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Abstract

Numerical integration of the exchange-correlation potential is an inherently parallel
problem that can be significantly accelerated by graphical processing units (GPUs). In
this letter, we present the first implementation of GPU-accelerated exchange-correlation
potential in the GauXC library for relativistic, two-component density functional the-
ory. By benchmarking against copper, silver, and gold coinage metal clusters, we
demonstrate the speed and efficiency of our implementation, achieving significant
speedup compared to CPU-based calculations. One GPU card provides computational

power equivalent to roughly 400 CPU cores in the context of this work. The speedup



further increases for larger systems, highlighting the potential of our approach for
future, more computationally demanding simulations. Our implementation supports
arbitrary angular momentum basis functions, enabling the simulation of systems with
heavy elements and providing substantial speedup to relativistic electronic structure
calculations. This advancement paves the way for more efficient and extensive compu-

tational studies in the field of density functional theory.

Recently, there has been a resurgence of interest to develop and rationally design mate-
rials that exploit the properties of electronic spin.!™® Applications for these materials range
from functional magnetic materials®® and quantum computing,® to spintronic devices1%!!
and catalytic active sites.?!® Fundamental to these technological advances are the impor-
tant physical characteristics of electronic spin and spin-couplings.*'#'5 As such, there is
a strong need to develop theoretical methods which properly describe electronic spin and
spin interactions in materials, as well as the computational capability to simulate the large
systems where such phenomena manifest.

From a theoretical perspective, a rigorous description of electronic spin and its in-
teractions is fundamentally rooted in relativistic quantum mechanics. This theory uses
the Dirac equation to obtain the relativistic wavefunction in place of the non-relativistic
Schrodinger equation. 0720 Here, the wavefunction is represented using 4-vectors, also known
as 4-component bispinors. These structures represent the electronic wavefunction using
small and large components, and allows the wavefunction to have positive and negative
energy eigenstates.

Spin is inherently encoded into this wavefunction through the o and [ components
of the spinor. In practice though, using 4-component representations of relativistic wave-
functions is computationally cumbersome, requiring additional storage and computational
throughput than corresponding non-relativistic calculations. Furthermore, most chemically-
relevant problems, such as spin-forbidden transitions, spin-orbit coupling, and the inert-pair

effect,?'"2* do not require an explicit treatment within the 4-component framework. It is of-



ten advantageous from a practical point of view to transform the 4-component Hamiltonian
into an electron-only effective 2-component form. This is known as a 2-component transfor-
mation, which uses unitary operators to fold the small component of the wavefunction into
a pseudo-large component form. 2532

Electronic structure methods developed within the 4- or 2-component Dirac framework
do not treat spin as a good quantum number, i.e., the spin angular momentum is no longer
aligned in a single axis. This approach requires maintaining electronic properties in their
four-current form or as a complete magnetization vector.* Because the spin-orbit operator
interacts with the entire angular momentum tensor, all three components of the magnetic
density (p., py, p.) must be incorporated in the calculations, leading to a significant increase
in computational cost compared to non-relativistic one-component calculations.

Relativistic density functional theory (DFT)3¥ 35 encompasses a powerful set of low-cost
theoretical tools that can be used to investigate spin-driven chemical and materials processes
and properties at large and experimentally relevant scales. Practical applications commonly
utilize workhorse methods implemented in the relativistic 2-component and 4-component
Kohn-Sham formalism.3® While the exact functional is unknown, the excellent balance be-
tween accuracy and computational cost makes density functional approximations particularly
popular for tackling problems in a wide array of contexts, from physical chemistry and ma-

13739 a]l the way to biochemistry and structural biology.4%* Many popular

terial science
software packages that implement relativistic density functional theory leverage the latest
advances in high performance computing in order to further accelerate calculations, making
larger and more complex systems accessible to this theory. #4246

In DFT, the evaluation of the exchange-correlation energy and potential is performed
using a numerical integration scheme.*” % This numerical integration procedure is highly
amenable to parallelization since the integrand of the functional only depends on the density

and density gradients at each point. Furthermore, efficient algorithms for integrating the

exchange-correlation potential in non-collinear relativistic DFT have been developed for cen-



tral processing unit (CPU)-based systems.?® % Similarly, graphics processing units (GPU)
have long been used to perform the numerical integration for the exchange-correlation po-
tential in non-relativistic density functional theory, and have been shown to provide signif-
icant speedup over CPU based numerical integration schemes.® % As the computation of
the exchange-correlation potential is done at every step of self-consistent field and real-time

time-dependent calculations %%

a software paradigm that prioritizes speed and concurrency
is highly desirable.

Despite the clear advantage of GPUs for usage in density functional calculations, to the
authors’ best knowledge, this hardware has not yet been leveraged to perform fully non-
collinear relativistic calculations. In this work, we exploit GPU acceleration in relativistic
quantum chemistry calculations. We showcase a GPU implementation of the highly efficient
2-component relativistic DF'T integration algorithm and benchmark its performance eval-
uating large coinage metal nanoparticles against the corresponding CPU implementation.
The results presented in this letter demonstrate how GPUs can be used to heavily accelerate
relativistic DFT calculations.

The GPU implementation of non-collinear relativistic DF'T is developed within the exact-
two-component (X2C) relativistic framework.?7 32557085 Ty X2C, one electron spin-orbit
coupling is included variationally during the optimization of molecular spinor orbitals. Two-
electron spin-orbit effects are accounted for by an empirical screened nuclear spin-orbit
(SNSO) treatment. 8456

Due to the spinor nature of molecular orbitals (MOs) in relativistic calculations, the
Kohn-Sham and density matrices (F and P) formally have the spin-blocked structure
Xeao X8

X = , Xe{F, P}, (1)
XBa XBB



with

P =>"cnesr (¢ efa B} 2)

where C is the MO coefficient matrix and {u, v} are indices for atomic orbital bases. We

cast the rank—2 spinor structure of F and P into the Pauli quaternion form

F=F'eL+ » F'oo (3)
ke{z,y,z}

P=P'aL+ > P‘ao (4)
ke{z,y,z}

which gives rise to an exchange-correlation potential in the quaternion structure {V3, VZ_ VY V= 1,
defined as
OE OE. OE 0E
‘/XSC,;U/ = 5P)‘;07 ch,uu = (SP}‘;C’ ‘/xzi:,uu = 5?267 XZC,;UJ = 5PZC (5)
nv nv 2 n%

The reader is referred to Ref. 56 for more details on the integration and assembly of the
Vie terms of the Kohn—Sham Fock matrix using a quaternion formalism. In this work,
we leverage the parallelized computing capability of GPUs to perform the integration in
Eq. (5). Integration points are batched together to maximize cache utilization and memory
contiguity. 66

The X2C DFT method on the GPUs presented in this work is made publicly available
via the GauXC?58788 library for exascale Gaussian basis DFT. All numerical results in this
study were obtained using GauXC evaluating density matrices generated by ChronusQ,’
carried out on the HYAK cluster at the University of Washington. A single A100 GPU
card was used for the benchmark study. Details of the implementation are provided in the
Supporting Information.

We assessed the computational performance of our GPU implementation through all-

electron X2C DFT calculations on metal nanoparticles, containing 20 to 40 atoms per cluster.



Time (s)

Table 1. Grid sizes per atom for the set of grid densities used in this work for
Cu, Ag, and Au atoms.

Grid Name Niag Nang
Fine 75 302
UltraFine 99 590
SuperFine 250 974

Table 2. Number of basis functions (Np¢) per atom for the SAPPORO-DKH3
basis set used in this work for Cu, Ag, and Au atoms.

Basis Type Nt (Cu) Ny (Ag)  Npe (Au)

DZ o6 65 81
TZ 94 103 119
Qz 141 150 166
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Figure 1. X2C V,. computation times for Cuyo, Agsg, and Auyg clusters for a)
Fine, b) Ultrafine, ¢) Superfine grid sizes on an A100 GPU card using the
SAPPORO-DKH3 DZ, TZ, and QZ basis sets. The numbers of basis functions
for each cluster are indicated on the x-axis.



The metal cluster structures were generated using the NanoCrystal suite.?* 3 The setup of
the grid and the selection of basis functions are detailed in Table 1, Table 2, and Figure 1,
respectively. These systems are the largest all-electron relativistic calculations performed to
date. Our benchmark tests peaked with a calculation on a Auyy nanocluster, which consists
of 6640 basis functions.

Figure 1 shows the V,. integration times using the GPU based numerical integrator for
X2C-PBE*% Cuyg, Agyy, and Auyy nanoparticles. The integration times are plotted over
the three different basis sets and three different integration grids. For the Fine grid in
Figure 1.a, all metals display numerical integration times of less than ~40s irrespective of
the basis set. The UltraFine grid shows increased integration times, from ~20s with the DZ
basis to ~60s with the QZ basis. The SuperFine grid is the most computationally expensive
with integration times of ~60s with the DZ basis and up to ~180s with the QZ basis. For
relativistic DFT calculations, the SuperFine grid is recommended to reliably produce spin
and spin-orbit properties on the order of millielectron volts (meV). The timing results in this
figure indicate roughly linear scaling with number of basis functions and grid points for all

coinage metal clusters. Similar scaling results are observed for smaller clusters.
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Figure 2. Comparison of V. computation times for Au clusters using restricted,
unrestricted, and X2C schemes for a) Fine, b) Ultrafine, ¢) Superfine grid
sizes on an A100 GPU card using the SAPPORO-DKH3 QZ basis set.



The second analysis in this work, shown in Figure 2, plots the V. integration times
for Augg_49 nanoparticles, calculated with the restricted, unrestricted, and X2C Kohn-Sham
schemes on an A100 GPU. The integration times are plotted for three different integration
grids using only the largest, QZ, basis. A complete set of corresponding figures spanning
all three basis sets and metal identities is available in the supporting information. The
Fine grid produces integration times between ~5-40s and for all three schemes. With the
UltraFine grid, X2C is shown to be roughly twice as expensive as an unrestricted Kohn-
Sham integration, which in turn is twice as expensive as a restricted Kohn-Sham calculation.
X2C integration times here are ~10s for the Auyy cluster up to about ~60s for the Auyg
cluster. The SuperFine grid produces the longest computation times with ~40s for Auyg to

~180s for Auyg.
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Figure 3. Comparison of V. computation times for Au clusters on a 40-core
CPU node and an A100 GPU card, for Au clusters using the SAPPORO-DKH3
QZ basis and UltraFine grid.

Finally, in order to demonstrate the computational speedup of the GPU implementation
relative to the corresponding CPU based scheme for calculating the exchange-correlation

potential in GauXC, Figure 3 plots the time required to compute V.. on an NVIDIA A100



GPU against the corresponding CPU implementation running on two Intel XEON Gold 6230
CPUs (total 40 cores) at 2.10GHz. This is performed on Auy with 3320 basis functions up
to Auyy with 6640 basis functions using the UltraFine grid and SAPPORO-DKH3 QZ basis
set. Table S1 in the supporting information contains corresponding data spanning all grids
and basis sets. Across the board for all examined cluster sizes, the GPU performs about
~10x faster than the corresponding CPU implementation, with larger speedup for bigger
systems. It should be emphasized here that MPI implementations are available for CPU and
GPU numerical integration schemes, which could reduce the calculation time. Assuming
linear scaling with number of CPU cores, it would take about 400 CPU cores to produce the
same computation time as one A100 GPU card. This metric highlights the computational
efficiency of the GPU implementation of X2C DFT substantial speedup can be achieved
using a single GPU card on a single node, with increasing speedup for larger systems.

This Letter highlights the acceleration of non-collinear relativistic X2C DFT calculations
by exploiting GPU hardware. This work showcases the exceptionally low integration times
on a GPU for X2C calculations on coinage metal nanoclusters. The numerical integration
takes between 10-60s for these systems on the GPU. We demonstrate a 10x speedup for
Ve calculations of coinage metal nanoparticles relative to a CPU implementation (one A100
vs. 40 CPU cores). It should be emphasized that the systems examined in this letter are
large systems composed of many heavy transition metals. Our GPU implementation is able
to handle arbitrary-order angular momentum basis functions, making it amenable to heavy

element systems of interest to the materials and solid state chemistry fields.

Supporting Information Available

The supporting information includes additional comparisons of the V. computation times,
the raw GPU and CPU computational times for Au clusters, as well as GPU implementation

details.
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