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Abstract: White noise is a popular input in system identification, but it lacks the desirable
property of parameterization invariance; when changing variables for the parameter and input,
the transformed input distribution is generally no longer white noise. We formally define
parameterization-invariance using diffeomorphism groups in the space of parameter-input pairs,
and in certain cases construct invariant measures inspired by the Jeffreys prior. This view
of random input connects disparate intuitions about identifiability, controllability, and the

concentration of measure phenomenon.
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1. INTRODUCTION

In a system identification experiment, the statistical rela-
tionship between the (unknown) parameter, the (known)
system input, and the (known) observed data is used to get
a parameter estimate. In symbols: parameter estimation ex-
tracts information about 6 from the log-likelihood £(6, u; Z),
a function of the unknown parameter 6, the system input
u, and the observed data Z; which will be formally defined
in Section 2.2.

A popular way to quantify this information is the Fisher
information matrix (FIM), which averages a sensitivity
gramian matrix over possible outcomes of Z for a given 6
and wu:

M(0;u) = E[Vol(6,u; 2)] [Vol(8,u; Z)]T . (1)

If a number of regularity and identifiability assumptions are
satisfied, both the sampling distribution of the maximum
likelihood estimator of # and Bayesian posterior distri-
butions for 6 converge weakly to a Normal distribution
with zero bias and covariance matrix M (6;u)~*, scaled by
(amount of data)~'/2. On the other hand, the Cramer-Rao
inequality asserts that any unbiased estimator of 6 has
covariance matrix at least M (0;u) .

There are, broadly speaking, three schools of accepted
practice when it comes to choosing u in order to reveal 6.

manual Design u based on intuition about the system and
how different possibilities of 6 should be differentiated
from each other: “if a parameter is of special interest,
then vary it and check where the Bode plot moves, and
put the input power there” (Ljung, 1998, p. 417).

optimal Design u by minimizing the positive-semidefinite
matrix M (0;u)~! in some sense: determinant, operator
norm, trace, etc.; or via a proxy such as maximizing
trace M (0;u). This procedure is called optimal experi-

* This work was supported by the National Science Foundation
CAREER Program (Grant No. 2046292).

ment design (OED) and, when applied to dynamic system
estimation, involves optimal control.

random Sample u as a random signal with a lage number
of independent components, such as white (Gaussian)
noise. Variations of random excitation include filtered
white noise and random binary sequences, but both of
these can be understood as white noise with postprocess-
ing (Ljung, 1998, Section 13.3).

Our paper addresses the third camp.

1.1 Pre-history of random excitation

Probability theory was defined rigorously by Kolmogorov in
1933 (English translation: Kolmogorov, 1950). Consensus
developed in physics that the universe at its smallest scales
was inherently nondeterministic. In diverse settings, Fokker,
Planck, Kolmogorov, Wiener, It6, and others developed
theories of continuous-time random processes throughout
the 20th century. This coincided with advances in real,
complex, and functional analysis that enabled rigorous
characterization of “rough” signals (Halperin and Schwarz,
1952). As linear control theory matured during the postwar
and Cold War era, Kalman and Bucy (1961) and others
modeled process, observation, and disturbance noise as
random processes. At the same time, the discipline of
modern statistics, the rigorous application of probability to
inference from data, was achieving success and popularity
at the hand of von Mises, Jaynes, Jeffreys, Fisher (an early
proponent of experiment design), and others.

1.2 History of random excitation

The earliest application of random excitation might be mea-
suring the frequency response of human hearing using noise
Hirsh (1955). The fields of neuroscience and psychology
continue to use noise excitation to characterize frequency
dependence in physiological phenomena (Guttman et al.,
1974; Moller, 1974, 1977; Marmarelis and Marmarelis, 1978;
Mpgller, 1986). We include these examples because there is
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a long reception history of psychology in the cybernetic
perspective to signals and systems, e.g. Braitenberg (2004).

An early example of white noise in engineering system
identification is the model identification adaptive control
described in Cooper et al. (1960, Chapter 2). The theory
spreads to mechanical (Schmidt, 1985) and civil (Igusa,
1989) engineering. Reviews from this period include Cuenod
and Sage (1968); Mehra (1974); Makhoul (1975). Mehra
(1974) reads:

Even though an enormous amount of literature
exists on statistical experimental design, only a
few papers relate to the input design problem.
A reason for this lack of interest may be the fact
that in statistical time series analysis, there is
generally no controllable input.

Another reason, we suggest, is that deliberative input design
only became feasible with the coming of the civilian digital
era and high-fidelity signal generators such as the Hewlett-
Packard noise generator type 3722 (Mgller, 1974).

Today there is now an enormous amount of literature on in-
put design. More recently, the monographs by Ljung (1998,
Section 13.2), Bendat and Piersol (2010), Keesman (2011,
Chapter 4), Pintelon and Schoukens (2012, Chapter 5), and
Bittanti (2019, Chapter 5) propose either random noise,
random binary sequence, or both as a viable excitation
for estimating discrete-time linear autoregressive models.
Within the autoregressive model class, the qualitative
notion of persistence of excitation, expressed as a rank
condition, determines whether the input is sufficiently
rich to discriminate between models. White noise has this
property. Noise is also stationary and convenient to analyze
within a Laplace or z-transform framework.

System identification literature has recently adopted con-
centration inequalities and empirical process theory from
statistical learning and random matrix theory (Zheng and
Li, 2021; Oymak and Ozay, 2022; Tsiamis et al., 2022). The
result is a considerable sharpening of the asymptotic theory
of linear system identification in finite-sample terms.

2. PRELIMINARIES

The integers from a to b inclusive, are denoted [a . .. b]. The
Dirac measure is written as [, 6(z,y)dz = y.

2.1 System

Let © C RY be parameter space, i C R be input design
space, X C R be state space, and ) C R% be output
space. Let xg be an initial condition and T a final time.
The identification experiment permits n measurements.
Let {ti};c(1. ) be a finite subset of [0,T] representing
measurement times. A continuous-time dynamic system is
a mapping U x © — ) defined in the following manner.
For a given u € U and 6 € ©, we get a continuous solution
trajectory y(t; 0, u):

x(0;6,u) = xg (2a)
Z(t;0,u) = f(t,x(t,0,u);0,u), 0<t<T (2b)
y(t:0,u) = g(t, x(t:;0,u)) (2¢)

The continuous solution ¥ is unobserved. Instead we have
a random vector of all measurements by Z = (z;)ie[1...n]
taking values in Z = Y".

Example 1. A continuous-time single-input single-output
linear time-invariant system, where the actuation is pre-
scribed at sample times {t;}. Here X = R% ) =R, and
U = R™. The function A : © — R™*" parameterizes square
matrices. The vectors b, c € R" represent input and output
gains, respectively. The functions &; are basis functions
obeying the interpolation conditions £;(t;) = d;;, so that u
can be viewed as an input sequence.

2(0;0,u) =0 (3a)
i(t;0,u) = A0)x(t;0,u) + bz wii(t) (3b)
yi(0,u) ~ N(cTz(t;;0,u),07) (3¢)

Ezxample 2. While this paper focuses on viewing u as
a discrete input sequence, in full generality it is an
abstract design variable that enters f alongside . For
example, u can be the feedback parameters of a closed-loop
parameter-unaware system identification law: @(t; 6, u) =
fcloscd—loop (iE, 03 ’LL) = fopcn—loop (.’t, 0) + hfccdback(x; U)

2.2 Likelihood

The model is entirely contained in a log-likelihood function
{: 0 xUxZ — R, which can be defined in great
generality. !

In our examples, z; ~ N (y;,0%) with known o2, resulting
in the familiar sum-of-squares log-likelihood formula

(0,02 =533 -t 0wl (@)

The function ¢ encapsulates all of the information in the
parametric model.

3. MOTIVATION OF THE PROBLEM

There is a chicken-and-egg problem in input design for
system identification: the choice of input depends on the
yet-unknown parameters. When the input design consists in
optimizing a single deterministic input, in many cases the
optimization program also requires a nominal parameter
value (a Dirac delta distribution) or a prior distribution
over possible parameter values.

A second problem, which to our knowledge has never been
raised in the literature, is that the probability distribution
of random excitation is contingent upon the choice of
parameterization. (A parallel in optimal experiment design
can be found in Firth and Hinde (1997).)

Ezample 3. Two different engineers approach the same
scalar system and write the following two dynamic models
before commencing experimentation. There is a parameter
constraint ¢ < 0 and an input constraint —1 < u(t) < 1.

2(0) = xo

&(t) = 0z(t) + u(t) (u-model)
i(t) = 0z(t) + v(t)? (v-model)
L e.g. aslog d(pz—1) the logarithm of the Radon-Nikodym derivative

dpey,m 7
of the law of Z with respect to a dominating measure on Z.
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Both the u-modeler and the v-modeler have resolved to
apply i.i.d. random inputs. The former claims to have
a familiar “Ax + bu” linear system form, and therefore
asserts that the most natural choice of random inputs
is u(t) ~ Uniform(—1,1).2 It seems the v-modeler has
done an unnatural thing by imposing a static nonlinearity
v = u!/3 in the input path.

But the latter sees things differently. According to the
v-modeler, the competing models look like:

i(t) = 0x(t) + u(t)t/?

z(t) = 0x(t) + v(t)
According to the v-modeler says, the most natural choice
of random inputs is v(t) ~ Uniform(—1,1); it is the u-

modeler who has done a strange thing by imposing a static

nonlinearity u = v3.

As the situation stands, these two engineers cannot agree on
a random input distribution, even though they are trying to
identify the same system. Moreover, the parameterization
dependency can also involve the unknown 6.

Ezxample 4. This example modifies Example 3.
x(0) = xo

&(t) = 0x(t) + u(t

i (t) = z(t) +o(t)?

(0, u-model)
(¢, v-model)

The conversion between models is given by u = v3/¢,
0 = 1/¢. This suggests that in order for any such two
engineers to agree on a distribution of random inputs, they
must agree not only on a distribution for u, but also on
a prior distribution for 6, as parameter and input may be
allowed to transform together.

3.1 Informal problem statement

System identification faces epistemic uncertainty in 6. But
the epistemic uncertainty of § and the aleatoric uncertainty
of u are conmingled, so we should not expect them to be
probabilistically independent.

Because of the dependence between u and 6, we combine
them into a single random variable 6 = (0, u) taking values
in © = O x Y. Furthermore, we will rewrite the log-
likelihood as being a function on this augmented parameter
space: £: O x Z = R.

We desire a probability measure on © that is invariant
under reparameterization, namely that under a change
of variables § = f(6'), the event § € A has the same
probability as 6/ € f~1(A). Tt turns out that nothing is
lost if 8" also takes values in ©; i.ec. f is a diffeomorphism

symmetry of ©.3
4. FORMAL PROBLEM STATEMENT

Let Diff(0) be the diffeomorphism group of © viewed as
a differentiable submanifold of R4+« Let G be some

subgroup of Diff(0). Let £ be the orbit of ¢ under the
pushforward group action ¢ — ¢ o o~! defined by (£ o

2 Or any other distribution on [—1,1] such as Beta or truncated
Normal.
3 A similar interpretation can be found in Jermyn (2005).

o~ 1)(6; Z) = £(c7(0); Z). Likewise, o acts by pushforward
on measures 4 by p+— po o=t defined by (poo=1)(A4) =
(o=t (A)).

Problem 5. Given G, find a functional from £ to the space
of probability measures on © that associates to each £ € £ a
continuous probability measure p, such that for all o € G,

—1
He© 0 = Hpog—1-

The group G represents the degrees of reparameterization
freedom we are willing to admit. In examples 3 and 4, the
dissenting parties should come to agreement on G and
realize that their respective parameterizations differ by
the action of some o € G. We abandon the notion that
any one log-likelihood function is more correct than the
others. Rather, from the perspective of someone who uses
the parameter 6 with log-likelihood ¢, another person who
prefers the parameterization o (6) will use the log-likelihood
¢oo~'. What the problem requires is that the entire orbit
of G will enjoy compatible probabilities.

Suppose that A C © is an event. The second person calls
this event o(A). Problem 5 requires that they should agree
on the probability:

He(A) = firog 1 (0(A)). (5)
Let density functions exist such that i—’ﬁf = 7 and
d”ffi/\”_l = Tyos—1, where X is Lebesgue measure. Then

(5) becomes

[ mioai= [ R @00 (6)

Applying the multivariable change-of-variables formula to
0’ = o(f), we get the volume form df = ‘Vd(é)’ dé.

:/%,,l(a(é)))vg(é)‘dé (7)
A

This must hold true simultaneously for all A. Therefore
Problem 5 may be restated as finding a density assignment
{ — mp that satisfies the transformation law

70(8) = Tpoy—1(c(9)) ‘det vg(é)‘ . 8)

5. SOLUTIONS TO INSTANCES OF PROBLEM 5

There are many choices of G. We work and discuss the
most general case in detail. Sections 5.2 and 5.4 are two
solutions for a smaller G, and Section 5.5 is a solution for
a yet smaller G.

5.1 Case: G = Diff(©)
Let £ : R — R be any smooth function. Define

70(0) \/detIEZ [V(goz)(é; Z)} [V(goe)(é; Z)T, (9)

where V is gradient with respect to the first argument,
and the proportionality allows normalization to ensure that
Jo me(#)d6 = 1. Next we verify (8). By the chain rule,

V(€0 o(0) (' 2) (10)
= (Vo 0)) V(o (o 1(8): 2) (11)
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By the inverse function theorem,

= (Volo ' @) V(o0 @):2)  (12)
Inserting this into the definition of y,
oty (0) ‘det Va(a_l(é’))‘ m(oN@))  (13)

from which (8) follows by substituting 6 = o().
By the chain rule, (9)

70(f) o \/det E, £(6(0; Z))2 [W(é; Z)] [W(é; Z)} T(,M)

We are not sure what to make of the freedom in choosing &.

In the rest of the paper, £ will be the identity map. Then 7,
can be expressed in terms of the Fisher information matrix

M;(0).
o \/det Mj(6). (15)

The parameterization-invariance of 7, can also be expressed
in the following way: the FIM transforms as a symmetric
tensor with two covariant indices.* With this property
in mind, Jeffreys (1946) proposed such a procedure to
generate noninformative priors for Bayesian inference. In
this view, 7, is a Jeffreys prior for the contrived situation
of Bayesian estimation of (6, ) from Z. However, we avoid
construing 7, as an inference prior, because Jeffreys priors
can be poor choices for Bayesian inference (Bernardo and
Smith, 1994; Berger et al., 2015).

5.2 Case: G fizes 6

Recall that the elements of © are pairs (6, u). Let us solve
Problem 5 for the following transformation group:

G={(0,u)—~ (0,0(w) | o € DIfU)}.  (16)

This group expresses the understanding that 6 and u
are recognized as distinct entities; we do not entertain

reparameterizations such as Example 4 that couple 6 and w.

There is no room to disagree about the parameterization of
0. While the distribution constructed in Section 5.1 works,
a simpler 7, also solves this problem:

70.u(0) o \/det Bz [V, 00, u: 2)] [V.ul(60,w: 2)]T. (17)

5.8 Case: G 1isolates elements of u

Let U be an interval, and suppose that U = U% is a cube.

Let us solve Problem 5 for the following transformation
group:
G ={(0,u) = (o(0), 7i(w;))
| 09 € Diff(©),7; € Diff(U)}.
This group expresses the elements of u € U have meanings,
such as sampled function values, that should not be

conmingled with either 6 or each other. We can satisfy
G with the following distribution:

(18)

4 Tensor covariance also means that the FIM defines a Riemannian
metric whose parameterization-invariance has attracted interest in
machine learning (Martens, 2020). Our density 7, corresponds to the
unsigned volume form on this Riemannian manifold.

dy 2
ﬂg(@,u)q\/dctMg(G,u)H E{(fwe(e,u;zﬂ, (19)

(20)

du
= /det Mp(0,u) [ [ /M., (6, ),

which has the advantage of scaling better in d,; unlike
Section 5.1, one does not have to compute the determinant
of a (dg +dy) x (dg + d,,) matrix.

5.4 Independence

Let us retain the G of the previous section and solve the
same instantiation of Problem 5. We give an alternative
solution with the property that the elements of u are
independent.

Let 7, be defined as in (19).
7o(0,u) o ©d (0) 7 (u),

ﬁg(G)O(/Z/{we(G,u’)du’,

(21a)
(21b)

du
wg(u)o<H/@/Mm(e/,u')a(ui,u;)du’do’. (21c)
i=1

Each u; is now independent from the others and from 6.
This means that it is actually not necessary to deal with 7¢
if we are only interested in generating random excitations
by sampling the marginal distribution of w, which has
density my'.

This independence structure is reminiscent of traditional
random experiments such as white noise and random binary
sequences, save that the u; are not identically distributed.

5.5 Cuase: generalized white noise

We may prefer that, like in the case of white noise, {u;}
be identically distributed. This section shows how this
preference can be translated into an instance of Problem 5.
Let U be an interval, and suppose that U = U% is a cube.
Let us solve Problem 5 for the following transformation
group:
G ={(0,u) = (0(0), 7(us))

| 09 € Diff(©), 7 € Diff(U) }.
In contrast with the group (18), this G mandates that a
single 7 € Diff(U) acts elementwise on every ;. There are
yet fewer degrees of freedom.

(22)

Let 7§ and 7 be as in (21). Let S be the permutation group
on d, items. Then we may define the following density,

1
du deg !
mi(u) o | T H/ / mo(0', )3 (e up) du’ 6|
pes =170 U
(23)
which makes u; independent and identically distributed.

6. SPECIFIC FORM FOR A GAUSSIAN SYSTEM
IDENTIFICATION LIKELIHOOD

The likelihood functions ¢ have been abstract. Now we give
the exact form of Section 5.1°s 7y for the Gaussian measure-
ment likelihood ¢ defined in (4). Under this measurement
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model, the Fisher Information Matrix of 6 is proportional
to a sensitivity gramian.

Mo My,
il \/‘W , (240)
Mgo =Y Voy(ts, 0,u) (Voy(ts, 0,u))" (24D)
=1
Mou =) Voy(ti,0,u) (Vay(ts, 0,u)" (24c)
1=1
Myw = Vay(ti,0,u) (Vay(ti 0,u))T  (24d)

i=1
Or, using a block matrix determinant formula,

706, u) \/det Moo det (Moo — MJ, Mg Mg,) — (25)

The matrix My is the FIM of 6. Thus, 7, favors excitations
with a higher Fisher D-criterion. The matrix M, is a sort
of nonlinear controllability gramian, which gets penalized
by the local linear correlation between control effectiveness
and parameter sensitivity. An interpretation is that v and 6
are competing to find expression in y. If small perturbations
du have the same impact on y as small perturbations 06,
then v and 6 are talking over each other.

It is possible to integrate (25) over O to get a heuristic for
optimal, rather than random, design of u.

7. NUMERICAL EXAMPLE

This model is a first-order linear model with unknown
eigenvalue 0 € (Amin, Amax). The function h(-;u) is the
polynomial of degree d,, that interpolates the points (s;, u;),
where s; are the d,, Chebyshev points of the first kind on
[0,T]. After constraining u; € [Umin, Umax], the result is
that h parameterizes a large class of bounded inputs. The
output is x, sampled at the n equidistant points ¢; € [0, 7.

2(0;0,u) =0 (26)
(t;0,u) = 0x(t;0,u) + h(t;u), 0<t<T (27)
Relevant constants are available in Table 1.

The log-likelihood is Gaussian with known variance, so 7y
follows Section 6. We used Hamiltonian Monte Carlo, an
advanced Markov Chain Monte Carlo (MCMC) technique
for sampling from high-dimensional continuous distribu-
tions (Betancourt, 2018), to take 2,000 samples from the
joint distribution of (6, w). The marginal distribution of
0, seen in Fig. 1, results from dropping u in samples of
(0,u). It can be viewed as an uninformative prior for the
unknown 6.

Twenty samples from the marginal distribution of u are
seen in Fig. 2. Visual inspection shows that these samples
have a rich frequency content and wide dynamic range,
qualities are heuristically associated with high values
of the Fisher information. An explanation is that high-
dimensional distributions assign most of their probability
to a “typical set” resembling a thin shell around the
mode, which in this case corresponds to certain Fisher
information-maximizing input signals. This intuition about
concentration of measure in the “typical set” fits the data.
On one hand, the random excitation signals tend to avoid
signals with very high information such as impulses. On

Variable Meaning  Value
Amin a priort lower bound on 6 -3
Amax a priort upper bound on 6 -1
Umin lower bound on input —1
Umax lower bound on input 1

d,  degrees of freedom in input 10
n number of sample points 20
T terminal time 1

Table 1. Constants used when sampling random
inputs for a scalar linear system.

0.7
—— Marginal of m(6, u)

probability density

-3.00 -2.75 -2.50 -2.25 -2.00 -1.75 —-1.50 —1.25 -1.00
6

Fig. 1. Kernel density estimate of marginal distribution of
0 in (0, u) from MCMC samples.

Fig. 2. Twenty random inputs distributed as m(0,u),
derived from MCMC samples.

the other hand, they equally avoid low-information signals
such as those with low total power.

8. CONCLUSION

Randomness is parameterization-dependent: the same noise
signal can look very different in two diffeomorphically equiv-
alent formulations of the same system identification task.
We pose a novel problem of parameterization-invariance and
solve it for different cases of symmetry groups. Our solution
builds a bridge between identifiability (local parameter
sensitivity) and controllability (local input sensitivity) and
advances the observability-controllability duality attested
by the Luenberger observer and its descendants. We hope
it will raise new questions in the subject of input design
for nonlinear identification.

Like optimal design, our invariant distributions favor high
values of local parameter identifiability; like traditional
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random excitation, our invariant distributions exhibit an
empirical concentration of measure phenomenon. Our high-
dimensional invariant distributions may be susceptible
to non-independent concentration of measure phenomena
(Vershynin, 2018, Chap. 5). Problem 5 has a large number
of degrees of freedom, such as the likelihood gauge function
& used in (9), that may be potentially optimized.
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