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Abstract

We introduce an exact-two-component complete active space self-consistent-field

(X2C-CASSCF) method formulated under the restricted-magnetic-balance condition.

This framework allows for the non-perturbative treatment of static magnetic fields us-

ing gauge-including atomic orbitals (GIAOs). The GIAO-X2C-CASSCF methodology

effectively captures all microstates within the same 2J+1-degenerate manifold and their

splitting in a static magnetic field, which are not accessible through single-reference-

based methods. We also present mathematical recursive expressions for evaluating

one-electron relativistic integrals using GIAOs in the presence of a finite magnetic

field. Benchmark studies include oxygen and nitrogen K-edge X-ray magnetic circular

dichroism spectroscopy (XMCD) for closed-shell organic compounds, as well as L-edge

XMCD spectroscopy for the high-spin open-shell transition metal ion Mn2+ and the

tetrahedral Mn(II)O6−
4 complex.
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1 Introduction

Magnetic Circular Dichroism (MCD) spectroscopy is a sensitive probe that measures the

difference in electron absorption between left and right circularly polarized (LCP/RCP)

photons in the presence of a static magnetic field.1–3 An external magnetic field can split

the spin and/or angular momentum of an electron, causing degenerate energy levels to

separate, a phenomenon known as the Zeeman effect. Left and right circularly polarized

photons follow different selection rules for the total angular momentum quantum number,

resulting in a differential spectrum that is also temperature-dependent when the ground

state exhibits Zeeman splitting. Using high-energy x-ray photons in MCD (XMCD) offers

additional element-specific fingerprints through core-electron excitations, such as the L2,3

edges for 3d transition metals and the M4,5 edges for late-row elements, which split due to

the spin-orbit coupling.4–6

The MCD technique has been successfully employed in the characterization of magnetic

defects in materials7–15 and in the investigation of ultrafast magnetization dynamics.12,16–19

Recent work has shown that time-resolved X-ray MCD is able to track wavepacket dynamics

and directly identify the conical intersection in photochemical processes.20 Although MCD

spectroscopy has proven to be a powerful technique in these experiments that provides

rich insights into the magnetic and spin properties of molecular and material systems, the

theoretical treatment of MCD is a non-trivial task. This complexity arises from the need to

simultaneously account for relativistic effects, magnetic field perturbations, and the response

to circularly polarized probing light, as well as the intricate interplay between these factors.

Perturbative treatments of the magnetic field and spin-orbit interactions have been

developed within the quadratic response function,21 the complex polarization propagator

method,22–24 time-dependent density functional theory (TDDFT),25–27 multi-configurational

self-consistent field theory (MCSCF),28–30 and the resolution-of-identity coupled cluster singles-

and-approximate-doubles (RI-CC2),31 and have seen great successes in modeling MCD.

Recent developments in variational approaches within the single reference framework
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(e.g., two-component time-dependent Hartree-Fock and two-component TDDFT) have sig-

nificantly expanded the capabilities of computational MCD.31–37 These advancements, for-

mulated in the relativistic Dirac equation and utilizing integrals with finite-magnetic-field

gauge-including atomic orbitals (GIAO), enable accurate simulations of MCD in strong mag-

netic field and strong spin-orbit regimes and facilitate the modeling of temperature depen-

dence. Unlike response theory-based perturbative approaches, variational methods incorpo-

rate both spin-orbit and magnetic field effects at the molecular orbital level, requiring only

the transition dipoles between states for MCD evaluation. It is crucial to emphasize that

the accurate simulation of relativistic effects in strong magnetic fields requires the Dirac

equation to be formulated under the magnetic balance condition.35 This condition ensures

a smooth transition from a fully relativistic to a non-relativistic treatment of electronic

structure, providing accurate and consistent results across different regimes.

While single-reference-based variational approaches open a new avenue for simulating

MCD, they are currently limited to closed-shell or open-shell systems with a single unpaired

electron. However, transition metal complexes and magnetic defects often exhibit complex

electronic structures and magnetic behaviors arising from multiple unpaired d and f elec-

trons. Expanding the capabilities of variational approaches to handle these more complex

systems will be a significant step forward in computational MCD.

In this work, we introduce a relativistic exact-two-component complete active space self-

consistent-field approach (X2C-CASSCF)38,39 formulated within the restricted magnetic-

balance (RMB) condition and finite-magnetic-field GIAO. We showcase this new approach

through modeling the X-ray MCD (XMCD) of molecular complexes, where the intricate

interplays between core- and valence-electron spin-orbit couplings and magnetic fields are

probed by circularly polarized x-ray photons.
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2 Methodology

2.1 Temperature-Dependent MCD Strength

MCD is a universally applicable probe of molecular systems, as the introduction of a mag-

netic field breaks time-reversal symmetry. In contrast, natural circular dichroism is specific

to certain chiral or helical molecules that break inversion symmetry. In the variational MCD

method, the ground and excited state wavefunctions are optimized by incorporating the ex-

ternal magnetic field and relativistic effects into the Hamiltonian. Time-reversal symmetry

breaking is manifested in the wavefunction and energy of the microstates. Defining direction

of incident light and magnetic field as γ, the left and right circularly polarized (LCP and

RCP) dipoles are defined from the point of view of the observer as:

µ−
γ =

1

2
(µα − iµβ) (1)

µ+
γ =

1

2
(µα + iµβ) (2)

Consequently, the formula for computing the MCD strength can be readily expressed as

follows:1,35

∆A

E
= Γ

∑
J

(
i
∑
αβγ

ϵαβγ⟨0|µα|J⟩γ⟨J |µβ|0⟩γ
)
f(ℏω − ℏωγ

0J), (3)

where γ ∈ {x, y, z} is the direction of the magnetic field (B) and ϵαβγ is the Levi-Civita

symbol (ϵxyz,yzx,zxy = 1, ϵyzx,zyx,xzy = −1; otherwise 0). µ is the dipole operator. E is photon

energy and Γ is a collection of physical constants. ω0J is the excitation energy from the

ground state |0⟩ to the excited state |J⟩.

In cases where the ground state consists of multiple degenerate microstates due to spin

or spin-orbit multiplicity, i.e., S > 0 and J > 0, the interaction between angular momentum
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and the external magnetic field will split these microstates into non-degenerate levels. The

thermal population of these microstates results in temperature-dependent MCD. The work-

ing equation for temperature-dependent MCD is a weighted average of state-specific MCDs,

determined by the Boltzmann distribution:1,35

∆A

E
= Γ

N0∑
k

Nk∑N0

k Nk

∑
J

(
i
∑
αβγ

ϵαβγ⟨0k|µα|J⟩γ⟨J |µβ|0k⟩γ
)
f(ℏω − ℏωγ

0J), (4)

where N0 is number of near-degenerate microstates and Nk = e−Ek/kBT is the Boltzmann

distribution of each microstate k.

2.2 CASSCF with Gauge-Including Atomic Orbitals and Rela-

tivistic Effects – GIAO-X2C-CASSCF

To describe the splitting of microstates due to the interaction between the magnetic field

and spin-orbit coupling, three key components are integrated into a computational MCD

approach: (1) the use of finite-magnetic-field GIAO to define a local gauge origin on each

atom, thus mitigating the gauge origin dependence, (2) the X2C relativistic approach to vari-

ationally incorporate one-electron relativistic effects, including the scalar relativistic effects

and spin-orbit effects, as well as the magnetic field-molecule interaction in the wavefunc-

tion optimization, and (3) a multireference method within the framework of CASSCF to

effectively model near-degenerate microstates. This approach will be referred to as GIAO-

X2C-CASSCF.

2.2.1 Finite-Magnetic-Field Gauge-Including Atomic Orbital

For many-atom systems, electronic structure calculations in the presence of electromagnetic

fields can become unphysically dependent on the choice of the arbitrary gauge origin. By

using GIAOs, also known as London orbitals,40–49 a local gauge origin is defined on each

nuclear center, removing the gauge origin dependence in the simulation. The expression for
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GIAO is given by:

χGIAO(r,kA) = χGTO(r−RA)e
ikA·(r−RA), (5)

where magnetic field B and gauge center RA (set as the center of the basis) enter the

expression as a phase factor kA = 1
2
(RA×B) for the Gaussian-type orbitals (GTO). General

recursion relationships for one- and two-electron integrals using London orbitals with a finite-

magnetic-field have been previously developed.50–53

2.2.2 Exact-Two-Component in Restricted Magnetic-Balance Condition

The theory of the restricted-magnetic-balance (RMB) condition was introduced previously, 35,54–59

ensuring a smooth transition from relativistic to non-relativistic, and from magnetic-field-

dressed to non-magnetic electronic structure calculations. The RMB condition allows the

same basis to be used for the large and pseudo-large components in the bi-spinor repre-

sentation, supporting the one-step exact-two-component (X2C) transformation from four-

component to two-component framework.60–79

In the spinor basis, the matrix representation of the Dirac equation in RMB is:

V M

M 1
4c2

W −M


C+

L C−
L

C+
S C−

S

 =

S 0

0 1
2c2

M


C+

L C−
L

C+
S C−

S


ϵ+ 0

0 ϵ−

 (6)

Mµν = ⟨fµ|
1

2
(σ · π)(σ · π)|fν⟩ (7)

Wµν = ⟨fµ|(σ · π)V (σ · π)|fν⟩ (8)

The mechanical momentum π = p + A includes the linear momentum p = i∇ and the

vector potential A = 1
2
B × r for electrons. Each spinor is formed as a tensor product of

a GIAO χ̃ with spin functions f = {χ̃} ⊗ {α, β}. where S and V are the block-diagonal

two-component overlap and non-relativistic potential energy matrix, and {ϵ+p }, {ϵ−p } are
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the sets of positive/negative eigenvalues with corresponding molecular orbital coefficients

(C+
L C+

S )
T for the positive and (C−

L C−
S )

T for the negative energy solutions. Mµν and Wµν

are matrix elements of operator 1
2
(σ ·π)(σ ·π) and (σ ·π)V (σ ·π) respectively, represented

in the RMB condition.

The M matrix (Eq. (7)) includes the kinetic energy, angular momentum, and electric

quadrupole integrals evaluated in the GIAO basis. The W matrix (Eq. (8)) includes rela-

tivistic effects, e.g., spin-free and spin-orbit and their interactions with the magnetic field.

Equations (7) and (8) can be separated using the Dirac identity into the following expres-

sions:

1

2
(σ · π)(σ · π) = −1

2
∇2 +

1

2
(σ − ir×∇) ·B+

1

8
(B× r)2 (9)

(σ · π)V (σ · π) = (σ · p)V (σ · p) + (pV ·A+AV · p)

+ iσ · (pV ×A+AV × p) +AV ·A (10)

The static magnetic field B enters Eq. (10) as:

pV ·A+AV · p =
i

2

{
Bx[(∇yV rz + rzV∇y)− (∇zV ry + ryV∇z)]

By[(∇zV rx + rxV∇z)− (∇xV rz + rzV∇x)]

Bz[(∇xV ry + ryV∇x)− (∇yV rx + rxV∇y)]
}

(11)

(pV ×A+AV × p)κ =
∑
µ

1

2
Bµ(rκV pµ − pµV rκ) +

1

2
Bκ(pµV rµ − rµV pµ) (12)

AV ·A = xV x(B2
y +B2

z ) + yV y(B2
x +B2

z ) + zV z(B2
x +B2

y)

− 2xV yBxBy − 2yV zByBz − 2xV zBxBz (13)

where κ, µ ∈ {x, y, z}. For detailed integral evaluation algorithms for the M matrix, see Ref.

53. Integral evaluations for relativistic one-electron W matrix using GIAOs are non-trivial

and details are presented in the Appendix.

7



The derivation of the X2C procedure under the RMB condition was presented in Ref.

35. Here, we include only the final expressions for completeness of the discussion. The

two-component electron-only X2C Hamiltonian can be constructed as:

HX2C = (K−1)†R†{K†VK+ c
√
2tX+Xc

√
2t+X†[

√
2t

−1
K†(σ · π)V (σ · π)K

√
2t

−1
− 2c2]X}RK−1

(14)

X = C′+
S (C

′+
L)

−1 (15)

R = (I+X†X)−
1
2 (16)

where the two-component matrix K is obtained by solving the following eigenvalue equation:

MK = SKt (17)

and t is the diagonal matrix of the eigenvalues.

The X2C Hamiltonian under the RMB condition, as shown in Eq. (14), allows for the

variational inclusion of magnetic field perturbations in the Dirac equation. This ensures that

the solution is bounded from below within the X2C formalism, enabling the application of

variational procedures to obtain the ground state wave function in the presence of a magnetic

field.

2.2.3 GIAO-X2C-CASSCF

The extension of the GIAO-X2C framework in the RMB condition to spinor-based CASSCF

is straightforward, especially when only the non-relativistic or bare Coulomb operator is

used for electron repulsion interaction in the X2C correlation calculations.53 The process

involves utilizing electron repulsion integrals with the finite field GIAOs (GIAO-ERI)53 in

X2C-CASSCF,80 both of which have been previously developed.

However, the inclusion of a magnetic field breaks the time-reversal symmetry. Conse-

quently, all components of the GIAO-X2C-CASSCF method—including atomic orbital (AO)
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integrals, AO to spinor transformation, CASSCF orbital rotation, and eigensolvers—must

be formulated in the Kramers’ unrestricted framework.

Since orbital rotation in X2C-CASSCF directly modifies the orbital coefficients and the

orbital coefficients enter the X2C transformation (see Eq. (15)), this typically requires the

reconstruction and application of the transformation matrix at every X2C-CASSCF step

due to the two-electron picture-change effect. However, the use of the approximate one-

electron X2C approach within the one-electron four-component Dirac–Hartree–Fock frame-

work81 eliminates the need to recompute the two-component transformation matrix in the

current implementation. This is because the two-electron operator is not transformed, ignor-

ing the two-electron picture-change effect; therefore, the one-electron X2C transformation

only depends on the four-component one-electron operator, which does not need to be solved

self-consistently.

3 Computational Details

The geometries of 2,2,6,6-tetramethylcyclohexanone and pyrimidine were optimized with

the B3LYP functional82–85 with a 6-31G(d) basis set86,87 in zero field, using the GAUS-

SIAN 16 computational chemistry software package.88 See the Supporting Information for

optimized structures. GIAO-6-31G(d) basis set is used for 2,2,6,6-tetramethylcyclohexanone

and pyrimidine. GIAO-Sapporo-DKH3-DZP-2012-All89 and GIAO-x2c-TZVPall-2c90 basis

sets are used for Mn2+ and Mn(II)O6−
4 , respectively. Computed spectra are broadened with

a normalized Gaussian function

fJ(ω) =
1√
πσJ

exp

[
−
(
ω − ω0J

σJ

)2
]

(18)

where σJ is broadening factor for state J and ω0J is excitation energy. All GIAO-X2C-

CASSCF calculations in finite magnetic field were performed in a development version of

CHRONUS QUANTUM open source package.91,92
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4 Benchmark and Discussion

4.1 Oxygen K-edge XMCD of 2,2,6,6-Tetramethylcyclohexanone

Figure 1. Simulated isotropic oxygen K-edge XMCD spectrum of 2,2,6,6-
tetramethylcyclohexanone in a 2.106 × 10−5 a.u. (∼ 4.95 T) magnetic field.
Broadening factor is set to σ = 0.015 Hartree. Main molecular orbital contri-
butions are shown.

The first benchmark case involves the organic molecule 2,2,6,6-tetramethylcyclohexanone.

Since neither the ground state nor the excited state of this molecule exhibits Zeeman split-

ting, the XMCD should exhibit the same features as observed in the UV/Vis MCD spectrum,

serving as an indirect way to validate the method. The oxygen K-edge XMCD probes the

1s → π∗ transition. For this system, we considered an active space of (2e, 4o), includ-

ing two occupied oxygen 1s orbital and two unoccupied π∗ orbital to provide a minimal

description of the core excitation. The ground state and the lowest singlet excited state

are included in the state-average orbital optimization. A magnetic field of 2.106 × 10−5

a.u. (approximately 4.95 T) is applied. The simulated oxygen K-edge XMCD spectrum

of 2,2,6,6-tetramethylcyclohexanone is shown in Figure 1. The computed oxygen K-edge

XMCD band is located at 535.8 eV, corresponding to the 1s → π∗ transition, and exhibits

similar characteristics to those observed in the UV/Vis MCD spectrum.93
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4.2 Nitrogen K-edge XMCD of Pyrimidine

The system of pyrimidine is a more complicated system than 2,2,6,6-tetramethylcyclohexanone

as both UV/Vis MCD and nitrogen K-edge XMCD consist of multiple excitations. For

UV/Vis MCD, we mainly consider four lowest excitations involving 1B1(n → π∗), 1B2(π →

π∗), 2B1(n → π∗) and 1A1(π → π∗), resulting in an (8e, 12o) active space for the MCD calcu-

lation. The reference orbitals for the MCD calculation were optimized with a state-average

scheme using all states. For the nitrogen K-edge XMCD calculation, four nitrogen 1s orbitals

were added to the active space. The ground state and all 880 states, which contribute to the

nitrogen K-edge spectrum, are considered in state-averaged orbital optimization in the (12e,

16o) active space for the XMCD calculation. A magnetic field of 2.238× 10−5 a.u. (∼ 5.26

T) is applied.

The simulated MCD and XMCD spectra are shown in Figure 2. The peaks of the

computed MCD band are located at 3.38, 5.61, 5.68 and 6.40 eV, after applying a uniform

shift of 2.15 eV. The signs of the computed UV/Vis MCD peaks are in agreement with

experiments.94,95 For nitrogen K-edge excitations, the 1s core orbitals of two different N

atoms are linearly transformed to symmetric a1 and anti-asymmetric b2 molecular orbitals.

The simulated XMCD spectra is shown in Figure 2(b). Two main positive peaks are observed.

The first peak is located at 401.4 eV, arising from the a1 → π∗ and b2 → π∗ transition.

The second peak at 412.4 eV has a complex electronic structure. Projecting the reduced

density onto the orbital space reveals that these are shake-up peaks4,5 which are two-electron

excitations including one-electron nitrogen K-edge a1 → π∗ or b2 → π∗ mixed with a second-

electron n → π∗ or π → π∗ transitions.

4.3 L-edge XMCD of Mn2+ ion

In this study, we investigate the L-edge XMCD spectrum of a high-spin Mn2+ ion. L-edge

spectroscopy involves the excitation of electrons from the 2p core orbitals, which split into

p1/2 and p3/2 manifolds due to spin-orbit coupling. The ground state of Mn2+ has a d5
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(a)

(b)

+ +

+ +

Figure 2. Simulated isotropic MCD (a) and nitrogen K-edge XMCD (b) spec-
trum of pyrimidine in a 2.238×10−5 a.u. magnetic field. Broadening factor is set
to σ = 0.01 for MCD and σ = 0.05 Hartree for XMCD. Main molecular orbital
contributions are shown. A uniform shift of 2.15 eV is applied to the computed
MCD spectrum. MCD experimental results were reproduced from Ref. 94. Copy-
right 1977 American Chemical Society.
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high-spin configuration, where the 3d orbitals are split into degenerate six-fold d5/2 and

four-fold d3/2 groups. When an external magnetic field is applied, the degenerate orbitals

split into 2J + 1 microstates (mJ = −J, ..., J), shown in Figure 3. These microstates, with

well-defined magnetic moments, make the free Mn2+ ion an ideal test case for studying the

XMCD selection rules.

p+3/2
p+1/2
p-1/2
p-3/2

p+1/2
p-1/2

d+3/2
d+1/2
d-1/2
d-3/2

d+5/2
d+3/2
d+1/2
d-1/2
d-3/2
d-5/2

3d

2p

d5/2

d3/2

p3/2

p1/2

L3 L2

B

Figure 3. Energy diagram of of Mn2+ in finite magnetic field.

We selected all six core 2p and ten valence 3d spinor orbitals in an (11e, 16o) active

space for GIAO-X2C-CASSCF calculations. The state-averaged orbital optimization con-

sidered 6 ground microstates and 1260 single-electron excited states resulting from 2p → 3d

transitions. To compute the XMCD spectrum, we obtained a total of 1512 states for the

computation of transition dipoles. It is important to note that the sign of XMCD is defined

differently in various literature sources. For the XMCD spectrum at the L-edge of the Mn2+

ion and the Mn(II)O6−
4 complex (discussed in the next section), a phase factor of −1 is added

to Equation (4) to match the convention where the L3 peak is negative.11

The GIAO-X2C-CASSCF simulated L-edge XMCD spectrum is shown in Figure 4. In
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the absence of an external magnetic field, the L3 and L2 peaks arise from p3/2 → d5/2

and p1/2 → d3/2, respectively, from the single-electron orbital picture, resulting in two single

peaks in the L-edge spectrum. In XMCD, the external filed splits both the 2p and 3d orbitals

into non-degenerate manifolds (see Figure 3), giving rise to additional peaks observed in the

L-edge spectrum. There are seven main peaks, labeled 1 to 7, in the computed XMCD

spectrum. By analyzing the configuration interaction coefficients and mJ values of the

molecular orbitals, we can identify the nature of these peaks, as shown in Figure 4.

1:  p3/2,+3/2→ d5/2,+1/2
2:  p3/2,+3/2→ d5/2,+5/2; p3/2,+1/2→ d5/2,+3/2
p3/2,+1/2→ d5/2,-1/2

3:  p3/2,-1/2→ d5/2,-3/2
4:  p3/2,+3/2, d3/2,-1/2→ d5/2,-3/2, d5/2,+3/2; p3/2,-1/2→ d5/2,-3/2
5:  p3/2,+3/2, d3/2,+3/2→ d5/2,+1/2, d5/2,+3/2
6:  p1/2,-1/2→ d5/2,-3/2
7:  p1/2,-1/2→ d5/2,-3/2; p1/2,+1/2→ d5/2,-1/2

Figure 4. Simulated L-edge XMCD spectrum of Mn2+ in an 8 T magnetic field.
The broadening factor is set to σ = 0.02 Hartree. Main peaks are labeled with
their corresponding electronic transitions.

In the following discussion, we use the notation of lJ,mJ
to identify allowed XMCD tran-

sitions. The peaks at 637-647 eV feature the L3 edge, composed of five main peaks labeled

1 to 5. Generally, these peaks arise primarily from excitations from the p3/2 to the d5/2

sublevels. The peaks at 647-652 are the L2 edge, consisting of transitions from p1/2 to d5/2

orbitals.

The first small peak, 1, near 637 eV originates from the excitation p3/2,+3/2 → d5/2,+1/2.

The total change in mJ is −1, indicating that this excitation is RCP-active and will result

in a positive peak. The large negative peak, 2, near 638 eV, includes two main negative

contributions: p3/2,+1/2 → d5/2,+3/2 and p3/2,+3/2 → d5/2,+5/2. Since ∆mJ = +1, these
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excitations are LCP-active and result in a negative peak. There is also a positive contribution

from p3/2,+1/2 → d5/2,−1/2 near 638 eV. However, this positive feature cannot be observed

due to the dominant negative intensity from the other transitions. The positive peak 3 at

∼639 eV includes the p3/2,−1/2 → d5/2,−3/2 transition, giving rise to a derivative line shape

of the L3 edge.

Peaks 4 and 5 are L-edge shake-up transitions.4 Peak 4 arises from a double excitation

p3/2,+3/2, d3/2,−1/2 → d5/2,−3/2, d5/2,+3/2. Similarly, peak 5 consists of another double excita-

tion p3/2,+3/2, d3/2,+3/2 → d5/2,+1/2, d5/2,+3/2. These shake-up peaks cannot be observed using

the linear-response TDDFT approach because they feature a core-electron transition accom-

panied with a d-d transition. Both double excitations result in ∆mJ = −1, making them

RCP-active and giving rise to positive peaks.

Peaks 6 and 7 feature the L2 edge. Unlike peaks 1 to 5, the main excitations of peaks

6 and 7 originate from the p1/2 manifold. For peak 6, the excitation is p1/2,−1/2 → d5/2,−3/2.

Peak 7 consists of two excitations: p1/2,+1/2 → d5/2,−1/2 and p1/2,−1/2 → d5/2,−3/2. All

excitations in peaks 6 and 7 are associated with ∆mJ = −1, showing positive RCP-activities.

4.4 Temperature-Dependent L-edge XMCD of Td Mn(II)O6−
4

Figure 5. Molecular structure of Td Mn(II)O6−
4 . An 8 T magnetic field is applied

to the +z direction.

Temperature-dependent Mn L-edge XMCD of Mn2+-doped ZnO has been measured ex-
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perimentally to study the magnetic properties of the material.96–98 We simulate the spectrum

using a tetrahedrally coordinated Mn(II)O6−
4 cluster with the Mn-O bond length set to the

experimental value of 2 Å.99 For the GIAO-X2C-CASSCF calculations, we used the same

active space setup as in the free Mn2+ ion case, with the magnetic field aligned to the +z

direction (See Figure 5).

640 645 650 655
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Figure 6. Experimental and simulated XMCD spectrum of Mn(II)O6−
4 L2 and

L3 transitions in an 8 T magnetic field. The broadening factor is set to σ = 0.02
Hartree. The main peaks are marked. Experimental results were reproduced
from Ref. 98, with the permission of AIP Publishing. The computed peaks are
blue-shifted by 5.59 eV to match the first largest experimental peak.

The GIAO-X2C-CASSCF simulated XMCD spectra in Figure 6 show an excellent agree-

ment with experiment.96–98 Similar to those in the L-edge XMCD spectrum of Mn2+, 7 main

peaks are observed. Like in the Mn2+ ion, the Mn(II)O46− L-edge spectrum arises from

Mn 2p core electron excitations. The splitting of the core electron 2p orbitals can still be

described by p1/2 and p3/2 manifolds, as they are not strongly affected by the tetrahedral

ligand field. The tetrahedral oxygen ligand field in Mn(II)O46− splits the Mn 3d orbitals

into e and t2 levels. The high-spin configuration e2t32 gives rise to six-fold degenerate E5/2

ground states. Due to the magnetic Zeeman effect, this six-fold degeneracy splits into non-

degenerate microstates (MJ = ±1
2
,±3

2
,±5

2
). While the complete term symbol analysis of

the final states in the Mn L-edge XMCD of Mn(II)O6−
4 is complex, it is evident that the key
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features and transitions can be understood in terms of p1/2 and p3/2 transitions into these

microstates, similar to those in the free Mn2+ ion.

Unlike single-reference-based methods, the GIAO-X2C-CASSCF approach is capable of

resolving all microstates (MJ = ±1
2
,±3

2
,±5

2
) and the XMCD transitions originating from

each of them. At temperatures above 0 K, higher-energy microstates can be populated

according to the Boltzmann distribution, resulting in temperature-dependent MCD spectra.

Figure 6 shows the XMCD spectral progression from 10 K to 300 K. As higher-energy

microstates become occupied, the probabilities of promoting 2p electrons to these levels

decrease. The computed spectral progression accurately reflects the reduced intensities of

XMCD peaks at higher temperatures.

5 Conclusion

In this work, we have developed the exact-two-component complete state-average active

space self-consistent-field (X2C-CASSCF) approach that incorporates a non-perturbative

treatment of static magnetic fields using gauge-including atomic orbitals (GIAOs). The

GIAO-X2C-CASSCFmethodology effectively captures all microstates within the same 2J+1-

degenerate manifold and their splitting in a static magnetic field, which are not accessible

through single-reference-based methods.

We introduced the restricted-magnetic-balance condition for the four- to two-component

transformation in a static magnetic field, enabling the variational inclusion of the magnetic

field in two-component electronic structure theory. Additionally, we derived recursive expres-

sions for evaluating one-electron relativistic integrals using gauge-including atomic orbitals

in the presence of a finite magnetic field.

The relativistic GIAO-X2C-CASSCF was tested in simulating oxygen and nitrogen X-ray

K-edge MCD spectroscopy for organic compounds such as 2,2,6,6-tetramethylcyclohexanone

and pyrimidine. Additionally, we simulated L-edge X-ray MCD spectroscopy for high-spin
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open-shell transition metal ion Mn2+, as well as temperature-dependent X-ray MCD spec-

troscopy for tetrahedral Mn(II)O6−
4 . For Mn2+, the origins and selection rules of L2,3 XMCD

transitions were demonstrated with a careful analysis of configurations and atomic orbitals.

The computed Mn(II)O6−
4 L-edge XMCD spectrum agrees well with experiment.

We have shown that the GIAO-X2C-CASSCF method is highly effective tool for simu-

lating MCD and XMCD spectra for systems with high multiplicity. However, the CASSCF

method lacks a description of dynamic electron correlation. This can be rectified by further

corrections to excitation energies using methods such as MRCI, MRPDFT, or MRPT2. 39,77,78
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Appendix: Evaluation of One-Electron Relativistic Inte-

grals with Finite-Magnetic-Field Gauge-Including Atomic

Orbitals

A complex-valued finite-field gauge-including atomic orbital (GIAO) is defined as

χ̃(r−RA;kA) = χ(r−RA)e
ikA·(r−RA) (19)

where {χ} are atom-centered Gaussian type orbitals,

χ = (x−Rx)
ax(y −Ry)

ay(z −Rz)
aze−ζ|r−RA|2 (20)

|r−R| =
√

(x−Rx)2 + (y −Ry)2 + (z −Rz)2 (21)

R = {Rx, Ry, Rz} is the coordinate of the atom center and a = {ax, ay, az} is the angular

momentum. ζ is the exponent of primitive Gaussian type orbitals. In the following discus-

sion, we denote the angular momentum of the basis functions by a and b, and use a tilde (ã

and b̃) to indicate that the orbitals are complex-valued finite-field GIAO.

The one-electron relativistic integrals are used in the one-electron X2C Hamiltonian.

Based on Eqs. (11) and (12), three types of integrals are needed, all involving the electron-

nuclear Coulomb operator V = − 1
|r−R| :

• Spin-free (ã|pV ·p|b̃) and spin-orbit (ã|pV ×p|b̃) integrals, which have two derivative

operators and one nuclear potential operator.

• (ã|∇iV rj|b̃) and (ã|rjV∇i|b̃) integrals, which have one derivative operator, one Carte-

sian coordinate operator, and a nuclear potential operator.

• (ã|AV · A|b̃) integrals, which have two coordinate operators and a nuclear potential

operator.
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A.1 (ã|pV · p|b̃) Integral Evaluation

The derivative with respect to electronic degrees of freedom can be transformed into the

derivative with respect to the nuclear coordinate

∂

∂rj
χ̃(r−RA;kA; a; ζ) (22)

= − ∂

∂RA,j

χ̃(r−RA;kA; a; ζ)

= −2ζχ̃(r−RA;kA; a+ 1j; ζ) + ajχ̃(r−RA;kA; a− 1j; ζ) + ikA,jχ̃(r−RA;kA; a; ζ)

j ∈ {x, y, z}

For the (ã|pV ·p|b̃) and spin-orbit (ã|pV ×p|b̃) integrals, we can rewrite them as the second

derivative of nuclear attraction integral with respect to nuclear coordinates,

(ã|pV · p|b̃) = −(ã|∇V ·∇|b̃) =
∑

j=x,y,z

∂Aj
∂Bj

(ã|V |b̃) (23)

(ã|pV × p|b̃) = −(ã|∇V ×∇|b̃) =
∑

i,j,k=x,y,z

εijk ∂Ai
∂Bj

(ã|V |b̃)k̂ (24)

i, j, k ∈ x, y, z

where k̂ is the unit vector, and ϵxyz,yzx,zxy = 1, ϵyzx,zyx,xzy = −1; otherwise 0.

According to Eq. (22), the second derivative can be evaluated in a recursive approach,

∂Ai
∂Bj

(ã|V |b̃) =2ζa{2ζb(ã+ 1i|V |b̃+ 1j)− bj(ã+ 1i|V |b̃− 1j)− ikb,j(ã+ 1i|V |b)}

− ai{2ζb(ã− 1i|V |b̃+ 1j)− bj(ã− 1i|V |b̃− 1j)− ikb,j(ã− 1i|V |b̃)}

− ika,i{2ζb(ã|V |b̃+ 1j)− bj(ã|V |b̃− 1j)− ikb,j(ã|V |b̃)} (25)
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A.2 (ã|∇iV rj|b̃) Integral Evaluation

For the (ã|∇iV rj|b̃) integral type, we use ri = (ri − Bi) + Bi so that the derivative can be

written as

(ã|∇iV rj|b̃) =− (∇iã|V rj|b̃) = (∇Ai
ã|V rj|b̃)

=2ζa(ã+ 1i|V |b̃+ 1j) + Bj(ã+ 1i|V |b̃)]

− ai[(ã− 1i|V |b̃+ 1j) + Bj(ã− 1i|V |b̃)]

− ika,i[(ã|V |b̃+ 1j) + Bj(ã|V |b̃)] (26)

Similarly, we have

(ã|rjV∇i|b̃) =− [2ζb(ã+ 1j|V |b̃+ 1i)−Nα(b)(ã+ 1j|V |b̃− 1i)− ikb,i(ã+ 1j|V |b̃)]

− Aj[2ζb(ã|V |b̃+ 1α)− bi(ã|V |b̃− 1i)− ikb,i(ã|V |b̃)] (27)

Notice that linear combinations of Eq. (26) and Eq. (27) lead to Hermitian ∇jV ri − riV∇j

and anti-Hermitian riV∇j +∇jV ri.

A.3 (ã|AV ·A|b̃) Integral Evaluation

To evaluate the (ã|AV · A|b̃) integral, we use the operator in the form of Eq. (13), where

the integral of the type (ã|riV rj|b̃) can be evaluated as

(ã|riV rj|b̃) = (ã|[(r − A)i + Ai]V [(r − B)j +Bj]|b̃)

= (ã+ 1i|V |b̃+ 1j) + Bj(ã+ 1i|V |b̃) + Ai(ã|V |b̃+ 1j) + AiBj(ã|V |b̃) (28)
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A.4 Evaluation of Nuclear Attraction Integral with Finite-Width

Nucleus and Finite Mangetic Field GIAO

For relativistic calculations, a Gaussian charge distribution of the nucleus is utilized.100 In

the finite width nuclear model, the nuclear potential is given by:

V (r) = −
∫

d3R
Nce

−ζc(R−C)2

|r−R|
(29)

where e−ζc(R−C)2 represents the Gaussian distribution of the charge with the nucleus cen-

tered at C. The parameter ζc determines the diffusivity of the nucleus. The normalization

condition is ∫
d3RNce

−ζc(R−C)2 = Zc (30)

where Zc is the nuclear charge.

The electron-nuclear attraction integral with finite-width nuclear model can be viewed

as a special case of electron repulsion integral,

(ã|V (r)|b̃) =
x

d3Rd3rχ̃a(r)χ̃b(r)
Nce

−ζc(R−C)2

|r−R|

=
x

d3Rd3rχ̃a(r)χ̃b(r)
1

|r−R|
χc(R)χd(R) (31)

where

χc = Nce
−ζc(R−C)2 , χd = 1 = e0 (32)

χc and χd are Gaussian orbitals instead of London orbitals.
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We define

ζ = ζa + ζb, (33)

ρ =
ζζc

ζ + ζc
(34)

P =
ζaA+ ζbB

ζ
(35)

W =
ζP+ ζcC

ζ + ζc
(36)

kp = −ka + kb (37)

kq = 0 (38)

By substituting these quantities into the recursion of the electron repulsion integral using

GIAO as described in Ref. 53, and following some mathematical derivations, we obtain a

recursive expression for the nuclear attraction integral with a finite-width nuclear model and

finite magnetic field GIAO:

((ã+ 1i)|V |b̃)(m) =(Pi +
ikp,i
2ζ

− Ai)(ã|V |b̃)(m) − (Pi +
ikp,i
2ζ

− Ci)(ã|V |b̃)(m+1)

+
1

2ζ
Ni(a)

{
((ã− 1i)|V |b̃)(m) − ((ã− 1i)|V |b̃)(m+1)

}
+

1

2ζ
Ni(b)

{
(ã|V |(b̃− 1i))

(m) − (b̃|V |(ã− 1i))
(m+1)

}
(39)

The GIAO auxiliary integral is

(0̃|V |0̃)(m) = Zc(0̃||0̃)
(

ζc
ζ + ζc

)m

2

(
ρ

π

)1/2

Fm(T ) (40)

where T in the Boys function has the following definition

T = ρ

(
P−C+ i

kp

2ζ

)2

(41)
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