + 0(p2 3+1)’

which gives the desired relation. The remaining cases are either identical in form to this, or simpler in that
they do not require one to first move t around to reduce to a case already considered in Proposition 4.2.7. O

This produces the indecomposable classes
24-1(2(16n+1)+1) 2 29(4(4n+1)+1) 7,3 24=1(16n+1
- (2(16n+1)+ )ha+3ha, 24 @En+D)+ )ha+3’ - a6nt1).

a+1 a—1
_[2 (8n+1) _[2 (2(4n+1)+1)ca

Ca+1,

for a,n > 0, following the same recipe as employed in Definitions 4.2.6 and 4.2.9, only where one must
employ 6-iterates of T-multiples of the correction terms u given in Proposition 4.2.10.

Proposition 4.2.10 concludes the work necessary for our computation of the F[p]-module structure
of Ext§3. Let us now summarize in one theorem what we have learned. We wish to give a minimal
generating set of Ext§3 whose elements are products of the indecomposable classes we have found.
Before doing so, let us treat the following subtlety.

By way of example, let x = (l/pzb)(?(kzb_lrzbil(4m+3)) with b > 1, and let & € Extg be the class
represented by x. Our computation in Proposition 4.2.7 combined with the recipe of Theorem 4.1.4
would yield « as an element of a minimal generating set for Extg. Observe that x has leading term
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A3

b_q 2" (m+1) 1t follows quickly from this that x has the same leading term as the cocycle representative
of (2”71 @m+1D . y2 siven by the product of those cocycle representatives for 2°~ ¢m+Dj, oiven in

Definition 4.2.6. However, this does not prove that « = (fzb_l (4m+1)hb)2: we have not ruled out the
possibility that o« + 8 = (12}%1 (4m+1) .2 for some nonzero f represented by a cycle y < /\g by 2" @mt1)
This is still sufficient to deduce that we may, if necessary, replace o with « + 8 in our minimal generating
set in order to obtain a minimal generating set built as products of indecomposables. It turns out that no

such correction is necessary.

Lemma 4.2.11 Write ¢ : Extg — Extc for the quotient. Fix classes «, 8 in ExtﬁR or Ext]%, at least one of
which is p-torsion and not both in Exté. Let r be minimal for which p"oo =0 orp” =0. Fixy € Ext]f{3
not divisible by p and such that p"y = 0, and suppose ¢ () - p(B) = ¢(y). Thena - = y.

Proof Under the given conditions, there is in fact a unique class in the degree of « - 8 which is not
divisible by p and is killed by p”. This may be seen by direct inspection of the propositions preceding
this. d

We may now state the main theorem of this section.

Theorem 4.2.12 (1) A minimal multiplicative generating set for Extﬁ3 as an [F»[p]-algebra is given
by the classes in the following table:

multiplicative generator p-torsion exponent

ha+1 00
Ca+1 oo
TLza—l (4n+1)Jha a
.[2”(8n+1)hg+2 sa+1.3
TLZ”_I(2(16n+1)+1)]h2+3ha 24,13
.[2”(4(4n+1)+1)h2+3 ha .7
.L.L2a_1(16n+1)Jca ha .7
.L.2“+1(8n+1)ca+1 Qa+2 3
IL2”—1(2(4n+1)+1)Jca a .3

Here a,n > 0, and the p-torsion exponent of a class « is the minimal r for which p" o = 0; the

classes hq+1 and cq+1 are p-torsion-free.
(2) The operation Sq° acts on these classes by incrementing a in each row.
(3) The image of these classes under Extg — Extc is as their name suggests.

(4) A minimal F,[p]-module generating set for Ext]lsg3 is given in the following table. In all cases,
the p-torsion exponent of a given class is the minimal p-torsion exponent of the multiplicative

generators it is written as a product of.
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IF»[p]-module generator constraints
1
hg a>1
TL2”*‘(4n+1)Jha a.n>0
hg -hyp a>b>landa+#b+1
ha-thb_l(4”+1)Jhb a>1landb,n>0,anda #b £ 1
TLZ“’IJha . TL2“’1(4n+1)Jha a.n>0
12“(8n+1)h5+2 a,n>0

a>b>c>1witha#b+1,b#c+1,
andifb=cora=>b thena # c +2
a>b>1landc,n>0witha#b+1landc¢{a+1,bt1},
andifa=>bthenc ¢ {a—2,a,a+2},andifa=b+2thenc #a

ha'hb'hc

hg-hy -T2 GnEDI,

he -2y .27 @Dy, a>1andb,n>0,anda¢{b—2,b—1,b+1}
ho-ho -t ho n>0
ha 'rzb(8”+1)h§+2 a>1landb,n >0, and eithera <b—1ora>b+4
TLZ“_I(2(16n+1)+1)]h‘21+3ha a.n=>0
r2“(4(4n+1)+1)h2+3 a.n>0
Ca a>1
.C|_2“_1(16n+1)Jca an=>0
12u+1(8”+1)ca+1 a,n>0
TL2“—1(2(4n+1)+1)Jca an=0

Proof All of this may be read off the preceding computations, using Lemma 4.2.11 with Proposition 4.2.1
if necessary to write a given class as a product of classes in the given generating set. O

We point out the following corollary.
Corollary 4.2.13 The operation p - Sq° is injective on Extf;. a

Remark 4.2.14 As indicated in Remark 4.1.6, one may also read off our computation a description of all
differentials in the p-Bockstein spectral sequence Extc[p] = Extgr emanating out of filtration at most 2.
We leave this to the interested reader. <

4.3 Multiplicative structure

We now compute the multiplicative structure of Ext§3. This material is mostly not needed for our study
of the 1-line of the motivic Adams spectral sequence in Section 7; the exception is that we will use the
relation Proposition 4.3.4(4) in the proof of Theorem 7.4.9.
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Already Lemma 4.2.11 produces a large number of relations. For example, it implies that we may always
shift powers of T around in products that do not vanish in Extc, provided it makes sense to do so, yielding
relations such as

2T @Dy 2P EmA D g 207 (@20 2 A )+ ) [

for a > b 4 2. These were implicitly used in the proof of Theorem 4.2.12. The condition that the product
does not vanish in Extc is necessary; see Example 4.3.3 below.

We are left only with relations that would be realized as hidden extensions in the p-Bockstein spectral
sequence. These arise from the possible failure of the relations /4,414, = 0 and hg 12ha = 0 to lift
through Extg — Extc.

Remark 4.3.1 The following computations will involve some explicit calculations with cocycle repre-
sentatives. For ease of reference, we collect some important cocycle representatives here:

class cocycle representative
ho /\0
]’11 /\1
ha A3
]’13 /\7
Co )tz)t%
c1 ASA%
2 hapr p 2T 82T = 09T (o) = T2 Agatt g = Agat1_ T2+ O(p*)
2hy Aot? + 17120+ A3t + Agpt
w*ho Aot* +A37%p3 + As5720% + A77p” + Agp®
‘L’h% k%‘[ + (A3Ag + A4A3)p = ‘L’l%
t2h3 A37% 4+ (A3hs + A4r3)T8p + AsA3t8p? + O(p'?)
We will use these without further comment. <

We begin with some products in Extﬁ3 which lift the relation h441h, = 0.

Proposition 432 (1) hgpq-tl297'@GCa+D+EDIp = 29 027, o p29Gnk Dy L
(2) hgyq -7l @Dl — 0,
3) T2a+1(4n+1)ha+2'ha+1 — pza+1 _TZ“(8n+l)ht21+2'
4) rza(8”+1)h§+2-ha+1 _ pza ..L,I_Z"*l(lén—}—l)]ca.
(5) .[2”(8n+1)h3+2_.[2“(4m+1)ha+1 _ pzu .TL2“—1(2(4(m+2n))+1)Jca'
6) hays- 2" A6ntDp2 = 0.
(7) ha+3.f2“(8(2n+1)+1)h§+2 _ p2a+3 -r2”(4(4”+1)+1)h5+3,
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Proof In each of these, we may use Sq° to reduce to the case a = 0. In all cases where the product
does not vanish, the claimed value of the product is the unique nonzero class in its degree which is both
p-torsion and divisible by p, so it suffices to verify the product working modulo the smallest power of p
in which the claimed value does not vanish. In doing so, we may in each case reduce to n = m = 0. With
these reductions in place, the proposition is proved by the following computations:

(1) Here we are claiming &y - t2hg = p- thy - Thy. Indeed, we may compute
Aot2 4+ A1 204+ A370° +A4p*) A1 = A2 02 0+ A1 1o F A2 ha 0P + 42430 = p(A1T+A20)% = pO(Ao)>,
which represents p-thy - thy.
(2) There are no nonzero p-torsion classes in this degree, so the product must vanish.
(3) Here we are claiming Ay - t2hy = p? - rh%. Indeed, we may compute

A2 h3 = p? - TAS
on the nose.
(4) Here we are claiming /1 - ‘L’h% = p-co. Indeed, we may compute

A-TAZ = )szgp

on the nose.

(5) Here we are claiming thy -th3 = p-tco. For this, it suffices to work mod p?. Here we may compute

TAq 'T)L% = p~)tz/\%r + 0(p?),

and the claim follows.

(6) Here we have reduced to a = 0 but not yet to n = 0. The only nonzero p-torsion class in this degree

is p07167+1¢; 5o it suffices to work mod p”. In doing so, we may now reduce to n = 0. Indeed, we have

tAZ-A7 =0,

and the claim follows.

(7) Here we are claiming A3 - f9h§ =p8. rshg. For this, it suffices to work mod p°. Here we may
compute

(A37° + (Aads + A3ha) T8 + AsA378p?) - A7 = A37°p° + O(p?),

yielding the claim. |

Example 4.3.3 We have
Tzhz-h%=p3C0, hz-(‘[hl)zzo.
This serves as a warning that one cannot in general freely shift around powers of 7 in products. <
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We now give some products that lift the relation /2 412ha =0.

Proposition 4.3.4 (1) hZ,,- cetaen+ iy g

) h2+2'TLza_l(4(2n+l)+1)Jha — p20+1 -rlza_l(z(“”“)“”ca.

a—1 a a+l a
3) hZH,TLz B@r+D+D]y =023 .22 iy 12 (8n+1)h(21+2_
4) r2”+2ha+3-12a+2(4”+1)ha+3~ha+1 — p2“+13,I2“(4(4n+1)+1)h2+3‘
(5) hat1-haps-t2 7 GHD R = p2T7 2T @D L

(6) t2a+l(8n+1)h3+3 hg41=0.

Proof As in the proof of Proposition 4.3.2, we may use Sq° to reduce to the case a = 0, and in all cases
where the product does not vanish may reduce to n = 0. With these reductions in place, the proposition is
proved by the following computations:

(1) There are no nonzero p-torsion classes in this degree, so the product must vanish.

(2) Here we are claiming h% -12hg = p? - tcp. For this, it suffices to work mod p3. Recall that 72hq is
represented by Lg% + A172p + O(p>). We may compute

(AoT> +A17%p) - A3 = p* - A2A3T 4+ 0(pY).
and the claim follows.
(3) Here we are claiming h% t4hy = p3 - 2%h, - rh%. For this, it suffices to work mod p*. Observe that
hz . /’lz . ‘[4ho = hz . T2h2 . ‘L'2/’l() = T2h2 . h2 . ‘L’2h0 = T2h2 . T2h2 . h()
by Lemma 4.2.11. We may now compute
do-T2A3-12A3 = p3 - A373 + 0(pY),
yielding the claim.

(4) Here we are claiming t#h3-t%h3-hy = pb- ‘L’Shg. For this, it suffices to work mod p’. Here we
may compute

Ar-t*Ag 14y = p® 2375 + 0(p7),
yielding the claim.

4

(5) Here we are claiming A - h3 - 4hy = P 72¢y. For this, it suffices to work mod p5. Here we may

compute
Ar-t?A7 A7 = p* - AsA222 4 0(p%).
yielding the claim.

(6) There are no nonzero p-torsion classes in this degree, so the product must vanish. O
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The preceding propositions leave open three families of products. A complete resolution of these requires
the following, which appeared as a conjecture in an earlier version of this work. We thank Dugger, Hill

and Isaksen for supplying a proof.

Lemma 4.3.5 (Dugger, Hill and Isaksen) There are relations
(1) ‘E4m+1h1-‘521h0 :Thl-T2(2m+l)h0;
2) t4(4m+1)h3"581+1h% _ t4h3-r8(2m+1)+1h§'
(3) T8m+lh%'1’21ho — Th%-f2(2m+l)h0.
Proof These will be proved using Massey product-shuffling techniques. The Massey products we require

are most easily computed using the p-Bockstein spectral sequence; see especially [Belmont and Isaksen

2022, Section 7.4] for a discussion of Massey products in Extg.
(1) By induction on m, it suffices to show
2 ho T4 = 24 A,
for m > 0. Observe that
TSR = (02 0202 Ny, T ), 2+, = (rZI,pz,pZIZhl)
with no indeterminacy. We may therefore shuffle
2o S = 22 (02, 0202k, TR = (12 ho, 02, 202 ho) T Ry = 21 A Ay
(2) By induction on m, it suffices to show
.L,8l+1h% pAlmEDF16) t8l+17h§ gAémED
for m > 0. Observe that
FA@mED+16), (pS’pST8h4’_[4(4m+1)h3)’ T81+17h% _ (r81+1h§,p8,p8r8h4)

with no indeterminacy. We may therefore shuffle
I8l+1h% LpAUmED+16, t8[+1h%(p8’ p878hy, _L,4(4m+1)h3>
_ (T8l+1h%’p8,p8r8h4>,[4(4m+1)h3 _ ‘[Sl+17h%~‘f4(4m+l)h3.
(3) By induction on m, it suffices to show
2 g - T8m+9h% — 2+8y,. T8m+1h%
for m > 0. Observe that
8MEOR2 — (prths, p, 8 HR2), L2+8p, = <‘L’21h0,p‘[4h0,p7)
with no indeterminacy. We may therefore shuffle
TZlho-t8m+9h% _ f21h0(pr4h3, o, r8m+1h%>

— (TZlho, ,0T4h0, p7>f8m+1h% — T21+8]’l0 . T8m+1h%. O
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From here, we have the following.

Proposition 4.3.6 Write 2m +1 + 1 = 2%¥(2n + 1). Then the following hold:

a a— a(pk+1_ a+k
(1) 2 (4m+1)ha+1 .7l2 1(41+1)Jha = p? @k+1-1) g -T2 (4n+1)ha+k+1-

2) T2€'+2(4m+1)ha+3,tza(glJrl)thr2 _ pza+1(2k+2—3) A 2a+k+2(4n+1)h

a+1-hay3 T a+k+3-

a a—1 a(k+1_ a+k
3) 12 (8m+1)h2+2_r|_2 @+D]p, = p2°C 1)-h2+2-r2 @ntDp o
Proof In each of these, we may use Sq° to reduce to the case a = 0. By working modulo the smallest
power of p in which the claimed product does not vanish, we may reduce to the case n = 0. By
Lemma 4.3.5, we may moreover reduce to the case m = 0. The proposition is now proved by the

following computations:
(1) Here we are claiming T/ ~12(2k_1)h0 = ,oszrl —Lhy ~r2khk+1. Recall that rz(zk_l)ho is represented

by p~18(z2@ =D+1) Now, the Leibniz rule implies
p—la(l_2(2k—1)+1) . 'L'A.] — p_18(T2k+l) 'Al +p—1_[2(2k—1)+1 8(1') 'AL

The second summand vanishes, as 6(t) - A1 = pAg - A1 = 0; the first represents ,oszrl_1 2 higs1-h1,
yielding the claimed relation.

(2) Here we are claiming f4h3-18(2k_1)+1h§ = p2(2k+2_3)-h1 -h3-12k+2hk+3. Recall that Ts(zk—1)+1h%

is represented by p~®8(1 Tg(zk_1)+4). Now, the Leibniz rule implies
p_68(A1T8(2k_1)+4) . T4A7 — ,0_6A] . 8(‘[2k+3) . A'7 + p_GAll . tg(zk_1)+4 . 8(1—4) ) A’7

The second term vanishes, as §(t#)-A3 = t213-17 = 0; the first represents p2(2k+2_3) -hy -h3-t2k+2hk+3,
yielding the claimed relation.
(3) Here we are claiming ‘Ch%"[z(zk_l)ho =2t -h%~r2khk+1. Recall that 722" =Dy is represented
by p~ 18 (Tz(zk—1)+1). Now, the Leibniz rule implies
_ k_ _ k _ k_
P 15(_[2(2 1)+1)-tk§:p 15(_[2 +1)/\%+p 1_[2(2 1)+1'5(‘E)'A§.
The second term vanishes, as §(7) - )L% = plo -k% = 0. The first summand represents p2k+1_1hk+1 -h%,

yielding the claimed relation. |

The relations above suffice to write any product in Ext§3 in terms of the basis given in Theorem 4.2.12.
Thus we have the following.

Theorem 4.3.7 A full set of relations for Ext]ls{3 is given by those visible relations which may be deduced
from Lemma 4.2.11 together with the products listed in Propositions 4.3.2, 4.3.4, and 4.3.6. O
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Part I The motivic Hopf invariant one problem

5 Some homotopical preliminaries

With the algebraic computation of Section 4 out of the way, we now proceed to more homotopical
considerations. This brief section collects a couple of constructions that will be used in the following
sections. Explicitly, Section 5.1 will be used in our computation of d(/45) in Section 7, and Section 5.3
will be used in our discussion of the unstable Hopf invariant one problem in Section 6.

5.1 The Hurewicz map

The constant functor c: Sp® — Spf has a lax symmetric monoidal right adjoint ¢*, described by
c*(X) =8pf (5%, x).
In particular, the unit of ¢*(S%?) gives a ring map
SO s ¢*(500),
and on homotopy groups this yields a Hurewicz map

c:nd - 7k,

Proposition 5.1.1 For any F, there is map
c: Extil’f — Extiif’o

of multiplicative spectral sequences, converging to the Hurewicz map

c:nf—>n£0.

Moreover, ¢ commutes with Sq° and satisfies ¢ (ho) = ho + phi.

Proof Write HIF, for the ordinary mod 2 Eilenberg—Mac Lane spectrum and H IFZF for the motivic
spectrum representing mod 2 motivic cohomology. Then ¢*(H ]FZF ) = HTF,, thereby giving maps

HFE" ~ ¢*(HF$)®" — ¢*((HFS)®").

Thus there is a map from the canonical Adams resolution of the sphere to the restriction along ¢* of the
canonical Adams resolution of the F-motivic sphere. On homotopy groups, this gives a map from the
cobar complex of A to the weight 0 portion of the cobar complex of AF, and passing to homology we

obtain a map
s, f s, 1,0
Ext;” — Exty

which is multiplicative and commutes with Sq°, and by construction this is a map of spectral sequences
converging to the Hurewicz map. That c(ho) = ho + ph1 follows as these are the classes detecting 2 (see
for instance [Isaksen and @stver 2020, Remark 6.3]). O
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5.2 The Lefschetz principle

The Lefschetz principle asserts, informally, that “everything” which is true over C is true over any
algebraically closed field. In this subsection, we note how one may read off a certain motivic Lefschetz
principle from [Wilson and @stvaer 2017].

So far, we have primarily been concerned with F-motivic homotopy theory for F a field of characteristic
not equal to 2. For this subsection, we extend our notation to apply also when F' is some ring in which 2
is invertible. We shall write S for the H IFZF -nilpotent completion of the F'-motivic sphere spectrum.
When F is a field, this is the (2, n)-completion of the F-motivic sphere spectrum, and, when F is an
algebraically closed field, this reduces to a 2-completion [Hu et al. 2011a; Kylling and Wilson 2019].
Let 8p5 denote the category of modules over this completed F-motivic sphere spectrum. In addition,
let Spé7 ocell SpéF denote the cellular subcategory, ie the category generated by the spheres S @b ynder

colimits.

Proposition 5.2.1 Let F be an algebraically closed field. Then there is an equivalence

Fcell C,cell
8p,” = 8p, .

Moreover, this is compatible on Adams spectral sequences with the isomorphism Extg = Extc.

Proof First suppose that F is of odd characteristic p. We follow the methods of [Wilson and @stvaer
2017, Section 6]. Let W(F') be the ring of Witt vectors on F, and choose an algebraically closed field L
of characteristic 0 together with embeddings

C—>L<«W({F)—F.

This gives rise to base change functors

SP(C — SpL <« SpW(F) — SpF,
and, in particular, maps
F
(5-1) nf*an,{"*enz‘g )—>nf:*.

Although W(F) is not a field, Wilson and @stvar [2017] show that its Steenrod algebra and Adams
spectral sequence are still well behaved, and [loc. cit., Corollary 6.3] that the above maps are modeled on
motivic Adams spectral sequences by a zigzag of isomorphisms

Extc — Exty, < Exty(r) — Extp.

It follows that (5-1) is a zigzag of isomorphisms. In particular, consider the zigzag

C,cell L ,cell W(F),cell F,cell
Sp, — 8p,”" < 8p, —38p,” .

This is a zigzag of colimit-preserving functors of compactly generated stable categories which are
equivalences on subcategories of compact generators, and is thus a zigzag of equivalences. This yields

the canonical equivalence Spﬁzc’cel1 ~ Spé7 seell,
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If F is of characteristic zero, then we may apply the same argument instead to a zigzag of the form

C—>L<«+F
with L algebraically closed. O

5.3 Betti realization

If X is a smooth scheme over C, then the space of complex points of X is a complex manifold. This
refines to give Betti realization functors [Morel and Voevodsky 1999] from C-motivic spaces to ordinary
spaces, and from C-motivic spectra to ordinary spectra, with a number of nice properties. We may use
the Lefschetz principle of Proposition 5.2.1 to obtain an analogue for an arbitrary algebraically closed
field F.

Let S© denote the 2-completed sphere spectrum, and Spg1 the category of modules thereover.

Proposition 5.3.1 Let F be an algebraically closed field. Then there is a symmetric monoidal “Betti

realization” functor

Be: .Spé7 scell $p<,

factoring through an equivalence from the category of modules over S%°[t~1] in Spg <ell o Spg, with the

following properties:
(1) Be(r) = 1. In particular, Be(S%?) = 2, so that Be induces a map nfw — JTSC‘, and these patch
together to an isomorphism nf’*[r_l] ~ gll[r+].
(2) The above isomorphism is modeled on Adams spectral sequences by the map

Extr — Extg[t7!] 2 Extq[t ).

(3) The composite Be oc: Spg1 — Spg ocell Spg1 is an equivalence. In particular, the map c : Ext, —

Exty of Proposition 5.1.1 extends to an equivalence Exty[t*1] — Extg [t 71].

Proof These facts are known of the Betti realization functor for F = C [Dugger and Isaksen 2010,
Section 2], and the general case immediately follows from Proposition 5.2.1. |

Using Mandell’s p-adic homotopy theory [2001], we may also produce an unstable analogue. Let F be
an algebraically closed field. Note from [Hu et al. 2011b, Proposition 15] that the spectrum H IFZF is
cellular; moreover, Be(H IF2F ) = HIF»,, as can be seen by inspection of homotopy groups. Let Spc(F') be
the category of F'-motivic spaces and Spc, be the category of 2-complete spaces.

Proposition 5.3.2 Let F be an algebraically closed field, and define
Be: Spc(F) — 8pcy,  Be(X) = CAlgyy, (Be((HIFZF)XJF), Fz).
Then Be(S%?) = (S%)%, and, at least when restricted to the full subcategory of Spc(F) consisting of

simply connected finite motivic cell complexes, the functor Be preserves finite colimits and satisfies

HFP X+ ~ Be((HFF)X+).
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Proof We begin by recalling two facts from Mandell’s work [2001] on p-adic homotopy theory. Strictly
speaking, Mandell states his main theorem at the level of homotopy categories; a reference explicitly
treating the full homotopical version we use is [Lurie 2011, Section 3]. First, the functor

Spc— CAlgyg,. ¥ > HE, "

is fully faithful when restricted to the full subcategory of connected 2-complete nilpotent spaces with
locally finite mod 2 cohomology. In particular, if Y is a connected nilpotent space with locally finite
mod 2 cohomology, then the unit map

Y ~ Spe(x,Y) — CAlgy g, (HF, ¥ HF; ™) ~ CAlgyp, (HF, . HF)
realizes the target as the 2-completion of Y. Second, the functor
CAlgyp, — 8pe, R CAlgyp, (R, HF>),

lands in Spc, and preserves finite colimits when restricted to the full subcategory of Eo-algebras R
over I, such that R, is locally finite-dimensional, Ry = IF», Ry = 0, and the Dyer—Lashof operation Q°
acts by the identity on Ry.

We now apply this to our situation. The stable Betti realization functor is symmetric monoidal, and thus
Be((H IFF )X+) is indeed an Eo-ring over F,. Moreover, as Sq° acts by the identity on H*: *(X ) the
Dyer—Lashof operation Q0 acts by the identity on 4 Be((H IFF )X+). In particular, Be((H IFF )S + )~
HT, 5% , and so the proposition follows by applying Mandell’s theory. |

Remark 5.3.3 We have focused in this section on 2-primary motivic homotopy theory over a field F' of
characteristic not 2. However, our discussion applies in general to p-primary motivic homotopy theory
over a field F' of characteristic not p. <

6 The motivic Hopf invariant one problem

In this section, we formulate and discuss motivic analogues of the Hopf invariant one problem. The
material in this section is not needed for Section 7.

6.1 The unstable Hopf invariant one problem

Classically, Adams’ determination of the permanent cycles in Extél resolved the Hopf invariant one
problem. The Hopf invariant one problem may be formulated motivically using the following.

Definition 6.1.1 Let f: $2¢71.26 _, §4.b pe an unstable map between motivic spheres; in particular,
a>b>0anda > 1. Write C(f) for the cofiber of f. The map f vanishes in mod 2 motivic cohomology
for degree reasons, and thus there exists an isomorphism

H**(C(f)4) =MF{1,x,y}
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of M -modules, where |x| = (—a, —b) and |y| = (—2a, —2b). Say that f has Hopf invariant one if one
may choose such generators x and y to satisfy

x?=y,
ie if H**(C(f)+) = MF[x]/(x?); otherwise x2 = 0 and f has Hopf invariant zero. <
The unstable motivic Hopf invariant one problem is now the following question.
Question 6.1.2 For which (a, b) does there exist a map f : $2¢~1:20 _ §@:b of Hopf invariant one? <

This turns out to mostly reduce to the classical case, by way of the following.

Lemma 6.1.3 Let f: §2¢~1.2b _, §4.b pe ap unstable F-motivic map. Then f has Hopf invariant one
if and only if its base change to an algebraic closure of F is of Hopf invariant one.

Proof This is immediate from the definitions. O

Proposition 6.1.4 Fix an unstable F-motivic map f: $2¢~1.20 _ §@:b of Hopf invariant one. Then
the Betti realization (see Proposition 5.3.2) of f is an odd multiple of 2, n, v, or o. In particular,
ae{l,2,4,8}.

Proof By Lemma 6.1.3, we may as well suppose that F' is algebraically closed. Let C( f) denote the
cofiber of f and C(Be(f)) the cofiber of Be(f). Then Be(C(f)) = C(Be(f)) by Proposition 5.3.2,
and thus H*(C(Be(f))+) = H*(Be(C(f))+) = F2[x]/(x?) with |x| = —a. In other words, the map
between 2-completed spheres Be( f): $24~1 — S¢ has Hopf invariant one. The proposition now follows
from Adams’ resolution [1960] of the Hopf invariant one problem. |

Proposition 6.1.4 is not a complete answer to Question 6.1.2, as we have not given any bounds on b,
nor have we discussed the existence of maps of Hopf invariant one. Although we will not end up with a
complete answer in general, there is more we can say. Before this, we recall what information is encoded
in the 1-line of the F-motivic Adams spectral sequence.

6.2 The stable Hopf invariant one problem

Question 6.1.2 can be rephrased as asking when there exists an unstable 2-cell complex, with cells in
dimension (a, b) and (2a, 2b), such that in cohomology the bottom cell squares to the top cell. In the
stable category, one no longer has cup squares; instead, one has Steenrod operations. Thus we may
consider the stable motivic Hopf invariant one problem to be the following question.

Question 6.2.1 What A% -modules arise as the cohomology of 2-cell complexes? In particular, for which
(a,b) does there exist a 2-cell complex, with cells in dimensions (0, 0) and (a, b) and attaching map
vanishing in mod 2 motivic cohomology, such that H**X = MF {x, y} is not split as an A -module? <
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This is a particular case of the realization problem for AF -modules, and is exactly what the 1-line of the
F-motivic Adams spectral sequence encodes. The following is standard.

Proposition 6.2.2 Fix a class € € Ext?,_l’l’b classifying an extension 0 — M {y} - E — M {x} -0

of A¥ -modules with |x| = (0,0) and |y| = (—a, —b). Then the following are equivalent:
(1) There is stable 2-cell complex C with cells in dimensions (0, 0) and (a, b) such that H**C =~ E.

(2) The class € is a permanent cycle in the F -motivic Adams spectral sequence, and thus detects a

F
a—1,b"

Explicitly, if € € Ext‘fp—l’l’b detects o € nf_l p then the cofiber C(a) satisfies H**C(a) = E; and,
if C is a stable 2-cell complex with H**C = E, then the fiber of the inclusion S%° — C is a map
a: §41b 5 §0.0 detected by € € Ext’ll,_l’l’b. |

stable class @ €

As we will see in Section 7, the 1-line of the F-motivic Adams spectral sequence is already quite rich,
and strongly depends on the base field F. Thus, in considering the stable Hopf invariant one problem,
one may not reduce to the case where F is algebraically closed, unlike in the unstable case.

6.3 Relation between the unstable and stable motivic Hopf invariant one problems
We may now relate the unstable and stable questions, Questions 6.1.2 and 6.2.1.

Proposition 6.3.1 Let f: S 2a=1,2b _, ga.b pe 4 map of Hopf invariant one. Then the associated stable
classa em :—1 p 18 detected by a permanent cycle in Ext(;-_l’l’b which, after base change to the algebraic

closure of F, is one of
2 2 3 4
ho, hi, thi, ha, thy, t°ha, hz, thz, t°hs, t’hz, T hs.

In particular, if Ext‘}_l’l’b does not contain any such permanent cycle, then there is no map f : S 2a=1,2b _,
S of Hopf invariant one.

Proof By Lemma 6.1.3, we may suppose that F itself is algebraically closed. By stabilizing Proposition
6.1.4, we find that Be(w) is detected by &y, hp, or k3 in Extél. Recall from Proposition 5.3.1 that Betti
realization is modeled on Adams spectral sequences by the map

Extr — Extp[t71] 2 Exty[tT1].

In particular, the structure of Extg (see Proposition 4.2.1) implies that o must be detected by a permanent
cycle in Extg of the form t”hg, t"hy, t"hy, or t"h3 for some n > 0. As f is an unstable map, this
class must have nonnegative weight, reducing to the listed classes. |

Remark 6.3.2 Our method of relating the unstable motivic Hopf invariant one problem to the stable
motivic Hopf invariant one problem, going through the “Betti realization” functors of Section 5.3, may
seem somewhat roundabout. This route was taken for the following reason: if f: $2¢~! — §¢ is a map
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of Hopf invariant one, then the fact that H*(C(f')) is nonsplit as an A-module, and thus the associated
stable class o € ngl_l is detected in Extél, follows from the instability condition Sq%(x) = x2.

Motivically, the analogous instability condition asserts that, if X is a motivic space and x € H?%%(X ),
then Sq2¢(x) = x2 [Voevodsky 2003, Lemma 9.7]. Now suppose that f: §2¢~1.20 _, §a.b j5 ap unstable
map of Hopf invariant one, and write H**(C(f)+) = M¥ [x]/(x3) with |x| = (—a, —b). If a is even
and b < %a, then one may set ¢ = %a — b and deduce Sq%(r¢x) = t2¢x2, so that H**(C(f)) is
not split as an A -module. If a is odd, then one may argue by appealing to an integral motivic Hopf
invariant and graded commutativity, as in the classical case. Thus, it is to rule out the possibility of a map

f:§2a=1.2b _, ga.b of Hopf invariant one with b > %a that we have taken our approach. <

Our computations in Section 7 show, for a variety of base fields F, when Ext}., contains a permanent cycle
whose image over the algebraic closure is one of the classes listed in Proposition 6.3.1, yielding various
nonexistence results. To obtain existence results, we must recall how maps of Hopf invariant one arise.

6.4 Geometric applications

Adams’ resolution of the classical Hopf invariant one problem had geometric consequences; notably, it
implied that the only spheres which admit H -space structures are S°, S', $3, and S”. It makes sense to
ask for the motivic analogue of this, ie to ask which spheres S @b admit H -space structures.

This question is in some sense geometric, but we can also ask for something even more concrete. The
spheres S%? are certain sheaves on the Nisnevich site of smooth F-schemes, and so it is reasonable to
ask when S%? is in fact represented by a smooth F-scheme. This question was raised and studied by
Asok et al. [2017]; in particular, they produce explicit smooth affine schemes representing S a.fa/2] aq
well as prove that S @b is not represented by a smooth scheme for @ > 2b. Motivated by this, we are led
to ask the following question.

Question 6.4.1 For what pairs (a, b) is S%? a motivic H-space? Of these, when is it represented by a
smooth F-scheme which admits a unital product? N

Classically, the connection between the H -space structures and the Hopf invariant one problem is via
the Hopf construction. This construction may also be carried out in the motivic category, and has been
studied in this context in [Dugger and Isaksen 2013]. We recall the key points.

Definition 6.4.2 [Dugger and Isaksen 2013, Definition C.1] Let X, Y, and Z be pointed spaces, and let
h: X xY — Z be a pointed map. The Hopf construction of h is the map H(h): X » Y — ¥ Z obtained
by taking homotopy colimits of the rows of the diagram

X +—— XxY —Y

TR

* < V4 >k <
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Here * is the join. Note that §%-2 » §¢-4 ~ gatctLb+d. hyg the Hopf construction may be used to
construct maps between motivic spheres. Using the theory of Cayley—Dickson algebras, Dugger and
Isaksen [2013, Section 4] used this to define motivic Hopf maps n € 7111':1, V€ 77;:2’ and o € 7154. As
noted in [loc. cit., Remark 4.14], these motivic Hopf maps have Hopf invariant one. This is a general
property of the Hopf construction, which we may summarize in the following.

Lemma 6.4.3 If u: 410 x §a=1b 5 ga=Lb js an H-space product, then its Hopf construction
H(p): §2e=1.2b 5 §a.b has Hopf invariant one.

Proof The proof of the analogous fact for topological spaces [Steenrod 1962, Section 1.5] extends to
motivic spaces. We summarize the key points.

Define the (mod 2) degree of a pointed map S ab _ §a:b of motivic spaces to be its induced map in
reduced motivic cohomology. A pointed map f: S¢~ 10 x §a=1b 5 ga—Lb of motivic spaces is said
to have degree (o, B) if f|ga—1.5x(p,y has degree & and [y, yxsa—1.» has degree B. Since w is an
H -space product, its restrictions to S~ 1% x { p>} and {p1} x S~ 12 are homotopic to the identity, so
has degree (1, 1). The lemma follows by showing that, more generally, the Hopf invariant, defined in the
evident way, of the Hopf construction of a map of degree («, B) is « - B.

Steenrod and Epstein’s proof of [Steenrod 1962, Lemma 5.3] carries over to the motivic setting to complete
the proof. The main point is that Steenrod and Epstein work with particular models of the cone, join,
homotopy cofiber, and suspension in their proof, but any model would work, as all of their statements
only depend on the homotopy types of the relevant spaces and homotopy classes of the relevant maps.
More precisely, with notation as in their proof, one may replace £y, E>, E4, and E_ by the cones on
S1, 82, S, and S, respectively, to avoid any potential point-set issues. In particular, one regards £, E»,
E., and E_ as suspension data in the sense of [Dugger and Isaksen 2013, Remark 2.9] for the various
suspensions appearing in the Hopf construction. In this language, the identifications of various pushouts in
the proof of [Steenrod 1962, Lemma 5.3] are examples of induced orientations [Dugger and Isaksen 2013,
Remark 2.10]. The proof carries through unchanged with these new choices of E;, E;, E4, and E_.

To be precise, their proof considers maps S~ ! x §”~! — §7~1 with n > 1 even and works integrally.
Routine modifications extend this to arbitrary n > 1 provided one works mod 2 throughout. Classically,
this is the adaption needed to incorporate the degree 2 map S! — S, which is the Hopf construction
of the standard product on S° 2 C,. Motivically, this is the adaption needed for our lemma to hold for
arbitrary unstable motivic spheres S a=1,b, allowing especially for the uniform treatment of 2 and n. O

Remark 6.4.4 Under Definition 6.1.1, the map #: S1 — SI:1 represented by the squaring map on G,
sometimes called the “zeroth Hopf map” and stably detected by /g, is not a map of Hopf invariant one.
In the context of Lemma 6.4.3, this is justified by the fact that, for degree reasons, % is not the Hopf
construction of an H -space structure on any motivic sphere. <
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We can now summarize what is known in the following.

Theorem 6.4.5 A motivic sphere is represented by a smooth F -scheme admitting a unital product if and
only if it is one of
S0,0 Sl,] S3,2 S7,4
In addition to the motivic spheres listed above, the following motivic spheres admit H -space structures:
SI’O, S3’O, S7’0.
The only other motivic spheres that could possibly admit H -space structures are

3,1 7,3 7.2 7.1.
S>h, 807, 80 8P

moreover, an H -space structure on such a sphere produces a permanent cycle in Extr whose image over
the algebraic closure is thy, ths, 72h3, or t3h3, respectively.

Proof That the spheres $%0, S1:1, §3:2 and S7-* are represented by smooth F-schemes admitting a
unital product is given by [Dugger and Isaksen 2013]. The spheres S0, §3:0 and S7-0 are the images of
S1, 83 and S7, respectively, under the unstable constant functor from spaces to motivic spaces, and so
inherit H -space structures from their classical structures. That all the spheres listed are the only spheres
which may admit H -space structures follows from Lemma 6.4.3 and Proposition 6.3.1, as does the final
claim concerning the F-motivic Adams spectral sequence. Finally, Asok et al. [2017, Proposition 2.3.1]
prove that, if S a=1b jg represented by a smooth F-scheme, then necessarily 26 > a — 1, and the only
possible H -spaces satisfying this are $%0, §1-1, §3:2 and S7-4, as listed. m|

We note the following special case.

§g2a—1.2b

Corollary 6.4.6 Suppose there is an R-motivic map f: — S%b of Hopf invariant one. Then

(a,b) is one of
(1,0), (2,1, 4,2), (8,49, (2,0), (4,0, (8,0).

Moreover, all of these are realized, and in fact
S0,0 Sl,l S3,2 S7,4 SI,O S3,0 S7,0

are all the R-motivic spheres admitting H -space structures.

Proof This is immediate from Theorem 6.4.5, either appealing to the fact that Extg vanishes in the
degrees detecting the remaining possibilities, or else noting that the real points of S @b are §97° 5o that,
if $%:% is an H-space, then a —b € {0,1, 3, 7}. |

7 The 1-line of the motivic Adams spectral sequence

We now analyze the 1-line of the F-motivic Adams spectral sequence. We begin in Section 7.1 by
explaining how to read off the structure of Exty for various fields F' from our computation of Extg.
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After some additional preliminaries in Section 7.2, we give a direct motivic analogue of the classical
differentials in Section 7.3, proving da(hg+1) = (ho + ph1)h2 for a > 3 over arbitrary base fields. We
then proceed to give more detailed information about the 1-line for the particular fields F' of the form R,
F4 with ¢ an odd prime power, Q, with p any prime, and Q.

7.1 Computing Extp

As a general rule, Extg is largely understood once M¥ and Extg are both understood. Rather than
formulate a precise statement, let us just describe Extg for the various particular fields F we shall
encounter, namely those described in Example 2.2.1 as well as F = Q.

Recall from Remark 2.3.2 that, for any field F, we may view M as an AR-module, and there is an
isomorphism
Extp =~ EXtAR(MR, M.

Thus, the main point is to understand M¥ as an AR-module, and this is in fact determined by Mg as an
[F>[p]-module. For the examples of interest, we have the following. Abbreviate

M =Ta[r, p], Mgy =M/(p").

Lemma 7.1.1 As AR-modules, we have the following:
(1) MR =M.
(2) If F = F is algebraically closed, then M[¥' = My).
(3) Ifg =1 (mod 4), then MFe = M;){1,u}.
(4) Ifg =3 (mod 4), then MFs = M.
(5) If p=1 (mod 4), then M@ = My){1, 7, u, Tu}.
(6) If p =3 (mod 4), then MQ» = M)tl, 7}
(7) M@ =M){l} &My iu, 7},
(8) M@ =M{1} @ M;){2} & M(yilpl.ap: p =1 (mod 4)} & Mzyiup : p =3 (mod 4)}.
Proof All but the case F = QQ may be read off the examples listed in Example 2.2.1. When F = Q, the

ring M@ is described in [Ormsby and @stvaer 2013, Propositions 5.3 and 5.4], following [Milnor 1970].
Our description may be read off this upon setting u, = [p] + p for p =3 (mod 4). |

For r > 0, define
EXt(r) = Ext r (M, M(r)) = H, (AR/(Pr))'

The FF>[p]-module structure of Ext(,) may be easily computed from Extg via the long exact sequence
associated to the cofiber of p”. Even less work is necessary when Extg has been computed by some
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method compatible with the p-Bockstein spectral sequence such as ours; see in particular Remark 4.1.5.
Thus Theorem 4.2.12 allows us to read off Ext{;) for f <2, as well as the image of Extg — Ext?r). This
does not give the entirety of Ext?r); however, we at least know that whatever remains is generated by
classes which appear in the p-Bockstein spectral sequence as pka with o € Extf’l) and k < r, and this is
enough information for our purposes.

Lemma 7.1.1 describes for various F how Extg may be written as a direct sum of copies of various
Ext(,). For example, Extg, = Ext3){1} @ Ext(;){u, v}. We may use this to prove a Hasse principle
for Extgy.

Lemma 7.1.2 The map
M®Q - M@
satisfies
[pl—=m, apr—um, upr—>m+p.

Here the first is relevant for p = 2 or p = 1 (mod 4), the second for p = 1 (mod 4), and the third for
p =3 (mod4).

Proof The behavior of these maps is described in [Ormsby and @stveer 2013, Proposition 5.3]. Our
description follows immediately; note we have defined u, = [p] + p for p =3 (mod 4). |

Proposition 7.1.3 The Hasse map

Extg — Extr X 1_[ Extqg,
p
is injective.

Proof By Lemma 7.1.1, we have

Extg = Extr @ Ext1){[2]} ® Ext){[pl.ap : p =1 (mod 4)} @ Extay{up : p = 3 (mod 4)}.

The summand Extg maps isomorphically to Extg, and the maps Extg — Extg, are determined by
Lemma 7.1.2. In particular, it is easily seen that the maps

Ext(1){[2]} — Extq,, Ext(l){[p], ap} — Extg,, Extp){up} — Extq,

are all split injections, and the proposition follows. O

The preceding discussion, together with our computation of Extgr, describes what we will need of Extg
in low filtrations and arbitrary stem. So that we may rule out various higher differentials in low stems for
degree reasons, we record the following.

Lemma 7.1.4 Ext(y) is given in stems s < 6 by the module
Falt] ® (Faihl :n > 0} @ Falhy, hi, b3, ha, hohy, h3}) & Falt]/(0){hT, b3, hS)}.
Proof These groups have been computed in [Dugger and Isaksen 2010]. O
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7.2 Existence of Hopf elements

Our computation of the F-motivic Adams differentials d»(/441) will follow a similar pattern to Wang’s
computation [1967] of the corresponding classical Adams differentials (differentials which were first
computed in [Adams 1960]). This is an inductive argument, beginning with information about the Hopf
elements which are known to exist. We record some of this information in this subsection.

Write € € yr(fo for the class represented by the twist map S1'! @ 11 — §ll g b1,

Lemma 7.2.1 Fixa € ”::b and 8 € ”cF,d' Then there is an identity
0B = (1)@ D= cbd g
Moreover, 1 — ¢ is detected in Extg by ho and 2 by ho + ph.
Proof The claimed graded commutativity is given in [Morel 2004, Corollary 6.1.2]; see also [Isaksen

and @stveer 2020, Section 6.1] for a discussion. That 1 — ¢ is detected by /g and 2 by kg + phy is noted
in [Isaksen and @stver 2020, Remark 6.3]. O

Lemma 7.2.2 For any field F, the class h, is a permanent cycle fora € {0, 1,2, 3}.

Proof The class hg is a permanent cycle by Lemma 7.2.1. Dugger and Isaksen [2013] construct the
motivic Hopf elements 7, v, and o, and indicate [loc. cit., Remark 4.14] that these are detected by A1,
h», and h3, respectively; see also our discussion in Section 6.4. Thus these classes must be permanent
cycles. O

7.3 Nonexistence of Hopf elements
The purpose of this subsection is to prove the following.

Theorem 7.3.1 For an arbitrary base field F' of characteristic not equal to 2, there are differentials of the
form

da(hay1) = (ho + ph1)h,

in the F -motivic Adams spectral sequence, which are nonzero for a > 3. <
By naturality, it suffices to produce these differentials in the case where F' is a prime field, ie F = or
F = Q, and when F is algebraically closed. Moreover, by the Hasse principal given in Proposition 7.1.3,
the case F' = Q may be deduced from the cases F' = Q, and F' = R combined. All of these build on the
case where F is algebraically closed, which may be treated as follows.

Proposition 7.3.2 If F = F is algebraically closed, then

da(hat1) = hohZ.

This is nonzero for a > 3.
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Proof The corresponding classical differentials are known due to [Adams 1960]. The proposition could
be reduced to this by appealing to Proposition 5.3.1; however, we shall instead proceed as follows.

Wang [1967, Section 3] gives another proof of the classical differentials, combining only a minimal
amount of homotopical input with a good understanding of Ext;. His argument may be applied essentially
verbatim to produce the claimed F-motivic differentials. It is this argument that may be adapted to work
for other base fields, so to motivate our later computations let us recall this argument in full.

The proof proceeds by induction on a, where only the base case requires any homotopical input.

Consider the base case a = 3. The class &3 is a permanent cycle, detecting the Hopf element o; see
Lemma 7.2.2. By Lemma 7.2.1, we find that 262 = 0. As 2 is detected by & over algebraically closed
fields, it follows that hoh% cannot survive the Adams spectral sequence. The structure of Extz implies
that do(h4) = hohg is the only way for hohg to die.

Now suppose we have produced the differential d» (h,) = hohﬁ_1 for some 1 > 4. The relation g4 1hg =0
together with the Leibniz rule implies

0 =da(hg+1ha) = da(ha+1) -ha + ha+1-d2(ha).
Applying our inductive hypothesis and the relation /44 -hg_l = h3, this reduces to
(da(ha+1) +hoh}) -ha = 0.

The algebraic structure of Ext% implies that da(hg+1) € Fa{hoh2}, so it suffices to verify that hoh3 # 0
for a > 4. This follows from Wang’s computation [1967, Proposition 3.4] by comparison along the map
Extg — Extp[t™'] ~ Extyq[r*!]. m|

The base step for the inductive argument given in Proposition 7.3.2 works for arbitrary base fields, but
the inductive step falls apart. This inductive step relies on the algebraic fact that, when working over an
algebraically close field, multiplication by A, is injective on the degree of da(hg41) for a > 4. Over other
base fields, this fails for a = 4: this degree may contain elements of the form whlhﬁ where w € Ext]‘,_,l’o’_1

is a sum of elements such as p, 7, and u, and
whih3 -hg = why -h3 = ohy-h3-hs = 0.
Luckily, the inductive step fails only for ¢ = 4; once we have resolved d (h5), the remaining differentials

will follow via the same argument. To resolve this differential, we proceed as follows.

Proposition 7.3.3 Let F be a field of the form [F, for g odd, Q, for any p, or R. Then there is a
differential

da(hs) = (ho + ph1)hﬁ
in the F-motivic Adams spectral sequence.
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Proof When F =R, we first make the following reduction. Observe that Extg in the degree of d»(/5)
is given by Fa{hoh3, phlhﬁ}, and that neither of these classes are divisible by p?. Thus it is sufficient to
verify this differential in the Adams spectral sequence for the cofiber of p2. By [Behrens and Shah 2020,
Lemma 7.8], this cofiber is a ring spectrum, and so its Adams spectral sequence is multiplicative. Having
made this reduction, the remainder of the argument is uniform in the given choices of F. For brevity of
notation, in the following we shall write Extg for the object so named when F =, or F = Qp, and
write the same for Ext(;y when F = R.

16

First observe that, as 74 € Ext(};, the class 716 is a square and thus a d>-cycle. As ! acts injectively on

Ext{, for f <3, it suffices to show
dy(t"hs) = (ho + ph1)T"®hj.

Consider the Hurewicz map c¢: w« — JT:: o- Let 04 € 130S° be the Kervaire class, detected by hi and
satisfying 264 = 0. By Proposition 5.1.1, we find that c(64) is detected by (Sq0)4(hg) = r16hi. As
2-c(04) = 0, the class (hg + phl)rmhﬁ cannot survive. The only possibility is that d(t1%hy) =
(ho + phl)rwhﬁ, yielding the desired differential. |

Remark 7.3.4 When F = R, the differential d5(%5), and in fact all the differentials d»(h4+1), may also
be produced as follows. By comparison with C, one finds d»(hs) € hoh3 + Fa2{ph1h3}. Thus it suffices
to verify that d(h5) is not p-torsion. This is a consequence of the fact that the isomorphism Extg[p~!] ~
Extga[pT!] [Dugger and Isaksen 2017b, Theorem 4.1] commutes with Adams differentials. <

We need just one more algebraic fact for the proof of Theorem 7.3.1.
Lemma 7.3.5 Letw € Ext(}; be nonzero. Then a)hlhg =0 for all a > 5.

Proof The class hohfl_1 is nonzero in Ext for a > 5 by [Wang 1967, Proposition 3.4]. Proposition 3.2.1
gives an injection Extg.; — Extg, and this extends by linearity to an injection Ext?,, ®F, Extygel — Extp,
as can be seen by using Lemma 7.1.1 to reduce to the injections Ext(()r) ®F, Extgel — Ext(). The class
wh1h? is the image of » ® hohfl_1 under this map, yielding the claim. a

We may now give the following.

Proof of Theorem 7.3.1 As discussed, it suffices to consider only the cases where F' is of the form [y
for some g odd, Q4 for some ¢, or R. So let F' be one of these. We now induct on a, with base cases
a=3and a =4.

First consider the case @ = 3. By Lemma 7.2.2, the class h3 is a permanent cycle detecting the class .
By Lemma 7.2.1, 202 = 0, and so (ko + ,ohl)h% must be the target of a differential. The only possibility
is that d5(hg) = (ho + phl)hg

The case a = 4 was handled in Proposition 7.3.3.
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Now suppose inductively that we have produced the differential da(/hq) = (ho + ph1)h2_, for some
a > 5. Combining the Leibniz rule with the relation sg441h, = 0, we find

0=dz(ha+1ha) = d2(ha+1)ha + hat1d2(ha).
Applying our inductive hypothesis and the relation hq4+1h2_, = h2, we find
(da(ha+1) + (ho + ph1)h})ha = 0.

It follows that da (hg+1) = (ho + phl)hﬁ + x where x is some class killed by %,. The only classes in
this degree are hoh2 and those of the form whh2 where @ € Ext?,,. By comparison with F, we find
that x must be zero or a nonzero class of the form a)hlhfl with w € Ext}l’o’_l. Asa>5,Lemma 7.3.5
implies that none of the latter are killed by /,. Thus x = 0, yielding the desired differential. O

This concludes our uniform analysis of differentials out of Ext},. The rest of this section is dedicated to
studying the 1-line in more detail for particular fields F.

7.4 The real numbers

We now study the case F = R in more detail. Recall from Theorem 4.2.12 that

Extg = Falpltha :a = 1} @ @ Falpl/ (0> ) > @00y o0 = 0},
a>0

Here recall that 24~ 1(4n 4 1) = 2n for a = 0. Theorem 7.3.1 allows one to understand the fate of the
classes in the p-torsion-free summand, so we turn our attention to the p-torsion subgroup. We shall first
pin down which of these p-torsion classes are permanent cycles, and then by separate methods compute
all d,-differentials on these p-torsion classes. A comparison reveals that there must be numerous higher
differentials, but determining these is outside the scope of our computation. The first point of order is the
following.

Definition 7.4.1 For a > 0, write a = ¢ 4+ 4d with 0 < ¢ < 3, and define ¥ (a) = 2¢ + 84 to be the a’”
Radon—Hurwitz number. <

Proposition 7.4.2 The class p” 2 (“n+Dp, is a permanent cycle if and only if r > 2% —yr(a).

The proof of Proposition 7.4.2 requires some preliminaries. We proceed by comparison with Borel
C»-equivariant stable homotopy theory. Let Extgc, denote the E>-page of the Borel C»-equivariant
Adams spectral sequence [Greenlees 1988]. Explicitly,

Extyl” = Ext,"/ (F2. H* PY):

this is just a combination of the ordinary Adams spectral sequences for the stable cohomotopy groups
of infinite stunted projective space. By Lin’s positive resolution [1980] of the Segal conjecture, this
spectral sequence converges to JT*C: %, the homotopy groups of the 2-completion of the C,-equivariant
sphere spectrum.
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Betti realization followed by Borel completion yields a functor from the stable R-motivic category to the
Borel C,-equivariant stable category Fun(BC5, 8p), and Behrens and Shah [2020, Section 8] show that
this may be understood as completing at p and inverting t. Applying this to an Adams resolution, we
find that

Extpc, = nli)rgo Ext(zn)[f_zn].

The simple form of ExtfR3 allows us to immediately read off Ext§3cz.

Lemma 7.4.3 Extgz’c2 is exactly as Extﬁ3 is described in Theorem 4.2.12, except n is allowed to be
negative, and in place of the map Extg — Extc is a map Extgc, — Extc[r™!] 2 Exty[t*1]. a

In particular,

Extpe, = Falpltha :a = 1@ @ Falpl/ (0> )t 2 @m0, cn e 7).

a>0

We have introduced Extgc, in order to make the following reduction.

Lemma 7.4.4 Write h: Extg — Extgc, for the canonical map of spectral sequences. Fix a p-torsion
class x € ExtIIR. Then x is a permanent cycle if and only if h(x) is a permanent cycle.

Proof Clearly, if x is a permanent cycle, then the same must be true of z(x). Conversely, suppose that
h(x) is a nontrivial permanent cycle; we claim that x is a permanent cycle.

Write Extc, for the E5-page of the C»-equivariant Adams spectral sequence [Hu and Kriz 2001, Section 6],
converging to the same target as Extgc,. This splits additively as Extc, = Extg @ Extyc for a certain
summand Extxc (see [Guillou et al. 2020, Section 2]), and & factors as 4 = go f : Extg — Extc, — Extpc,,
the first map being the obvious inclusion and the second map killing the summand Extnc.

As h(x) is a nontrivial permanent cycle, it detects a class « in Borel Adams filtration 1. The class o
must then be detected in Extal. By [Belmont et al. 2021], the map Extg — Extc, is an isomorphism
in the degrees under consideration, so the same must be true for Extc, — Extpc,. As there is at most
one nonzero p-torsion class in these degrees, the only possibility is that « is detected by f(x) in Extlcz,
implying that f(x) is a permanent cycle. As Extg — Extc, is the inclusion of a summand, this implies
that x is a permanent cycle, as claimed. O

Thus it suffices to understand permanent cycles in Ext}B ¢c,- The main point is the following.

Lemma 7.4.5 There exists a nonzero p-torsion class o € JTSC: 2, detected in Borel Adams filtration 1 if and
only if the inclusion of the bottom cell of Pu’f__sl_l is split, where P}' is the Thom spectrum of the k-fold
Whitney sum of the tautological line bundle over the real projective space RP".
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Proof First suppose given such a map «. The structure of EXt}sCZ implies that &« must have p-torsion
exponent s + 1, and so there is a lift @ in the diagram

s—w—+1 pw—1
) Pw—s—l

\\\ —
9 \\\OL
\\

o

sswpoo @ % g0

Es—w POO

w—s—1

As « and d have Adams filtration 1, necessarily & has Adams filtration 0. It follows that precomposing &

with the inclusion of the bottom cell SO — Z5~W+1pw—l  gives a map S° — S which is nonzero in

mod 2 cohomology, and must therefore be an equivalence. In other words, & splits off the bottom cell
of P¥~1

w—s—1-

w—1
w—s—1

as above in Adams filtration 0. Let @ = & o d; we claim that « is a nonzero class detected in Adams

Conversely, if the inclusion of the bottom cell of P is split, then its splitting gives a nonzero map o

filtration 1. Indeed, the cofibering P$:s1—1 — PJ'}O_ 1> PSP gives an exact sequence

Ext®(Fp, H* PS°) — Ext®(F2, H* P ) — Ext®(F2, H* P2~} ) L5 Ext' (F,, H* P),

w—s—1 w—s—1
where 0’ models restriction along d in the previous diagram. The first map is exactly

s+1. *,0,w *,0,w—s—1
P .ExtBC2 — EXtBC2 .

As ExtOB ¢, = F2[p], we find that the kernel of d’ consists of only that class represented by the inclusion

F, - H OPu'f__sl_l. So @' is injective in the relevant degrees, implying that « is nonzero and of Adams

filtration 1, as claimed. d
We may now give the following.

Proof of Proposition 7.4.2 By Lemma 7.4.4, it suffices to show that a class p" 712~ 4n+Dlp ¢ Extpc,

is a permanent cycle if and only if r > 2% —/(a). By sparseness of Ext}, ¢, the class p” 2T En+ ]y

Cs .
20— r1,—pa+in_y detected in Borel

Adams filtration 1. By Lemma 7.4.5, this holds if and only if inclusion of the bottom cell of P__ZZ:LI :__2’; 1

is split. By James periodicity [1958; 1959], this holds if and only if the inclusion of the bottom cell of

p2N—2¢tln—r-1
2N _na+1_»pa

is a permanent cycle if and only if there is some p-torsion class o € 7

is split for some sufficiently large N >> O; that is, we may assume ourselves to be working
with suspension spectra of honest real projective spaces. When this happens was resolved by Adams’
solution [1962, Theorem 1.2] of the vector fields on spheres problem, yielding the condition claimed. O

Corollary 7.4.6 The classes 2 @n+DIp , are permanent cycles fora < 3. |

Corollary 7.4.6 could also be proved more directly, applying the technique used in the proof of Theorem
7.3.1 or Proposition 7.4.8 below to reduce to the region considered by Belmont and Isaksen.
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It is worth summarizing what we have learned from the proof of Proposition 7.4.2 about the stable

cohomotopy groups of projective spaces.

Theorem 7.4.7 The subgroup of permanent cycles in Extlls, c, 18 given by
Falolth1. ha.hs. pha} & @D Falpl/ (o¥ @) (o> ¥ @72 @i Dl o e 7).
a>0
A choice of maps X PS° — S 0 detected by these permanent cycles is given by the following:
(1) For all r > 0, there are maps
PR, - PP 1580 mpe. 2Pty s0 23pe »3dpx 2,50
Here n, v, and o are equivariant refinements of the Hopt maps with the same names. These
composites are detected by p" hy, p" ha, and p" h3, respectively.

(2) For all r > 0, there is a map
s7pe s 37 poe 540, o
—r 9
where Sq(0) is the symmetric square of o: S” — S°. This composite is detected by p' 17 hy.

(3) Foralla>0,n€Z,and 1 <r <y (a), there is a map

29@2n+1)—1 0 2¢(2n+1) p—242n+1)+r—1 s 0
== PZagntyr = 2 TP pagagyy — 5%

Here 9 is the cofiber of the map 22“(2"+1>—1P33a(2n+1) — 22“(2"+1)—1P3‘2’a(2n+1)+r, and

s is any map that splits off the bottom cell of P__zzaa ((22::'11))” ~1. This composite is detected by
pza_’rLza_l(“”“)Jha.

Proof Recall that

Exthe, = Falpliha 1a > 1} @ @ Falol/ (0> )22 CnD)p, i e 7).

a>0

We have just analyzed which classes in the p-torsion summand are permanent cycles, leading to exactly
the claimed p-torsion permanent cycles with representatives as described in (3). Lemma 7.2.2 implies that
h1, hs, and h3 are permanent cycles, and these detect the maps described in (1). Theorem 7.3.1 shows that
p"hg supports a dy-differential for a > 5 and n > 0, and that /14 supports a d»-differential but ph4 does not.
We are left with verifying that phy4 is a permanent cycle detecting the map Sq(o). Indeed, taking geometric
fixed points yields an isomorphism NE 2[p71] = #[p*!] which sends Sq(«) to o for any @ € &, This
isomorphism is modeled on Adams spectral sequences by Extc, [0~ 1] = Extg[p~!] = Extq[pt!]. As
phy is the only class in its degree lifting &3 € Extcll, it must be that ph4 detects Sq(o). |
Proposition 7.4.2 implies that the classes 27 “n+Dp . must support Adams differentials for a > 4.
Although we do not compute all these differentials, we do give the following.
Proposition 7.4.8 For all n > 0 and a > 3, there is a differential

do (22 @7 Db, 1) = (ho + phy) (> ¢7 DR,
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Proof We give separate arguments for the case @ = 3 and a > 3. First consider the case a = 3. The class
447+ 15 is a permanent cycle by Corollary 7.4.6, detecting a class which we might call 4“4+ By
Lemma 7.2.1, 2- (¢#@7+ D)2 = 0, and so (ho + ph1)- (t*@" D }3)2 must die. This class is not divisible
by p, and the only non-p-divisible classes that may hit it are 7844 and 7874+ p'®hs. By Theorem 7.3.1, if
do(t8ha+p'Ohs) = (ho+ph1)-(* @D p3)2 then dp(t8hs) = (ho+ph1)-(t* @ T D hs+hy)?. This is
not possible as 18414 is p-torsion and this target is not. Thus, in fact, do (t8h4) = (ho+ph1)-(*@"+D]3)2,
as claimed.

Next consider the case a > 3. The p-torsion subgroup of Extg in the degree of da(z2““4*TDh 1) is
given by Fa{ho, ph1} ® ]Fz{(fza_1 (“n+1Dp )2} These classes are not divisible by p2, and so it suffices
to verify the differential in the Adams spectral sequence for the cofiber of p2. By [Behrens and Shah
2020, Lemma 7.8], this cofiber is a ring spectrum, so its Adams spectral sequence is multiplicative. As
72 is a cycle, 4 is a da-cycle, so we reduce to showing d(hg+1) = (ho + ph1)h2. This was shown in

Theorem 7.3.1. o
We may summarize what we have learned as follows.

Theorem 7.4.9 The nontrivial d-differentials out of the 1-line of the R -motivic Adams spectral sequence
are exactly those given in the following table:

source target constraints
hy hoh3
o hg p’(ho—l—,ohl)hg_l a>5r=>0

p e 4t Dh, " (ho + ph) (@ UM D)2 0> 0,a24,0<r <2971 -1

The 1-line of the E3-page of the R-motivic Adams spectral sequence has a basis given by the elements in

the following table:
IF2[p]-module generator constraints p-torsion exponent
hg ac{l,2,3} 00
oha 00
297 @nt Dl > 0anda €0,1,2,3) 20
p2 12 nt D n>0anda >4 2a-1 4

Those classes in Ext]}% which are permanent cycles are given in the following table:

F»[p]-module generator  constraints p-torsion exponent stem

hg ae{l, 2,3} 00 24 —1
ohg 00 14
27 @nt Dy n>0andac{0,1,2,3} 24 29 _ |
pX V@2 Gt D, 20,024 ¥ (a) Y(a)—1
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Proof All of this is immediate from Theorem 7.3.1, Propositions 7.4.2 and 7.4.8, Theorem 7.4.7, and
the p-torsion exponents of the generators of Extﬁ’R given in Theorem 4.2.12, with the following exception:
Proposition 7.4.8 produces differentials dz(r8(4”+1)h4) = (ho + phl)(r4(4”+1)h3)2, and one must use
Proposition 4.3.4(4) to check that this target has p-torsion exponent 7. |

7.5 Finite fields

We now study the case where F is a finite field. For the most part, this case follows by combining
Theorem 7.3.1 with differentials out of Ext?,, that may be deduced from [Kylling 2015]. By naturality,
our discussion in this subsection gives information for F an arbitrary field of odd characteristic.

We will need the following definition.

Definition 7.5.1 For an integer ¢, let v2(q) denote the 2-adic valuation of ¢, ie

q =2"9D2n+1)
for some integer n, and let
e(q) =va(g—1), A(g) =va(g*>—1). q

We now split into cases based on congruence of the order of the field mod 4.

7.5.1 g =1 (mod4) Fix a prime power ¢ such that ¢ = 1 (mod 4). We work over F' = F,. Recall
that Extg, = Ext(y){1, u}. In particular,
ExtIqu =F,[t){1, u} @ Fa{hy 1 a > O}.

The class u is a permanent cycle for degree reasons, and we have already computed the differential on all
the classes h,. However the story does not stop there; instead, we have the following.

Lemma 7.5.2 There are differentials

duars(7) = e 0

for all s > 0.

Proof Kylling [2015, Lemma 4.2.1] produces identical differentials in the F;-motivic Adams spectral
sequence for HZ. The claimed differentials follow by naturality. |

This may be combined with Theorem 7.3.1 to easily compute all differentials out of the 1-line.

Theorem 7.5.3 Forq =1 (mod 4), the 1-line of the IF;-motivic Adams spectral sequence supports only
the nontrivial differentials given in the following table:
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source dy target constraints
" ho da(q)—i—vz(n) .L,n—lhg(Q)‘f‘Vz(n)‘f‘l n>1
2 g, dy urznhzh% n>0,e(q)=2
2, dy ur2”h3h% n>0,e(q)=2
2, ds ur4”+1h3h8 n>0,eg)=3
T4 t2), ds ur4”+1h3h(3) n>0,e(q)=2
™ hy, ds Tnhohi_l +dr(t™hy n>0,b>4
uthy, d» ur”hohi_l n>0,b>4

After these have been run, the 1-line of the Eo-page of the IF4-motivic Adams spectral sequence has a
basis given by the elements in the following table:

class constraints
ho
™h n>0
™" hy n >0, where ife(q) = 2 thenn = 0 (mod 2)
ths n >0, where ife(q) =2 thenn =0 (mod 4), and ife(q) = 3 thenn = 0 (mod 2)
ut"hy, n>0,be{0,1,2,3}

Proof The first four families of differentials follow immediately from Lemmas 7.5.2 and 7.2.2, and the
remaining two by combining Lemma 7.5.2 with Theorem 7.3.1. Note in particular that d» (t”) =0 (mod u),
and thus da (1" hp) # 0 for b > 4. The second table may be easily read off the first, provided we verify that
we have not missed any differentials, ie that the classes listed in the second table are indeed permanent
cycles. For degree reasons, the only possible nontrivial differentials on the classes t”hj with b € {1, 2, 3}
would be of the form

(1) dp(c"hy) =" a7

) da(t"hy) £ ur" " 3o,
(3) da(x"h3) = ut" " hZhs,
@) d3(t"hs) = ut"Lh3hs

with n > 1. The first is impossible for n = 1 as k¢ detects 2 and thus no power of &g may be killed, and
is impossible for n > 2 as the class r"_lh{)_l must support the differential given the first row of the first
table. The remaining three differentials may occur, and when they occur is accounted for in the given
tables. |

7.5.2 ¢ =3 (mod4) Now fix a prime power g such that ¢ = 3 (mod 4). We work over F' =IF,. Recall
that Extg, = Ext(y).
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Lemma 7.5.4 We may identify
Extg, = F2[t, p, tp]/(p” = p- (zp) = (zp)*> = 0),
and Ext]qu is the tensor product of F5[t?] with
Falho, pt-ho} @ Fafh1,p-hi,pt-hi,thi} @ Fafhy, p-hp, pt-hp :b > 2}.

Proof This follows quickly from our computation of Extgr, following the recipe of Remark 4.1.5.
Alternatively, one may compute the p-Bockstein spectral sequence

Ext(1)[pl/(0?) = Ext(z)
directly (see [Wilson and @stveer 2017]); the only relevant differential is dy(t) = pho. |

As in the previous case, powers of t support arbitrarily long differentials.

Lemma 7.5.5 There are differentials

s+1 s+1_1, Al(g)+
dygy+s(t® ) = pr® T g @

for all s > 0. On the other hand, pt is a permanent cycle.
Proof The class pt is a permanent cycle for degree reasons. Kylling [2015, Lemma 4.2.2] produces

identical differentials in the [F,-motivic Adams spectral sequence for F,-motivic HZ. The claimed
differentials follow by naturality. a

Theorem 7.5.6 For g = 3 (mod 4), the 1-line of the F,-motivic Adams spectral sequence supports the
differentials given in the following table:

source dy target constraints

_C2nh0 dk(q)-l—vz(n) pTZn—lh())L(Q)'f'Vz(n)'Fl n>1
a2y, ds Pty n>0,A(q) =3

2, s 2 (ho + ph)2_, n>1b>4
o2 T lhy d» pr2”+1h0h§_l n>0,b>4

After the d,-differentials have been run, the 1-line of the E3-page of the [F,-motivic Adams spectral
sequence has a basis given by the classes in the following table:

class constraints
ho
p€-t2"hy, n>0,ec{0,1},be{l,2,3}
pt?"t1p, n>0,be{0,1,2,3}
pftntip, n>0,ee{0,1}
2" hy n>1
T hy, n>0,b>4
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Of these, all the classes in the first region are permanent cycles, with the exception that #"*2h3 supports
a dz-differential if A(q) = 3. The classes t?"hg forn > 1 are not permanent cycles, and we leave open
the fate of the classes pt*"hy, forn > 1 and b > 4.

Proof The given differentials follow quickly by combining Theorem 7.3.1 with Lemma 7.5.5, and
this accounts for all d,-differentials. Note in particular that 72 is a dp-cycle as A(g) > 3 whenever
g = 3 (mod 4). Thus the given E3-page may be produced by linearly propagating the differentials of
Theorem 7.3.1. Note also that da(pt2"hp) = pt>" (ho + phl)hi_l =0 for all n > 0 and b > 4, yielding
the classes in the final row of the second table.

It remains only to verify that the permanent cycles provided are indeed permanent cycles. As p and pt are
permanent cycles for degree reasons, we may reduce to considering only the classes 2"k, pt2*T1hy,
and t#**1p for b € {1,2,3} and n > 0. For degree reasons, the only possible nontrivial differentials
supported by these classes would be of the form

(1) dy(x?"hy) = pr2"~1h2h, for b € (2.3},
@) d3(t2"h3) = pr>"h3hs

with n > 1. The first does not hold, as t2 and hy, are d>-cycles. The second holds only when A(g) = 3,
and this is accounted for in the theorem statement. O

7.6 The p-adic rationals

We now work over F' = Q,, the p-adic rationals. This is very similar to the case where F' = [F;, only
where the additional input necessary to understand differentials out of EXt?Qp comes from work of Ormsby
[2011] for p odd and Ormsby and @stver [2013] for p = 2. The case where p is odd turns out to entirely
reduce to what we have already done.

Lemma 7.6.1 There are the following differentials in the Q,-motivic Adams spectral sequence:
(1) If p =1 (mod 4), then dy(gy1 (%) = ur? ~1H2@+s,
s+1 s+1_1, A
(2) If p =3 (mod 4), then dx(q)ﬂ(fz ) = pt? 1ho(q)-"s.

Proof Ormsby [2011, Theorem 5.2] produces identical differentials in the Q,-motivic Adams spectral
sequence for the Brown—Peterson spectrum BP(0). The claimed differentials follow by naturality. |

We may summarize the situation as follows.

Theorem 7.6.2 Fix an odd prime p, and consider the facts outlined about the IF,-motivic Adams spectral
sequence in Theorems 7.5.3 and 7.5.6. The same facts hold for the QQ,-motivic Adams spectral sequence
upon tensoring with F, {1, m}.

Proof The class 7 is a permanent cycle for degree reasons, and the differentials given in Lemma 7.6.1
agree with those given in Lemmas 7.5.2 and 7.5.5. All of the work carried out over IF,, then goes through
verbatim, only where everything in sight has a twin copy indexed by . O
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Remark 7.6.3 The somewhat awkward phrasing of Theorem 7.6.2 is necessary as we did not wish to
repeat two verbatim copies of both Theorems 7.5.3 and 7.5.6, but we have not shown that the 1-line of
the Q,-motivic Adams spectral sequence is a direct sum of two copies of the 1-line of the [F,-motivic
Adams spectral sequence. The possible failure of this arises from the fact that when p = 3 (mod 4), the
classes pt2"hy, for b > 4 could support different higher differentials over F,, and Q. <

The case where p = 2 requires a separate analysis. Recall that
Extg, = Ext(z){1} @ Ext(){u, 7 }.

Lemma 7.6.4 We may identify

Exty) = Fa (%, p12, 7, p*1%, p) C P2z, 0]/ (0%),
and Exté) is the tensor product of F»[t*] with the direct sum of the modules

Fa{ho, t%ho, p*tho, p*t>ho},
F2{1, p} @ Fa{th1} @ F2{pth1} @ F2{1, p, p°, pr°, p*¢?, p? 0%} @ Fa i},

Fo{1, p, p2, p°1, p>12, pr2, p?12} @ Falhy 1 b > 2}.

Proof As with Lemma 7.5.4, this follows from our computation of Extg via the recipe in Remark 4.1.5,

or via the p-Bockstein spectral sequence; here the relevant p-Bockstein differentials are dy(t) = pho and
d>(t?) = p?thy. O
Lemma 7.6.5 The classes

_L,4n+1 2, Tznp’ ‘(4n+3,02, JT‘L'n, u, M_L,Zn-i—l
are permanent cycles. There are differentials
dasr (0 ) =me? TG day ) =02 T ST day (02 ho) = g

forall r > 0.

Proof Ormsby and @stver [2013, Lemma 5.7] compute differentials in the Q;-motivic Adams spectral
sequence for BP(0). The claimed facts follow by comparison. |

Theorem 7.6.6 The 1-line of the Q,-motivic Adams spectral sequence supports the following nontrivial

differentials:
source dy target constraints
2np, d3+v2(n) 7T‘L'2n_1h3+v2(n) n>
™" hy ds ™" (ho + ,oh])hl%_1 n>0,b>4
o™ hy, ds pzrznhlhi_l n>0,b>5
ut"hy, d> anhohi_l n>0,b>4
at"hy d> frr"hohlz)_l >0,b>4
M‘L'4n+2h3 d3 ,021'4n+1h(3)h3 n>0
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After all the d,-differentials have been run, the 1-line of the E3-page of the Q,-motivic Adams spectral
sequence has a basis given by the classes in the following table:

class constraints
ho
o5ty n>0,8€{0,1,2},be{1,2,3}
p2r2n+ g n>0
p€r4”+1h1 n>0,ee{0,1}
p1+ef4”+3h1 n>0,ee{0,1}
plterdnt2p, n>0eec{0,1}
uhg
ut?"t1p, n>0
uthy n>0,be{l,2}
ut?"t1p, n>0
ut*hs n>0
T hy, n>0,be{0,1,2,3}
u€t?hy n>1,e€{0,1}
ut*t2p, n>0
plter4np, n>0,ee{0,1}
02T hy, n>0,b>5

Of these, the classes in the first region are permanent cycles, the classes u€t?"ho withn > 1 and € € {0, 1},
as well as ut*"*t2h3 with n > 0, support higher differentials, and we leave open the fate of the classes
plT€t4hy and p?t**hy forn > 0,€ €{0,1}, and b > 5.

Proof The given differentials follow by combining Theorem 7.3.1 with Lemma 7.6.5. For example,
dy(pT*" hp) = pr°" - da(hp) = pr*" - (ho + ph1)hy_y = p>T*" h1h}_,
for b > 4, which is nonzero precisely when b > 5; as another example,
d3(ut*2h3) = d3(ut?) -t hy = 21t hs = pPe T,

We must verify that all d»-differentials are accounted for in this table; the claimed description of the
E3-page follows quickly. We must also verify that the classes we give as permanent cycles are indeed
permanent cycles. It suffices to verify the latter.

We may cut down the number of classes to consider by taking into account the classes which are products
of the permanent cycles given in Lemma 7.6.5 with some other class. After this reduction, degree
considerations rule out all differentials except for possibly

(1) dr(‘lf4n+1h1) ; ‘E4nh6+1,

(2) dr(pr*"3hy) € Falu, 7} @ Fp{r#1+2h5 M,
?

(3) dr(pr*"2hy) = p2rtn AT,
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(4) d,«(u‘fznhl) ; szzn_1h6+l
with n > 0, and in the fourth case n > 1. In all cases, the possible nonzero targets are present and
not boundaries in Ormsby and @stver’s computation [2013] of the Adams spectral sequence for the
Q2-motivic BP(0), so by naturality they cannot be boundaries in the Adams spectral sequence for the

sphere. Thus these possible nonzero differentials are in fact not possible, yielding the theorem. O

7.7 The rational numbers

We end by considering the case F = Q. By naturality, this gives information over arbitrary fields of
characteristic zero. Recall the functions ¢ and A defined in Definition 7.5.1.

Theorem 7.7.1 The 1-line of the E3-page of the Q-motivic Adams spectral sequence is given by a direct
sum of that for the R-motivic Adams spectral sequence with the classes in the following table, where p

ranges through all primes:

class constraints
" hy 2] n>0,be{0,1,2,3}
ho[p] p=1 (mod4)
™" h1[p] p=1(mod4),n>0
2" hy[p] p=1(mod4),n>0
2" 1, p] p=1(mod4),n>0,e(p) >3
™" h3[p] p=1(mod4),n>0

™ t2h50p]  p=1(mod4),n>0,e(p) >3
2t ps[p] p=1(mod4),n>0,e(p) >4
t"hpa,  p=1(mod4),n>0,be{0,1,2,3}

houp p =3 (mod 4)
2" hyu, p=3(mod4),n>0,bec{l,2}
" hau, p=3(mod4),n>0

2, p=3(modd4),n>0,A(p) >4
ot hpu, p=3(mod4),n>0,be{l,2,3}
pt?" hyu, p=3(mod4),n>0,be{l,2,3, 4}

ettt b, p=3(mod4),n>0,eec{0,1}

rZ"ho[p] p=1(mod4),n>1
r2"+1h0[p] p=1(mod4),n>1,e(p)=>3
T4n+2h3[p] p=1(mod4),n>0,e(p)=2
2" nslpl p=1(mod4),n>0,e(p) =3
2 p=3(mod4),n>0,A(p)=3

_E2nh0up p=3(mod4),n>1

ot hpu, p=3(modd),n>0b>4
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Moreover, we have the following information about higher differentials. The classes in the first region
of this table are permanent cycles, as are the classes h, and L2t “n+Dlp . fora < 3. The classes in
the second region of this table support higher differentials, as do the classes in Ext]{%, which must support
higher differentials by Theorem 7.4.9. We leave open the fate of the classes in the third region of this table,
as well as the possibility of exotic higher differentials on the classes ph4 and pza_‘”(“)tzu_l(4"+l)ha
fora > 4.

Proof Recall the splitting
Extg = Extr @ Ext(){[2]} ® Ext(){[p].ap : p =1 (mod 4)} ® Exto){up : p =3 (mod 4)}

implied by Lemma 7.1.1. As in the proof of Proposition 7.1.3, each of these summands is itself either Extg
or an identifiable summand of some corresponding Extg,,; for p odd, this summand looks like Exty,, .
We may thus read the given table off the information given in Theorems 7.4.9, 7.6.2 (with Theorems 7.5.3
and 7.5.6), and 7.6.6, provided we verify the following claim: if «[p] € Ext@ is a class in stem s < 6,
then «a[p] or vy, is a d,-cycle if and only if it projects to a dy-cycle in the Q,-motivic Adams spectral
sequence; and, likewise, if « € Ext]k is a class in stem s <7, then « is a d,-cycle in the Q-motivic Adams
spectral sequence if and only if it projects to a d,-cycle in the R-motivic Adams spectral sequence.

As in the proofs of Theorems 7.5.3, 7.5.6, and 7.6.6, differentials on the classes «[p] and cu, in stems
s < 6 are completely determined by the structure of differentials on the classes [ p]tzi and u przi in the Q-
motivic Adams spectral sequence for BP(0), together with the fact that kg, /1, h, and h3 are permanent
cycles. The Q-motivic Adams spectral sequence for BP{0) was computed in [Ormsby and @stver 2013,
Theorem 5.8]. We find that differentials on the classes | p]rzi and u przi in the Q-motivic Adams spectral
sequence for BP(0) are entirely detected over Qp, and our first claim follows. That the classes A, € ExtﬁR
for a < 3 are permanent cycles was seen in Lemma 7.2.2, and the classes rtza_l(“”“”ha € ExtﬁR must

be permanent cycles for a < 3 as there is no room for exotic higher differentials. |
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