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Abstract— The development of next-generation battery man-
agement systems needs models with enhanced performance to
enable advanced control, diagnostic, and prognostic techniques
for improving the safety and performance of lithium-ion battery
systems. Specifically, battery models must deliver efficient and
accurate predictions of physical internal states and output
voltage, despite the inevitable presence of various system
uncertainties. To facilitate this, we propose a lightweight hybrid
modeling framework that couples a high-fidelity physics-based
electrochemical battery model with a computationally-efficient
Gaussian process regression (GPR) machine learning model to
predict and compensate for errors in the electrochemical model
output. This is the first time that GPR has been implemented to
predict the output residual of an electrochemical battery model,
which is significant for the following reasons. First, we demon-
strate that GPR is capable of considerably improving output
prediction accuracy, as evidenced by an observed average root-
mean-square prediction error of 7.3 mV across six testing
profiles, versus 119 mV for the standalone electrochemical
model. Second, we employ a data sampling procedure to exhibit
how GPR can use sparse training data to deliver accurate
predictions at minimal computational expense. Our framework
yielded a ratio of computation time to modeled time of 0.003,
indicating ample suitability for online applications.

I. INTRODUCTION

The widespread adoption of lithium-ion (Li-ion) batteries
has spurred significant efforts toward developing the next
generation of battery management systems (BMSs), often
termed advanced BMSs, which seek to enhance battery
safety and performance through features such as online
health monitoring [1], [2], optimal charging control [3], [4],
and remaining useful life prognostics [5]. These features
require a battery model that is capable of delivering accurate
voltage output predictions (i.e., for use in feedback control
and estimation) while maintaining the fidelity and physical
significance of the internal states and parameters (i.e., for
optimal control and degradation monitoring). Accordingly,
physics-based electrochemical battery modeling is an active
research domain, in which first-principles models are being
implemented in BMS applications to encode the physical
mechanisms of battery operation [6]. On the other hand,
researchers are avidly investigating the use of machine learn-
ing (ML) methods for predicting battery performance, which
base predictions on statistically extracted relationships from
data [7]. Finally, hybrid modeling is an emerging approach
that combines the complementary strengths of the physics-
based and ML modeling paradigms [8], [9].
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Physics-based electrochemical models are derived from
first principles and thus maintain the physical significance
of the states and parameters through explicit consideration
of the underlying electrochemical processes. The prevailing
electrochemical model is the Doyle-Fuller-Newman (DFN)
model [10], from which numerous control-oriented reduced-
order models have been developed to improve computational
efficiency while maintaining fidelity, e.g., the single particle
model [11]. These models enable high prediction accuracy,
efficient health diagnosis (i.e., through the monitoring of
trends in health-related parameters), and safer and better-
performing model-based control (i.e., through the availability
of physical internal states) [6], [12]. However, electrochemi-
cal models comprise systems of partial differential equations
(PDEs) with dozens of parameters, making them compu-
tationally demanding and difficult to identify. Furthermore,
even a correctly identified model with physically-accurate
parameters will yield output prediction errors due to unmod-
eled system dynamics and other uncertainties [13].

ML models are capable of identifying and exploiting
high-dimensional patterns in system data, enabling accu-
rate predictions without considering the underlying physical
processes [8]. Accordingly, these models are favorable for
systems in which the physical processes are not sufficiently
understood, such that a suitable physics-based model cannot
be developed [9]. ML models are commonly applied in Li-
ion battery applications for predicting state of charge (SOC),
state of health (SOH), and remaining useful life (RUL), using
algorithms such as artificial neural networks, support vector
machines, relevance vector machines, and Gaussian process
regression (GPR) [7], [14]. While these methods have been
demonstrated to yield excellent prediction accuracy, they are
subject to several fundamental limitations, including limited
model interpretability, large training data requirements, and
poor generalizability outside of the conditions spanned by
the training data [8], [9].

Hybrid models combine physics-based and ML methods
to leverage the respective strengths of each, i.e., to retain the
physical significance and generalizability of the model while
compensating for unmodeled physics through relationships
extracted from data [15]. An important hybrid modeling
topology 1is the residual model, which uses ML to predict
the error between the output measurement and the physics-
based model prediction, i.e., the battery voltage residual. The
residual is then added to the physics-based model output
prediction to compensate for the various model/measurement
uncertainties, e.g., unmodeled dynamics, sensor bias/noise,
and discretization errors, among others. In [16], a recurrent
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neural network was trained to predict the voltage residual be-
tween the full-order DFN model and a reduced-order single
particle model, based on the input current and residual feed-
back. Later, [17] employed both polynomial regression and
GPR to predict the voltage residual between experimental
measurements and the output of an equivalent circuit model.
In [18], a feedforward neural network was implemented
to predict the voltage residual between the DFN model
and single particle model, and later between experimental
data and the output of an equivalent circuit model. Most
recently, [15] compared the performance of a feedforward
neural network, regression tree, and random forest algorithm
for predicting the voltage residual between experimental
measurements and the output of an enhanced single particle
model. These works are encouraging in that they demonstrate
the capability for hybrid models to compensate for the
model/measurement uncertainties inherent to the physics-
based modeling paradigm, yet they are limited in that they
contain large, computationally-demanding ML models with
substantial training data requirements.

The objective of this work is to develop a lightweight
GPR-based hybrid residual model that delivers accurate out-
put voltage predictions while facilitating the accurate estima-
tion of the physics-based electrochemical parameters under
uncertainty. The use of GPR for voltage residual modeling
has been scarcely explored in the battery literature, and to our
knowledge, this is the first time GPR has been coupled with
an electrochemical model for this task. This is an important
contribution for the following reasons. First, our implemen-
tation of GPR bears several benefits over the conventional
use of neural networks for residual modeling. Specifically,
the training procedure is fundamentally more efficient, as
the number of trainable parameters is typically one to two
orders of magnitude less than that of neural networks [19],
enabling substantially faster computations [14]. In addition,
GPR automatically ingrains the confidence interval in the
prediction result, performs well under sparse training data,
and is highly interpretable due to the simple probabilistic
structure [7], [19]. Second, existing hybrid residual mod-
els focus solely on improving voltage prediction accuracy
without considering the accuracy and physical significance
of the physics-based model parameters. By representing the
model/measurement uncertainty (i.e., voltage residual) as a
Gaussian process, it is possible to consider the influence of
uncertainty in parameter estimation through the maximum
likelihood estimation approach [20], which could facilitate
the parameterization of the hybrid model. This is significant
because a correctly parameterized physics-based model is
critical for degradation monitoring (through tracking trends
in health-related parameters), accurately estimating physical
states (through the dependence of estimation algorithms on
the physical model/parameters), and improving controller
performance (through reliable knowledge of the physical
states). The proposed framework opens the door to exploring
this capability, which we leave for future work. In this work,
we focus on efficiently achieving high output prediction
accuracy.

II. ELECTROCHEMICAL LI-ION BATTERY MODEL

This section briefly summarizes the Li-ion battery electro-
chemical model, namely, the widely-adopted single particle
model with electrolyte dynamics (SPMe) [21], [22], which
will serve as the foundation for the hybrid model developed
in Section IV. The SPMe predicts the battery internal phys-
ical states and output terminal voltage (V') from the input
current (I). It is derived from the full-order DFN model
under the simplification that reaction current density (and
thus solid-phase ionic concentration) is uniform across each
electrode. Accordingly, the electrochemical mechanisms in
each electrode (i.e., lithium diffusion and (de)intercalation)
are captured with a single particle, and both electrode parti-
cles interface with the electrolyte diffusion dynamics across
the anode, separator, and cathode.

The output terminal voltage is expressed as

V =Up(csep) = Un(Cse,n) + Gep(Cep) = Pen(Cen)

(1)
+ np(cse,p7 Ce,p) —n (cse,nv Ce,n) - IR[,

which relies upon the differences between the cathode and
anode potentials, denoted by subscripts p and n, respectively.
The open-circuit potentials (OCPs) U represent the equi-
librium potential of each electrode as a nonlinear function
of the electrode particle surface lithium concentration cge.
The evolution of ¢4 is governed by the solid-phase ionic
diffusion dynamics according to Fick’s second law. The
electrolyte potentials ¢ are driven by the ionic concentration
gradient across the electrolyte, which is characterized by the
electrolyte lithium concentration at each electrode boundary
Ce,i- The evolution of c. is governed by the ionic diffusion
dynamics in the electrolyte according to Fick’s second law.
The overpotentials 7 drive the (de)intercalation reaction
current densities according to the Butler-Volmer equation.
The lumped resistance term R; captures the voltage drop
across the various Ohmic resistances (i.e., of the electrolyte,
current collectors, and solid-electrolyte interphase layer).

Finally, it is important to define the SOC, which indicates
the fraction of available charge in the cell. It is typically
based on the electrode surface concentration cg. in terms
of the stoichiometry numbers, where 0,y,p = ng;z is the
surface stoichiometry number and ¢J*** denotes the maxi-
mum solid-phase concentration. The stoichiometry limits at
the fully charged and discharged conditions are denoted as
0, and 0y, respectively. The surface SOC is averaged across
the two electrodes as

1 Hsu'rf - 90 esurf n 80 n
SOCiurs = 5 2 0r n_2on) 2
! 2 ( el,p - 60,[) * al,n - 00 n ( )

s

Alternatively, the bulk SOC can be defined by the electrode
bulk concentration ¢,, which represents the total molar
concentration of lithium in the electrode particle. The bulk
SOC is thus dependent on the bulk stoichiometry number
Obuir. = i » S
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ebulk n 90 n)
e
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The bulk SOC differs from the surface SOC in that it does not
incorporate the diffusion dynamics across each particle, but
rather is a perfect integrator of the reaction current density to
account for the accumulation of lithium ions in the particles.
The reader is referred to [22] for the full details of the model.

III. GAUSSIAN PROCESS REGRESSION

The purpose of this section is to provide a brief overview
of GPR, which will be implemented to predict the voltage
residual for the hybrid model in Section IV. The objective
of GPR (and other regression methods) is to characterize an
unknown continuous relationship between observed system
inputs X = [z1,...,xx] and outputs y = [y1,...,Yn],
where the inputs may be multidimensional such that x; =
[xi71,...,xi7d]T. Here, N denotes the number of obser-
vations and d specifies the number of input signals per
observation.

GPR operates under the fundamental assumption that the
unknown input-output relationship can be represented as
a Gaussian process, i.e., a collection of jointly Gaussian
random variables f(x) defined by a mean function m(x)
and covariance function k(x, ") [19],

f(@) ~ GP(m(x), k(z,z')), 4)

where

m(x) = E[f ()], (5)
k(z, @) =E[(f(x) — m(z)) (f(&) —m(z')].  (6)

For our application of predicting the voltage residual,
which has an ideal value of zero, we let the mean function be
m(x) = 0. Thus, the Gaussian process is defined entirely by
the covariance function, which encodes the fundamental be-
havior of the prediction model. We have selected the squared
exponential covariance function due to its widespread adop-
tion and versatility in the literature [19], [23],

k(z,x') = o} exp (—;(sc —a2\TL(x - sc’)) , (D

which is characterized by the hyperparameters O'J% and L =
diag(l)~2, where I = [ly,...,l4] comprises the length-scale
for each input signal. Conceptually, the squared exponential
function specifies the extent to which two input vectors « and
x’ are correlated, based on their proximity to one another.
The covariance matrices associated with the input training
data X and a given set of input test points X, can be
formed through elementwise evaluation of Eqn. (7) under
the respective input data sets, i.e., K = K(X,X), K, =
K(X,X,), and K., = K(X,,X,). Finally, we have
incorporated i.i.d. Gaussian observation noise with variance
02, such that the noisy training data covariance matrix is
defined as K,, = K + 021 [19].

Letting f. denote the function predictions under the input
test points X, the joint distribution of the observed outputs
y and function predictions f, can be conditioned on the
observations (X, y) to yield the joint posterior distribution
[19],

f*|X7y7X*NN( *,CO’U(f*)), (8)

with
f.=K/K.y, )
cov(f,)=K..—- K'K 'K, +021I. (10)

Thus, for a given set of input test points X,, the out-
puts can be predicted as the conditional mean f, with
a confidence interval specified by the conditional variance
diag (cov(f.)). This is a major advantage of GPR over
other ML techniques, as the confidence interval can critically
inform how predictions should be used in practice [24].

The hyperparameters for the squared exponential covari-
ance function in Eqn. (7) are 6 = [07,07%,11, ..., la], which
can be efficiently tuned by maximizing the log marginal
likelihood of the prediction [19], [24],

max logp(y| X, 0) =
(11)

1 1 N
- inKgly ~3 log | K, | — 5 log 2.

Maximizing the log marginal likelihood has been shown
to automatically mitigate overfitting through the ingrained
trade-off between data fit and model complexity [19]. How-
ever, the number of computer operations required to invert
K, scales cubically with the number of training data points,
which limits a tractable training data set to several thousand
points for modern workstations [23]. We address this through
a data sampling procedure presented in the subsequent sec-
tion.

IV. HYBRID MODEL FORMULATION

The SPMe electrochemical battery model was combined
with the GPR residual model to form the proposed hybrid
model, illustrated in Fig. 1. At a given time k, the SPMe
receives the input current / and returns the predicted output
voltage Vgpase and internal states. The GPR model receives
the same input current and a subset of predicted internal
states from the SPMe, s. It returns a prediction of the residual
0V, which is summed with the SPMe voltage prediction to
yield the final output voltage V.

Fig. 1.

Schematic of proposed hybrid model.

Three of the SPMe internal states were applied as in-
puts to the GPR model, namely, the surface SOC, bulk
SOC, and anode electrolyte concentration, i.e., S =
[SOCsur .1, SOChuik i, cem’k]T. These states were selected
to succinctly encode the information contained in the six
SPMe concentration states. Specifically, the surface SOC
was selected because it conveniently captures the battery
dynamic behavior, e.g., diffusion, contained in the surface
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TABLE I
SUMMARY OF INPUT CURRENT PROFILES

TABLE I
PREDICTION RESULTS

Initial Data
Gi Input Profil T
roup nput Profile ype SOC () Points
1C Discharge Constant 1 11,110
2C Discharge Constant 1 5,353
.. 3C Discharge Constant 1 3,471
Training K
4C Discharge Constant 1 2,514
5C Discharge Constant 1 1,929
1C FUDS Drive Cycle 0.5 6,000
Validation 2.5C Discharge CO-HStal’lt 1 4,185
1C UDDS Drive Cycle 0.5 6,000
1.5C Discharge Constant 1 7,218
3.5C Discharge Constant 1 2,913
. 4.5C Discharge Constant 1 2,180
Testing .
1C US06 Drive Cycle 0.5 6,000
1C DST Drive Cycle 0.5 6,000
1C Pulse (1/60 Hz)  Square Wave 0.5 6,000

concentration states cge, and cge,. Similarly, the bulk
SOC is associated with the battery volume-averaged/steady-
state behavior, e.g., open-circuit voltage, contained in the
bulk concentration states ¢, and Cs,. Lastly, the anode
electrolyte concentration c., was selected to capture the
dynamic behavior of the electrolyte gradient, which is suffi-
ciently represented by the concentration in a single electrode
(we chose the anode) due to symmetry. Thus, the complete
input vector for the GPR model, as would be applied in Eqn.
(D), is @ = [ 1] = [T, SOCsur i, SOChute o Ceni] - -
To collect data for training, validating, and testing
the hybrid model, we experimentally measured the volt-
age response of a Kokam SLPB75106100 lithium-nickel-
manganese-cobalt (NMC) pouch cell under a series of 14
input current profiles, using an Arbin LBT21084 cycler with
a sub-microvolt measurement resolution. The input profiles
were selected to span a wide array of operating conditions
through different current amplitudes, SOC ranges, dynamics
(e.g., constant current vs. dynamic drive cycle), and dura-
tions, as summarized in Table I. Table I also indicates the
profile assignments for training, validation, and testing. All
experiments were conducted at 25 °C with a measurement
sampling interval of 0.3 seconds. The SPMe was configured
with the parameter set identified in [25] for the same Kokam
cell, yet with OCP-related parameters that were estimated
under C/50 discharge data. We note that the performance of
the SPMe in Section V is generally poor due to errors in this
parameterization, which would not be acceptable in a real-
world application (i.e., when the accuracy of the parameters
is critical for model-based control and estimation). However,
this configuration is appropriate for validating the hybrid
model because it requires large residuals to be predicted
under high parameter uncertainty—a challenging scenario.
The GPR input training matrix X was generated by
applying the SPMe to predict the internal state trajectories
under each training profile, while the output residual training
vector y was computed by subtracting the SPMe voltage
predictions from the measured voltage data. The training

SPMe  Hybrid Model
Group Input Profile RMSE RMSE RER
(mV)  (mV)
1C Discharge 161.7 3.8 97.7%
2C Discharge 197.9 2.8 98.6%
. 3C Discharge 211.8 1.1 99.5%
Training .
4C Discharge 235.8 3.1 98.7%
5C Discharge 276.9 1.8 99.3%
1C FUDS 7.4 1.5 79.6%
Validation 2.5C Discharge 215.7 16.6 92.3%
1C UDDS 8.0 22 72.0%
1.5C Discharge 194.3 134 93.1%
3.5C Discharge 227.5 8.8 96.1%
. 4.5C Discharge 264.8 17.4 93.4%
Testing
1C US06 6.5 1.1 83.4%
1C DST 7.5 1.2 83.7%
1C Pulse (1/60 Hz) 13.0 2.0 84.6%

covariance matrix K was then constructed with the squared
exponential covariance function in Eqn. (7). Table I reveals
that the six-profile training set comprises over 30,000 data
points, yielding a 30,377 x 30,377 element covariance
matrix K that is intractable to invert. Since GPR is capable
of performing well under sparse training data [9], we propose
to sample an evenly distributed set of data points across the
full span of each training profile for use in the model. In this
work, we have selected a sample of 50 points per profile,
yielding a lightweight 300 x 300 covariance matrix that is
computationally feasible.

Finally, the hyperparameters of the covariance function
were computed by maximizing the log marginal likelihood
of the prediction across the two validation profiles, according
to Eqn. (11). Performing this optimization over the validation
profiles instead of the training profiles has the two-fold
benefit of increasing the diversity of the data that the model
experiences and reducing the solution time due to the smaller
number of data points. As with the training profiles, we
sampled an evenly distributed set of 50 points across the
full span of each validation profile, yielding a 100 x 100
covariance matrix for the optimization.

V. EXPERIMENTAL RESULTS

The hybrid model was implemented to predict the output
voltage trajectory under each input profile and the results are
presented in Table II. Prediction accuracy is quantified by the
root-mean-square error (RMSE) between the predicted and
measured output voltage trajectories, and results are provided
for the standalone SPMe and hybrid model. In addition, the
relative error reduction (RER) is listed, which describes the
extent to which the SPMe prediction error is reduced by
implementing the hybrid model [18],

RMSEgspye — RMSEnm

The hybrid model consistently achieved excellent predic-
tion accuracy under the training profiles (RMSE < 3.8 mV),

RER = x 100%.

(12)
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as expected. However, it is notable that the model was only
trained with 50 points per profile (i.e., 0.45-2.6% of the
total points, depending on the profile) and was able to yield
accurate predictions for the remaining points. This attests
to the predictive capability of GPR under sparse training
data, and the effectiveness of downsampling for reducing
the number of training data points without compromising
prediction accuracy.

Upon applying the testing profiles, the hybrid model
maintained high prediction accuracy with a maximum RMSE
of 17.4 mV and mean RMSE of 7.3 mV. The RER was also
consistently high (RER > 83.4%), indicating significant im-
provement in prediction accuracy over the standalone SPMe.
The prediction errors were generally lower with higher
RERs than those of the state-of-the-art neural-network-based
electrochemical residual models in [16], [18], though a direct
comparison is not possible due to the variations in the model,
battery chemistry, and testing profiles. In addition, the hybrid
model yielded comparable errors under the validation profiles
(which were used to tune the hyperparameters), indicating
that the model was not overfitted.

The testing predictions under 4.5C Discharge and 1C
USO06 are visualized in Figs. 2 & 3, respectively. These plots
indicate the voltage measurements (solid black line), SPMe
predictions (dotted red line), and hybrid model predictions
(dashed green line) with the predicted 95% confidence inter-
val (shaded green region). Each plot also features inset axes
with a zoomed view of a highlighted region. Qualitatively,
these plots illustrate the high prediction accuracy of the
hybrid model outputs, which closely track the measurements
with considerable improvement over the SPMe predictions.
Most notably, Fig. 3 highlights the accuracy of the predicted
95% confidence interval, which generally encompasses the
measurements and thus correctly captures the uncertainty due
to random noise. However, this is not the case in Fig. 2,
where the hybrid model prediction bias is large enough that
the measurements are consistently outside of the confidence
interval. Still, the confidence interval is appropriately sized as
to encompass the noisy measurements if the predictions were
unbiased. This relatively large prediction bias was attributed
to the substantial prediction bias of the SPMe for this case.
Finally, both plots illustrate the intrinsic filtering effect of
GPR, in which the predictions are markedly smoother than
the noisy measurements—a desirable effect for feedback
control and estimation applications.

It is notable that the hybrid model yielded an accurate
prediction of the 1C Pulse voltage response (RMSE = 2.0
mV), although the model was neither trained nor validated
(hyperparameters tuned) with a square-wave input profile.
Thus, the predictions under 1C Pulse were based on constant-
current and drive-cycle training data, which attests to the
generalizability of the model under different types of input
profiles.

Finally, the computational expense of the hybrid model
was evaluated. The hyperparameter tuning procedure, de-
tailed in Section IV, took 31 seconds on a laptop PC
with an Intel 17-4720HQ 2.6 GHz quad-core processor. This

Measurement

SPMe (RMSE = 264.8 mV/)
SPMe+GPR (RMSE = 17.4 mV)
95% Confidence Interval

381\

36+

S 34
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S 82t
R Y
3.56
3t
3.55
3.54
281
3.53
170 180 190 200 210 220
2.6 L L L L L L 1
0 100 200 300 400 500 600 700
Time (s)
Fig. 2. Voltage predictions under 4.5C Discharge input profile.
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Measurement

SPMe (RMSE = 6.5 mV)
SPMe+GPR (RMSE = 1.1 mV)
95% Confidence Interval

3.78
3.84
3.775

3.82

Voltage (V)

0 200 400 600 800 1000 1200 1400 1600 1800
Time (s)

Fig. 3. Voltage predictions under 1C US06 input profile.

process is akin to the training procedure for parametric ML
models, such as neural networks, as it only needs to be done
once before the prediction phase, yet it can be much more
efficient due to the smaller number of parameters (e.g., the
feedforward neural networks developed in [18] each have
over 1,248 trainable parameters while our proposed GPR
model has 6). During the prediction phase, the computation
time scales linearly with the number of time steps in the
profile as the SPMe and GPR are iteratively executed. The
mean computation time per time step across all 14 of the
studied input profiles was 0.86 ms, which was split 25/75%
between the SPMe/GPR models, respectively. Thus, for the
0.3-second time step used in this work, the ratio of computa-
tion time to modeled time is only 0.003, indicating excellent
suitability for online applications. Therefore, through the
high prediction performance and low computational expense,
the proposed GPR-based hybrid modeling framework was
validated as an efficient means for improving output predic-
tion accuracy.
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VI. CONCLUSIONS

In this work, we proposed a lightweight GPR-based hybrid
modeling framework for efficiently improving the output
prediction accuracy of electrochemical Li-ion battery models.
The framework employs a data sampling procedure that uti-
lizes a small distributed subset of the training and validation
data for tuning the hyperparameters and computing predic-
tions. By using training and validation data downsampled to
less than 1%, the model was observed to generate predictions
at an ample rate for online applications, through a measured
ratio of computation time to modeled time of 0.003. Despite
the sparsity of the training data, the accuracy of the model
was experimentally validated through prediction RMSEs
that were less than 18 mV, with a mean RMSE of 7.3
mV across all six testing profiles. Relative error reductions
were greater than 83% for the testing profiles, indicating
substantial improvements in output prediction accuracy over
the standalone SPMe.

These results attest to the potential for GPR-based hybrid
models to change the paradigm of battery modeling, espe-
cially in light of the emerging demands of advanced BMSs.
Specifically, the exhibited capability for GPR to perform well
under sparse training data indicates that the computational
expense often associated with ML techniques can be miti-
gated through data sampling. We envision that representing
the model/measurement uncertainty (i.e., voltage residual)
as a Gaussian process can also facilitate the estimation
of the parameters of the physics-based (electrochemical)
model through an integrated hybrid model parameterization
methodology, which is critical for accurate health monitor-
ing and model-based control and estimation. We anticipate
investigating this topic in future work.
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