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Abstract

Despite the power and flexibility of configura-
tion interaction (CI) based methods in com-
putational chemistry, their broader application
is limited by an exponential increase in both
computational and storage requirements, par-
ticularly due to the substantial memory needed
for excitation lists that are crucial for scalable
parallel computing. The objective of this work
is to develop a new CI framework, namely the
small tensor product distributed active space
(STP-DAS) framework, aimed at drastically re-
ducing memory demands for extensive CI cal-
culations on individual workstations or lap-
tops, while simultaneously enhancing scalabil-
ity for extensive parallel computing. More-
over, the STP-DAS framework can support var-
ious Cl-based techniques, such as complete ac-
tive space (CAS), restricted active space (RAS),
generalized active space (GAS), multireference
CI (MRCI), and multireference perturbation
theory (MRPT2), applicable to both relativis-
tic (2-component and 4-component) and non-

relativistic theories, thus extending the utility
of CI methods in computational research. We
conducted benchmark studies on a supercom-
puter to evaluate the storage needs, parallel
scalability, and communication downtime using
a realistic exact-two-component CASCI (X2C-
CASCI) approach, covering a range of determi-
nants from 10° (billion) to 10'? (trillion). Ad-
ditionally, we performed extensive X2C-CASCI
calculations on a single laptop and examined
how the STP-DAS partitioning affects perfor-
mance.

1 Introduction

Full configuration interaction (CI) provides the
most accurate electronic structure description
of a molecular system in a given basis. 1% How-
ever, its computational cost grows factorially
with the system’s size due to the combinato-
rial increase in the number of configurations,
as it includes all possible excited states within
the complete orbital space. Significant work



has been invested in developing approximate CI
techniques, as exemplified by the complete ac-
tive space (CAS) approach™® along with its nu-
merous variants and enhancements. The CAS
approach specifically focuses on configurations
that arise from a limited active space, which
consists of a selection of orbitals and electrons
deemed chemically significant. While the CAS
framework effectively addresses static correla-
tion, it often fails to capture a substantial por-
tion of the dynamic correlation arising from ex-
citations beyond the active space. This limita-
tion can be overcome by incorporating multiref-
erence configuration interaction (MRCI) to ac-
count for the missing dynamic correlation. %914
and multireference second-order perturbation
theory (MRPT2, CASPT2).15 22

To minimize the number of configurations in
the CI expansion further, implementing limita-
tions on excitation operators is effective, result-
ing in the development of the restricted active
space (RAS)®?%21 and occupation restricted
multiple active space (ORMAS) methods. 22
A more generalized strategy involves dividing
the total correlation space into smaller gener-
alized active spaces (GASs).%%733 The primary
benefit of GAS lies in its ability to apply a broad
framework of excitation constraints, providing
a flexible framework for truncated CI types of
electronic structure calculations.

Recent advancements in Cl-based relativis-
tic methods, which variationally incorporate
both scalar relativity and spin-orbit couplings
at the molecular orbital level, have spurred a
new era in multi-reference electronic structure
theory. 14:19:21,22,30,31,34-44 This progress is largely
motivated by improvements in core-electron
spectroscopies, research in magnetic and spin-
tronic materials, as well as the chemistry of
rare-earth and heavy elements. Employing two-
and four-component complex-valued orbitals
within Kramers’ unrestricted framework *>46 in-
herently results in increased computational re-
quirements for Cl-based relativistic methods,
as manifested by a significantly larger config-
urational space, a less sparse CI vector, and a
higher count of floating-point operations com-
pared to their non-relativistic counterparts.

In computations using CI or its various ap-

proximations, constructing the Hamiltonian
matrix demands an algorithm capable of ef-
ficiently navigating through all determinants,
with constraints on excitation operators and
the active space. This process is commonly re-
ferred to as the CI addressing scheme. Since
the CI addressing scheme is the core engine of
any high-performance CI calculation, consider-
able efforts have been directed toward develop-
ing highly vectorized CI algorithms optimized
to take advantage of the capabilities of modern
computational infrastructures. Handy’s string-
based addressing scheme?” stands out as one
of the most effective methodologies and is im-
plemented in almost all high-performance CI
programs. The string-based addressing scheme
can efficiently produce a unique address for
each configuration, leading to a precomputed
list of non-zero excitations that facilitates a
highly vectorized construction of the CI Hamil-
tonian. However, the storage of the excita-
tion list from calculations involving large ac-
tive spaces presents a significant computational
challenge. For a CI problem with N configu-
rations, the size of each CI vector grows lin-
early with respect to N while the size of the
one-electron excitation list expands quadrati-
cally. For example, in a CAS calculation involv-
ing 42 Kramers’ unrestricted orbitals and 24
electrons, the combinatorial factor (gi) implies
that the storage requirement for each CI vec-
tor is 1 TB (using complex-valued double preci-
sion). However, to store the non-zero elements
of the one-electron excitation list, an estimated
1.8 petabytes (PB) of memory would be needed
even with bit-wise compression. The size of this
list is proportional to n. x (n,+1) x N, where n,
is the number of electrons and ny, is the number
of holes (unoccupied orbitals) in the complete
active space.

Simply put, the bottleneck for CI methods is
the memory requirement arising from the stor-
age of the excitation list, which practical CI-
based methods must work to circumvent. The
seminal works for direct CI calculations aimed
to optimize memory storage and locality*"°
sometimes at the cost of additional computa-
tion. In the modern era of heterogeneous com-
putation, this bottleneck is particularly crit-



ical for performance on accelerators such as
graphical processing units (GPUs) as the mem-
ory on accelerators is limited and data trans-
fer with the accelerator might be constrained
by the bandwidth and latency.?%2 A straight-
forward solution is to distribute the excitation
list among multiple computing nodes. > Indeed,
several recent efforts have focused on devel-
oping a distributed CI framework, albeit at
the cost of utilizing several hundreds of high-
memory computing nodes.3?31:5455 Nonethe-
less, this approach does not alleviate the de-
mand for large-scale CI applications that can be
executed on conventional workstations or small
computing clusters.

Minimizing the memory needs for extensive
CI calculations on a single workstation or lap-
top, while simultaneously enhancing scalabil-
ity for massively parallel computing, may ap-
pear as divergent goals. Yet, they form the
central objective of this work, and we demon-
strate that optimizations for both small-scale
and large-scale resources can complement each
other. Additionally, we aim to establish a ver-
satile framework capable of supporting various
CI methods such as CAS, RAS, GAS, MRCI,
and MRPT?2, applicable to both relativistic and
non-relativistic theories.

In this work, we advance CI methods by in-
troducing a novel small-tensor-product (STP)
addressing scheme that dramatically reduces
storage requirements while being fully com-
patible with distributed computing environ-
ments. This advancement leverages the pro-
posed distributed active space (DAS) frame-
work, which separates inter-space and intra-
space excitations in the loop structure, as well
as global and local phase factors in the sym-
bolic matrix elements. Through a carefully
designed three-tiered addressing structure, the
STP-DAS framework eliminates the necessity
of storing a global excitation list. Instead, it
adopts a small-tensor-product algorithm using
a localized addressing strategy and is tailored
for efficient vectorization and parallel process-
ing. The hallmark of this research is the STP-
DAS framework’s seamless support for large-
scale CI calculations, applicable across both
single-node systems with constrained memory

resources and expansive, distributed supercom-
puting infrastructures.

2 A Brief Background on
Configuration
tion

Interac-

In this section, the following notations are used,
unless otherwise specified:

e i,7,k,l: occupied molecular orbitals

(MOs)
e a,b,c, d: virtual MOs
e p,q,r,s: general MOs
e [ J, K, L: Slater determinants

This work primarily focuses on developing
a small-tensor-product distributed active space
(STP-DAS) framework that is capable of sup-
porting Cl-based methods. To ensure com-
prehensive coverage, we briefly introduce the
complete active space configuration interaction
(CASCI) in which the wave function, |¥), is
represented as a CI expansion or a linear com-
bination of Slater determinants, constructed
from a selected group of active MOs and a
selected group of active electrons. The STP-
DAS framework can be applied to both rela-
tivistic and nonrelativistic CI problems, how-
ever in this work we are primarily focused on
two-component relativistic CI so we will present
the following equations in a spinor basis.

2.1 Complete Active Space Con-
figuration Interaction

For a CAS wave function, the active electrons

are distributed into the active orbitals in all

combinations that preserve the symmetry of the
System.
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where Ncag is the total number of determinants
in the expansion. |0) is the reference config-
uration. {]0§), |0¢%), ...} are the singly-excited
and doubly-excited electron configurations gen-
erated from the reference determinant |0) by
applying the excitation operators:

|0?> = Eai |0> ; ‘Ogjb> = éaibj |0> ) (2)
where the excitation operators are defined in
terms of creation and annihilation operators:

2.2 Iterative Solver

The total CI state energy is defined as
Eci = (V| H |Wey) + B (4)
1
C — Z h’i/i/ —|— 5 Z(gi/i/]’/]’/ — g’i/j/j/’i/) (5)
i/ Z‘/j/

where {7, 7'} belong to the frozen core space
and EY computed using reference (HF or
CASSCF) orbitals, is the energetic contribu-
tion from the frozen core space. Orbitals within
the frozen core space are excluded from the CI
expansion. h includes contributions from both
electron-nuclear repulsion and electron kinetic
energy.

The electronic Hamiltonian for the correlated
space has the form,

H= ZhFCE + = ngqmepqrs (6)

pgrs

hzljc hpq + Z (Gpqirit — Gpirirq) (7)

where again i’ belong to the frozen core space
and {p,q,r, s} are in the correlated space.
Solving the CI problem (Eq. (4)) in a large de-
terminantal space usually requires the use of it-
erative diagonalization approaches, such as the
Davidson algorithm.®® The most computation-
ally expensive step in the Davidson algorithm
is the o vector formation, i.e., matrix-vector

product,

OK = ZZhFC q |L>
+ ) Z Z Ipars (K| Epgrs |L) Cr

pgrs L

=3NS n (K| By L) C
pq L

1 - .
+ 522%%8 (K| Epq |J) (J| Ers |L) C,

pgrs L,J

where we used
épqrs = quErs - 5qTEps (9)

and 1
hzloq - hgqc ) ngrrq (10)

Since two-electron excitations cannot be stored
in memory except for very small systems, we
used the N-resolution method 4™ in Eq. (8) to
evaluate the two-electron contribution based on
one-electron excitation lists.

3 Distributed Active Space
Configuration Interac-

tion

3.1 Statement of the Problem

As stated above the o vector formation is the
most expensive part of a CI calculation. Eq. (8)
can be readily partitioned into one-electron and
two-electron contributions,

oK = 1eUK_|_QeO_K

=YY I (K| Ey L) Cy
pq L
1 R )
K = 5 Z ngqrs <K’ qu “]> <J‘ Ers ‘L> C’L

pgrs L,J
(11)

The bulk of the computational effort comes
from the two-electron part of Eq. (11). As such
the efficient construction of the two-electron



contribution to the o vector formation has
been the focus of several studies over the years
primarily for nonrelativistic Hamiltonians. 47>°
The emergent state of the art methods for large-
scale CI problems from the decades of effort
can be characterized as direct methods which
generate matrix elements on-the-fly from one-
electron excitation lists (K| E,, |J) with differ-
ing orders of contraction in Eq. (11). However,
for extremely large CI calculations distributed
over many nodes the storage of the excitation
lists becomes unmanageable.

In this work, we aim to reformulate the
structure of the loops in Eq. (11) by fac-
torization into many small tensor prod-
ucts and considering only nonzero combi-
nations — which is henceforth referred to
as a tensor-looping algorithm — facilitated
by a distributed active space partitioning
scheme. The goal is to identify a partitioning
of the orbital space which allows us to circum-
vent the storage of extremely large excitation
lists by writing the two-electron contribution
solely in terms of small tensor products local
to the partitioned space. If such a partitioning
is possible, one would be able to reuse excita-
tion lists between spaces and additionally store
much smaller excitation lists. Crucially, we seek
a partitioning which is exact and does not in-
troduce any approximations relative to the full
space when all excitations between the parti-
tioned space are allowed.

In the CI community, ORMAS?>2¢ and GAS
are common orbital partitioning schemes. 82733
These partitioning schemes differ based on their
occupation schemes. ORMAS bounds the min-
imum and maximum occupation for each space,
and GAS places bounds on the accumulated
electron occupation number for each succes-
sive orbital space. These methods have been
successful when forming approximate full CI
spaces, however neither partitioning scheme
provides a computational advantage when ex-
actly partitioning a full CI space, i.e., when
there is no limit on the interspace excitaitons.

As we will demonstrate in the following sec-
tions, the STP-DAS framework can provide
a computational advantage even in the limit
of full interspace excitations, by breaking the

sigma build into small tensor products. The fol-
lowing sections are technical but lay out impor-
tant foundations of the STP-DAS framework
for Cl-based calculations. Readers who are pri-
marily interested in the final STP-DAS o build
expressions may skip directly to Section 3.7.

3.2 The Distributed Active

Space Framework

In the DAS framework, the total correlation
space is defined with a collection of active or-
bitals {¢} whose cardinality is M = |{¢}| (i.e.,
the total number of orbitals), a total number of
active electrons n., and the determinants |K)
generated either by the CAS or MRCI method.

Analogous to the generalized active space
(GAS) approach, the total correlation space can
be partitioned into an arbitrary number of dis-
tributed active spaces (DASs). In the absence
of excitation constraints between these spaces,
DAS becomes equivalent to CAS. On the other
hand, imposing limits on the number of elec-
trons or holes within each DAS creates a situa-
tion reminiscent of RAS, ORMAS, and GAS.

In the CI o build, the global address of each
|K) is uniquely defined. Addressing each de-
terminant in CAS can be efficiently done with a
string-based method, leading to a highly vector-
ized algorithm. A similar string-based address-
ing scheme has been extended to RAS with ex-
citation restrictions.!* However, for large CAS
calculations, it is not feasible to save the com-
plete global address with the excitation list.
An efficient addressing scheme is critical for
the large-scale parallelization of CI codes, and
reducing the memory demands for the excita-
tion list is essential for their broad practical
use. Our strategy to accomplish these objec-
tives involves fully separating global and local
addresses to enable small tensor products in the
o build.

Figure 1 illustrates the STP-DAS mapping
scheme, using CAS as example. In this illus-
tration, a CAS problem is mapped onto mul-
tiple DASs. In contrast to the RAS address-
ing scheme where excitation restrictions are en-
forced in the map that generates strings,'* the
first step in the STP-DAS framework involves



differentiating between excitations within a
space (intra-space) and those between differ-
ent spaces (inter-space). This separation is
achieved through a process known as categori-
cal excitations, which creates various configura-
tion categories by promoting electrons from one
DAS to another, following specific excitation
constraints. This process is shown schemati-
cally in Figure 1.

For CAS, there are no limitations on inter-
space excitations. Imposing constraints on
these excitations transforms the approach into
RAS, ORMAS, GAS, or MRCI methods, thus
rendering STP-DAS a versatile structure suit-
able for a broad spectrum of multiconfigura-
tional techniques. Following the separation
of inter-space and intra-space excitations, each
DAS is treated as an intra-space complete ac-
tive space. This approach incorporates every
possible excitation, making it compatible with
the efficient string-based addressing scheme for
computational processing, allowing for small
tensor products embedded in a tensor looping
algorithm.

The STP-DAS framework does not result in
decreased accuracy as the total number of ex-
citations, and thus the total number of deter-
minants, remains unchanged. However, the ad-
vantage of STP-DAS comes from the fact that
it is only necessary to store strings for intra-
space excitations used in small tensor products
and tensor looping. This means that when two
DASSs share the same configuration, even if they
belong to different categories or consist of dif-
ferent orbitals, they can utilize the same intra-
space excitation list and small tensor products.
For instance, in CAS calculations involving 40
spinor orbitals and 20 electrons, (38), 637 TB
of memory would be required to store the ex-
citation list. By adopting the DAS approach
illustrated in Figure 1, where the correlation
space is segmented into four DASs each con-
taining 10 orbitals, the memory requirement is
dramatically reduced. In this case, one only
needs to store intra- and inter-space excitation

lists for (110), (120), cee (190) CAS strings, which
collectively only require 200 MB of memory.
Note that any type of space partition will re-

duce the total number of strings generated from

the smaller combinatorics. However, we advo-
cate for equal space partitioning to maximize
the reduction and take advantage of the reuse
of the excitation list (see Section 3.4 for a de-
tailed discussion).

The discussion above highlights the efficiency
of the STP-DAS framework in managing com-
putational resources through the reuse of intra-
space excitation lists in small tensor products.
Nonetheless, the process of identifying and re-
utilizing these lists is a challenging task. The
complexity arises because, within the excitation
list, the symbolic matrix elements vary across
different DASs, even when they utilize iden-
tical local addressing strings. This complex-
ity presents a significant challenge and restricts
the application of the RAS/GAS approach to
merely imposing excitation constraints, rather
than achieving a reduction in computational de-
mands.

DAS 4 DAS 4/ <" DAS 4 <~ DAS4

DAS 3 <" DAS3 DAS3 DAS3

= DAS 2 2> »C/DAS 2 < DAS 2\ DAS 2
DAS 1 \DAS 1 Das 1< DAS |

CAS ‘DAS Category 1 2 3

Figure 1. Space Partitioning in STP-DAS. Boxes sym-
bolize active regions. Within these boxes, shaded por-
tions indicate electron occupations, while white areas
represent empty orbitals. A CAS problem is mapped
onto multiple DASs. Distinct categories of configura-
tions are produced by categorical excitations, depicted
by green arrows. In every category, each DAS is treated
as a complete active space, including all possible exci-
tations, illustrated by blue arrows.

3.3 Space Partitioning and Orga-
nization of Excitations

In this section, the following notations are used,
unless otherwise specified:

o 1, v, Kk, A DAS indices

e A B, C: configuration category

|K) ,|L): determinants in the full space

IK),|L): sub-determinants in DAS

e p,q,7,s: general MOs



Distributed Active Space
A DAS, X, = {{¢},,n,,K,}, is defined by

a set of orbitals {¢},, an electron occupation
number 7, in the space, and sub-determinants
K,. Each DAS is a complete active space where
the total number of determinants is given by

N, = <M“> (12)

Ny

where M, = |{¢},| is the cardinality of the
orbital set in X, i.e., the number of orbitals.
Here, we assume the Kramers’ unrestricted two-
component or four-component condition where
each orbital is a singly occupied spinor.

It’s important to emphasize that within the
STP-DAS framework, intra-space excitations
are not subject to any constraints, as the ex-
citation types typically associated with RAS
or MRCI, known as inter-space excitations, are
separated and utilized for the creation of con-
figuration categories.

Configuration Category

Applying inter-space excitations, also referred
to as categorical excitations, on the reference
electron configurations leads to the formation of
different electron configuration categories (see
Figure 1 for an example). These categories will
from now on be referred to as either configura-
tion categories or simply as categories.

A configuration category A = {Xf,Xf, .}
is constructed from a set of DASs with unique
electron occupation numbers. Note that the
DAS orbital partitioning is unchanged. There-
fore, it is important to associate each DAS with
its parent category through the notation, Xf.
Categorical excitation operators are defined as:

é]i“x” = {qu peX,,q¢€ XV}

EXnEXNK {épers  pEX,,0eX,,reX), s X}

pqgrs

Figure 1 shows three examples of different cat-
egories generated from categorical excitations.

A full-space determinant in category A can be
constructed using sub-determinants from each

DAS space
KN =KHe K )e- - (13)

The total number of determinants in category

A is:
A _ ArA A
NA = NA.NA... (14)

Considering the definition of a configuration
category and its constituent DASs, it becomes
apparent how they relate to the overall number
of determinants (IV), the total electron count
(n.), and the complete set of orbitals ({¢}) in
the entire correlation space:

N=>) N4 (15)
A

Ne = Zn:‘ (16)
{0} ={ot.U{o} U .. (17)

It’s important to note that the notation for
categories is not applied in the DAS orbital rep-
resentation, ¢,, since every category employs
the same scheme for orbital partitioning.

3.4 Small-Tensor Addressing in
String-Based DAS

The objective is to develop a STP addressing
algorithm that exclusively utilizes and reuses
local address strings, thereby avoiding the need
for explicitly constructing and storing the com-
plete global list of excitations. In the STP-DAS
framework, a three-level addressing protocol is
adapted from the Kozlowski and Pulay’s RAS
addressing scheme. ®7

For a determinant |K) that belongs to cate-
gory B, its global address can be defined as

A(K) = A(B) + A(K"®) (18)

Here, we define A as an address function. A(B)
returns the global offset for all determinants in
category B. It can be easily calculated as

AB) =) N4 (19)

A<B



which naturally arises from Eq. (15). Figure 2
illustrates the address mapping strategy uti-
lized in the STP-DAS framework. In order to
compute the global offset for each category, it
is necessary to systematically organize all cat-
egories for efficient record-keeping. A(KP?) re-
turns the address of the determinant K in cat-
egory B.

11000101000 10001(()0000 —

Determinant Global Address of K

11000 10100 01000 00000

Determinant K
2 2 1 0o —
Category B Local Addr_e':_ss of K
Global Offset of_B
Global Address of K

Figure 2. A comparison between a traditional index-
ing scheme and the indexing scheme used in STP-DAS.
In DAS, the global address of a determinant is found
by combining a global offset of the category of a given
determinant with the local index of that determinant
within the category. Boxes symbolize determinant cat-
egories.

Eq. (18) serves as the outer loop in construct-
ing the STP-DAS o build, where it is also pos-
sible to achieve effective load balancing across
categories in a parallel computing environment.
Although Eq. (18) successfully divides global
addresses into more manageable categorical ad-
dress sections, it does not reduce the overall
size of the excitation list. This is due to the
uniqueness of each category, requiring that each
A(KP) be stored individually.

From Eq. (13), we can effectively write the
categorical address A(KP®) via separations of
active and inactive DASs, based on its usage
in the o build. Since only the one-electron ex-
citation list is saved, we only need to consider
local addresses associated with

(LA By |K®), peXi, qexf  (20)
Only two scenarios are possible:

e 1 = v, i.e., braket excitations between an

identical DAS in different categories.

ALY =+ ALY - T V2 + -
AKB) =+ AKED) - [ NE+ ...

K<p
(21)
where “...7 refers to concurrent looping
over addresses in DASs that are not asso-
ciated with the excitations, ¢.e. inactive
DASs, for both A(LA) and A(KP).

e 11 # v, i.e., braket excitations between
two different DASs in different categories.

ALY =+ ALY - T V24 +
+A(L;“)-HJ\Z;:...

A(KB):'--+A(H2%V)~HNE+...
+A(Kf)-H1\%‘<:... (22)

K<V

Eq. (21) and Eq. (22) efficiently separate out
the inactive DASs linked to the excitation list in
<LA‘ qu ‘K B > For single-electron excitations,
the local addresses within the inactive DASs
must be identical for both bra and ket. This re-
quirement facilitates an efficient tensor looping
design, where a single outer loop iterates over
the addresses of determinants within the inac-
tive DASs, enabling concurrent tensor looping
for both bra and ket. The address structure
of Eq. (21) and Eq. (22) allow the inner ten-
sor loop to use only the local addresses of sub-
determinants A(L7') and A(KP), leading to the
small-tensor-product algorithm.

It is envident to see that when two DASs
share the same configuration, characterized by
an identical number of orbitals and electrons,
they can utilize the same set of small-tensor ad-
dress strings. This is true even if the orbitals
and electrons between the two DASs differ in
physical character. This principle is fundamen-
tal to the shift from a single, large global ex-
citation list to numerous, smaller, shared local
excitation lists.



In adopting this approach to streamline de-
terminant addressing, a new challenge emerges.
The CI excitation list features a symbolic ma-
trix (L] E,, |K®), where each element is de-
termined by the global positions of the orbitals
involved in the excitation operator. This global
dependency poses a conflict with the local ad-
dressing framework. To address this, the sub-
sequent section will present an algorithm de-
signed to differentiate between global and lo-
cal phase factors during the construction of the
symbolic matrix <LA| qu |K B>, enabling the
storage of solely local excitation lists in small
tensor products.

3.5 Local One-Electron Excita-
tion List

To account for the sparsity of the Hamiltonian,
one-electron excitation list that contains the in-
formation of non-zero elements of (L| Ey, |K), is
pre-computed and stored in memory. Only el-
ements that are non-zero in the excitation list
are summed in Eq. (8). Based on the address-
ing scheme shown in Egs. (20) to (22), the local
excitation list can be defined and the symbolic
matrix element <]L;f| qu ’Kf > can be computed
as

A(LA)
pE XA
qe XB (23)
A(Kf)
(L2 Eg [KJ)
In this intra-space one-electron excita-
tion scenario, for each |Kf>, there are
n, (n} + 1) number of non-zero elements,
where n; and n;r are the number of elec-
trons (occupied orbitals) and holes (un-
occupied orbitals), respectively, in DAS
X, = X,,. The non-zero element is com-
puted as

Vp > q: <]LA| |KB>

)t it (S) g+10i ] s even 24)
—1, if f:qlﬂbi is odd

where b; = 0 or 1 is the electron occu-
pancy.

e 11 # v: This inter-space one-electron exci-
tation list involves four sub-determinants

in different DASSs,
A(L;), A(Lf)

pGX
qEXU (25)
A(KR), AK?)

(LA © LA By, [KE 0 KE)

The non-zero one-electron symbolic ma-
trix elements can be computed as:

Vi <v: (Lie L] B,y |KBEBKB>
+1, if Zl 1 bi + ~ib;) is even
T - (M +Zq b,) is odd
(26)
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Figure 3. Examples of excitations between categories.
Boxes symbolize active regions. Within these boxes,
shaded portions indicate electron occupations, while
white areas represent empty orbitals. All partially filled
DASs have an identical number of electrons and holes.

Eq. (23) and Eq. (25) define the one-electron
excitation lists in the context of STP-DAS us-
ing local addresses. These lists are free of global
addresses, enabling their reuse across excita-
tions with identical DAS configurations. As il-
lustrated in Figure 3, the green and purple exci-
tations (excitations A and B), although associ-
ated with different orbitals and electrons, have
identical DAS configurations, allowing them to
share the same local excitation lists used in
the small tensor product. This commonality
highlights that dividing the correlation space
evenly among numerous DASs can significantly
reduce the number of unique local excitation



lists. Achieving this efficiency is a principal ob-
jective in the conceptualization of STP-DAS.

3.6 Global Phase Factor in the
Small Tensor Product algo-
rithm

Equipped with determinantal addresses and
one-electron excitation lists completely defined
in STP-DAS, the CI o build can be ideally per-
formed with small tensor products using local
excitation lists. Nevertheless, two critical as-
pects need to be considered for enabling the o
matrix assembly with small tensor products us-
ing these local lists.

One issue is distinguishing between different
types of excitations, such as excitations A and
B, as shown Figure 3, during the o matrix con-
struction. This process requires global symbolic
matrix elements, which are derived from the
global positioning of the orbitals. Another chal-
lenge is identifying invalid excitations, such as
excitation C in Figure 3. The excitation lists
mainly provide local DAS specifics, leading to
a loss of global context. However, STP-DAS’s
architecture facilitates the straightforward re-
trieval of global address-dependent information
during the CI o matrix construction, resolving
both issues.

The distinction between excitations A and B
in Figure 3 stems from a difference in the phase
factor between the global <LA| qu |K B > and lo-
cal (L& L E,, |[KE & KE) symbolic matrix
element. To address this, we define a global
phase factor P, as:

pGX;‘, qGXf, Vu<v:
) L if i:;lx,,ﬂ n, | is even
- —1,if §Z;1§§VH n. | is odd
(27)
where n_ is the number of electrons in DAS
X,. P, takes into account the contributions

of DASs that are not directly involved in the
excitation to the symbolic matrix element.

In Figure 3, excitation C is an invalid exci-
tation because it cannot be defined with one-
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electron excitation lists. To determine the va-
lidity of an excitation, <LA‘ ‘K > we need
to check if the non- exmtatlon DASs between
categories are identical. Here, we introduce a
Kronecker ¢ function §XAXB where XA refers to
all but X, DASs in category A. The 5 function
is non-zero only when non-excitation DASs be-
tween categories are identical.

3.7 o Build using Small Tensor
Products

Taking everything discussed above into consid-
eration, we now have the final working expres-
sions for the CI o build using the STP algo-
rithm with only local excitation lists:

O'LA:1

(28)

eO'LA + 2eO'LA

le
A=, D > Pudrarm,

B KBeKE pq
o (L2 @ L7 Epy |KE & KE) Crages

(29)

SCEEID DD DD M H

BC BB JBepI8 KSOKS pars
Oxa, x5, %8 7, Gpars (Lt ® L] Epg [T @ )

where p € Xl“f, qgeXBreXB seXs.

Egs. (28) to (30) are completely formulated in
terms of small tensor products using local DAS
one-electron excitation lists. These expressions
can be adapted to any o build algorithm in
any Cl-based method. In this work, we used
the Knowles-Handy algorithm*” for the cate-
gorical o build. The outer loop is over J5 KA
and maximum sparsity is utilized to avoid large
intermediates.

4 Computational Details

All calculations in this work are performed
with a development version of the Chronus
Quantum software package®® with the STP-
DAS framework. The speed of light utilized
in this study is 137.035999074 a.u. All calcu-
lations utilized the standard Gaussian nuclear



model.?® Relativistic calculations are done in
the Kramers unrestricted exact-two-component
(X2C) framework where all spinor orbitals are
singly occupied. The one-electron X2C trans-
formation is a one-electron-Hamiltonian-based
one-step procedure that “folds” small compo-
nent wave function into a pseudo-large compo-
nent so that the four-component Dirac equation
becomes an effective two-component eigenfunc-
tion problem.?>4360-7" The one-electron X2C
approach makes use of the effective one-electron
spin—orbit Hamiltonian and avoids the four-
component self-consistent-field procedure. In
this work, we use the new Dirac-Coulomb—
Breit-parameterized effective one-electron spin—
orbit Hamiltonian in the X2C approach.™

STP-DAS stands as a scalable, high-
performance CI framework supporting various
electronic structure theories — including CAS,
RAS, GAS, ORMAS, MRCI, and MRPT2 - in
both relativistic and non-relativistic domains.
The fundamental characteristics and dimen-
sionalities of these electronic structure methods
remain unchanged within this framework. In
the current work, we benchmark the perfor-
mance and analyze the memory requirement
of the DAS framework applied to X2C-CASCI
calculations.

To benchmark the STP-DAS framework, we
use molecular thallium monohydride (TIH),
the heaviest stable monohydride species ob-
served experimentally. ™% An accurate elec-
tronic structure characterization of TIH re-
quires the use of a relativistic many-body ap-
proach.8%¥2 In this study, we concentrate on
evaluating the algorithm’s performance as the
correlation space expands. Furthermore, we in-
vestigate the load balance among nodes within
a high-performance computing environment, as
well as the reduction in memory demands when
computing resources are constrained, such as on
a laptop. In the following benchmark calcula-
tions, the T1 atom used the x2c-TZVPall-2¢ ba-
sis set® and the H atom used the aug-cc-pVTZ
basis set. 848

When forming Slater determinants in the
Kramers’ unrestricted two-component or four-
component no-virtual-pair CASCI method, the
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number of possible determinants is given by

Ms inor
NCAS:( 7;3 )

where Mgpinor is the number of active spinor or-
bitals. Since the spin-symmetry is no longer
enforced, for a same number of active electrons
and molecular orbitals, the CI dimension in the
Kramers’ unrestricted relativistic CAS is much
bigger than that in the non-relativistic calcula-
tion. In relativistic computations, the floating
point operations (FLOP) count for construct-
ing the o matrix experiences a sixfold increase,
arising from complex-valued arithmetic, com-
pared to a non-relativistic (NR) calculation.

The calculation of the memory requirement
in all test cases takes into account both the
sparsity of the excitation list, i.e., non-zero ele-
ments only, and bit-wise compression of the de-
terminant address, representing the minimum
requirement in a CAS calculation. For X2C-
CASCI calculations, the size of this list (in
Bytes) can be calculated as nguye X ne X (n541) X
Ncas, where n, is the number of electrons and
ny, is the number of holes in the complete ac-
tive space. Here, ng,. represents the amount of
information saved in the excitation list, includ-
ing the address of small tensors, p, p, and the
phase factor. Depending on the level of bit-wise
compression, ng,y. varies from 4 to 11 Bytes for
most applications.

(31)

5 Results and Discussion

5.1 A Large-Scale X2C-CASCI
Calculation on a Laptop

A significant benefit of the STP-DAS frame-
work lies in its capacity to facilitate large-scale
CI computations using constrained computa-
tional resources, like a laptop. This was illus-
trated through the performance of X2C-CAS
calculations on the TIH system, utilizing the
STP-DAS framework on an Apple M3 Max lap-
top equipped with 14 compute cores and 128
GB of RAM.

Table 1 illustrates the STP-DAS framework’s
capability to reduce storage demands, thereby



Table 1. The storage needs for the one-electron ex-
citation list in a (gé) X2C-CASCI calculation (Apple
M3 Max laptop with 14 compute cores and 128 GB
of RAM). The total number of X2C determinants is
177 x 108, which is comparable to the computational
cost of 1.1 x 10? determinants in non-relativistic calcu-
lations when measured by the number of FLOPs.

# of DASs Excitation o Build
(Orbital Partitions) List Storage® Time
1 (44) 102. GB -
2 (22,22) 210. GB -
6 (7,7,7,7,7,9) 791 x 107> GB  2981s
9 (5,5,5,5,5,5,5,5,4)  9.06 x 107> GB 5788 s

% Only non-zero elements are considered in the
one-electron excitation list. Bit-wise compression of
the determinant address is used.

enabling large-scale CI calculations on a laptop.
For a (gg) X2C-CASCI calculation with STP-
DAS, the resulting 177 x 10% X2C determinants
(1.1 x 10° non-relativistic determinants equiv-
alent in terms of FLOP count) would require
402 GB of RAM to hold the excitation list with
non-zero elements. This requirement makes the
task impractical for a personal laptop and many
smaller workstations.

As shown in Table 1, partitioning the cor-
relation space into multiple DASs significantly
reduces the storage needs. Once the number
of DASs hits 6, the storage demands for one-
electron excitations become minimal, making
it feasible to conduct the X2C-CASCI calcula-
tions on a laptop with ease. Each o build only
takes 0.8 hours on the latest Apple laptop for a
177 x 10° determinant X2C-CASCI calculation.

With the introduction of additional STP-DAS
for space partitioning using small tensor prod-
ucts, the storage requirement continues to de-
However, this leads to an increase in
the time required to build the o vector. The
primary reason for this is the increased over-
head associated with extensive tensor looping
necessary to locate each local address within
the global framework, as indicated in Eq. (21)
and Eq. (22). This analysis reveals that while
STP-DAS is effective in reducing memory re-
quirements, excessively fine partitioning might
result in added costs associated with small ten-
sor mapping from local to global addresses.

crease.
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5.2 A Large-Scale X2C-CASCI
Calculation on a Supercom-
puter

In high-performance computing, especially for
large CI calculations on a supercomputer, it’s
crucial to ensure that the workload is evenly
distributed across all compute nodes. This is
where the STP-DAS framework is particularly
effective. The STP-DAS framework is capable
of decreasing memory demands while concur-
rently leveraging distributed memory on a mas-
sively parallel high-performance computing sys-
tem.

As illustrated in Table 2 with a (33) X2C-
CASCI calculation example, the STP-DAS ap-
proach achieves memory reduction by employ-
ing localized excitation lists within the dis-
tributed active space. Expanding the X2C-
CASCI of (;g) results in over 230 billion de-
terminants (1.4 x 102 non-relativistic deter-
minants equivalent in terms of FLOP count),
requiring 1,173 terabytes (TB) of memory to
maintain the one-electron excitation list within
the conventional CAS setup. Assuming that
each compute node allocates 0.5 TB of mem-
ory for this purpose, it would require over 2,346
compute nodes with distributed memory sys-
tems to perform a CI calculation. A configura-
tion with 4 DASs can lower the memory needs
to a manageable 1.7 GB for a small distributed
computing system.

Table 2. The storage needs for the one-electron exci-
tation list in a (3) X2C-CASCI calculation. The total
number of X2C determinants is 230 x 10°, which is com-
parable to the computational cost of 1.4 x 10'? deter-
minants in non-relativistic calculations when measured

by the number of FLOPs.

# of DASs Excitation # of
(Orbital Partitions) List Storage® Categories
1 (44) 1,173 TB 1
2 (22,22) 563 TB 16
4 (11,11,11,11) 2 GB 736
6 (7,7,7,7,7,9) 1x10~2 GB 11,292
8 (6,6,6,6,6,6,6,2) 4x10~* GB 80,823
9 (5,5,5,5,5,5,5,5,4) 9%x10~° GB 260,656

% Only non-zero elements are considered in the
one-electron excitation list. Bit-wise compression of
the determinant address is used.

In the STP-DAS framework, we allocate



workloads among the compute nodes according
to different configuration categories. As we in-
troduce more categories, we can achieve a more
balanced distribution of the total workload for
constructing the o matrix. The effectiveness of
the STP-DAS framework is illustrated in Ta-
ble 2, which demonstrates a rapid increase in
the number of configuration categories as addi-
tional DASs are introduced into the system for
space and tensor partitioning. This expansion
significantly enhances the efficiency of the o
matrix construction. A figure of merit for com-
putational work distribution is the percent dif-
ference of the median number of determinants
per node relative to the theoretical ideal mean
distribution of determinants. The observed dis-
tribution of determinants to each node in a 600-
node calculation is illustrated in Figure 4. The
8 DAS distribution is markedly more extended
with a much longer tail. This results in a few
nodes with many more determinants than all
of the other nodes shifting the median number
of determinants further from the ideal distri-
bution. When increasing the number of DASs
from 8 to 9, the percent difference in the work
distribution drops from 4% to 0.15% resulting
in a nearly ideal division of determinants among
the nodes. With the resulting balanced work-
load, each o build for the (;g) X2C-CASCI cal-
culation with 9 DASs containing 230 x 10° de-
terminants (1.4 x 10'? NR equivalent determi-
nants) only took 7 hours. This calculation was
run on the Department of Energy’s Perlmutter
high-performance super computer with a total
of 16000 compute cores (AMD EPYC 7763 Mi-
lan, 200 GB/s NIC, 1 MPI per node and 16
SMP threads per MPI process). This analy-
sis shows the scalability and efficiency improve-
ments in computational performance that can
be realized through optimized workload distri-
bution in the STP-DAS framework.

5.3 Massively Parallel Perfor-

mance

In this section, we examine how the STP-DAS
framework functions within extensive super-
computing environments. In order to demon-
strate the massively parallel performance of
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8 DAS

9 DAS

3.8 x 108

4.0 x 108 42x10%  44x10%8 4.6 x10°

Determinants
Figure 4. Distribution of determinants per node for
a (gg) X2C-DASCI calculation using 600 nodes with
(top) 8 DAS spaces and (bottom) 9 DAS spaces. The
theoretical ideal distribution of determinants is denoted
by the red line in both plots, and the solid line denotes
the median of the observed distributions.

the STP-DAS algorithm, we performed X2C-
CASCI calculations on the TIH molecule with
increasing size active spaces of 35 to 40 spin
orbitals using 24 correlated electrons.

Table 3. Number of determinants in an X2C-CASCI
calculation using the STP-DAS framework of TIH with
24 correlated electrons and a varying number of active
spinor orbitals.

# of # of X2C Determinants Excitation
Orbitals (NR Equivalent®) List Storage®
35 417,225,900 (2.5x109) 841 GB
36 1,251,677,700 (7.5x10%) 2,733 GB
37 3,562,467,300 (2.1x10'°) 8,378 GB
38 9,669,554,100 (5.8x1010) 38 TB
39 25,140,840,660 (1.5x10'1) 106 TB
40 62,852,101,650 (3.8x10M) 282 TB

@ Non-relativistic (NR) equivalent number of
determinants in non-relativistic calculations when
measured by the number of FLOPs.

b Only non-zero elements are considered in the
one-electron excitation list. Bit-wise compression of
the determinant address is used.

Table 3 lists the total number of determinants
in a X2C-CASCI calculation and the equivalent
number of non-relativistic determinants mea-
sured by the number of FLOPs. The mini-
mal memory storage requirement for each case
is also computed should all active orbitals and
electrons be included in a single active space,
e.g., in a conventional CASCI calculation. Ta-
ble 3 shows that as the active space expands,
the memory needed to store non-zero elements
of the excitation list increases rapidly, becom-
ing exceedingly demanding.

Table 4 lists the STP-DAS partition schemes



Table 4. STP-DAS space partition schemes and the
resulting numbers of configuration categories used in
the benchmark for the massively parallel performance
of the STP-DAS framework.

# of Orbitals # of
(Orbital Partitions) Categories
35 (5,5,5,5,5,5,5) 9,142
36 (5,5,5,5,5,5,5,1) 21,259
37 (5,5,5,5,5,5,5,2) 36,526
38 (5,5,5,5,5,5,5,3) 54,853
39 (5,5,5,5,5,5,5,4) 75,846
40 (5,5,5,5,5,5,5,5) 98,813

employed in the following HPC benchmark
study. The excitation list storage requirement
is not presented because it is reduced to less
than 100 KB for all test cases. Two high-
performance computing (HPC) systems were
used in this benchmark study. The first is a
medium size HPC system, Hyak, managed by
the University of Washington (UW). Each Hyak
node has two Intel Xeon 6230 Gold CPUs with a
single 100 GB/s network interface card. A max-
imum of 250 nodes on this medium sized HPC
system were available to the authors. The sec-
ond system is the Department of Energy’s Perl-
mutter high-performance super computer with
up to 512 nodes (AMD EPYC 7763 (Milan),
200 GB/s NIC).

5.3.1 Strong scaling

We first study the strong scaling of the X2C-
CASCI calculation using the STP-DAS frame-
work on a medium size HPC system, the UW
Hyak. Figure 5 shows the strong scaling per-
formance of the STP-DAS o build on varying
active space sizes for the TIH test case. For
the log-log presentation of runtime versus num-
ber of nodes, an ideally scaling algorithm would
be represented by straight, decreasing line. As
such, one can observe excellent strong scaling
of the STP-DAS implementation for a variety
of problem sizes.

For real world applications, an important fea-
ture that can be extracted from a strong scaling
plot is a stagnation point where one can observe
that speedups have ceased despite an increase
in computational power. This is usually a sign
that the amount of work is insufficient for the
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Figure 5. Execution time of a single o build using
the STP-DAS framework for the TIH test case with in-
creasing CAS space sizes with respect to the number of
nodes (1 MPI per node, 20 SMP threads per MPI).

number of nodes. Focusing on the (gi) prob-
lem, one can observe this stagnation point at
around 75 nodes. As one increases the problem
size, this stagnation point shifts to a greater
node count as more work is available to divide
amongst the nodes. This can be observed for
the (3}) X2C-CASCI problem, which still ben-

24
efits from extra computational resources and

scales up to 250 nodes.

5.3.2 Relative speed-up

A strong scaling analysis is helpful at under-
stand the overall behavior of an algorithm, but
this does not yield an understanding of the ori-
gins of the stagnation point. For a detailed
understanding of the STP-DAS framework, we
turn to a detailed analysis of the speed up of a
certain problem size with respect to the num-
ber of nodes. Ideally the concept of speedup
would require a definition of a serial run time,
however since the size of the CI calculations de-
scribed in Table 3 would not fit on a single node,
we instead present a strong scaling as a relative
speed-up with respect to the performance on
16 nodes. We study this speedup in detail for
two problem sizes (;’Z) and (gi) to extract the
salient features of the STP-DAS algorithm.
Figure 6 (top) shows the relative speed up
of an X2C-CASCI calculation using the STP-
DAS framework of TIH with an active space
of (370,24¢). We additionally plot the relative
speedup of the computation of the o build and
the MPI communication idle time as the total
runtime is a combination of these two times. It
is immediately apparent that for this problem
size the strong scaling stagnation onset occurs
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Figure 6. Relative speedup of a single o build for

TIH (top) (;’D and (bottom) (;i) with respect to the

number of nodes (1 MPI per node, 20 SMP threads
per MPI). Relative speed-up is defined with respect to
the performance on the smallest node count capable of
solving the problem.

around 125 nodes. Additionally, one can ob-
serve that the MPI communication idle time
does not scale with the number of nodes and
that the actual computation time scales ex-
tremely well with the number of nodes. It is
important to recognize that a superlinear scal-
ing of the computation, the o build time, is not
an indication of a superlinear scaling of the al-
gorithm as this does not include the MPI com-
munication idle time. Additionally, it is im-
portant to stress that the onset of the strong
scaling stagnation is not an indication that the
calculation takes the same amount of time ir-
respective of the number of nodes beyond that
point. Beyond the stagnation point, one ob-
serves deviation from ideal scaling, but there is
still a reduction in total runtime as the com-
putation scales with the number of nodes while
the MPI communication idle time does not.
By increasing the problem size, one shifts the
location of the strong scaling stagnation point.
Figure 6 (bottom) shows the relative speedup
of an X2C-CASCI calculation using the STP-
DAS framework of TIH with an active space of
(380, 24¢). The behavior now differs from the
smaller (370, 24e) case. For the range of calcu-
lations presented, ideal scaling is observed for
the full range of the number of nodes. One may
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often see scaling plots such as this one rather
than the previous case, which does not show the
stagnation point. However, it is important to
note that this does not imply that the stagna-
tion point does not exist only that it has shifted
to larger node counts.

5.3.3 Computation time, MPI commu-
nication idle time, and load bal-
ancing

To further understand the communication ver-
sus computation time of the STP-DAS algo-
rithm, we plot the raw execution time as a func-
tion of problem size. These calculations were
run on the large Department of Energy’s Perl-
mutter HPC system. From Figure 7, it is ev-
ident that the total execution time exhibits a
linear relationship with the number of determi-
nants. This linear scaling is due to the fact that,
with a fixed number of electrons, the number of
non-zero elements in the one-electron excitation
list increases linearly as the number of virtual
orbitals grows. Additionally, it is observed that
the MPI communication idle time grows very
slowly with problem size. In the largest test
case (40), the MPI communication idle time is

24
only 18% of the total o build time.
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Figure 7. Execution time of a single o build using the
STP-DAS framework for the T1H test case with increas-
ing CAS space sizes (Perlmutter 256 Nodes, 1 MPI per
node, 64 SMP threads per MPI).

In the STP-DAS algorithm the o build com-
putation time and the MPI communication idle
time vary slightly per MPI process as each MPI
process receives a different set of categories to
process. To study the load balancing perfor-
mance of the STP-DAS algorithm, Figure 8
(top) shows the build time for each of the X2C-
CASCI calculations. The solid line represents
the mean of the o build times from each pro-
cess, and the shaded region represents the his-
togram of the o build times from each MPI
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Figure 8. (top) o build time (seconds) and (bottom)
the distribution of the MPI communication idle time
of each process during the o build process of the TIH
test case with a increasing numbers of correlated or-
bitals (Perlmutter 256 Nodes, 1 MPI per node, 64 SMP
threads per MPI).

process. The small range of times over which
the histogram is spread, irrespective of the cal-
culation size, is an indicator of the strong load
balancing in the current iteration of the STP-
DAS algorithm. This shows that breaking the
problem into smaller DAS spaces allows for a
balanced distribution of categories of determi-
nants.

Once each MPI process has completed the as-
signed work for the o build, it must idle and
communicate its result with the other processes.
The distribution of the MPI communication
idle times is represented in Figure 8 (bottom).
The MPI communication idle time tends to be
closely grouped around the average for most
problem sizes. However, for the largest calcu-
lation, (;Z), the distribution exhibits a minor
tail. It is anticipated that the incorporation of
Remote Memory Access into MPI will enhance
both the efficiency of MPI communication idle
time and the load balancing, especially in cases
of such substantial computational magnitude.

5.3.4 Effect of the active space parti-
tioning

To test the effect of active space partitioning
on the performance of the STP-DAS algorithm,
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we used four different DAS partitionings for a
small test case (fg) (13 million X2C determi-
nants) to run the calculations on a single node.
The runtimes for one o-build are collected in
Table 5.

We observed a decrease in the o-build time
from one to four DAS partitionings. This re-
duction is due to shifting work from internal
loops (over excitations within DAS spaces) to
the outer loop over categories. However, when
the space is partitioned into seven DASs, the
runtime increases significantly due to the extra
work required to locate each local address, as
seen previously in Section 5.1. This observa-
tion suggests that there is an optimal condition
for STP-DAS, but it is strongly dependent on
the system size and the nature of the computing
architecture.

Table 5. The storage needs for the one-electron exci-
tation list and runtimes for one ¢ build in a @S) X2C-
CASCI calculation.

# of DASs Excitation o Build
(Orbital Partitions) List Storage® Time
1 (28) 1812GB 8765
2 (14,14) 0.86 GB  404s
4 (7,7,7,7) 1.98 x 1073 GB 86.7 s
7 (4,4,4,4,4,4,4) 1.06 x 107> GB 365.4 5

¢ Only non-zero elements are considered in the
one-electron excitation list. Bit-wise compression of
the determinant address is used. 2 Intel Xeon Gold
6148 processors with 20 physical cores each and 250
GB of memory.

6 Conclusion

In this work, we introduced a small tensor prod-
uct distributed active space (STP-DAS) frame-
work, characterized by adjustable space parti-
tioning and many small tensor products with
an efficient tensor loop used in the o build.
This framework is designed to support a vari-
ety of configuration interaction (CI) method-
ologies. It is also compatible with both rel-
ativistic (2-component and 4-component) and
non-relativistic electronic structure methods.
The CI engine within the STP-DAS frame-
work leverages this adjustable partitioning to
significantly reduce the memory requirements



for large-scale multiconfigurational calcula-
tions, offering scalability from single worksta-
tions to massively parallel computing environ-
ments.

Our benchmark tests, conducted on two
different supercomputers using realistic X2C-
CASCI calculations using the STP-DAS frame-
work with determinant numbers ranging from
10° (billion) to 10'? (trillion), consistently
demonstrated robust parallel scalability and ex-
cellent load balancing.

A standout feature of the STP-DAS frame-
work is its capacity to facilitate extensive
CI calculations with limited computational re-
sources. Illustrating this, we performed a
relativistic CI calculation involving 177 mil-
lion X2C determinants, a task computationally
equivalent to 1.1 billion non-relativistic deter-
minants based on FLOP count, on a laptop.
This capability showcases the STP-DAS frame-
work’s potential to broaden the applicability of
CI methods in computational science research.

Although determinant-based algorithms vary
in their contraction order and the size of the
intermediates they form, they all benefit from
the STP-DAS framework through significantly
reduced excitation list sizes and the ability to
express contractions solely in terms of local sub-
determinants. Benchmarking these different al-
gorithms requires fine-tuning each one within
the STP-DAS framework, an ongoing research
endeavor that will be presented in a future pub-
lication.

The STP-DAS algorithm provides an oppor-
tunity to optimize Cl-based methods for spe-
cific hardware architectures. Although the op-
timal STP-DAS scheme cannot be determined a
priori, benchmarking various space partitioning
schemes enables users to tailor the algorithm to
a particular large-scale high-performance com-
puting facility. This approach helps to leverage
hardware configurations effectively and mini-
mize the impact of communication latency on
overall computational efficiency.
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