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Graphon estimation has been one of the most fundamental problems in
network analysis and has received considerable attention in the past decade.
From the statistical perspective, the minimax error rate of graphon estimation
has been established by (Ann. Statist. 43 (2015) 2624–2652) for both stochas-
tic block model (SBM) and nonparametric graphon estimation. The statistical
optimal estimators are based on constrained least squares and have compu-
tational complexity exponential in the dimension. From the computational
perspective, the best-known, polynomial-time estimator is based on universal
singular value thresholding (USVT), but it can only achieve a much slower
estimation error rate than the minimax one. It is natural to wonder if such a
gap is essential. The computational optimality of the USVT or the existence
of a computational barrier in graphon estimation has been a long-standing
open problem. In this work, we take the first step toward it and provide rig-
orous evidence for the computational barrier in graphon estimation via low-
degree polynomials. Specifically, in SBM graphon estimation, we show that
for low-degree polynomial estimators, their estimation error rates cannot be
significantly better than that of the USVT under a wide range of parame-
ter regimes and in nonparametric graphon estimation, we show low-degree
polynomial estimators achieve estimation error rates strictly slower than the
minimax rate. Our results are proved based on the recent development of low-
degree polynomials by (Ann. Statist. 50 (2022) 1833–1858), while we over-
come a few key challenges in applying it to the general graphon estimation
problem. By leveraging our main results, we also provide a computational
lower bound on the clustering error for community detection in SBM with a
growing number of communities and this yields a new piece of evidence for
the conjectured Kesten–Stigum threshold for efficient community recovery.
Finally, we extend our computational lower bounds to sparse graphon esti-
mation and biclustering with additive Gaussian noise, and provide discussion
on the optimality of our results.

1. Introduction. Network analysis has gained considerable research interest in the last
couple of decades (Goldenberg et al. (2010), Bickel and Chen (2009), Girvan and Newman
(2002), Wasserman and Faust (1994)). A key task in network analysis is to estimate the under-
lying network generating process. It is useful for many important applications such as study-
ing network evolution (Pensky (2019)), predicting missing links (Miller, Jordan and Griffiths
(2009), Airoldi, Costa and Chan (2013), Gao, Lu and Zhou (2015)), learning user preferences
in recommender systems (Li et al. (2020)) and correcting errors in crowd-sourcing systems
(Shah and Lee (2018)). In this paper, we are interested in the question: when could the un-
derlying network generating process be estimated in a computationally efficient way?

A general representation for the generating process of unlabeled exchangeable networks
was first introduced by Aldous (1981), Hoover (1979) and was further developed and named
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graphon in Lovász and Szegedy (2006), Diaconis and Janson (2008), Borgs et al. (2008).
Specifically, in the graphon model, we observe an undirected graph of n nodes and the asso-
ciated adjacency matrix A ∈ {0,1}n×n. The value of Aij stands for the presence or the absence
of an edge between the ith and the j th nodes. The sampling process of A is determined as
follows: conditioning on (ξ1, . . . , ξn),

(1) for all 1 ≤ i < j ≤ n, Aij = Aji ∼ Bern(Mij ) where Mij = f (ξi, ξj ).

Here, the sequence {ξi} are i.i.d. random variables sampled from an unknown distribution Pξ

supported on [0,1]. A common choice for Pξ is the uniform distribution on [0,1]. In this
paper, we allow Pξ to be arbitrary so that the model (1) can be studied to its full generality.
Conditioning on (ξ1, . . . , ξn), Aij ’s are mutually independent across all 1 ≤ i < j ≤ n, and
we adopt the convention that Aii = Mii = 0 for all i ∈ [n]. The function f : [0,1] × [0,1] �→
[0,1], which is assumed to be symmetric, is called graphon. In this work, we focus on this
general graphon model and consider the problem of estimating f given A.

The concept of graphon plays a significant role in network analysis. It was originally de-
veloped as a limit of a sequence of graphs with growing sizes (Diaconis and Janson (2008),
Lovász and Szegedy (2006), Lovász (2012)), and has been applied to various network anal-
ysis problems ranging from testing graph properties to characterizing distances between two
graphs (Borgs et al. (2008, 2012), Lovász (2012)). The general graphon model in (1) captures
many special models of interest. For example, when f is a constant function, it gives rise to
the Erdős–Rényi random graph; when f is a blockwise constant function or Pξ has a discrete
support, it specializes to the stochastic block model (SBM) (Holland, Laskey and Leinhardt
(1983)).

One challenge in graphon estimation is the nonidentifiability of f due to the fact that the
latent random variables {ξi} are unobservable. To overcome this, we follow the prior work
Gao, Lu and Zhou (2015) and consider estimating f under the empirical loss:

(2) ℓ(M̂,Mf ) :=
1

(
n

2

)
∑

1≤i<j≤n

(
M̂ij − (Mf )ij

)2
,

where M̂ ∈R
n×n and (Mf )ij := f (ξi, ξj ).

There has been great interest in graphon estimation in the last decade (Wolfe and Olhede
(2013), Airoldi, Costa and Chan (2013), Chan and Airoldi (2014), Gao, Lu and Zhou (2015),
Klopp, Tsybakov and Verzelen (2017)) and we refer readers to Section 1.3 for detailed dis-
cussion. From the statistical perspective, Gao, Lu and Zhou (2015) provided the first charac-
terization for the minimax error rate in graphon estimation. In particular, for the SBM with k

blocks, the minimax estimation error rate is

(3) SBM class : inf
M̂

sup
M∈Mk

E
(
ℓ(M̂,M)

)
� k2

n2
+ log k

n
,

where Mk denotes the set of connectivity probability matrices in SBM with k communities
and its exact definition is given Section 3. The minimax upper bound is achieved by a con-
strained least-squares estimator, which needs to search over all possible graphon matrices in
Mk and is computationally inefficient, that is, with runtime exponential in n.

When f belongs to a Hölder space with smoothness index γ , the minimax estimation error
rate is shown to be (Gao, Lu and Zhou (2015))

Hölder class : inf
M̂

sup
f ∈Hγ (L)

sup
Pξ

E
(
ℓ(M̂,Mf )

)
�

⎧
⎪«
⎪¬

n
− 2γ

γ+1 0 < γ < 1,
logn

n
γ ≥ 1,

(4)
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where Hγ (L) denotes the Hölder class to be introduced in Section 4. Again, computing the
minimax optimal estimator is expensive, as it is based on first approximating a γ -smooth
graphon with a blockwise constant matrix and then applying the constrained least-squares
estimator.

From the computational perspective, the problem appears to be far less well understood.
The best polynomial-time estimator so far for graphon estimation is the universal singular
value thresholding (USVT) (Chatterjee (2015)), and its sharp error bound was obtained by
Klopp and Verzelen (2019), Xu (2018),

SBM class : sup
M∈Mk

E
(
ℓ(M̂USVT,M)

)
≤ C

k

n
,

Hölder class : sup
f ∈Hγ (L)

sup
Pξ

E
(
ℓ(M̂USVT,Mf )

)
≤ Cn

− 2γ
2γ+1 ,

(5)

for some constant C > 0 independent of n and k.
Comparing (3) and (4) with (5), we see that there is a big gap between the estimation error

rate achieved by the USVT and the minimax rate. It has been conjectured in Xu (2018) that the
error rates in (5) are optimal within the class of polynomial-time algorithms, but no rigorous
evidence is provided there. The fundamental computational limits for graphon estimation
have been a long-standing open problem in the community (Xu (2018), Gao and Ma (2021),
Wu and Xu (2021)). In particular, in a recent survey about the statistical and computational
limits for statistical problems with planted structures, Wu and Xu (2021) explicitly highlight
“computational hardness of graphon estimation” in their Section 5 as one of the six prominent
open problems in the field.

The gap on the performance of polynomial-time algorithms and unconstrained-time algo-
rithms is quite common in high-dimensional statistical problems. There has been a flurry
of progress in the statistics and theoretical computer science communities toward under-
standing the general “statistical–computational tradeoffs” phenomenon. This topic focuses
on the gap between signal-to-noise ratio (SNR) requirements under which the problem is
information-theoretically solvable vs. polynomial-time solvable. As the SNR increases, such
problems often exhibit three phases of interest: (1) statistically unsolvable; (2) statistically
solvable but computationally expensive, for example, with runtime exponential in the input
dimension; (3) easily solvable in polynomial-time. Many frameworks such as average-case
reduction, statistical query (SQ), sum-of-squares (SoS) hierarchy, optimization landscape and
low-degree polynomials have been proposed to study this phenomenon, and we refer readers
to Section 1.3 for a thorough discussion. Based on these frameworks, rigorous evidence for
the computational barrier has been provided for a wide class of statistical problems, such as
planted clique, sparse PCA, submatrix detection, tensor PCA, robust mean estimation and
many others (Barak et al. (2019), Berthet and Rigollet (2013), Ma and Wu (2015), Zhang and
Xia (2018), Brennan, Bresler and Huleihel (2018), Diakonikolas, Kane and Stewart (2017)).

Despite all these successes, the graphon estimation problem is a rare example where to our
best knowledge essentially no progress has been made under any framework. We think there
are two major challenges in establishing the computational lower bound for graphon estima-
tion: (1) in this problem, we want to establish a computational lower bound for estimation

error rate, while most existing frameworks are mainly designed for hypothesis testing. Two
natural hypothesis testing problems associated with graphon estimation do not have compu-
tational barriers, as we will discuss in Appendix A in the Supplementary Material (Luo and
Gao (2024)); (2) in contrast to the classical problems, such as planted clique or sparse PCA,
there is no such canonical SNR quantity in graphon estimation, though it is often critical to
understand this quantity in order to apply existing frameworks.
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In this work, we overcome the above challenges and provide the first rigorous piece of
evidence for the computational barrier in graphon estimation. The contributions of the paper
are summarized below.

1.1. Our contributions. The main result of the paper is given by the following theorem.

THEOREM 1. Suppose 2 ≤ k ≤
√

n. For any D ≥ 1, there exists a universal constant

c > 0 such that

(6) inf
M̂∈R[A]n×n

≤D

sup
M∈Mk

E
(
ℓ(M̂,M)

)
≥

ck

nD4 .

Here, the notation M̂ ∈ R[A]n×n
≤D means that for all (i, j) ∈ [n] × [n], M̂ij is a polynomial of

A with degree no more than D.

It has been widely conjectured in the literature that for a broad class of high-dimensional
problems, degree-D polynomials are as powerful as the class of nD (up to logn factors in
the exponent) runtime algorithms (Hopkins (2018)). Therefore, by setting D = log1+ε n for
any ε > 0, Theorem 1 provides firm evidence that the best estimation error achieved by
polynomial-time algorithms for graphon estimation under the SBM class cannot be faster
than �̃(k/n). Up to logarithmic factors, this matches the upper bound achieved by USVT in
(5).

We also establish a low-degree polynomial lower bound for graphon estimation under
the Hölder class by approximating a smooth graphon via an SBM. See Theorem 4 in Sec-
tion 4. Again, the statistical error rate in (4) is strictly faster than the one achieved by low-
degree polynomial algorithms. Combining the two results, we make a step in resolving the
open problem regarding the computational lower bounds for graphon estimation raised by Xu
(2018), Gao and Ma (2021), Wu and Xu (2021).

1.2. From community detection to graphon estimation. Theorem 1 is proved by lever-
aging the recent advancement of low-degree polynomials developed by Schramm and Wein
(2022). Compared with previous work (Hopkins and Steurer (2017), Hopkins (2018)) on hy-
pothesis testing, the low-degree polynomial lower bound in Schramm and Wein (2022) is
directly established for estimation problems under some prior distribution, and is thus partic-
ularly suitable for graphon estimation. Sharp computational lower bounds have been derived
for several important examples in Schramm and Wein (2022) including the planted submatrix
problem and the planted dense subgraph problem. However, unlike the examples in Schramm
and Wein (2022), the graphon estimation problem does not have a natural prior distribution
and SNR and, therefore, it is unclear how the general theorem of Schramm and Wein (2022)
can be applied to such a setting.

To address this challenge, we consider another problem in network analysis called com-
munity detection. The goal of community detection is to recover the clustering structure of
a network. For this purpose, a canonical model is the k-class SBM with within-class and
between-class homogeneous connectivity probabilities, that is, for two nodes from the same
community, the connectivity probability is set to be p and for two nodes from different com-
munities, the connectivity probability is set to be q (Mossel, Neeman and Sly (2015b), Abbe,
Bandeira and Hall (2016)). Unlike the general SBM that has k(k−1)

2 model parameters, the
SBM used for community detection has only 2 parameters (p and q) and can be viewed as a
subset. For this subset, not only all the joint cumulants required by the theorem of Schramm
and Wein (2022) can be computed, but we also have a nature SNR that quantifies the statisti-
cal computational gap.
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By applying Schramm and Wein (2022), we show that a nontrivial clustering error can-
not be achieved by low-degree polynomial algorithms below the generalized Kesten–Stigum
threshold (Kesten and Stigum (1966), Decelle et al. (2011), Chen and Xu (2016)). This re-
sult is of independent interest, and complements the recent progress by Hopkins and Steurer
(2017), Bandeira et al. (2021), Banks, Mohanty and Raghavendra (2021), Brennan and
Bresler (2020) on the computational limits of community detection. More importantly, the
low-degree polynomial lower bound for community detection immediately implies the de-
sired rate (6) for graphon estimation by carefully choosing a least favorable pair of p and
q .

This connection between graphon estimation and community detection from the perspec-
tive of computational limit is quite surprising. Without any computational constraint, the
statistical limits of the two problems are derived from very different arguments in the litera-
ture. While the minimax rate of graphon estimation is polynomial (Gao, Lu and Zhou (2015),
Klopp, Tsybakov and Verzelen (2017), Gao et al. (2016)), the minimax rate of community
detection is exponential (Zhang and Zhou (2016), Fei and Chen (2020)), and one cannot be
derived from the other. In contrast, we show that the low-degree polynomial lower bounds
for the two problems can be established through the same argument. Detailed discussion on
the connection between the two problems will be given in Section 3 and Section 5.

1.3. Related prior work. Graphon estimation has received considerable attention in the
past decade (Wolfe and Olhede (2013), Yang, Han and Airoldi (2014), Airoldi, Costa and
Chan (2013), Olhede and Wolfe (2014), Chan and Airoldi (2014), Borgs, Chayes and Smith
(2015), Chatterjee (2015), Gao, Lu and Zhou (2015), Klopp, Tsybakov and Verzelen (2017),
Gao et al. (2016), Zhang, Levina and Zhu (2017), Klopp and Verzelen (2019)). The minimax
error rates for a variety of graphon estimation problems, including (sparse) SBM graphon
estimation, nonparametric graphon estimation, graphon estimation with missing entries have
been established in Gao, Lu and Zhou (2015), Klopp, Tsybakov and Verzelen (2017), Gao
et al. (2016), Klopp and Verzelen (2019). A number of efficient estimators for graphon es-
timation have been proposed (Airoldi, Costa and Chan (2013), Chatterjee (2015), Chan and
Airoldi (2014), Zhang, Levina and Zhu (2017), Li et al. (2020), Gaucher and Klopp (2021)).
In the SBM setting, Gaucher and Klopp (2021) showed that a tractable estimator based on
variational inference can achieve the minimax rate under appropriate assumptions on the
connectivity probability matrix and the clustering labels. Without these additional assump-
tions, the best polynomial-time estimators for SBM/nonparametric graphon estimation are
provided and analyzed in Chatterjee (2015), Klopp and Verzelen (2019), Xu (2018), but
they are far from optimal. Recently, graphon estimation in a bipartite graph, private graphon
estimation and stochastic block smooth graphon model have also been considered in Choi
(2017), Donier-Meroz et al. (2023), Borgs, Chayes and Smith (2015), Sischka and Kauer-
mann (2022).

1.3.1. Statistical–computational tradeoffs. There has been a long line of work on study-
ing the statistical–computational tradeoffs in high-dimensional statistical problems. One
powerful approach to establish the computational lower bounds is based on the average-case
reduction (Berthet and Rigollet (2013), Gao, Ma and Zhou (2017), Wang, Berthet and Sam-
worth (2016), Ma and Wu (2015), Cai, Liang and Rakhlin (2017), Hajek, Wu and Xu (2015),
Brennan, Bresler and Huleihel (2018), Brennan and Bresler (2020), Luo and Zhang (2022a),
Pananjady and Samworth (2022)), and it requires a distribution over instances in a conjec-
turally hard problem to be mapped precisely to the target distribution. Once the reduction is
done, all hardness results from the conjectured hard problem can be automatically inherited to
the target problem. On the other hand, the conclusions rely on conjectures that have not been
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proved yet. For this reason, many recent literature aims to show computational hardness re-
sults under some restricted models of computation, such as sum-of-squares (Ma and Wigder-
son (2015), Hopkins et al. (2017), Barak et al. (2019)), statistical query (SQ) (Feldman et al.
(2017), Diakonikolas, Kane and Stewart (2017), Diakonikolas, Kong and Stewart (2019),
Feldman, Perkins and Vempala (2018)), class of circuit (Rossman (2008)), convex relaxation
(Chandrasekaran and Jordan (2013)), local algorithms (Gamarnik and Sudan (2014)), low-
degree polynomials (Hopkins and Steurer (2017), Kunisky, Wein and Bandeira (2022)) and
others.

1.3.2. Why the low-degree polynomial framework. Among various ways to establish
computational lower bounds, the low-degree polynomial framework is both clean and gen-
eral. It has already been applied to many important high-dimensional problems and always
leads to the same computational limits as conjectured in the literature. Compared with the
low-degree polynomial method, the statistical query (SQ) framework is typically applied
when the observed data consists of i.i.d. samples, but it is not clear how to cast graphon
estimation into this form. The sum-of-squares (SoS) lower bounds provide strong evidence
for the average-case hardness, but it is important to note that SoS lower bounds show hard-
ness of certification problems. It does not necessarily imply hardness of estimation/recovery
(Bandeira, Kunisky and Wein (2020), Banks, Mohanty and Raghavendra (2021)). Average-
case reduction is often applied to hypothesis testing problems (Berthet and Rigollet (2013),
Brennan, Bresler and Huleihel (2018)). To show the hardness of estimation from hypothe-
sis testing, one often needs to further perform an extra reduction from estimation to testing.
However, as we will see in Appendix A in the Supplementary Material (Luo and Gao (2024)),
two natural hypothesis testing problems associated with graphon estimation do not have a
statistical–computational gap.

1.3.3. More literature on low-degree polynomials. The idea of using low-degree polyno-
mials to predict the statistical–computational gaps was recently developed in a line of work
on studying the SoS hierarchy (Hopkins and Steurer (2017), Hopkins (2018), Barak et al.
(2019)). Many state-of-art algorithms such as spectral methods and approximate messaging
(AMP) (Donoho, Maleki and Montanari (2009)) can be represented as low-degree polynomi-
als (Kunisky, Wein and Bandeira (2022), Gamarnik, Jagannath and Wein (2020), Montanari
and Wein (2022)) and the “low” here typically means logarithmic in the dimension. In com-
parison to SoS computational lower bounds, the low-degree polynomial method is simpler to
establish and appears to always yield the same results for natural average-case hardness prob-
lems. The majority of the existing low-degree polynomial hardness results are established for
hypothesis testing problems based on the notion of low-degree likelihood ratio. Examples in-
clude unsupervised problems such as planted clique detection (Hopkins (2018), Barak et al.
(2019)), community detection in SBM (Hopkins and Steurer (2017), Hopkins (2018), Jin
et al. (2022)), spiked tensor model (Hopkins et al. (2017), Hopkins (2018), Kunisky, Wein and
Bandeira (2022)), spiked Wishart model (Bandeira, Kunisky and Wein (2020)), sparse PCA
(Ding et al. (2024)), spiked Wigner model (Kunisky, Wein and Bandeira (2022)), clustering in
Gaussian mixture models (Löffler, Wein and Bandeira (2022), Lyu and Xia (2023)), planted
vector recovery (Mao and Wein (2021)), independent component analysis (Auddy and Yuan
(2023)) as well as supervised learning problems such as tensor regression (Luo and Zhang
(2022b)) and mixed sparse linear regression (Arpino and Venkataramanan (2023)). Very re-
cently, the low-degree polynomial method has also been extended to establish computational
hardness in statistical estimation/recovery problems (Schramm and Wein (2022), Koehler
and Mossel (2022), Wein (2023), Mao, Wein and Zhang (2023)) and random optimization
(Gamarnik, Jagannath and Wein (2020), Wein (2022), Bresler and Huang (2022)). It is grad-
ually believed that the low-degree polynomial method is able to capture the essence of what
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makes sum-of-squares algorithms, and more generally, polynomial-time algorithms succeed
or fail (Hopkins (2018), Kunisky, Wein and Bandeira (2022)). However, there are a couple
of important examples where the low-degree polynomials cannot predict the right compu-
tational threshold, such as the random 3-XOR-SAT problem (Kunisky, Wein and Bandeira
(2022)). In those settings, low-degree polynomials can be outperformed by some “brittle”
algebraic methods with almost no noise tolerance; we refer readers to Holmgren and Wein
(2021), Zadik et al. (2022), Diakonikolas and Kane (2022) for more discussions. Finally, it
is worth mentioning that although we focus on the low-degree polynomial framework, it has
been demonstrated that this framework is closely related to many other frameworks, such as
SoS, SQ, free-energy landscape and approximate message passing from various perspectives
(Hopkins et al. (2017), Barak et al. (2019), Brennan et al. (2021), Bandeira et al. (2022),
Montanari and Wein (2022)).

1.4. Organization of the paper. After the introduction of notation and preliminaries of
low-degree polynomials in Section 2, we present our main results on the low-degree polyno-
mial lower bounds for graphon estimation in SBM and nonparametric graphon estimation in
Section 3 and Section 4, respectively. The low-degree polynomial lower bound for commu-
nity detection in SBM is given in Section 5. Extensions of the main results to sparse graphon
estimation and biclustering are given in Section 6. The proofs of the main results are pre-
sented in Section 7 and the rest of the proofs are deferred to the Appendices.

2. Notation and preliminaries. Define N = {0,1,2, . . .} and [N] = {1, . . . ,N} for an
integer N . For α ∈ NN , define |α| = ∑N

i=1 αi , α! = ∏N
i=1 αi !, and for X ∈ RN , define Xα =∏N

i=1 X
αi

i . Given α,β ∈ NN , we use α ≥ β to mean αi ≥ βi for all i. The operations α +
β and α − β are performed entrywise. The notation β ≨ α means β ≤ α and β 
= α (but
not necessarily βi < αi for every i). Furthermore, for α ≥ β , we define

(α
β

)
= ∏N

i=1
(αi

βi

)
.

Sometimes, given n ≥ 1 and N = n(n − 1)/2, we will view α ∈NN as a multigraph (without
self-loops) on vertex set [n], that is, for each i < j , we let αij represent the number of edges
between vertices i and j . In this case, V (α) ⊆ [n] denotes the set of vertices spanned by the
edges of α. For any vector v, define its ℓ2 norm as ‖v‖2 = (

∑
i |vi |2)1/2. For any matrix D ∈

Rp1×p2 , the matrix Frobenius and spectral norms are defined as ‖D‖F = (
∑

i,j D2
ij )

1/2 and
‖D‖ = maxu∈Rp2 ‖Du‖2/‖u‖2, respectively. The notation Ir represents the r-by-r identity
matrix and 1n is an all 1 vector in Rn. For any two sequences of numbers, say {an} and
{bn}, denote an � bn or an = �(bn) if there exists uniform constants c,C > 0 such that
can ≤ bn ≤ Can for all n; an � bn means that an ≤ Cbn holds for some constant C > 0
independent of n and an = �̃(bn) if an/bn and bn/an are both bounded by polylog(n), that
is, an and bn are on the same order up to polylog(n) factors. Finally, throughout the paper, let
c, c′, c′′, C be some constants independent of n and k, whose actual values may vary from
line to line.

2.1. Computational lower bounds for estimation via low-degree polynomials. Consider
the general binary observation model and suppose the signal X ∈ [τ0, τ1]N with 0 ≤ τ0 <

τ1 ≤ 1 is drawn from an arbitrary but known prior. We observe Y ∈ {0,1}N where E[Yi |Xi] =
Xi and {Yi}Ni=1 are conditionally independent given X. Let R[Y ]≤D denote the space of poly-
nomials g : RN → R of degree at most D of Y . Suppose the goal is to estimate a scalar
quantity x ∈ R, which is a function of X, then we have the following estimation lower bound
for low-degree polynomial estimators.

PROPOSITION 1 (Schramm and Wein (2022)). In the general binary model described

above, denote P as the joint distribution of x and Y . Then for any D ≥ 1, we have

inf
g∈R[Y ]≤D

E(x,Y )∼P

(
g(Y ) − x

)2 = E
(
x2)

− Corr2
≤D,
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where the degree-D correlation Corr≤D is defined as

(7) Corr≤D := sup
g∈R[Y ]≤D

EP[g2(Y )]
=0

E(x,Y )∼P[g(Y ) · x]√
EP[g2(Y )]

,

and satisfies the property

Corr2
≤D ≤

∑

α∈{0,1}N ,0≤|α|≤D

κ2
α(x,X)

(τ0(1 − τ1))|α| .

Here, κα(x,X) is defined recursively by

(8)

κ0(x,X) = E(x) and

κα(x,X) = E
(
xXα)

−
∑

0≤β≨α

κβ(x,X)

(
α

β

)
E

[
Xα−β]

for α such that |α| ≥ 1.

We note that Proposition 1 provides a general ℓ2 estimation error lower bound for low-
degree estimators of degree at most D. To show the low-degree polynomial lower bound in a

specific problem, we then have to bound
∑

α∈{0,1}N ,0≤|α|≤D
κ2
α(x,X)

(τ0(1−τ1))
|α| , but to our knowledge

there is no easy and unified way to do that. One important interpretation for κα(x,X) is the
following: if we view α as a multiset {a1, . . . , am} with m = ∑N

i=1 αi , which contains αi

copies of i for all i ∈ [N], then κα(x,X) is the joint cumulant of a multiset of entries of the
signal (Schramm and Wein (2022), Claim 2.14):

(9) κα(x,X) = κ(x,Xa1, . . . ,Xam),

where κ(· · · ) denotes the joint cumulant of a set of random variables and its formal definition
and properties are provided in Appendix B.1 in the Supplementary Material (Luo and Gao
(2024)). This fact about κα(x,X) will be crucially used in our proofs of bounding Corr≤D

for graphon estimation.
A similar result as Proposition 1 holds under the general additive Gaussian noise model as

well. We defer the result in that setting to Appendix B.2 in the Supplementary Material (Luo
and Gao (2024)).

3. Computational limits for graphon estimation in the stochastic block model. We
first define the parameter space of interest in SBM,

Mk =
{
M = (Mij ) ∈ [0,1]n×n : Mii = 0 for i ∈ [n],Mij = Mji = Qzizj

for i 
= j,

for some Q = Q� ∈ [0,1]k×k, z ∈ [k]n
}
.

(10)

In other words, the connectivity probability between the ith and the j th nodes, Mij , only
depends on Q through their clustering labels zi and zj . Given M ∈ Mk , we observe a random
graph with adjacency matrix A ∈ {0,1}n×n and its generative progress is given in (1). The
minimax rate of estimating M ∈ Mk is given in (3). It was shown in Gao, Lu and Zhou
(2015) that the minimax rate can be achieved by the solution of the following constrained
least-squares optimization,

(11) min
M∈Mk

‖A − M‖2
F,
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which, by the definition of Mk , is equivalent to

min
z∈[k]n

min
Q∈Rk×k

∑

a,b∈[k]

∑

(i,j)∈z−1(a)×z−1(b)
i 
=j

(Aij − Qab)
2

= min
z∈[k]n

∑

a,b∈[k]

∑

(i,j)∈z−1(a)×z−1(b)
i 
=j

(
Aij − �Aab(z)

)2
,

where z−1(a) := {i ∈ [n] : zi = a}, and

�Aab(z) :=

⎧
⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪¬

1

|z−1(a)||z−1(b)|
∑

i∈z−1(a)

∑

j∈z−1(b)

Aij a 
= b,

1

|z−1(a)|(|z−1(a)| − 1)

∑

i,j∈z−1(a)
i 
=j

Aij a = b.

Unfortunately, since the optimization problem involves searching over all clustering patterns,
it is computationally expensive to solve and has runtime exponential in n.

This motivates a line of work on searching for polynomial-time algorithms. Among many
of them, a prominent one is the universal singular value thresholding (USVT) proposed in
Chatterjee (2015). It is a simple and versatile method for structured matrix estimation and has
been applied to a variety of different problems such as low-rank matrix estimation, distance
matrix completion, graphon estimation and ranking (Chatterjee (2015), Shah et al. (2016)).
In particular, given the SVD of A = U	V � = ∑n

i=1 σi(A)uiv
�
j , where σi(A) denotes the ith

largest singular value of A, USVT estimates M by

(12) M̂USVT(τ ) =
∑

i:σi(A)>τ

σi(A)uiv
�
i ,

where τ is a carefully chosen tuning parameter. In the original paper by Chatterjee (2015), it
was proved that USVT achieves the error rate

√
k/n in estimating M ∈ Mk . Later, the error

rate of USVT was improved to k/n via a sharper analysis (Klopp and Verzelen (2019), Xu
(2018)). Other polynomial-time algorithms in the literature (Airoldi, Costa and Chan (2013),
Chan and Airoldi (2014), Zhang, Levina and Zhu (2017), Li et al. (2020), Borgs et al. (2021),
Gaucher and Klopp (2021)) either achieve error rates no better than k/n or require additional
assumptions on the matrix M . In this section, we will show that k/n is the best possible error
rate that can be achieved by low-degree polynomial algorithms.

In order to apply the general tool given by Proposition 1, one needs to find a prior distri-
bution supported on Mk and compute all the joint cumulants under this prior. It turns out
that the analysis of the cumulants is intractable under the least favorable prior constructed
by Gao, Lu and Zhou (2015) to prove the minimax lower bound. We need a simpler prior to
apply Proposition 1. To this end, we introduce a special class of SBM models considered in
the community detection literature, denoted by Mk,p,q (0 ≤ q < p ≤ 1), whose definition is
given by

Mk,p,q =
{
M = (Mij ) ∈ [0,1]n×n : Mii = 0 for i ∈ [n],

Mij = Mji = p1(zi = zj ) + q1(zi 
= zj ) for i 
= j for some z ∈ [k]n
}
.

(13)

Since Mk,p,q is much simpler than Mk , it is not clear that it would lead to a sharp compu-
tational lower bound. However, we will show that when the algorithms are restricted within
the class of low-degree polynomials, graphon estimation under Mk,p,q can be as difficult as
that under Mk .
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We consider the following natural prior distribution PSBM(p,q) supported on Mk,p,q . In
particular, M ∼ PSBM(p,q) can be generated as follows: first, sample z ∈ [k]n according to

zi
i.i.d.∼ Unif{1, . . . , k} for all i ∈ [n]. Then let Mij = p1(zi = zj )+q1(zi 
= zj ) for all 1 ≤ i <

j ≤ n and Mii = 0 for all i ∈ [n]. Our first main result shows that when the SNR of Mk,p,q

is smaller than a certain threshold, then the estimation error of any low-degree polynomial
estimator can be bounded from below.

THEOREM 2. For any 0 < r < 1 and D ≥ 1, if

(14)
(p − q)2

q(1 − p)
≤

r

(D(D + 1))2

(
k2

n
∧ 1

)
,

then we have

(15) inf
M̂∈R[A]n×n

≤D

EA,M∼PSBM(p,q)

(
ℓ(M̂,M)

)
≥

(p − q)2

k
− (p − q)2

(
1

k2
+

r(2 − r)

(1 − r)2n

)
.

Here, the notation M̂ ∈ R[A]n×n
≤D means that for all (i, j) ∈ [n]×[n], we have M̂ij ∈R[A]≤D .

To understand the result of Theorem 2, let us consider the special case k ≤
√

n and ignore
the second term on the right-hand side of (15). Then Theorem 2 indicates that whenever

(16)
n(p − q)2

k2q(1 − p)
� 1,

the graphon estimation error cannot be better than (p−q)2

k
. We remark that (p−q)2

k
is in fact

a trivial error under the prior distribution M ∼ PSBM(p,q), since it can be achieved by the
constant estimator M̂ij = q for all i 
= j . One may recognize that the SNR condition (16)
is related to the well-known Kesten–Stigum threshold (Kesten and Stigum (1966), Decelle
et al. (2011)) in the literature of community detection (See Section 5 for more details). With
arguments from statistical physics, it was conjectured that when the number of communities
k is a constant, nontrivial community detection is possible in polynomial time whenever

(17)
n(p − q)2

k(p + (k − 1)q)
> 1,

at least under the asymptotic regime p = a/n and q = b/n for some constants a > b. For
general p and q such that p � q < p < 0.99, the two SNRs on the left-hand sides of (16)
and (17) are of the same order. In fact, (16) could be regarded as an asymptotic extension or
generalized version of (17) when k grows (Brennan and Bresler (2020)) and Chen and Xu
(2016) conjectures (see their Conjecture 9) that it is the computational limits for community
detection in SBM with a growing number of communities. Hence, Theorem 2 simply says
nontrivial graphon estimation is not possible below the generalized Kesten–Stigum threshold
under the parameter space Mk,p,q .

To find a tight computational lower bound for graphon estimation under the original SBM
class Mk , we define

(18) M
′
k =

⋃

0≤q≤p≤1

Mk,p,q .

Observe that M′
k ⊂ Mk , and we have

inf
M̂∈R[A]n×n

≤D

sup
M∈Mk

E
(
ℓ(M̂,M)

)
≥ inf

M̂∈R[A]n×n
≤D

sup
M∈M′

k

E
(
ℓ(M̂,M)

)

≥ inf
M̂∈R[A]n×n

≤D

EA,M∼PSBM(p,q)

(
ℓ(M̂,M)

)
.

(19)
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Since the above inequality holds for arbitrary 0 ≤ q ≤ p ≤ 1, we can find a pair of p and q to
maximize the right-hand side of (15) under the SNR constraint (14). This immediately leads
to the following result.

COROLLARY 1. Suppose k ≥ 2. For any D ≥ 1, there exists a universal constant c > 0
such that

inf
M̂∈R[A]n×n

≤D

sup
M∈Mk

E
(
ℓ(M,M̂)

)
≥

c

D4

(
k

n
∧

1

k

)
.

When k ≤
√

n, the result in Corollary 1 reduces to Theorem 1. Under the low-degree
polynomial conjecture (Hopkins (2018)) with D = log1+ε n, the lower bound k

nD4 matches
the rate (5) achieved by USVT up to some logarithmic factors. This is a bit surprising since
Corollary 1 is actually proved for a much smaller parameter space M′

k than the original
one Mk . This provides a valuable insight that in the regime k ≤

√
n the simple SBM prior

PSBM(p,q) provides “computationally” a least favorable prior for graphon estimation.
When k >

√
n, however, the rate 1

kD4 does not match the performance of the USVT. This
may result from the fact that the computational limits of the two spaces M′

k and Mk are
different when k is large. We will verify in the following Section 3.1 that the rate 1

kD4 is
actually sharp if we consider the smaller space M′

k .

3.1. Optimality of Theorem 2. Our main result Theorem 2 leads to the lower bound rate
k
n

∧ 1
k

in Corollary 1 for graphon estimation under the SBM class Mk . When k >
√

n, this
rate becomes 1

k
, and does not match the upper bound achieved by USVT. In fact, since 1

k
is

even smaller than the minimax rate (3) when k > n2/3, it cannot be the sharp. We will argue
in this section that the suboptimal rate 1

k
is due to the choice of the subset M′

k instead of
an artifact of the proof of Theorem 2. The Bayes risk of Theorem 2 with respect to the prior
PSBM(p,q) (supported on M′

k) is optimal, and an improvement of the rate 1
k

must involve a
different subset.

Recall the definition M′
k = ⋃

0≤q≤p≤1 Mk,p,q . Theorem 2 and the inequality (19) imply

inf
M̂∈R[A]n×n

≤D

sup
M∈M′

k

E
(
ℓ(M̂,M)

)

≥ inf
M̂∈R[A]n×n

≤D

sup
0≤q≤p≤1

EA,M∼PSBM(p,q)

(
ℓ(M̂,M)

)

≥
c

D4

(
k

n
∧

1

k

)
.

The above lower bound cannot be improved. To see this, consider the following algorithm:

M̂ =
{
M̂USVT(τ ) k ≤

√
n,

M̂mean k ≥
√

n,
(20)

where (M̂mean)ij = (M̂mean)ji = ∑
1≤u<v≤n Auv/

(n
2

)
. When k ≤

√
n, the USVT with τ �

√
n

achieves the rate k
n

(Xu (2018)). When k >
√

n, a straightforward calculation (see Appendix
C.1 in the Supplementary Material (Luo and Gao (2024))) leads to

sup
0≤q≤p≤1

EA,M∼PSBM(p,q)

(
ℓ(M̂mean,M)

)
≤ C

1

k
.
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Algorithm 1 Low-degree Polynomial Algorithm for SBM Graphon Estimation
1: Input: A, p, q , k, r , t1 and t2.
2: (Fill the diagonal and transform the data) Let � ∈ Rn×n be a diagonal matrix with i.i.d.

Bern(p) entries on its diagonal and they are independent of A; let Ã = A + � − q1n1�
n .

3: (Power iteration) Generate an independent random matrix B ∈ Rp×r with i.i.d. N(0,1)

entries; compute Ãt1B .
4: (Gradient descent) Run t2 iterations of gradient descent (GD) with zero initialization on

the objective minW∈Rr×n ‖Ãt1BW − Ã‖2
F, that is, for l = 0 to t2 − 1, compute

Wl+1 = Wl − ηB�Ãt1
(
Ãt1BWl − Ã

)
with W0 = 0.

5: Output: M̂ = Ãt1BWt2 + q1n1�
n .

In addition, for any M ∈ M′
k , if we further assume n

βk
≤

∑n
i=1 1((zM)i = a) ≤ nβ

k
for all

a ∈ [k] for some constant β > 1, we also have EA(ℓ(M̂mean,M)) ≤ C 1
k
. In other words, the

estimator (20) achieves the rate k
n

∧ 1
k
, and thus the lower bound cannot be improved.

As we have discussed in Section 3, our low-degree polynomial lower bounds for graphon
estimation are derived by the connection to community detection. When k >

√
n, it is likely

that the computational limits of the two problems are very different. A sharp lower bound for
graphon estimation probably requires the construction of a very different subset than M′

k .
We leave this problem open.

3.2. A matching low-degree polynomial upper bound for PSBM(p,q). Though the error
rate of USVT matches our low-degree polynomial lower bound when k ≤

√
n, it is not strictly

a low-degree polynomial algorithm, that is, its entry cannot be written as a polynomial of
entries of A. In this section, we provide a rigorous low-degree polynomial algorithm with
near-optimal guarantees. For technical convenience, we consider the setting M ∼ PSBM(p,q)

as defined in Section 3. 1 The algorithm is described below.
The main idea of Algorithm 1 is to simulate SVD via power iteration. However, power

iteration does not lead to the right scaling without additional normalization, and this motivates
us to run a further least-squares optimization to normalize the matrix. Least squares is not
a low-degree algorithm since it involves matrix inverse, and this is simulated via gradient
descent.

By simple counting, one can show that each entry of M̂ is a polynomial of entries of A, �,
B with degree at most 2t1t2. The guarantee of M̂ returned by Algorithm 1 is given as follows.

THEOREM 3. Take r = 2k, t1 = t2 = C′ logn and the stepsize of GD to be η =
1

C′′(( n(p−q)
k

+C′′√n)2t1k∨(C′′n)t1+1)
for some large C′,C′′ > 0 in Algorithm 1. Then there exist

c,C, C̄ > 0 depending only on C′, C′′ such that when n ≥ Ck log3 n, we have with PSBM(p,q)-

probability at least 1 − n−C̄ , the M̂ in Algorithm 1 satisfies ℓ(M̂,M) ≤ c(k+logn) log2 n
n

.

To summarize, M̂ is a O(log2 n)-degree polynomial estimator that achieves the k/n error
rate up to logarithmic factors. One important feature of Algorithm 1 is that it works for any
p,q ∈ [0,1] and it automatically adapts between situations with a spectral gap or not. In ad-
dition, we note that in order to make the algorithm work, it is important to choose r to satisfy

1In fact, when k ≤
√

n, one can show, via similar arguments in Gao, Lu and Zhou (2015), that the information
theoretically optimal rate under M ∼ PSBM(p,q) is still �̃(1/n) for the least favorable pair of (p, q).
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r/k > 1 for the sketching matrix B in Step 3. With this choice, the least-squares optimization
is well conditioned and the gradient descent achieves a linear rate of convergence in the high
SNR regime when there is a spectral gap. In the low SNR regime without a spectral gap, gra-
dient descent after t2 = O(logn) iterations stays close to the zero initialization, which still
works for our purpose.

Compared with the low-degree upper bounds in Schramm and Wein (2022) where a single
power iteration is needed in planted submatrix and dense subgraph problems, we have to run
a logarithmic number of power iterations followed by a logarithmic number of iterations of
gradient descent. The logarithmic number of power iterations seems to be necessary for us to
extract the subspace information of A. In general, the proposed algorithm can understood as
a principled way of simulating spectral algorithms via low-degree polynomials. On the other
hand, we note that even though our algorithm is polynomial-time, it has degree O(log2 n). It
will be interesting to find a O(logn)-degree algorithm to simulate spectral algorithms.

REMARK 1. Careful readers may notice that our estimator M̂ is a low-degree polynomial
of entries of A as well as independently generated � and B , while our low-degree polynomial
lower bounds in Section 3 are proved for the class of deterministic polynomials. However,
this is not an issue since the low-degree polynomial lower bounds will continue to hold if we
consider the class of polynomials of A, � and B . This is due to the fact that cumulants on
two groups of independent random variables are zero (see Proposition 1 in Appendix B in the
Supplementary Material (Luo and Gao (2024))). The same issue has also been dealt with in
Claim A.1 by Schramm and Wein (2022).

4. Computational limits for nonparametric graphon estimation. Let us proceed to
nonparametric graphon estimation. We first introduce a class of Hölder smooth graphon.
Since graphons are symmetric functions, we only need to consider functions on D = {(x, y) ∈
[0,1] × [0,1] : x ≥ y}. Define the derivative operator by

∇jkf (x, y) =
∂j+k

(∂x)j (∂y)k
f (x, y),

and we adopt the convention ∇00f (x, y) = f (x, y). Given a γ > 0, the Hölder norm of f is
defined as

‖f ‖Hγ = max
j+k≤�γ �

sup
(x,y)∈D

∣∣∇jkf (x, y)
∣∣+ max

j+k=�γ �
sup

(x,y) 
=(x′,y′)∈D

|∇jkf (x, y) − ∇jkf (x′, y′)|
(|x − x′| + |y − y′|)γ−�γ � ,

and the Hölder class with smoothness parameter γ > 0 and radius L > 0 is defined as

Hγ (L) =
{
‖f ‖Hγ ≤ L : f (x, y) = f (y, x) for x ≥ y

}
.

Finally, the class of smooth graphon of interest is

Fγ (L) =
{
0 ≤ f ≤ 1 : f ∈Hγ (L)

}
.

The minimax rate of estimating f ∈ Fγ (L) is given by (4). Note that this rate can also be
written as

(21) min
k

(
k2

n2 +
logk

n
+ k−2(γ∧1)

)
�

⎧
⎪«
⎪¬

n
− 2γ

γ+1 0 < γ < 1,
logn

n
γ ≥ 1,

where the first term k2

n2 + log k
n

is the minimax rate of graphon estimation under the SBM class

Mk , and the second term k−2(γ∧1) is the error of approximating a nonparametric graphon
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f ∈ Fγ (L) by an SBM with k blocks (Lemma 2.1 of Gao, Lu and Zhou (2015)). A rate-
optimal estimator can be constructed by the same constrained least-squares optimization (11)

with k chosen to be �n
1

1+γ∧1 �, that is, the solution to the bias-variance tradeoff (21). Despite
its statistical optimality, solving (11) is computationally intractable.

In terms of polynomial-time algorithms, it was proved by Xu (2018) that the USVT esti-
mator (12) with tuning parameter τ �

√
n achieves the rate (5). Just as (21), the suboptimal

rate (5) can also be written in the form of bias-variance tradeoff,

(22) min
k

(
k

n
+ k−2γ

)
� n−2γ /(2γ+1),

where k
n

is the error rate of estimating a rank-k matrix, and k−2γ is the error of approximating
a nonparametric graphon f ∈ Fγ (L) by a rank-k matrix (Proposition 1 of Xu (2018)). The

optimal choice of k is given by �n
1

1+2γ �. Other polynomial-time algorithms in the literature
(Airoldi, Costa and Chan (2013), Chan and Airoldi (2014), Zhang, Levina and Zhu (2017),
Li et al. (2020), Borgs et al. (2021)) either achieve error rates no better than n−2γ /(2γ+1) or
require additional assumptions on f . In the following result, we provide a lower bound for
nonparametric graphon estimation within the class of low-degree polynomials.

THEOREM 4. Suppose γ > 0.5. For any D ≥ 1, there exists c > 0 only depending on L

and γ such that

inf
M̂∈R[A]n×n

≤D

sup
f ∈Fγ (L)

sup
Pξ

E
(
ℓ(M̂,Mf )

)
≥ cn

− 2γ+1
2γ+2 /D4.

Theorem 4 is proved by similar arguments that lead to Theorem 1. A simple calculation

shows that the low-degree polynomial lower bound n
− 2γ+1

2γ+2 is strictly slower than the statisti-
cal rate (21) by a factor scales polynomially in n whenever γ > 0.5. It confirms that the mini-
max rate in nonparametric graphon estimation cannot be achieved by the class of low-degree
polynomials when γ > 0.5, providing rigorous evidence for the statistical–computational
gap.

Careful readers may notice the gap between the low-degree polynomial lower bound and
the upper bound achieved by USVT. We believe this is due to the fact that Theorem 4 is
proved based on Theorem 2, where we use the SBM model class M′

k , that is, SBM class with
two parameters (p, q), to approximate a Hölder smooth graphon. To be specific, the optimal
choice of p, q in Theorem 2 would satisfy p − q � k√

n
. At the same time, to guarantee

that SBM(p, q) is a γ -Hölder smooth graphon, we need the condition p − q � 1/kγ (see
Proposition 4 in Appendix D in the Supplementary Material (Luo and Gao (2024))), that is,
k2

n
� k−2γ . So, our choice of k is from the tradeoff between k

n
and k−2γ−1, which is different

from the tradeoff (22) for USVT. To close this gap, we believe that a more sophisticated SBM
class is needed to approximate Hölder smooth graphons, which is beyond the scope of the
paper and we leave it as an interesting future direction.

5. Computational limits for community detection in SBM. The key to the derivation
of the computational lower bound for graphon estimation is the understanding of community
detection under the distribution PSBM(p,q) supported on Mk,p,q . For any M ∈ Mk,p,q with
p > q , there exists a unique z ∈ [k]n such that

Mij = p1(zi = zj ) + q1(zi 
= zj ).
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We write such z as zM to emphasize its dependence on M . The membership matrix ZM is
defined by: for i ∈ [n], (ZM)ii = 0, for all i 
= j ,

(23) (ZM)ij = 1
(
(zM)i = (zM)j

)
= Mij − q

p − q
.

The goal of the community detection is to recover the clustering labels zM or the membership
matrix ZM .

The problem of community detection has been widely studied in the literature (Bickel and
Chen (2009), Rohe, Chatterjee and Yu (2011), Lei and Rinaldo (2015), Jin (2015)). When
k = 2, groundbreaking work by Mossel, Neeman and Sly (2015b, 2018), Massoulié (2014)
shows that nontrivial community detection (better than random guess) is possible if and only

if n(p−q)2

2(p+q)
> 1. Sharp SNR thresholds have also been derived for partial recovery and exact

recovery (Mossel, Neeman and Sly (2015a), Abbe, Bandeira and Hall (2016)). We refer the
readers to Abbe (2017), Moore (2017) for extensive reviews on the topic.

It turns out that the problem starts to exhibit a statistical–computational gap as k gets
larger. When k is a large constant, with arguments from statistical physics, it was conjec-
tured in the literature that nontrivial community detection is possible in polynomial time
whenever the SNR exceeds the Kesten–Stigum threshold (Kesten and Stigum (1966), Decelle

et al. (2011)), which is sharply characterized by n(p−q)2

k(p+(k−1)q)
> 1 at least under the asymptotic

regime p = a/n and q = b/n for some constants a > b > 0. In contrast, the information-

theoretic limit only requires n(p−q)2

pk logk
to be large for nontrivial community detection (Banks

et al. (2016), Zhang and Zhou (2016)), so there is a (constant level) statistical–computational
gap. The algorithmic side of this conjecture has been resolved in Abbe and Sandon (2018),
while rigorous evidence of the computational lower bound has been much more elusive and
was partially provided by Hopkins and Steurer (2017), Bandeira et al. (2021), Banks, Mo-
hanty and Raghavendra (2021). There is also a statistical–computational gap for the detection
version of the problem and statistical/computational thresholds for detection and recovery
problems are the same when k is a constant (Bandeira et al. (2021), Banks, Mohanty and
Raghavendra (2021)).

In this section, we focus on the problem of community detection with a potentially grow-
ing k as n grows. Different from the constant k regime, in Appendix A in the Supplementary
Material (Luo and Gao (2024)), we illustrate that two natural hypothesis testing problems as-
sociated with SBM do not have a statistical–computational gap when k grows (at least there is
not a statistical–computational gap scaling polynomially in n). However, it was conjectured in
Chen and Xu (2016), Brennan and Bresler (2020) that there is still a statistical–computational
gap for the recovery problem in SBM with a growing number of communities and the com-
putational limit is given by the generalized Kesten–Stigum threshold (16).

Our goal of this section is to present a low-degree polynomial lower bound for recovery in
SBM with growing k under the following loss function:

ℓ(Ẑ,Z) =
1

(
n

2

)
∑

1≤i<j≤n

(Ẑij − Zij )
2.

Compared with Hamming loss of estimating the clustering labels, the above loss for estimat-
ing the membership matrix avoids the identifiability issue due to label switching. Under the
distribution M ∼ PSBM(p,q), it is easy to show that a trivial error of community detection is

EA,M∼PSBM(p,q)

(
ℓ(Ẑ,ZM)

)
= 1

k
− 1

k2
,
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achieved by Ẑ = 1
k
1n×n where 1n×n denotes a n × n matrix with all 1 in its entries. Random

guess would achieve a slightly worse error 2
k
(1− 1

k
) under the same setting. Therefore, we say

that an algorithm Ẑ can achieve nontrivial community detection if its error is much smaller

than 1
k

− 1
k2 . When n(p−q)2

pk2 > C for some sufficiently large constant C > 0, nontrivial com-
munity detection is possible, and polynomial-time algorithms including spectral clustering
(Chin, Rao and Vu (2015), Abbe and Sandon (2018)) and semidefinite programming (SDP)
(Guédon and Vershynin (2016), Li, Chen and Xu (2021)) would work.2 Next, we provide a
result in the other direction.

THEOREM 5. For any D ≥ 1, suppose

(p − q)2

q(1 − p)
≤ 1

2(D(D + 1))2

(
k2

n
∧ 1

)
,

then

(24) inf
Ẑ∈R[A]n×n

≤D

EA,M∼PSBM(p,q)

(
ℓ(Ẑ,ZM)

)
≥ 1

k
− 1

k2
− 3

n
.

In particular, when k ≤
√

n and

(25)
n(p − q)2

k2q(1 − p)
≤

1

2(D(D + 1))2 ,

the lower bound (24) holds.

Theorem 5 shows that when the SNR n(p−q)2

k2q(1−p)
is small, no low-degree polynomial algo-

rithm can achieve nontrivial community detection, which provides firm evidence of the con-
jecture of the generalized Kesten–Stigum threshold for community detection in SBM with a
growing number of communities. In fact, Theorem 5 can be viewed as a rearrangement of
Theorem 2. Given the relation (23), the loss functions of graphon estimation and community
detection can be linked through ℓ(M̂,M) = (p − q)2ℓ(Ẑ,ZM).

As we have mentioned above, there are a couple of existing pieces of evidence for the com-
putational limits of community detection in SBM when k is a constant (Hopkins and Steurer
(2017), Bandeira et al. (2021), Banks, Mohanty and Raghavendra (2021)). While when the
number of communities grows, to our knowledge, there is only one piece of evidence for the
hardness of recovery in SBM via average-case reduction from secrete-leakage planted clique
(Brennan and Bresler, 2020, Section 14.1). They considered establishing the computational
lower bound for a testing problem where the null is the Erdős–Rényi random graph and the
alternative is a variant of imbalanced SBM (ISBM) with two features: first, the averaged
number of degrees under the null and alternative are matched; second, the ISBM under the
alternative is a mean-field analogy of the original SBM so that the testing problem becomes
harder and it matches the hardness of the recovery problem. The reduction result is signifi-
cant as all existing computational hardness evidence for secrete-leakage planted clique can
be inherited to the testing problem they consider. The limitation is that they do not directly
handle the estimation problem under the original SBM model; moreover, their reduction only
works when k = o(n1/3), while our computational lower bound is valid as long as k ≤

√
n.

2For completeness, the performance of SDP under the model M ∼ PSBM(p,q) is given in Appendix E.2 in the
Supplementary Material (Luo and Gao (2024)).
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6. Extensions and discussion. Our main results can also be extended to the following
settings. In Section 6.1, we consider sparse graphon estimation, and present a corresponding
low-degree polynomial lower bound. Section 6.2 considers the estimation problem under a
biclustering structure with additive Gaussian noise, which can be regarded as an extension of
the SBM to rectangular matrices.

6.1. Computational lower bound for sparse graphon estimation. Network observed in
practice is often sparse in the sense that the total number of edges is of order o(n2). The
problem of sparse graphon estimation is typically more complex than the dense one and has
also been widely considered in the literature (Bickel and Chen (2009), Bickel, Chen and
Levina (2011), Borgs et al. (2018, 2019), Klopp, Tsybakov and Verzelen (2017), Gao et al.
(2016), Borgs et al. (2021)). This section will focus on the sparse SBM model. Given any
0 < ρ < 1, the class of probability matrices is defined as

Mk,ρ =
{
M = (Mij ) ∈ [0, ρ]n×n : Mii = 0 for i ∈ [n],Mij = Mji = Qzizj

for i 
= j,

for some z ∈ [k]n,Q = Q� ∈ [0, ρ]k×k}.
(26)

The minimax rate for sparse graphon estimation has been derived by Klopp, Tsybakov and
Verzelen (2017), Gao et al. (2016),

inf
M̂

sup
M∈Mk,ρ

E
(
ℓ(M̂,M)

)
� ρ

(
k2

n2 +
logk

n

)
∧ ρ2.

By solving a constrained least-squares optimization problem minM∈Mk,ρ
‖A − M‖2

F similar

to (11), one achieves the rate ρ( k2

n2 + log k
n

). The other part of the minimax rate ρ2 can be

trivially achieved by M̂ = 0. In terms of polynomial time algorithms, Klopp and Verzelen
(2019) considered a USVT estimator with tuning parameter τ � √

nρ, and showed that as

long as ρ ≥ logn
n

,

ℓ
(
M̂USVT(τ ),M

)
≤ C

ρk

n
,

with high probability.3

The goal of this section is to show that the above rate cannot be improved by a polynomial-
time algorithm. This is given by the following theorem.

THEOREM 6. Suppose 2 ≤ k ≤
√

n and ρ ≥ ck2

n
for some small 0 < c < 1. Then for any

D ≥ 1, there exists a universal constant c′ > 0 such that

inf
M̂∈R[A]n×n

≤D

sup
M∈Mk,ρ

E
(
ℓ(M,M̂)

)
≥

c′ρk

nD4 .

6.2. Computational lower bound for biclustering. Biclustering is another popular model
of interest and has found a lot of applications in the literature (Hartigan (1972), Choi and
Wolfe (2014), Rohe, Qin and Yu (2016), Chi, Allen and Baraniuk (2017), Mankad and
Michailidis (2014)). Similar to SBM, many different problems have been considered for
biclustering, such as recovery of the clustering structure, signal estimation and signal de-
tection (detecting whether the signal matrix is zero or not). A line of early work has studied

3For completeness, an in-expectation bound is established in Appendix F.1 in the Supplementary Material (Luo
and Gao (2024)) for a spectral algorithm.
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the statistical and computational limits for detection or recovery in biclustering with one
planted cluster (Balakrishnan et al. (2011), Kolar et al. (2011), Butucea and Ingster (2013),
Butucea, Ingster and Suslina (2015), Ma and Wu (2015), Cai, Liang and Rakhlin (2017),
Brennan, Bresler and Huleihel (2018), Schramm and Wein (2022)) and their extensions to
a growing number of clusters have been considered in Chen and Xu (2016), Cai, Liang and
Rakhlin (2017), Banks et al. (2018), Brennan and Bresler (2020), Dadon, Huleihel and Ben-
dory (2024). In this section, we are more interested in the latter case.

Define the following parameter space of rectangular matrices with biclustering structure,

Mk1,k2 =
{
M ∈ Rn1×n2 : Mij = Qzizj

for some Q ∈ Rk1×k2, z1 ∈ [k1]n1, z2 ∈ [k2]n2
}
.

We observe Y = M + E, where M ∈ Mk1,k2 and E has i.i.d. N(0,1) entries. In this section,
we are primarily interested in estimating M given Y and the loss of interest is ℓ(M̂,M) =

1
n1n2

∑
i∈[n1],j∈[n2](M̂ij − Mij )

2. The minimax rate has been derived by Gao et al. (2016),

(27) inf
M̂

sup
M∈Mk1,k2

E
(
ℓ(M̂,M)

)
�

k1k2

n1n2
+

log k1

n2
+

log k2

n1
,

and it is achieved by a constrained least-squares estimator that is computationally intractable.
In terms of polynomial-time algorithms, a heuristic two-way extension of the Lloyd’s algo-
rithm has been proposed in Gao et al. (2016), but there is no theoretical guarantee. Let us
instead consider a simple spectral algorithm,

M̂ = arg min
M:rank(M)≤k1∧k2

‖Y − M‖2
F.

Its theoretical guarantee is given by the following result.

PROPOSITION 2. There exists C > 0 such that supM∈Mk1,k2
E(ℓ(M̂,M)) ≤ C k1∧k2

n1∧n2
.

Compared with the minimax rate (27), the rate achieved by the spectral algorithm is not op-
timal. We will show that this rate is indeed the best one that can be achieved by a polynomial-
time algorithm, at least in certain regimes of the problem. To this end, consider a subset of
Mk1,k2 , denoted by Mk1,k2,λ, whose definition is given by

Mk1,k2,λ =
{
M ∈ Rn1×n2 : Mij = Qzizj

for some z1 ∈ [k1]n1, z2 ∈ [k2]n2,

Q ∈ Rk1×k2 such that Qii = λ for all i ∈ [k1 ∧ k2] and Qij = 0 otherwise
}
.

We also consider a prior distribution PBC(λ) supported on Mk1,k2,λ. The sampling process

M ∼ PBC(λ) is given as follows: first, generate z1 ∈ [k1]n, z2 ∈ [k2]n such that (z1)i , (z2)j
i.i.d.∼

Unif{1, . . . , k1 ∧ k2} independently for all i ∈ [n1] and j ∈ [n2]; then let Mij = λ1((z1)i =
(z2)j ). The following result gives a lower bound for the class of low-degree polynomial
algorithms.

THEOREM 7. For any 0 < r < 1 and D ≥ 1, if

(28) λ2 ≤
r

(D(D + 1))2
min

(
1,

k2
1 ∧ k2

2

n1 ∨ n2

)

holds, then

(29) inf
M̂∈R[Y ]n1×n2

≤D

EY,M∼PBC(λ)

(
ℓ(M̂,M)

)
≥ λ2

k1 ∧ k2
−

(
λ2

k2
1 ∧ k2

2

+ r(2 − r)λ2

(1 − r)2(n1 ∨ n2)

)
.
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Since Mk1,k2,λ ⊂ Mk1,k2 , the lower bound (29) is also valid for Mk1,k2 under the SNR
condition (28). To obtain a tight lower bound for Mk1,k2 , we can maximize the right-hand
side of (29) under the constraint (28). This leads to the following biclustering lower bound.

COROLLARY 2. Suppose k1 ∧ k2 ≥ 2. For any D ≥ 1, there exists a universal constant

c > 0 such that

inf
M̂∈R[Y ]n1×n2

≤D

sup
M∈Mk1,k2

E
(
ℓ(M̂,M)

)
≥

c

D4

(
k1 ∧ k2

n1 ∨ n2
∧

1

k1 ∧ k2

)
.

When k1 ∧ k2 ≤ √
n1 ∨ n2 and n1 � n2, the lower bound matches the rate of the spectral

algorithm.

7. Proofs of the main results in Section 3. In this section, we provide proofs for the
low-degree polynomial lower bound of graphon estimation in SBM. We will use Proposi-
tion 1 to prove our results and one of the key parts there is to understand κα(x,X). We will
first introduce a few preliminary results regarding κα(x,X), then prove Theorem 2 in Sec-
tion 7.1 and finally prove Corollary 1 in Section 7.2.

Note that κα(x,X) depends on the prior of X. Now, let us introduce the following uniform

SBM prior with fixed first vertex.

DEFINITION 1. Consider a k-class SBM with n vertices. We say X ∈ Rn(n−1)/2 is drawn
from the uniform SBM prior with fixed first vertex and parameter λ > 0 if it is generated as

follows: (1) generate a membership vector z ∈ [k]n such that z1 = 1, zj
i.i.d.∼ Unif{1, . . . , k}

for j = 2, . . . , n; (2) let X = vec(λZij : i < j), where the symmetric matrix Z ∈ {0,1}n×n

is the corresponding membership matrix of z. Here, the notation vec(Zij : i < j) means the
vectorization of the upper triangular matrix of Z by column.

Then we have the following bounds on |κα(x,X)| when X is drawn from the prior in
Definition 1.

PROPOSITION 3. Suppose X is generated from the uniform SBM prior with fixed first

vertex and parameter λ. Denote the membership vector of X as z and the first entry of X as

x, that is, x = 1(z1 = z2). Then for any multigraph α on X with |α| ≥ 1, we have:

(i) if α is a disconnected or α is connected but 2 /∈ V (α), then κα(x,X) = 0;
(ii) if α is connected, 2 ∈ V (α) and 1 /∈ V (α), then κα(x,X) = 0;

(iii) if α is connected, 2 ∈ V (α) and 1 ∈ V (α), then |κα(x,X)| ≤ λ|α|+1(1/k)|V (α)|−1 ×
(|α| + 1)|α|.

PROOF. Throughout the proofs, we will view α as a multigraph of n vertices.
Proof of (i). By (9), we know that κα(x,X) is the joint cumulant of a group of random

variables, say G. For the case α is disconnected, G could be divided into G1 and G2 and
G1 and G2 are independent of each other. Thus, by Proposition 1 in Appendix B.1 in the
Supplementary Material (Luo and Gao (2024)), κα(x,X) is zero. Similarly, for the case α is
connected but 2 /∈ V (α), we know in the prior for X, z1 is known and fixed, so if 2 /∈ V (α),
x will be independent of X. By the same argument, κα(x,X) will be zero.
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Proof of (ii). First, for any connected α, we have

E
[
Xα]

= λ|α|P
(
all vertices in V (α) are in the same community

)

= λ|α| ·
(

1

k

)|V (α)|−1
,

E
[
xXα]

= λ|α|+1P
(
all vertices in V (α) ∪ {1,2} are in the same community

)

= λ|α|+1
(

1

k

)|V (α)∪{1,2}|−1
.

(30)

Next, we prove the claim by induction. When |α| = 0, κ0(x,X) = E(x) = λ
k

. Then, for α

such that |α| = 1, 2 ∈ V (α) and 1 /∈ V (α), we have

κα(x,X)
(8)= E

[
xXα]

− κ0(x,X)E
[
Xα] (30)= λ|α|+1

(
1

k

)|V (α)|
−

λ

k
λ|α|

(
1

k

)|V (α)|−1
= 0.

Now, assume that given any t ≥ 2 and any α with 2 ∈ V (α), 1 /∈ V (α) and |α| < t ,
κα(x,X) = 0. Then for any such α with |α| = t , we have

κα(x,X)
(8)= E

(
xXα)

−
∑

0≤β≨α

κβ(x,X)

(
α

β

)
E

[
Xα−β]

(a)= E
(
xXα)

− κ0(x,X)E
[
Xα]

= λ|α|+1
(

1

k

)|V (α)|
−

λ

k
λ|α|

(
1

k

)|V (α)|−1
= 0,

where (a) is because for any β such that |β| ≥ 1, 1 /∈ V (β) since β is a subgraph of α, and
thus κβ(x,X) = 0 for either the case 2 /∈ V (β) by the result we have proved in part (i) and
the case 2 ∈ V (β) by the induction assumption. This finishes the induction, and we have that
for any α such that |α| ≥ 1, 2 ∈ V (α) and 1 /∈ V (α), κα(x,X) = 0.

Proof of (iii). First, for any connected subgraph β of α,

E
[
Xα−β]

= λ|α−β|P(each connected component in α − β belongs to the same community)

= λ|α−β|
(

1

k

)|V (α−β)|−C(α−β)

,
(31)

where C(α − β) denotes the number of connected components in α − β .
Next, we prove the claim by induction. Recall that when |α| = 0, κ0(x,X) = λ

k
. Then, for

α such that |α| = 1, 2 ∈ V (α) and 1 ∈ V (α), we have

κα(x,X)
(8)= E

[
xXα]

− κ0(x,X)E
[
Xα] (30)= λ|α|+1

(
1

k

)|V (α)|−1
−

λ

k
λ|α|

(
1

k

)|V (α)|−1

= λ|α|+1
(

1

k

)|V (α)|−1
−

λ

k
λ|α|

(
1

k

)|V (α)|−1
= λ|α|+1

(
1

k

)|V (α)|−1
(1 − 1/k),

thus |κα(x,X)| ≤ λ|α|+1(1/k)|V (α)|−1(|α| + 1)|α| holds for |α| = 1.
Now, assume that given any t ≥ 2 and any α with 2 ∈ V (α), 1 ∈ V (α) and |α| < t ,

|κα(x,X)| ≤ λ|α|+1(1/k)|V (α)|−1(|α| + 1)|α|. Then for any such α with |α| = t , we have

∣∣κα(x,X)
∣∣ (8)=

∣∣∣∣∣∣
E

(
xXα)

−
∑

0≤β≨α

κβ(x,X)

(
α

β

)
E

[
Xα−β]

∣∣∣∣∣∣

≤
∣∣E

(
xXα)∣∣ +

∑

0≤β≨α

∣∣κβ(x,X)
∣∣
(
α

β

)
E

[
Xα−β]

(32)
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Part (i)=
∣∣E

(
xXα)∣∣ +

∑

0≤β≨α:β is connected

∣∣κβ(x,X)
∣∣
(
α

β

)
E

[
Xα−β]

(30),(31)= λ|α|+1
(

1

k

)|V (α)|−1

+
∑

0≤β≨α:β is connected

∣∣κβ(x,X)
∣∣
(
α

β

)
λ|α−β|

(
1

k

)|V (α−β)|−C(α−β)

(a)= λ|α|+1
(

1

k

)|V (α)|−1
+

∣∣κ0(x,X)
∣∣λ|α|

(
1

k

)|V (α)|−1

+
∑

0≨β≨α,
β is connected ,

1∈V (β),2∈V (β)

∣∣κβ(x,X)
∣∣
(
α

β

)
λ|α−β|

(
1

k

)|V (α−β)|−C(α−β)

(b)= λ|α|+1
(

1

k

)|V (α)|−1
+ λ|α|+1

(
1

k

)|V (α)|

+
∑

0≨β≨α,
β is connected ,

1∈V (β),2∈V (β)

λ|β|+1(1/k)|V (β)|−1(
|β| + 1

)|β|
(
α

β

)
λ|α−β|

×
(

1

k

)|V (α−β)|−C(α−β)

,

where in (a), we separate the term β = 0 in the summation and then use the results proved in
(i)–(ii) of this proposition; (b) is because κ0(x,X) = λ

k
and by the induction assumption.

Next,

∣∣κα(x,X)
∣∣ ≤ λ|α|+1

(
1

k

)|V (α)|−1
+ λ|α|+1

(
1

k

)|V (α)|

+
∑

0≨β≨α,
β is connected ,

1∈V (β),2∈V (β)

λ|β|+1(1/k)|V (β)|−1(
|β| + 1

)|β|
(
α

β

)
λ|α−β|

×
(

1

k

)|V (α−β)|−C(α−β)

(a)
≤ 2λ|α|+1

(
1

k

)|V (α)|−1
+ λ|α|+1

(
1

k

)|V (α)|−1 ∑

0≨β≨α,
β is connected ,

1∈V (β),2∈V (β)

(
|β| + 1

)|β|
(
α

β

)

≤ λ|α|+1
(

1

k

)|V (α)|−1
⎛
¿2 +

∑

0≨β≨α

(
|β| + 1

)|β|
(
α

β

)À
⎠

(b)= λ|α|+1
(

1

k

)|V (α)|−1
⎛
¿2 +

|α|−1∑

ℓ=1

(ℓ + 1)ℓ
(|α|

ℓ

)À
⎠(33)
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≤ λ|α|+1
(

1

k

)|V (α)|−1
⎛
¿2 +

|α|−1∑

ℓ=1

|α|ℓ
(|α|

ℓ

)À
⎠

≤ λ|α|+1
(

1

k

)|V (α)|−1
⎛
¿

|α|∑

ℓ=0

|α|ℓ
(|α|

ℓ

)À
⎠

= λ|α|+1
(

1

k

)|V (α)|−1(
|α| + 1

)|α|
,

where (a) is due to the following Lemma 1 and in (b) we use the fact
∑

β:|β|=ℓ

(α
β

)
=

(|α|
ℓ

)
for

any ℓ ≤ |α|.

LEMMA 1. Given any connected multigraph α, suppose β is a connected subgraph of α,
then

∣∣V (α − β)
∣∣ +

∣∣V (β)
∣∣ − C(α − β) ≥

∣∣V (α)
∣∣,

where C(α − β) denotes the number of connected component in the graph α − β .

PROOF. First, it is clear that V (α−β)∪V (β) ⊇ V (α). Since both α and β are connected
multigraphs, for each connected component in α − β , it must have at least a common vertex
with β . Moreover, that common vertex is counted twice in computing |V (α − β)| + |V (β)|.
This completes the proof. �

This finishes the induction and the proof of this proposition. �

The next lemma counts the number of connected α in (iii) of Proposition 3 such that
κα(x,X) is nonzero.

LEMMA 2. Given any d ≥ 1, 0 ≤ h ≤ d − 1, the number of connected α such that 1 ∈
V (α), 2 ∈ V (α), |α| = d and |V (α)| = d + 1 − h is at most nd−h−1dd+h.

PROOF. We view α as a multigraph on [n] and count the number of ways to construct
such α. The counting strategy is the following: we start with adding Vertex 2 to α and then
add (d − h) edges such that for each edge there, it will introduce a new vertex; then we
add the rest of h edges on these existing vertices. In the first stage above, we can also count
different cases by considering when will Vertex 1 be introduced in adding new vertices.

• If Vertex 1 is the first vertex to be added after Vertex 2, then the number of such choices of
α is at most (nd)d−h−1(d2)h. Here, (nd)d−h−1 is because for each of the rest of d − h − 1
edges, the number of choices for the starting vertex is at most d since there are at most
(d + 1) vertices in α and the number of choices for a newly introduced vertex is at most
n. (d2)h comes from that in the second stage, the choice of each extra edge is at most((d+1)

2

)
= (d + 1)d/2 ≤ d2.

• By the same counting strategy, if Vertex 1 is the second vertex to be added in the first stage,
then the number of such choices of α is at most (nd)d−h−1(d2)h.

• · · ·
• If Vertex 1 is the (d − h)th vertex to be added in the first stage, then the number of such

choices of α is at most (nd)d−h−1(d2)h.
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By adding them together, the number of choices of connected α such that 1 ∈ V (α), 2 ∈ V (α),
|α| = d and |V (α)| = d + 1 − h is at most

(d − h)(nd)d−h−1(
d2)h ≤ d(nd)d−h−1(

d2)h = nd−h−1dd+h. �

In the following Proposition 4, we bound
∑

α∈NN ,0≤|α|≤D
κ2
α(x,X)

α! when X is generated
from the uniform SBM prior with fixed first vertex.

PROPOSITION 4. Under the same setting as in Proposition 3, for any D ≥ 1, we have

∑

α∈NN ,0≤|α|≤D

κ2
α(x,X)

α!
≤

λ2

k2 −
λ2

n
+

λ2

n

d∑

h=0

(
D2(D + 1)2λ2)h D∑

d=h

(
D(D + 1)2 nλ2

k2

)d−h

.

In particular, for any 0 < r < 1, if λ2 ≤ r
(D(D+1))2 min(1, k2

n
), then we have

∑

α∈NN ,0≤|α|≤D

κ2
α(x,X)

α!
≤ λ2

k2
+ r(2 − r)λ2

(1 − r)2n
.

PROOF. First, we have κ0(x,X) = E(x) = λ/k. Then

∑

α∈NN ,0≤|α|≤D

κ2
α(x,X)

α!
≤

∑

α∈NN ,0≤|α|≤D

κ2
α(x,X)

Proposition 3(i)(ii)= κ2
0 (x,X) +

∑

α∈NN ,1≤|α|≤D,
α connected ,1∈V (α),2∈V (α)

κ2
α(x,X)

Proposition 3(iii),Lemma 2
≤

λ2

k2 +
D∑

d=1

d−1∑

h=0

nd−h−1dd+h

×
(
λd+1(1/k)d−h(d + 1)d

)2

= λ2

k2
+ λ2

n

D∑

d=1

d−1∑

h=0

(
nd(d + 1)2λ2

k2

)d(
dk2

n

)h

≤
λ2

k2 +
λ2

n

D∑

d=1

d−1∑

h=0

(
nD(D + 1)2λ2

k2

)d(
Dk2

n

)h

≤
λ2

k2
−

λ2

n
+

λ2

n

D∑

d=0

d∑

h=0

(
nD(D + 1)2λ2

k2

)d(
Dk2

n

)h

=
λ2

k2 −
λ2

n
+

λ2

n

d∑

h=0

(
D2(D + 1)2λ2)h D∑

d=h

(
D(D + 1)2 nλ2

k2

)d−h

.

This shows the first conclusion.
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For any 0 < r < 1 and D ≥ 1, if λ2 ≤ r
(D(D+1))2 min(1, k2

n
), by the above result, we have

∑

α∈NN ,0≤|α|≤D

κ2
α(x,X)

α!
≤ λ2

k2
− λ2

n
+ λ2

n

d∑

h=0

(
D2(D + 1)2λ2)h D∑

d=h

(
D(D + 1)2 nλ2

k2

)d−h

≤
λ2

k2 −
λ2

n
+

λ2

n

d∑

h=0

rh
D∑

d=h

rd−h ≤
λ2

k2 −
λ2

n
+

λ2

n

1

(1 − r)2

=
λ2

k2 +
r(2 − r)λ2

(1 − r)2n
.

This completes the proof of this proposition. �

7.1. Proof of Theorem 2. PROOF. First, since M is drawn uniformly at random from
Mk,p,q , by symmetry, we have

inf
M̂∈R[A]n×n

≤D

EA,M∼PSBM(p,q)

[
ℓ(M̂,M)

]

= inf
g∈R[A]≤D

EA,M∼PSBM(p,q)

[(
g(A) − M12

)2]

= inf
g∈R[A]≤D

k∑

j=1

EA,M∼PSBM(p,q)

[(
g(A) − M12

)2∣∣(zM)1 = j
]
P

(
(zM)1 = j

)

= inf
g∈R[A]≤D

EA,M∼PSBM(p,q)

[(
g(A) − M12

)2∣∣(zM)1 = 1
]

= inf
g∈R[A]≤D

EA,M∼P′
SBM(p,q)

[(
g(A) − M12

)2]
,

(34)

where P′
SBM(p,q) is the restriction of PSBM(p,q) on Mk,p,q such that (zM)1 = 1.

The graphon estimation problem in SBM fits in the general binary observation model
described in Section 2.1. Thus, we can apply the results in Proposition 1. Following the
notation in Section 2.1, in our context, we have x = M12, X = vec(Mij : i < j) encodes the
upper triangular entries of M and Y = vec(Aij : i < j) encodes the upper triangular entries
of A. Thus, N = n(n − 1)/2 and the law of X is supported on [q,p]. By Proposition 1, we
have

inf
g∈R[A]≤D

EA,M∼P′
SBM(p,q)

[(
g(A) − M12

)2]

= EA,M∼P′
SBM(p,q)

(
M2

12
)
− Corr2

≤D

≥ EA,M∼P′
SBM(p,q)

(
M2

12
)
−

∑

α∈{0,1}N ,0≤|α|≤D

κ2
α(M12,X)

(q(1 − p))|α| ,

(35)

where κα(M12,X) is recursively defined as

κ0(M12,X) = EA,M∼P′
SBM(p,q)

[M12] = p/k + (1 − 1/k)q = q + (p − q)/k;

κα(M12,X) = EA,M∼P′
SBM(p,q)

[
M12X

α]
−

∑

0≤β≨α

κβ(x,X)

(
α

β

)
E

[
Xα−β]

(36)
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(a)= EA,M∼P′
SBM(p,q)

[
M12X

α]
−

∑

0≤β≨α

κβ(x,X)E
[
Xα−β]

for α such that |α| ≥ 1,

where in (a), we use the fact α ∈ {0,1}N so that
(α
β

)
= 1.

Directly computing κα(M12,X) is complicated. Here, we do a transformation and let �X =
(X − q)/

√
q(1 − p), �M12 = (M12 − q)/

√
q(1 − p). By the interpretation of κα(x,X) in (9),

we have

κ0( �M12, �X)
(a)= κ0

(
M12√

q(1 − p)
,X

)
−

q√
q(1 − p)

=
1√

q(1 − p)
κ0(M12,X) −

q√
q(1 − p)

(36)=
p − q

k
√

q(1 − p)
,

(37)

where (a) is by Proposition 2 in Appendix B.1 in the Supplementary Material (Luo and Gao
(2024)). For any α such that |α| ≥ 1, by Proposition 2, we have

(38) κα( �M12, �X) =
1

(q(1 − p))(|α|+1)/2 · κα(M12,X).

By plugging (37) and (38) into (34) and (35), we have

inf
g∈R[A]≤D

EA,M∼P′
SBM(p,q)

[(
g(A) − M12

)2]

≥ EA,M∼P′
SBM(p,q)

(
M2

12
)
−

∑

α∈{0,1}N ,0≤|α|≤D

κ2
α(M12,X)

(q(1 − p))|α|

= q2 +
p2 − q2

k
− κ2

0 (M12,X) −
∑

α∈{0,1}N ,0≨|α|≤D

κ2
α(M12,X)

(q(1 − p))|α|

(36),(38)= q2 +
p2 − q2

k
−

(
q + (p − q)/k

)2 + q(1 − p)κ2
0 ( �M12, �X)

−
∑

α∈{0,1}N ,0≤|α|≤D

q(1 − p)κ2
α( �M12, �X)

(37)=
(p − q)2

k
− q(1 − p)

∑

α∈{0,1}N ,0≤|α|≤D

κ2
α( �M12, �X).

(39)

Recall that ZM is the membership matrix associated with M . Since X represents the up-
per triangular entries of q1n1�

n + (p − q)ZM where 1n represents an all 1 vector, after the
transformation, �X encodes upper triangular entries of (p−q)ZM√

q(1−p)
and �M12 is the first entry of

�X.
Notice that P′

SBM(p,q) is exactly the uniform SBM prior with fixed first vertex defined in

Definition 1 with λ = (p−q)√
q(1−p)

. By Proposition 4, we have

inf
M̂∈R[A]n×n

≤D

EA,M∼PSBM(p,q)

[
ℓ(M̂,M)

]

(34)= inf
g∈R[A]≤D

EA,M∼P′
SBM(p,q)

[(
g(A) − M12

)2]
(40)
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(39)
≥

(p − q)2

k
− q(1 − p)

∑

α∈{0,1}N ,0≤|α|≤D

κ2
α( �M12, �X)

(a)=
(p − q)2

k
− q(1 − p)

∑

α∈{0,1}N ,0≤|α|≤D

κ2
α( �M12, �X)/α!

Proposition 4
≥

(p − q)2

k
− q(1 − p) ·

(
(p − q)2

k2q(1 − p)
+

r(2 − r)(p − q)2

(1 − r)2nq(1 − p)

)

=
(p − q)2

k
− (p − q)2

(
1

k2 +
r(2 − r)

(1 − r)2n

)
,

where (a) is because α ∈ {0,1}N . This completes the proof of this theorem. �

7.2. Proof of Corollary 1. PROOF. Since k ≥ 2 and n ≥ k2 ≥ 2k, by Theorem 2 we

have there exists a small enough r > 0 such that when (p−q)2

q(1−p)
≤ r

(D(D+1))2 min(1, k2

n
), we

have

(41) inf
M̂∈R[A]n×n

≤D

EA,M∼PSBM(p,q)
ℓ(M̂,M) ≥ cr

(p − q)2

k

for some constant cr > 0 depends on r only.

Then we take ε ≤ q ≤ p ≤ 1 − ε for some ε > 0 such that (p−q)2

q(1−p)
≥ c r

(D(D+1))2 min(1, k2

n
)

for some 1 > c > 0, and we have

inf
M̂∈R[A]n×n

≤D

sup
M∈Mk

E
(
ℓ(M̂,M)

)
≥ inf

M̂∈R[A]n×n
≤D

EA,M∼PSBM(p,q)
ℓ(M̂,M)

(41)
≥ cr

(p − q)2

k
= c′

r

r

(D(D + 1))2 q(1 − p)

(
k

n
∧

1

k

)

≥
c

D4

(
k

n
∧

1

k

)
,

where c depends on ε and r only. �
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