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Abstract— The development of next-generation battery man-
agement systems needs models with enhanced performance to
enable advanced control, diagnostic, and prognostic techniques
for improving the safety and performance of lithium-ion battery
systems. Specifically, battery models must deliver efficient and
accurate predictions of physical internal states and output
voltage, despite the inevitable presence of various system
uncertainties. To facilitate this, we propose a lightweight hybrid
modeling framework that couples a high-fidelity physics-based
electrochemical battery model with a computationally-efficient
Gaussian process regression (GPR) machine learning model to
predict and compensate for errors in the electrochemical model
output. This is the first time that GPR has been implemented to
predict the output residual of an electrochemical battery model,
which is significant for the following reasons. First, we demon-
strate that GPR is capable of considerably improving output
prediction accuracy, as evidenced by an observed average root-
mean-square prediction error of 7.3 mV across six testing
profiles, versus 119 mV for the standalone electrochemical
model. Second, we employ a data sampling procedure to exhibit
how GPR can use sparse training data to deliver accurate
predictions at minimal computational expense. Our framework
yielded a ratio of computation time to modeled time of 0.003,
indicating ample suitability for online applications.

I. INTRODUCTION

The widespread adoption of lithium-ion (Li-ion) batteries

has spurred significant efforts toward developing the next

generation of battery management systems (BMSs), often

termed advanced BMSs, which seek to enhance battery

safety and performance through features such as online

health monitoring [1], [2], optimal charging control [3], [4],

and remaining useful life prognostics [5]. These features

require a battery model that is capable of delivering accurate

voltage output predictions (i.e., for use in feedback control

and estimation) while maintaining the fidelity and physical

significance of the internal states and parameters (i.e., for

optimal control and degradation monitoring). Accordingly,

physics-based electrochemical battery modeling is an active

research domain, in which first-principles models are being

implemented in BMS applications to encode the physical

mechanisms of battery operation [6]. On the other hand,

researchers are avidly investigating the use of machine learn-

ing (ML) methods for predicting battery performance, which

base predictions on statistically extracted relationships from

data [7]. Finally, hybrid modeling is an emerging approach

that combines the complementary strengths of the physics-

based and ML modeling paradigms [8], [9].
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Physics-based electrochemical models are derived from

first principles and thus maintain the physical significance

of the states and parameters through explicit consideration

of the underlying electrochemical processes. The prevailing

electrochemical model is the Doyle-Fuller-Newman (DFN)

model [10], from which numerous control-oriented reduced-

order models have been developed to improve computational

efficiency while maintaining fidelity, e.g., the single particle

model [11]. These models enable high prediction accuracy,

efficient health diagnosis (i.e., through the monitoring of

trends in health-related parameters), and safer and better-

performing model-based control (i.e., through the availability

of physical internal states) [6], [12]. However, electrochemi-

cal models comprise systems of partial differential equations

(PDEs) with dozens of parameters, making them compu-

tationally demanding and difficult to identify. Furthermore,

even a correctly identified model with physically-accurate

parameters will yield output prediction errors due to unmod-

eled system dynamics and other uncertainties [13].

ML models are capable of identifying and exploiting

high-dimensional patterns in system data, enabling accu-

rate predictions without considering the underlying physical

processes [8]. Accordingly, these models are favorable for

systems in which the physical processes are not sufficiently

understood, such that a suitable physics-based model cannot

be developed [9]. ML models are commonly applied in Li-

ion battery applications for predicting state of charge (SOC),

state of health (SOH), and remaining useful life (RUL), using

algorithms such as artificial neural networks, support vector

machines, relevance vector machines, and Gaussian process

regression (GPR) [7], [14]. While these methods have been

demonstrated to yield excellent prediction accuracy, they are

subject to several fundamental limitations, including limited

model interpretability, large training data requirements, and

poor generalizability outside of the conditions spanned by

the training data [8], [9].

Hybrid models combine physics-based and ML methods

to leverage the respective strengths of each, i.e., to retain the

physical significance and generalizability of the model while

compensating for unmodeled physics through relationships

extracted from data [15]. An important hybrid modeling

topology is the residual model, which uses ML to predict

the error between the output measurement and the physics-

based model prediction, i.e., the battery voltage residual. The

residual is then added to the physics-based model output

prediction to compensate for the various model/measurement

uncertainties, e.g., unmodeled dynamics, sensor bias/noise,

and discretization errors, among others. In [16], a recurrent
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neural network was trained to predict the voltage residual be-

tween the full-order DFN model and a reduced-order single

particle model, based on the input current and residual feed-

back. Later, [17] employed both polynomial regression and

GPR to predict the voltage residual between experimental

measurements and the output of an equivalent circuit model.

In [18], a feedforward neural network was implemented

to predict the voltage residual between the DFN model

and single particle model, and later between experimental

data and the output of an equivalent circuit model. Most

recently, [15] compared the performance of a feedforward

neural network, regression tree, and random forest algorithm

for predicting the voltage residual between experimental

measurements and the output of an enhanced single particle

model. These works are encouraging in that they demonstrate

the capability for hybrid models to compensate for the

model/measurement uncertainties inherent to the physics-

based modeling paradigm, yet they are limited in that they

contain large, computationally-demanding ML models with

substantial training data requirements.

The objective of this work is to develop a lightweight

GPR-based hybrid residual model that delivers accurate out-

put voltage predictions while facilitating the accurate estima-

tion of the physics-based electrochemical parameters under

uncertainty. The use of GPR for voltage residual modeling

has been scarcely explored in the battery literature, and to our

knowledge, this is the first time GPR has been coupled with

an electrochemical model for this task. This is an important

contribution for the following reasons. First, our implemen-

tation of GPR bears several benefits over the conventional

use of neural networks for residual modeling. Specifically,

the training procedure is fundamentally more efficient, as

the number of trainable parameters is typically one to two

orders of magnitude less than that of neural networks [19],

enabling substantially faster computations [14]. In addition,

GPR automatically ingrains the confidence interval in the

prediction result, performs well under sparse training data,

and is highly interpretable due to the simple probabilistic

structure [7], [19]. Second, existing hybrid residual mod-

els focus solely on improving voltage prediction accuracy

without considering the accuracy and physical significance

of the physics-based model parameters. By representing the

model/measurement uncertainty (i.e., voltage residual) as a

Gaussian process, it is possible to consider the influence of

uncertainty in parameter estimation through the maximum

likelihood estimation approach [20], which could facilitate

the parameterization of the hybrid model. This is significant

because a correctly parameterized physics-based model is

critical for degradation monitoring (through tracking trends

in health-related parameters), accurately estimating physical

states (through the dependence of estimation algorithms on

the physical model/parameters), and improving controller

performance (through reliable knowledge of the physical

states). The proposed framework opens the door to exploring

this capability, which we leave for future work. In this work,

we focus on efficiently achieving high output prediction

accuracy.

II. ELECTROCHEMICAL LI-ION BATTERY MODEL

This section briefly summarizes the Li-ion battery electro-

chemical model, namely, the widely-adopted single particle

model with electrolyte dynamics (SPMe) [21], [22], which

will serve as the foundation for the hybrid model developed

in Section IV. The SPMe predicts the battery internal phys-

ical states and output terminal voltage (V ) from the input

current (I). It is derived from the full-order DFN model

under the simplification that reaction current density (and

thus solid-phase ionic concentration) is uniform across each

electrode. Accordingly, the electrochemical mechanisms in

each electrode (i.e., lithium diffusion and (de)intercalation)

are captured with a single particle, and both electrode parti-

cles interface with the electrolyte diffusion dynamics across

the anode, separator, and cathode.

The output terminal voltage is expressed as

V = Up(cse,p)− Un(cse,n) + φe,p(ce,p)− φe,n(ce,n)

+ ηp(cse,p, ce,p)− ηn(cse,n, ce,n)− IRl,
(1)

which relies upon the differences between the cathode and

anode potentials, denoted by subscripts p and n, respectively.

The open-circuit potentials (OCPs) U represent the equi-

librium potential of each electrode as a nonlinear function

of the electrode particle surface lithium concentration cse.

The evolution of cse is governed by the solid-phase ionic

diffusion dynamics according to Fick’s second law. The

electrolyte potentials φe are driven by the ionic concentration

gradient across the electrolyte, which is characterized by the

electrolyte lithium concentration at each electrode boundary

ce,i. The evolution of ce is governed by the ionic diffusion

dynamics in the electrolyte according to Fick’s second law.

The overpotentials η drive the (de)intercalation reaction

current densities according to the Butler-Volmer equation.

The lumped resistance term Rl captures the voltage drop

across the various Ohmic resistances (i.e., of the electrolyte,

current collectors, and solid-electrolyte interphase layer).

Finally, it is important to define the SOC, which indicates

the fraction of available charge in the cell. It is typically

based on the electrode surface concentration cse in terms

of the stoichiometry numbers, where θsurf = cse
cmax
s

is the

surface stoichiometry number and cmax
s denotes the maxi-

mum solid-phase concentration. The stoichiometry limits at

the fully charged and discharged conditions are denoted as

θ1 and θ0, respectively. The surface SOC is averaged across

the two electrodes as

SOCsurf =
1

2

(
θsurf,p − θ0,p
θ1,p − θ0,p

+
θsurf,n − θ0,n
θ1,n − θ0,n

)
. (2)

Alternatively, the bulk SOC can be defined by the electrode

bulk concentration cs, which represents the total molar

concentration of lithium in the electrode particle. The bulk

SOC is thus dependent on the bulk stoichiometry number

θbulk = cs
cmax
s

, as

SOCbulk =
1

2

(
θbulk,p − θ0,p
θ1,p − θ0,p

+
θbulk,n − θ0,n
θ1,n − θ0,n

)
. (3)
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The bulk SOC differs from the surface SOC in that it does not

incorporate the diffusion dynamics across each particle, but

rather is a perfect integrator of the reaction current density to

account for the accumulation of lithium ions in the particles.

The reader is referred to [22] for the full details of the model.

III. GAUSSIAN PROCESS REGRESSION

The purpose of this section is to provide a brief overview

of GPR, which will be implemented to predict the voltage

residual for the hybrid model in Section IV. The objective

of GPR (and other regression methods) is to characterize an

unknown continuous relationship between observed system

inputs X = [x1, . . . ,xN ] and outputs y = [y1, . . . , yN ],
where the inputs may be multidimensional such that xi =
[xi,1, . . . , xi,d]

T . Here, N denotes the number of obser-

vations and d specifies the number of input signals per

observation.

GPR operates under the fundamental assumption that the

unknown input-output relationship can be represented as

a Gaussian process, i.e., a collection of jointly Gaussian

random variables f(x) defined by a mean function m(x)
and covariance function k(x,x′) [19],

f(x) ∼ GP(m(x), k(x,x′)), (4)

where

m(x) = E[f(x)], (5)

k(x,x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] . (6)

For our application of predicting the voltage residual,

which has an ideal value of zero, we let the mean function be

m(x) = 0. Thus, the Gaussian process is defined entirely by

the covariance function, which encodes the fundamental be-

havior of the prediction model. We have selected the squared

exponential covariance function due to its widespread adop-

tion and versatility in the literature [19], [23],

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TL(x− x′)

)
, (7)

which is characterized by the hyperparameters σ2
f and L =

diag(l)−2, where l = [l1, . . . , ld] comprises the length-scale

for each input signal. Conceptually, the squared exponential

function specifies the extent to which two input vectors x and

x′ are correlated, based on their proximity to one another.

The covariance matrices associated with the input training

data X and a given set of input test points X∗ can be

formed through elementwise evaluation of Eqn. (7) under

the respective input data sets, i.e., K = K(X,X), K∗ =
K(X,X∗), and K∗∗ = K(X∗,X∗). Finally, we have

incorporated i.i.d. Gaussian observation noise with variance

σ2
n, such that the noisy training data covariance matrix is

defined as Kn = K + σ2
nI [19].

Letting f∗ denote the function predictions under the input

test points X∗, the joint distribution of the observed outputs

y and function predictions f∗ can be conditioned on the

observations (X,y) to yield the joint posterior distribution

[19],

f∗|X,y,X∗ ∼ N (
f∗, cov(f∗)

)
, (8)

with

f∗ = KT
∗ K

−1
n y, (9)

cov(f∗) = K∗∗ −KT
∗ K

−1
n K∗ + σ2

nI. (10)

Thus, for a given set of input test points X∗, the out-

puts can be predicted as the conditional mean f∗ with

a confidence interval specified by the conditional variance

diag (cov(f∗)). This is a major advantage of GPR over

other ML techniques, as the confidence interval can critically

inform how predictions should be used in practice [24].

The hyperparameters for the squared exponential covari-

ance function in Eqn. (7) are θ = [σ2
n, σ

2
f , l1, . . . , ld], which

can be efficiently tuned by maximizing the log marginal

likelihood of the prediction [19], [24],

max
θ

log p(y|X,θ) =

− 1

2
yTK−1

n y − 1

2
log |Kn| − N

2
log 2π.

(11)

Maximizing the log marginal likelihood has been shown

to automatically mitigate overfitting through the ingrained

trade-off between data fit and model complexity [19]. How-

ever, the number of computer operations required to invert

Kn scales cubically with the number of training data points,

which limits a tractable training data set to several thousand

points for modern workstations [23]. We address this through

a data sampling procedure presented in the subsequent sec-

tion.

IV. HYBRID MODEL FORMULATION

The SPMe electrochemical battery model was combined

with the GPR residual model to form the proposed hybrid

model, illustrated in Fig. 1. At a given time k, the SPMe

receives the input current I and returns the predicted output

voltage VSPMe and internal states. The GPR model receives

the same input current and a subset of predicted internal

states from the SPMe, s. It returns a prediction of the residual

δV , which is summed with the SPMe voltage prediction to

yield the final output voltage V .

SPMe

GPR

Fig. 1. Schematic of proposed hybrid model.

Three of the SPMe internal states were applied as in-

puts to the GPR model, namely, the surface SOC, bulk

SOC, and anode electrolyte concentration, i.e., sk =
[SOCsurf,k, SOCbulk,k, ce,n,k]

T . These states were selected

to succinctly encode the information contained in the six

SPMe concentration states. Specifically, the surface SOC

was selected because it conveniently captures the battery

dynamic behavior, e.g., diffusion, contained in the surface
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TABLE I

SUMMARY OF INPUT CURRENT PROFILES

Group Input Profile Type
Initial

SOC (−)

Data

Points

Training

1C Discharge Constant 1 11,110

2C Discharge Constant 1 5,353

3C Discharge Constant 1 3,471

4C Discharge Constant 1 2,514

5C Discharge Constant 1 1,929

1C FUDS Drive Cycle 0.5 6,000

Validation
2.5C Discharge Constant 1 4,185

1C UDDS Drive Cycle 0.5 6,000

Testing

1.5C Discharge Constant 1 7,218

3.5C Discharge Constant 1 2,913

4.5C Discharge Constant 1 2,180

1C US06 Drive Cycle 0.5 6,000

1C DST Drive Cycle 0.5 6,000

1C Pulse (1/60 Hz) Square Wave 0.5 6,000

concentration states cse,p and cse,n. Similarly, the bulk

SOC is associated with the battery volume-averaged/steady-

state behavior, e.g., open-circuit voltage, contained in the

bulk concentration states cs,p and cs,n. Lastly, the anode

electrolyte concentration ce,n was selected to capture the

dynamic behavior of the electrolyte gradient, which is suffi-

ciently represented by the concentration in a single electrode

(we chose the anode) due to symmetry. Thus, the complete

input vector for the GPR model, as would be applied in Eqn.

(7), is xk =
[
Ik
sk

]
= [Ik, SOCsurf,k, SOCbulk,k, ce,n,k]

T .

To collect data for training, validating, and testing

the hybrid model, we experimentally measured the volt-

age response of a Kokam SLPB75106100 lithium-nickel-

manganese-cobalt (NMC) pouch cell under a series of 14

input current profiles, using an Arbin LBT21084 cycler with

a sub-microvolt measurement resolution. The input profiles

were selected to span a wide array of operating conditions

through different current amplitudes, SOC ranges, dynamics

(e.g., constant current vs. dynamic drive cycle), and dura-

tions, as summarized in Table I. Table I also indicates the

profile assignments for training, validation, and testing. All

experiments were conducted at 25 ◦C with a measurement

sampling interval of 0.3 seconds. The SPMe was configured

with the parameter set identified in [25] for the same Kokam

cell, yet with OCP-related parameters that were estimated

under C/50 discharge data. We note that the performance of

the SPMe in Section V is generally poor due to errors in this

parameterization, which would not be acceptable in a real-

world application (i.e., when the accuracy of the parameters

is critical for model-based control and estimation). However,

this configuration is appropriate for validating the hybrid

model because it requires large residuals to be predicted

under high parameter uncertainty—a challenging scenario.

The GPR input training matrix X was generated by

applying the SPMe to predict the internal state trajectories

under each training profile, while the output residual training

vector y was computed by subtracting the SPMe voltage

predictions from the measured voltage data. The training

TABLE II

PREDICTION RESULTS

Group Input Profile

SPMe

RMSE

(mV )

Hybrid Model

RMSE

(mV )

RER

Training

1C Discharge 161.7 3.8 97.7%

2C Discharge 197.9 2.8 98.6%

3C Discharge 211.8 1.1 99.5%

4C Discharge 235.8 3.1 98.7%

5C Discharge 276.9 1.8 99.3%

1C FUDS 7.4 1.5 79.6%

Validation
2.5C Discharge 215.7 16.6 92.3%

1C UDDS 8.0 2.2 72.0%

Testing

1.5C Discharge 194.3 13.4 93.1%

3.5C Discharge 227.5 8.8 96.1%

4.5C Discharge 264.8 17.4 93.4%

1C US06 6.5 1.1 83.4%

1C DST 7.5 1.2 83.7%

1C Pulse (1/60 Hz) 13.0 2.0 84.6%

covariance matrix K was then constructed with the squared

exponential covariance function in Eqn. (7). Table I reveals

that the six-profile training set comprises over 30,000 data

points, yielding a 30,377 × 30,377 element covariance

matrix K that is intractable to invert. Since GPR is capable

of performing well under sparse training data [9], we propose

to sample an evenly distributed set of data points across the

full span of each training profile for use in the model. In this

work, we have selected a sample of 50 points per profile,

yielding a lightweight 300 × 300 covariance matrix that is

computationally feasible.

Finally, the hyperparameters of the covariance function

were computed by maximizing the log marginal likelihood

of the prediction across the two validation profiles, according

to Eqn. (11). Performing this optimization over the validation

profiles instead of the training profiles has the two-fold

benefit of increasing the diversity of the data that the model

experiences and reducing the solution time due to the smaller

number of data points. As with the training profiles, we

sampled an evenly distributed set of 50 points across the

full span of each validation profile, yielding a 100 × 100

covariance matrix for the optimization.

V. EXPERIMENTAL RESULTS

The hybrid model was implemented to predict the output

voltage trajectory under each input profile and the results are

presented in Table II. Prediction accuracy is quantified by the

root-mean-square error (RMSE) between the predicted and

measured output voltage trajectories, and results are provided

for the standalone SPMe and hybrid model. In addition, the

relative error reduction (RER) is listed, which describes the

extent to which the SPMe prediction error is reduced by

implementing the hybrid model [18],

RER =
RMSESPMe − RMSEHM

RMSESPMe
× 100%. (12)

The hybrid model consistently achieved excellent predic-

tion accuracy under the training profiles (RMSE ≤ 3.8 mV ),
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as expected. However, it is notable that the model was only

trained with 50 points per profile (i.e., 0.45-2.6% of the

total points, depending on the profile) and was able to yield

accurate predictions for the remaining points. This attests

to the predictive capability of GPR under sparse training

data, and the effectiveness of downsampling for reducing

the number of training data points without compromising

prediction accuracy.

Upon applying the testing profiles, the hybrid model

maintained high prediction accuracy with a maximum RMSE

of 17.4 mV and mean RMSE of 7.3 mV . The RER was also

consistently high (RER ≥ 83.4%), indicating significant im-

provement in prediction accuracy over the standalone SPMe.

The prediction errors were generally lower with higher

RERs than those of the state-of-the-art neural-network-based

electrochemical residual models in [16], [18], though a direct

comparison is not possible due to the variations in the model,

battery chemistry, and testing profiles. In addition, the hybrid

model yielded comparable errors under the validation profiles

(which were used to tune the hyperparameters), indicating

that the model was not overfitted.

The testing predictions under 4.5C Discharge and 1C

US06 are visualized in Figs. 2 & 3, respectively. These plots

indicate the voltage measurements (solid black line), SPMe

predictions (dotted red line), and hybrid model predictions

(dashed green line) with the predicted 95% confidence inter-

val (shaded green region). Each plot also features inset axes

with a zoomed view of a highlighted region. Qualitatively,

these plots illustrate the high prediction accuracy of the

hybrid model outputs, which closely track the measurements

with considerable improvement over the SPMe predictions.

Most notably, Fig. 3 highlights the accuracy of the predicted

95% confidence interval, which generally encompasses the

measurements and thus correctly captures the uncertainty due

to random noise. However, this is not the case in Fig. 2,

where the hybrid model prediction bias is large enough that

the measurements are consistently outside of the confidence

interval. Still, the confidence interval is appropriately sized as

to encompass the noisy measurements if the predictions were

unbiased. This relatively large prediction bias was attributed

to the substantial prediction bias of the SPMe for this case.

Finally, both plots illustrate the intrinsic filtering effect of

GPR, in which the predictions are markedly smoother than

the noisy measurements—a desirable effect for feedback

control and estimation applications.

It is notable that the hybrid model yielded an accurate

prediction of the 1C Pulse voltage response (RMSE = 2.0

mV ), although the model was neither trained nor validated

(hyperparameters tuned) with a square-wave input profile.

Thus, the predictions under 1C Pulse were based on constant-

current and drive-cycle training data, which attests to the

generalizability of the model under different types of input

profiles.

Finally, the computational expense of the hybrid model

was evaluated. The hyperparameter tuning procedure, de-

tailed in Section IV, took 31 seconds on a laptop PC

with an Intel i7-4720HQ 2.6 GHz quad-core processor. This

Fig. 2. Voltage predictions under 4.5C Discharge input profile.

Fig. 3. Voltage predictions under 1C US06 input profile.

process is akin to the training procedure for parametric ML

models, such as neural networks, as it only needs to be done

once before the prediction phase, yet it can be much more

efficient due to the smaller number of parameters (e.g., the

feedforward neural networks developed in [18] each have

over 1,248 trainable parameters while our proposed GPR

model has 6). During the prediction phase, the computation

time scales linearly with the number of time steps in the

profile as the SPMe and GPR are iteratively executed. The

mean computation time per time step across all 14 of the

studied input profiles was 0.86 ms, which was split 25/75%

between the SPMe/GPR models, respectively. Thus, for the

0.3-second time step used in this work, the ratio of computa-

tion time to modeled time is only 0.003, indicating excellent

suitability for online applications. Therefore, through the

high prediction performance and low computational expense,

the proposed GPR-based hybrid modeling framework was

validated as an efficient means for improving output predic-

tion accuracy.
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VI. CONCLUSIONS

In this work, we proposed a lightweight GPR-based hybrid

modeling framework for efficiently improving the output

prediction accuracy of electrochemical Li-ion battery models.

The framework employs a data sampling procedure that uti-

lizes a small distributed subset of the training and validation

data for tuning the hyperparameters and computing predic-

tions. By using training and validation data downsampled to

less than 1%, the model was observed to generate predictions

at an ample rate for online applications, through a measured

ratio of computation time to modeled time of 0.003. Despite

the sparsity of the training data, the accuracy of the model

was experimentally validated through prediction RMSEs

that were less than 18 mV , with a mean RMSE of 7.3

mV across all six testing profiles. Relative error reductions

were greater than 83% for the testing profiles, indicating

substantial improvements in output prediction accuracy over

the standalone SPMe.

These results attest to the potential for GPR-based hybrid

models to change the paradigm of battery modeling, espe-

cially in light of the emerging demands of advanced BMSs.

Specifically, the exhibited capability for GPR to perform well

under sparse training data indicates that the computational

expense often associated with ML techniques can be miti-

gated through data sampling. We envision that representing

the model/measurement uncertainty (i.e., voltage residual)

as a Gaussian process can also facilitate the estimation

of the parameters of the physics-based (electrochemical)

model through an integrated hybrid model parameterization

methodology, which is critical for accurate health monitor-

ing and model-based control and estimation. We anticipate

investigating this topic in future work.
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