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Abstract

Numerical integration of the exchange-correlation potential is an inherently parallel

problem that can be significantly accelerated by graphical processing units (GPUs). In

this letter, we present the first implementation of GPU-accelerated exchange-correlation

potential in the GauXC library for relativistic, two-component density functional the-

ory. By benchmarking against copper, silver, and gold coinage metal clusters, we

demonstrate the speed and efficiency of our implementation, achieving significant

speedup compared to CPU-based calculations. One GPU card provides computational

power equivalent to roughly 400 CPU cores in the context of this work. The speedup
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further increases for larger systems, highlighting the potential of our approach for

future, more computationally demanding simulations. Our implementation supports

arbitrary angular momentum basis functions, enabling the simulation of systems with

heavy elements and providing substantial speedup to relativistic electronic structure

calculations. This advancement paves the way for more efficient and extensive compu-

tational studies in the field of density functional theory.

Recently, there has been a resurgence of interest to develop and rationally design mate-

rials that exploit the properties of electronic spin.1–5 Applications for these materials range

from functional magnetic materials6–8 and quantum computing,9 to spintronic devices3,10,11

and catalytic active sites.12,13 Fundamental to these technological advances are the impor-

tant physical characteristics of electronic spin and spin-couplings.9,14,15 As such, there is

a strong need to develop theoretical methods which properly describe electronic spin and

spin interactions in materials, as well as the computational capability to simulate the large

systems where such phenomena manifest.

From a theoretical perspective, a rigorous description of electronic spin and its in-

teractions is fundamentally rooted in relativistic quantum mechanics. This theory uses

the Dirac equation to obtain the relativistic wavefunction in place of the non-relativistic

Schrödinger equation.16–20 Here, the wavefunction is represented using 4-vectors, also known

as 4-component bispinors. These structures represent the electronic wavefunction using

small and large components, and allows the wavefunction to have positive and negative

energy eigenstates.

Spin is inherently encoded into this wavefunction through the α and β components

of the spinor. In practice though, using 4-component representations of relativistic wave-

functions is computationally cumbersome, requiring additional storage and computational

throughput than corresponding non-relativistic calculations. Furthermore, most chemically-

relevant problems, such as spin-forbidden transitions, spin-orbit coupling, and the inert-pair

effect,21–24 do not require an explicit treatment within the 4-component framework. It is of-

2



ten advantageous from a practical point of view to transform the 4-component Hamiltonian

into an electron-only effective 2-component form. This is known as a 2-component transfor-

mation, which uses unitary operators to fold the small component of the wavefunction into

a pseudo-large component form.25–32

Electronic structure methods developed within the 4- or 2-component Dirac framework

do not treat spin as a good quantum number, i.e., the spin angular momentum is no longer

aligned in a single axis. This approach requires maintaining electronic properties in their

four-current form or as a complete magnetization vector.14 Because the spin-orbit operator

interacts with the entire angular momentum tensor, all three components of the magnetic

density (ρx, ρy, ρz) must be incorporated in the calculations, leading to a significant increase

in computational cost compared to non-relativistic one-component calculations.

Relativistic density functional theory (DFT)33–35 encompasses a powerful set of low-cost

theoretical tools that can be used to investigate spin-driven chemical and materials processes

and properties at large and experimentally relevant scales. Practical applications commonly

utilize workhorse methods implemented in the relativistic 2-component and 4-component

Kohn-Sham formalism.36 While the exact functional is unknown, the excellent balance be-

tween accuracy and computational cost makes density functional approximations particularly

popular for tackling problems in a wide array of contexts, from physical chemistry and ma-

terial science11,37–39 all the way to biochemistry and structural biology.40,41 Many popular

software packages that implement relativistic density functional theory leverage the latest

advances in high performance computing in order to further accelerate calculations, making

larger and more complex systems accessible to this theory.4,42–46

In DFT, the evaluation of the exchange-correlation energy and potential is performed

using a numerical integration scheme.47–49 This numerical integration procedure is highly

amenable to parallelization since the integrand of the functional only depends on the density

and density gradients at each point. Furthermore, efficient algorithms for integrating the

exchange-correlation potential in non-collinear relativistic DFT have been developed for cen-
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tral processing unit (CPU)-based systems.50–60 Similarly, graphics processing units (GPU)

have long been used to perform the numerical integration for the exchange-correlation po-

tential in non-relativistic density functional theory, and have been shown to provide signif-

icant speedup over CPU based numerical integration schemes.61–64 As the computation of

the exchange-correlation potential is done at every step of self-consistent field and real-time

time-dependent calculations65–69 a software paradigm that prioritizes speed and concurrency

is highly desirable.

Despite the clear advantage of GPUs for usage in density functional calculations, to the

authors’ best knowledge, this hardware has not yet been leveraged to perform fully non-

collinear relativistic calculations. In this work, we exploit GPU acceleration in relativistic

quantum chemistry calculations. We showcase a GPU implementation of the highly efficient

2-component relativistic DFT integration algorithm and benchmark its performance eval-

uating large coinage metal nanoparticles against the corresponding CPU implementation.

The results presented in this letter demonstrate how GPUs can be used to heavily accelerate

relativistic DFT calculations.

The GPU implementation of non-collinear relativistic DFT is developed within the exact-

two-component (X2C) relativistic framework.27–32,55,70–85 In X2C, one electron spin-orbit

coupling is included variationally during the optimization of molecular spinor orbitals. Two-

electron spin-orbit effects are accounted for by an empirical screened nuclear spin-orbit

(SNSO) treatment.84,86

Due to the spinor nature of molecular orbitals (MOs) in relativistic calculations, the

Kohn-Sham and density matrices (F and P) formally have the spin-blocked structure

X =

Xαα Xαβ

Xβα Xββ

 , X ∈ {F,P}, (1)
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with

P ζζ′

µν =
∑
i

Cζ
µiC

ζ′∗
νi , ζ, ζ ′ ∈ {α, β} (2)

where C is the MO coefficient matrix and {µ, ν} are indices for atomic orbital bases. We

cast the rank–2 spinor structure of F and P into the Pauli quaternion form

F = FS ⊗ I2 +
∑

k∈{x,y,z}

Fk ⊗ σk (3)

P = PS ⊗ I2 +
∑

k∈{x,y,z}

Pk ⊗ σk (4)

which gives rise to an exchange-correlation potential in the quaternion structure {VS
xc,V

z
xc,V

y
xc,V

x
xc},

defined as

V S
xc,µν =

δExc

δP S
µν

, V x
xc,µν =

δExc

δP x
µν

, V y
xc,µν =

δExc

δP y
µν
, V z

xc,µν =
δExc

δP z
µν

(5)

The reader is referred to Ref. 56 for more details on the integration and assembly of the

Vxc terms of the Kohn–Sham Fock matrix using a quaternion formalism. In this work,

we leverage the parallelized computing capability of GPUs to perform the integration in

Eq. (5). Integration points are batched together to maximize cache utilization and memory

contiguity.56,61

The X2C DFT method on the GPUs presented in this work is made publicly available

via the GauXC56,87,88 library for exascale Gaussian basis DFT. All numerical results in this

study were obtained using GauXC evaluating density matrices generated by ChronusQ,89

carried out on the HYAK cluster at the University of Washington. A single A100 GPU

card was used for the benchmark study. Details of the implementation are provided in the

Supporting Information.

We assessed the computational performance of our GPU implementation through all-

electron X2C DFT calculations on metal nanoparticles, containing 20 to 40 atoms per cluster.
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Table 1. Grid sizes per atom for the set of grid densities used in this work for
Cu, Ag, and Au atoms.

Grid Name Nrad Nang

Fine 75 302
UltraFine 99 590
SuperFine 250 974

Table 2. Number of basis functions (Nbf) per atom for the SAPPORO-DKH3
basis set used in this work for Cu, Ag, and Au atoms.

Basis Type Nbf (Cu) Nbf (Ag) Nbf (Au)
DZ 56 65 81
TZ 94 103 119
QZ 141 150 166

Figure 1. X2C Vxc computation times for Cu40, Ag40, and Au40 clusters for a)
Fine, b) Ultrafine, c) Superfine grid sizes on an A100 GPU card using the
SAPPORO-DKH3 DZ, TZ, and QZ basis sets. The numbers of basis functions
for each cluster are indicated on the x-axis.
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The metal cluster structures were generated using the NanoCrystal suite.90–93 The setup of

the grid and the selection of basis functions are detailed in Table 1, Table 2, and Figure 1,

respectively. These systems are the largest all-electron relativistic calculations performed to

date. Our benchmark tests peaked with a calculation on a Au40 nanocluster, which consists

of 6640 basis functions.

Figure 1 shows the Vxc integration times using the GPU based numerical integrator for

X2C-PBE94,95 Cu40, Ag40, and Au40 nanoparticles. The integration times are plotted over

the three different basis sets and three different integration grids. For the Fine grid in

Figure 1.a, all metals display numerical integration times of less than ∼40s irrespective of

the basis set. The UltraFine grid shows increased integration times, from ∼20s with the DZ

basis to ∼60s with the QZ basis. The SuperFine grid is the most computationally expensive

with integration times of ∼60s with the DZ basis and up to ∼180s with the QZ basis. For

relativistic DFT calculations, the SuperFine grid is recommended to reliably produce spin

and spin-orbit properties on the order of millielectron volts (meV). The timing results in this

figure indicate roughly linear scaling with number of basis functions and grid points for all

coinage metal clusters. Similar scaling results are observed for smaller clusters.

Figure 2. Comparison of Vxc computation times for Au clusters using restricted,
unrestricted, and X2C schemes for a) Fine, b) Ultrafine, c) Superfine grid
sizes on an A100 GPU card using the SAPPORO-DKH3 QZ basis set.
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The second analysis in this work, shown in Figure 2, plots the Vxc integration times

for Au20−40 nanoparticles, calculated with the restricted, unrestricted, and X2C Kohn-Sham

schemes on an A100 GPU. The integration times are plotted for three different integration

grids using only the largest, QZ, basis. A complete set of corresponding figures spanning

all three basis sets and metal identities is available in the supporting information. The

Fine grid produces integration times between ∼5-40s and for all three schemes. With the

UltraFine grid, X2C is shown to be roughly twice as expensive as an unrestricted Kohn-

Sham integration, which in turn is twice as expensive as a restricted Kohn-Sham calculation.

X2C integration times here are ∼10s for the Au20 cluster up to about ∼60s for the Au40

cluster. The SuperFine grid produces the longest computation times with ∼40s for Au20 to

∼180s for Au40.

Figure 3. Comparison of Vxc computation times for Au clusters on a 40-core
CPU node and an A100 GPU card, for Au clusters using the SAPPORO-DKH3
QZ basis and UltraFine grid.

Finally, in order to demonstrate the computational speedup of the GPU implementation

relative to the corresponding CPU based scheme for calculating the exchange-correlation

potential in GauXC, Figure 3 plots the time required to compute Vxc on an NVIDIA A100
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GPU against the corresponding CPU implementation running on two Intel XEON Gold 6230

CPUs (total 40 cores) at 2.10GHz. This is performed on Au20 with 3320 basis functions up

to Au40 with 6640 basis functions using the UltraFine grid and SAPPORO-DKH3 QZ basis

set. Table S1 in the supporting information contains corresponding data spanning all grids

and basis sets. Across the board for all examined cluster sizes, the GPU performs about

∼10× faster than the corresponding CPU implementation, with larger speedup for bigger

systems. It should be emphasized here that MPI implementations are available for CPU and

GPU numerical integration schemes, which could reduce the calculation time. Assuming

linear scaling with number of CPU cores, it would take about 400 CPU cores to produce the

same computation time as one A100 GPU card. This metric highlights the computational

efficiency of the GPU implementation of X2C DFT substantial speedup can be achieved

using a single GPU card on a single node, with increasing speedup for larger systems.

This Letter highlights the acceleration of non-collinear relativistic X2C DFT calculations

by exploiting GPU hardware. This work showcases the exceptionally low integration times

on a GPU for X2C calculations on coinage metal nanoclusters. The numerical integration

takes between 10-60s for these systems on the GPU. We demonstrate a 10× speedup for

Vxc calculations of coinage metal nanoparticles relative to a CPU implementation (one A100

vs. 40 CPU cores). It should be emphasized that the systems examined in this letter are

large systems composed of many heavy transition metals. Our GPU implementation is able

to handle arbitrary-order angular momentum basis functions, making it amenable to heavy

element systems of interest to the materials and solid state chemistry fields.

Supporting Information Available

The supporting information includes additional comparisons of the Vxc computation times,

the raw GPU and CPU computational times for Au clusters, as well as GPU implementation

details.
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